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Featured Application: Linear appraisal systems (LAS) determine individuals’ degree of fitness
to an optimal morphological standard. These methods are efficient tools that help saving the
time, personnel and economic resources when zoometric phenotype collection is performed at
large population scale. Reducing the complexity of zoometric panels may maximize phenotype
collection outcomes at the minimum possible accuracy cost. Once panel optimization has succeeded,
LAS/Traditional measuring validation must be performed to ensure traditional zoometric results
are replicable when LAS is performed. After validation, reduced models proved to be effective to
capture and predict for dairy-related zoometric variability in Murciano-Granadina bucks and does.

Abstract: Implementing linear appraisal systems (LAS) may reduce time, personnel and resource
costs when performing large-scale zoometric collection. However, optimizing complex zoometric
variable panels and validating the resulting reduced outputs may still be necessary. The ack of
cross-validation may result in the loss of accuracy and value of the practices implemented. Special
attention should be paid when zoometric panels are connected to economically-relevant traits such as
dairy performance. This methodological proposal aims to optimize and validate LAS in opposition to
the traditional measuring protocols routinely implemented in Murciano-Granadina goats. The sample
comprises 41,323 LAS and traditional measuring records from 22,727 herdbook-registered primipara
does, 17,111 multipara does and 1485 bucks. Each record includes information on 17 linear traits for
primipara/multipara does and 10 traits for bucks. All zoometric parameters are scored on a nine-point
scale. Cronbach’s alpha values suggest a high internal consistency of the optimized variable panels.
Model fit, variability explanation power and predictive power (mean square error (MSE), Akaike
(AIC)/corrected Akaike (AICc) and Bayesian information criteria (BIC), respectively) suggest the
model comprising zoometric LAS scores performs better than traditional zoometry. Optimized
reduced models are able to capture variability for dairy-related zoometric traits without noticeable
detrimental effects on model validity properties.
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1. Introduction

The American Dairy Goat Association (ADGA) published the first linear appraisal system (LAS)
for dairy goats. LAS was presented as an attempt to search for more predictive and objective methods to
link zoometry and productivity in 1993. The benefits derived from the application of LAS comprise the
evaluation of moderately heritable zoometric traits that hold a significant relationship with productive
traits. This evaluation is performed for each animal and uniformly across the population, using
scales that are able to capture the variability between observed biological extremes in economically
important traits.

The combined Caprine Index (ICC) [1] and Morphological Index began to be applied in French
dairy breeds in 1999. Since these very first attempts, many breeds (Alpine, Lamancha, Nigerian Dwarf,
Nubian, Oberhasli, Saanen, Sable or Toggenburg) have implemented LAS. In the most representative
cases, the number of linear appraisals performed increased by up to 3828.40% during the period
ranging from 2005 to 2019 [2].

The National Association of Breeders of the Murciano-Granadina goat breed (CAPRIGRAN)
routinely performs a numerical description of 17 zoometric linear traits on a one to nine-point scale.
This scale is used to represent the biological range for each particular trait that exists in the current
population. Then, these linear trait data—plus a final score for each animal —are used to develop
individual reports for does and bucks. The importance of the system is denoted by the fact that LAS
observations have reached a number of almost 400,000 in the past 5 years [3].

Contextually, although CAPRIGRAN LAS [4] has a strong basis on ADGA and USDA’s LAS, it is
relatively new, as its application only dates back to 2010. Murciano-Granadina goat linear appraisals
increased by 16.05% from 2018 to 2019. After a decade of progress, the most remarkable international
achievement obtained by Murciano-Granadina breeding may be that figures have exceeded the most
promising results reported by other breeds by more than 10 times. For instance, the Nigerian Dwarf
Goat breed had previously shown the greatest increase in the number of linear appraisals, with 3182
new linear appraisals performed, in 2019 [2].

CAPRIGRAN performs routine LAS using a team of raters who use PDA and “Escardillo”
technical–economic management software to collect individual ratings [5]. Raters evaluate each animal
across four structural areas (structure and capacity, dairy conformation, mammary system and legs
aplomb). The scores provided for each zoometric variable depend on the degree of resemblance of the
measure observed on each individual to the optimal standard measure for Murciano-Granadina dairy
goats. Then, the scores of the variables comprising each major area are summed and multiplied by a
coefficient. This coefficient depends on the preestablished relevance of each major area to define the
dairy morphotype and breed standard.

For breeding does, the structure and capacity, dairy conformation, mammary system and legs
aplomb areas are multiplied by 25%, 15%, 40% and 20%, respectively. For breeding bucks and goats
which have not yet given birth, the areas to be scored are reduced to structure and capacity, dairy
conformation and legs aplomb, and their relative scores are multiplied by 50%, 20% and 30%, respectively.
Then, the final score may total up to 100 points depending on the relative scores for each of the areas
obtained by each animal.

Afterward, points are translated into a verdict as follows: insufficient (IN) when a certain animal
totals from 60 to 69 points; mediocre (R), from 70 to 74 points; good (B); from 75 to 79 points; quite good
(BB), from 80 to 84; very good (MB), from 85 to 89 points; or excellent (EX), at 90 points or above [6]. Then,
the final score relative to each major category of each animal is used by raters to compute each animal’s
final score to provide individualized reports per animal to the owner of each herd. Afterward, final
records are registered in the computerized record and used to rank sires and dams in official catalogues.
Finally, all the information is made public using codes for each animal to fulfil the requirements of Data
Protection Policies.

The collection of large sets of zoometric variables is essential when performing the characterization
of breeds. However, it can be time-consuming, human resource-demanding and unprofitable when
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the standard of a breed has already been defined or if large-scale zoometric assessment is needed.
CAPRIGRAN LAS differs from ADGA and UDGA’s systems in the fact that raters translate biological
variability on a point scale ranging from one to nine.

Given the need to ensure the applicability of LAS at a large scale, the simplification of CAPRIGRAN
LAS is one of the top-priority challenges to address when applying on-farm protocols in goats [7].
At this point, statistical optimization and validation are crucial practices to perform to ensure the
capacity and reliability of LAS to describe the ranges of zoometric measures found in the population.
Contextually, principal component analysis (PCA) has been widely applied as a method to discard
potentially redundant or confounding zoometric traits [8,9], which can maximize the predictive power
of linear appraisal scales efficiently.

Once large variable sets have been reduced, preserving the greatest fraction of variance possible,
the scales must still be tested. Scale testing aims to determine whether the results reported by
linear appraisal techniques are comparable to those reported by traditional zoometric assessment.
The comparison of both methods enables the calculation of an index of the degree to which an artificially
built scale can depict zoometric patterns in a population. For this purpose, regression analysis and
canonical correlation analysis between LAS and traditional zoometric scales can help to determine
their greater or lesser levels of resemblance.

After LAS validation, its application in the context of breeding for the most desirable zoometric
patterns may enable a maximized productive objective to be obtained. Furthermore, large-scale LAS
may grant access to large amounts of very valuable, readily available information for breeders. This
information may enhance selection potentialities through the improvement of the selection accuracy
of breeding stock or when making decisions about purchases, as relatively quick diagnoses of the
quality of certain animals and their specific suitability for dairy production can be issued in the context
of the breeds’ morphological traits. These methods may also be implemented at a lower time and
resource cost, as assessors may progressively become acquainted with the spectrum of possible levels
and thresholds, more easily identifying the value of new animals in comparison with the optimal levels
described in the breed’s standard.

Thus, the present study aimed at implementing two main objectives: first, the optimization of the
systematic visual LAS that is routinely applied in the Murciano-Granadina breed; second, the validation
of the replicability of the results derived from the application of CAPRIGAN LAS in comparison to
the actual zoometric measurements collected from the individuals in the entire Murciano-Granadina
breed herdbook.

2. Materials and Methods

2.1. Statistical Assumption Testing

Historical zoometric records for the Murciano-Granadina goat breed collected until December
2019 were tested for common parametric assumptions. Kolmogórov–Smirnov and Levene tests were
used to evaluate normality and homoscedasticity, respectively, using the statistical software Statistical
Package for the Social Sciences (SPSS Statistics) for Windows (Version 25.0, 2017, IBM Corp., Armonk,
NY, USA).

2.2. Animal Sample and Linear Appraisal Records

The complete pedigree of Murciano-Granadina goats consisted of 279,264 animals (266,793 does
and 12,971 bucks) born from June 1966 to November 2019. The linear appraisal database comprised
information from 41,418 individuals evaluated year-round. The records were measured in 73 farms in
the South of Spain from 09/06/2010 to 18/12/2019. National and International Sanitary Certificates were
officially issued for all the farms considered in the study. All farms considered were controlled and
officially declared tuberculosis-free (C3), brucellosis-free (M4) (Order of 22 June 2018 and Directive
91/68/EEC) and Scrapie Controlled Risk (SCRAPIE RC) (Regulation (EC) No 999/2001 of the European
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Parliament and the Council). These farms also followed voluntary control plans for Caprine Contagious
Agalactia (CCA) (National CCA Surveillance, Control, and Eradication Programme 2018–2020) and
Caprine arthritis encephalitis (CAEV) (Order AYG/287/2019 of 28 of February of 2019). Goats were
clinically examined by an official veterinarian, and animals presenting signs of illness or disease
conditions were officially declared and removed from the herds; thus, they were not considered in
the analyses. All farms followed permanent stabling practices, with ad libitum water, foraging and
supplemental concentrate. A further description of the detailed and analytical composition of the diet
provided to the animals in the study can be found in Table S1.

The sample was evaluated and filtered. As a result, 95 individuals with missing or incomplete
zoometric and linear appraisal records were discarded. The final dataset comprised 41,323 records
belonging to 22,727 herdbook registered primipara does, 17,111 multipara does and 1485 bucks which
were retained in the statistical analysis. Average age ranges for primipara and multipara does and
bucks in the sample were 1.61 ± 0.35 years, 3.96 ± 1.74 years and 2.43 ± 1.49 years (µ ± SD), respectively.

2.3. Murciano-Granadina Linear Appraisal System (LAS)

For primipara and multipara does, each animal’s registry comprises the raters’ score for the
four major categories of structure and capacity, dairy structure, mammary system and legs aplomb.
For bucks, young males and goats that have not yet given birth, the mammary system was not evaluated,
resulting in three major categories being considered. In the case of primipara and multipara does, each
record comprised information on 17 linear traits rated on a nine-point scale. As bucks were not scored
for traits in the mammary system major category, only 10 traits were scored for them following the
same nine-point scale. Body depth from the structure and capacity as major categories and the major
categories of dairy structure and legs and feet followed the same criteria for males and females.

Each final score represents how closely the animal resembles the overall optimal dairy standard.
The Murciano-Granadina LAS establishes that each major category contributes to the final score, with
25% for structure and capacity, 15% for dairy structure, 20% for legs and feet and 40% for the mammary
system for primipara and multipara does (any doe which has ever begun to produce milk). In the case
of bucks and young males, these percentages change to 50% for structure and capacity, 20% for dairy
structure and 30% for legs and feet.

Rater’s final scores are translated into one of the six category qualifications considered by
CAPRIGRAN as follows: insufficient (IN) for animals which display less than 69% of the optimal
standard for Murciano-Granadina dairy goats, which translates into a final score of 69 points or less;
mediocre (R) at 70% to 74% of optimal standard, which translates into a final score between 70 and 74
points; good (B) from 75% to 79% of the optimal standard, which translates into a final score from 75 to
79 points; quite good (BB) from 80% to 84% of the optimal standard, which translates into a final score
from 80 to 84 points; very good (MB) from 85% to 89% of the optimal standard, which translates into a
final score from 85 to 89 points; or excellent (E) when at least 90% of the optimal standard is displayed,
which translates into a final score higher than 90 points. A detailed description of the scales used and
the translation process from zoometric traits can be found in Sánchez Rodríguez, et al. [4], Table 1 and
Figures S1–S27.

Age elements (such as the age of the doe or lactation stage) have been reported to condition
dairy linear or type appraisal-related traits [10]. As a result, age elements—often recorded for does at
appraisal—permit the adjustment of models for the outputs of linear or type appraisal records [11].
The Pearson product–moment correlation coefficient between the lactation phase and age in years
was 0.705 (P < 0.01); thus, a certain redundancy could be presumed for the outputs of linear or type
appraisal when both age elements were considered simultaneously. For this reason, the lactation phase
was considered, and results for primipara and multipara goats were broken down in the present study.
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Table 1. Detailed description of the scales used and the translation process from zoometric traits to linear appraisal scoring system (LAS) scores in Murciano-Granadina
goat and bucks.

Gender/Status Major Area Linear Trait Zoometric Scale/Categorical Scale Zoometric Optimum Scoring Reference/Middle Point LAS
Extrapolation LAS Optimum Scoring

Pr
im

ip
ar

a/
M

ul
ti

pa
ra

do
es

Structure
and capacity

Stature (height to withers) 62–78 cm 72 cm (primipara) and 74 cm (multipara) 5 (70 cm) 1–9 points 6 (primipara) and
7 (multipara)

Chest Width 15–23 cm 20 cm (primipara) and 21 cm (multipara) 5 (19 cm) 1–9 points 6 (primipara) and
7 (multipara)

Body Depth Shallow-Extremely deep Intermediate 5 (elbow end matches rib depth) 1–9 points 7 (primipara and
multipara)

Rump Width 13–21 cm 18 cm (primipara) and 19 (multipara) 5 (17 cm) 1–9 points 6 (primipara) and
7 (multipara)

Rump Angle 55–31º 31º 5 (43º) 1–9 points 9

Dairy
structure

Angulosity Angulous extremity–rough extremity Angulous extremity 5 (Intermediate) 1–9 points 9

Bone Quality Round and rough bones-flat and neat bones Flat and neat bones 5 (Intermediate) 1–9 points 9

Mammary
system

Anterior insertion Weak-Strong 120º 5 (90º) 1–9 points 9

Rear Insertion Height 11–3 cm 3 cm 5 (7 cm) 1–9 points 9

Median Suspensor Ligament 1–9 cm 5 cm 5 (5 cm) 1–9 points 5

Udder width 3–11 cm 11 cm 5 (7 cm) 1–9 points 9

Udder Depth −10 to 10 cm −5 cm (5 cm over hock level) and
0 cm (udder bottom at hock level) 5 (0 cm/at hock level) 1–9 points 3 (primipara) and

5 (multipara)

Nipple placement 90–0º 0º 5 (45º) 1–9 points 9

Nipple Diameter 0.5–4.5 cm 2 cm 5 (2.5 cm) 1–9 points 4

Legs aplomb

Rear Legs Rear View Very close–parallel and separated Parallel and separated 5 (slightly close) 1–9 points 9

Rear Legs Side View Straight–very curved Desirable curvature. A short distance from an
imaginary line to anterior curvature of hock 5 (desirable curvature) 1–9 points 5

Mobility Very bad mobility due to skeleton structure-long
and strong, straight and uniform stride Good mobility. Easy and harmonic movement 5 (moderate mobility) 1–9 points 9

Bu
ck

s

Structure
and capacity

Stature (Height to withers) 68–92 cm 83 cm (young) and 86 cm (adult) 5 (80 cm) 1–9 points 6 (young) and 7 (adult)

Chest Width 15–31 cm 25 cm (young) and 27 cm (adult) 5 (23 cm) 1–9 points 6 (young) and 7 (adult)

Body Depth a Shallow-Extremely deep Intermediate 5 (elbow end matches rib depth) 1–9 points 7 (young and adult)

Rump Width 14–22 cm 19 cm (young) and 20 cm (adult) 5 (18 cm) 1–9 points 6 (young) and 7 (adult)

Rump Angle 55–31º 31º 5 (43º) 1–9 points 9

Dairy
structure

Angulosity a Angulous extremity–rough extremity Angulous extremity 5 (Intermediate) 1–9 points 9

Bone Quality a Round and rough bones–flat and neat bones Flat and neat bones 5 (Intermediate) 1–9 points 9

Legs aplomb

Rear Legs Rear View a Very close–parallel and separated Parallel and separated 5 (slightly close) 1–9 points 9

Rear Legs Side View a Straightb–ery curved Desirable curvature. Short distance from an
imaginary line to anterior curvature of hock 5 (desirable curvature) 1–9 points 5

Mobility a Very bad mobility due to skeleton structure–long
and strong, straight and uniform stride Good mobility. Easy and harmonic movement 5 (moderate mobility) 1–9 points 9

a Same criteria for males and females.
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2.4. Dimensionality Reduction: Linear Appraisal System Optimization

The optimization of the LAS used in Murciano-Granadina goats was performed using principal
component analysis (PCA). PCA can be used to perform an efficient selection of the minimum number
of zoometric traits which are able to capture the highest fraction possible of variability for a given set
of traits. Birth data for all animals were provided by CAPRIGRAN. Zoometric data collection was
performed using a zoometric stick, a zoometric compass and a tape measure. All measurements were
recorded once by the same person to avoid inter-recorder effects. Descriptive statistics were calculated
for each of the 17 zoometric variables studied, and Spearman’s correlation coefficients were computed
for all possible combinations of the variables. A significant Spearman’s correlation between two
variables in a pair may result when the two variables involved in the comparison are monotonically
related, even if they share a nonlinear relationship [12]. The correlation matrix for the variables must
contain at least two correlations of |0.30| or greater [13] in terms of the absolute value, which is the
minimum magnitude for variables to be suitable for structure detection and thus for PCA to be valid.

Data for the PCA were generated from the variance–covariance matrix. The Kaiser–Meyer–Olkin
(KMO) test of sampling adequacy and Bartlett’s test of sphericity were computed to establish the validity
of the data set for structure detection (the KMO test determines whether the common factor model
is appropriate as it measures the extent to which the original variables belong together). The KMO
should be greater than 0.5 for a satisfactory factor analysis to proceed. Bartlett’s test of sphericity tests
the hypothesis that a correlation matrix is an identity matrix, which would indicate that variables
are unrelated and therefore unsuitable for structure detection. Small p-values (less than 0.05) of the
significance level indicate that factor analysis may be useful for the analysis of data [14].

Communalities were assessed to determine which variables should be maintained or discarded
from PCA. Initial communalities are indicative of the total amount of variance that certain original
variables share with all other variables included in the analysis. Extraction communalities are estimates
of the variability of each variable that can be accounted for by the factors in the factor solution. Small
values (close to zero) are indicative of variables that do not fit well within the factor solution and thus
should possibly be dropped from the analysis. Communalities after extraction should be above 0.3 [15].

The rotation of principal components was performed to transform components into a simple
structure. The raw varimax criterion of the orthogonal rotation method was used for the rotation of
the factor matrix. The varimax rotation aims to maximize the sum of variances of a quadratic weight.
Furthermore, when varimax rotation is applied via Kaiser normalization, it corrects for the bias resulting
from the fact that some factors may have high correlations with a small number of variables and zero
correlations with the others.

The cumulative proportion of variance criterion was finally used to determine the number of
components to extract. Cronbach’s alpha statistic was used to confirm the reliability and validity of the
reduced variable set. The concept of procedure validity can be understood as the degree to which a
certain scale measures the factor which it claims to measure. Cronbach’s alpha measure of validity
assumes a high correlation among the elements measuring the same construct. The closer the value of
alpha is to 1, the greater the internal consistency of the analyzed elements. George and Mallery [16]
provided a rule of thumb for the interpretation of Cronbach alpha which establishes thresholds as
follows: 0.9 is excellent, 0.8 is good, 0.7 is acceptable, 0.6 is questionable, 0.5 is poor, and less than 0.5 is
unacceptable. All statistical tests referred above were performed using the statistical software SPSS
Statistics for Windows, Version 25.0 [17].

PCA was used to discard variables which had a confounding nature and as a result did not
significantly contribute to the fraction of explained variability but significantly increased the likelihood
of type I errors, introducing bias as a result. Component loadings below |0.5| were ruled out given
their confounding nature. Highly loaded variables (with component loadings equal to or over |0.5|) in
the same dimension may reveal strong common underlying correlations among those variables.
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2.5. Linear Regression Modelling for Zoometric Traits

After redundant variables had been identified and eliminated, Categorical Regression (CATREG)
analysis was performed using the SPSS Statistics package for Windows, version 25.0, to identify the
linear relationship among the zoometric traits measured. The general simple linear regression model
designed followed the simple equation Zy’ = βxZ, and was as follows:

Zy’finalscore = βstaturexZstature + βchestwidthxZchestwidth+ βbodydepthxZbodydepth + βrumpwidthxZrumpwidth

+ βrumpanglexZrumpangle + βangulosityxZangulosity + βbonequalityxZbonequality + βanteriorinsertionxZanteriorinsertion +

βrearinsertionheightxZrearinsertionheight + βmediansuspensorligamentxZmediansuspensorligament + βudderwidthxZudderwidth +

βudderdepthxZudderdepth + βnippleplacementxZnippleplacement + βnipplediameterxZnipplediameter] +

βrearlegsrearviewxZrearlegsrearview + βrearlegssideviewxZrearlegssideview + βmobilityxZmobility

where Zy’finalscore is the final zoometric score record for each animal; β is the standardized coefficient
or population slope coefficient for each zoometric predictor (independent variables, IV) as marked
by the subindex for the whole population; and Z is the specific value for that predictor for each
individual, with each predictor being scored using Murciano-Granadina linear appraisal systems.
Variables between brackets comprise the mammary system major category and were only scored in
does as described in previous sections; thus, these variables were only included in the model for
mature females.

2.6. Linear Regression Modelling Validation

The main application of linear regression is the identification of linear relationships between
variables in multivariate analysis. For instance, even if correlational analysis is frequently used to
validate and compare scales which measure the same construct, regression analysis is still preferred to
quantify the validity of the correlational analysis of large variable sets [18,19]. Regression analysis
have been proven to surpass the performance of correlational analysis between scale scores and its
validity to quantify a certain construct. One of the advantages of regression analysis is that it provides
a way to quantify a scale–construct association in meaningful units, which facilitates the issuance of a
verdict on the validity of the relationship being tested.

Additionally, regression analysis can quantify the underlying variability accounted for by a set of
estimators/predictors for a certain trait in a population, while it simultaneously prevents confounding
effects from distorting the validity of a judgment. This in turn increases the repeatability of the results
obtained [20].

Thus, we performed CATREG analyses using the aforementioned general regression model as
a reference. The first CATREG analysis aimed to compute the ability to describe the variability in
the population regarding the final scores for zoometric traits, which were considered as a dependent
variable (DV), and considered the actual scores for the complete set of 17 measurements directly
taken from the Murciano-Granadina primipara and multipara does and bucks, which were taken
as the independent variable (IV) in the model. Then, we performed a second regression analysis to
evaluate the variability in the population for the final scores of zoometric traits, but instead using the
17 LAS variables (on a nine-point scale) routinely evaluated in Murciano-Granadina goats. Then, the
comparison of the determination power or prediction efficiency of both regression models was used to
validate the performance of CAPRIGRAN LAS. Regression analyses were separately performed for
primipara and multipara does and bucks, as traits comprising the mammary system were excluded
from the appraisals of males.

Comparative regression models for validity testing contrast with the predictive regression models
described in the previous section for primipara and multipara does and bucks as these comprise
combinations of the 17 traits scored through LAS without including those identified as redundant.

For model validity comparison, the variables of body depth, angulosity, bone quality, rear legs
rear view and side view and mobility were excluded from does and bucks’ comparative regression
models. This decision was made based on the fact that, even during regular zoometric assessment,
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these zoometric parameters may rely on descriptive hedonic measurements rather than providing
actual direct measurements for a certain zoometric trait; thus, no comparison could be performed as
they were always scored using a specific LAS. The designed models can be seen in Table S2.

As the variables in our study comprised levels categorized following different criteria, we
used standardized coefficients to interpret and compare their effects on our DV, as these are not
unit-dependent. The stepwise linear regression model applied to the transformed variables resulted in
the standardized and unstandardized coefficients being equal. Thus, unstandardized coefficients could
be interpreted. As a rule, we assumed that the standardized results reported used full standardization
(both DV and IVs were converted to standard scores) and that the Z formula was used for standardization.
The general standardized regression equation followed the following model: Z’y = β1ZX1 + β2ZX2 +

. . . , where Z’y is the predicted value of Y in Z scores, β1 represents the standardized partial regression
coefficient for X1, β2 represents the standardized partial regression coefficient for X2 and ZX1 and ZX2

are the Z score values for the variables X1 and X2, respectively. The interception point will always
equal 0.00 when standardization is based upon Z scores and both DV and IVs are standardized.
Once the regression equation is standardized, the partial effect of a given X upon Y—or of Zx upon
Zy—becomes somewhat easier to interpret because the interpretation is in standard deviation units
for all estimators/predictors. Following the common notation models, the regression model for each
predictor variable was Yn = βnZn + ε, where Yn is the n variable predictor, βn is the regression
coefficient for the n variable obtained in the n main component, Zn is the score obtained in the field for
n variable and ε represents the estimation error.

Likewise, to estimate the mean square error of prediction (MSEP) of each categorical regression
model, we used the bootstrap 0.632 estimates as some authors have suggested it to be preferable given
that it provides the least unbiased estimation of the error of prediction in conditions of a large sample
size in comparison to other commonly used cross-validation methods [21].

2.7. Ethical Approval

The study followed the premises described in the Declaration of Helsinki. The Spanish Ministry
of Economy and Competitivity through the Royal Decree-Law 53/2013 and its credited entity the Ethics
Committee of Animal Experimentation from the University of Córdoba permitted the application
of the protocols present in this study as cited in the fifth section of its second article, as the animals
assessed were used for credited zootechnical use. This national decree follows the European Union
Directive 2010/63/UE from 22/09/2010. Furthermore, the present study works with records rather
than live animals directly, and these records were obtained after minimal handling; thus, no special
permission was necessary.

3. Results

3.1. Statistical Assumption Testing, Zoometric and Linear Appraisal Records

Common parametric assumptions were violated; thus, a nonparametric approach was suggested.
A summary of the descriptive statistics for zoometric traits derived from linear appraisal and zoometric
assessment in primipara and multipara does and bucks is reported in Tables S3–S5, respectively.

3.2. Dimensionality Reduction: Linear Appraisal System Optimization

Spearman’s correlation coefficients between almost all pairs of linear appraisal-derived zoometric
traits in Murciano-Granadina primipara and multipara does and bucks were over |0.3|, as shown in
Tables S6–S8, which supported the use of principal components analysis. The Kaiser–Meyer–Olkin
measures of sampling adequacy for the principal component analysis of linear appraisal variables were
0.791, 0.712 and 0.767 in Murciano-Granadina bucks, primipara and multipara does, respectively, and
Bartlett’s test of sphericity reported a highly statistically significant value of 0.001 for the three animal
categories; thus, the correlation matrix was applicable and PCA results were valid. All communalities
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were over 0.379, 0.444 and 0.457 for bucks, primipara and multipara does, respectively; thus, no
variable was omitted from the PCA. Tables 2 and 3 report linear appraisal system varimax with Kaiser
normalization rotated component loadings, eigenvalues and percentages of variance explained for
Murciano-Granadina primipara and multipara does and bucks, respectively. Figure 1 represents
eigenvalues across dimensions for primipara and multipara does and bucks, respectively.

Table 2. LAS varimax with Kaiser normalization rotated component loadings, eigenvalues and
percentages of variance explained for Murciano-Granadina primipara and multipara does.

Primipara Does
(Rotation Converged in Seven Iterations) 1 2 3 4 5

Stature (Height to withers) 0.757 −0.002 −0.048 0.011 −0.117
Chest width 0.830 −0.061 0.172 0.082 0.118
Body depth 0.364 0.532 0.436 −0.064 −0.037
Rump width 0.799 −0.185 0.109 0.067 0.082
Rump angle 0.169 0.463 −0.074 0.110 0.469
Angulosity 0.658 0.154 0.203 0.089 0.261

Bone quality −0.638 −0.041 0.135 0.063 0.227
Anterior insertion 0.079 −0.075 0.088 −0.175 0.772

Rear insertion height −0.612 −0.100 0.329 −0.040 −0.034
Median suspensor ligament 0.155 0.254 −0.130 0.694 −0.085

Udder width 0.250 0.077 0.791 0.048 −0.106
Udder depth 0.115 −0.176 0.112 0.514 −0.457

Nipple placement/insertion −0.166 −0.075 0.182 0.544 0.424
Nipple diameter 0.018 −0.078 0.054 0.656 −0.064

Rear legs rear view −0.313 0.008 0.552 0.101 0.259
Rear legs side view −0.094 0.807 −0.013 −0.017 −0.090

Mobility −0.188 0.500 0.417 −0.031 0.200
Cronbach’s alpha * 0.771 0.579 0.409 0.300 0.118
Eigenvalues (9.785) 3.554 1.590 1.584 1.558 1.499

% of variance explained 20.904 30.256 39.576 48.739 57.558

Multipara does
(Rotation converged in 17 iterations) 1 2 3 4 5

Stature (Height to withers) 0.304 −0.637 0.100 0.020 0.027
Chest width 0.755 −0.409 0.006 −0.056 −0.003
Body depth 0.517 0.012 0.217 0.426 −0.249
Rump width 0.599 −0.463 −0.148 −0.161 0.122
Rump angle 0.229 −0.118 −0.155 0.453 0.039
Angulosity 0.695 −0.220 0.044 0.123 −0.056

Bone quality −0.174 0.666 −0.053 −0.032 −0.015
Anterior insertion 0.210 0.047 −0.677 0.028 0.096

Rear insertion height −0.074 0.665 0.078 −0.036 −0.048
Median suspensor ligament 0.139 −0.126 0.640 0.218 0.336

Udder width 0.541 0.393 0.011 0.082 0.190
Udder depth 0.264 0.053 0.741 −0.262 0.045

Nipple placement/insertion −0.030 0.040 −0.031 0.169 0.761
Nipple diameter 0.009 −0.042 0.122 −0.149 0.657

Rear legs rear view 0.186 0.517 −0.262 0.086 0.335
Rear legs side view −0.106 −0.083 0.203 0.788 −0.053

Mobility 0.016 0.201 −0.203 0.617 0.094
Cronbach’s alpha ** 0.717 0.475 0.472 0.429 0.282
Eigenvalues (9.256) 3.133 1.854 1.636 1.449 1.184

% of variance explained 18.427 29.335 38.957 47.478 54.445

* Total Cronbach’s alpha of 0.956 based on the total eigenvalue. ** Total Cronbach’s alpha of 0.949 based on the total
eigenvalue. Numbers in bold are indicative of significantly loaded components ≥|0.5|.
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Table 3. LAS varimax with Kaiser normalization rotated component loadings, eigenvalues and
percentage of variance explained for Murciano-Granadina bucks.

Bucks (Rotation Converged in 9 Iterations) 1 2 3

Stature (Height to withers) 0.779 −0.235 0.369
Chest width 0.807 −0.167 0.408
Body depth 0.611 −0.001 0.277
Rump width 0.830 −0.151 0.027
Rump angle 0.400 0.458 0.096
Angulosity 0.759 0.192 −0.352

Bone quality −0.245 0.589 −0.085
Rear legs rear view −0.04 0.774 0.038
Rear legs side view 0.258 −0.019 0.770

Mobility −0.029 0.474 0.520
Cronbach’s alpha (0.936 total based on the total eigenvalue) 0.774 0.710 0.471

Eigenvalues (6.093) 3.518 1.524 1.051
% of variance explained 35.178 15.242 10.512

Cumulative % of variance explained 35.178 50.419 60.932

Numbers in bold are indicative of significantly loaded components ≥|0.5|.
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3.3. Linear Regression Modelling for Zoometric Traits

Apart from the reasons reported above, categorical linear regression (CATREG) models for
primipara and multipara does did not include the variable of rump angle as it had been shown to
redundant in the PCA comprising LAS data (with component loadings < |0.5| across dimensions).
For this reason, it was also excluded from the zoometric scale regression comparative model. Similarly,
for adult and young males, the linear regression model did not include the variables included in
the mammary system major category (anterior insertion, rear insertion height, median suspensor
ligament, udder width, udder depth, nipple placement/insertion and nipple diameter) as these were
not measured in males. Tables 4–6 report the results of β-standardized coefficients for each variable for
the two linear regression models comprising LAS traits and Murciano-Granadina zoometric traditional
assessment for primipara and multipara does and bucks, respectively. Each Z score was replaced by an
observation (either LAS or traditional zoometric measurements) for each particular variable in each of
the respective equations in Table S2.
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Table 4. β-standardized coefficients to replace the Z score in each of the respective equations in
Supplementary Table S5 and a 0.632 bootstrap mean squared error of prediction (MSEP) for the
comparison of model validity between the two linear regression models using linear appraisal traits as
opposed to Murciano-Granadina zoometric traditional assessment in does.

Primipara Does Standardized Coefficients
df F Sig.

LAS Scores Beta Bootstrap (1000) MSEP

Stature (height to withers) 0.065 0.009 4 57.649 0.001
Chest width 0.171 0.005 5 1071.447 0.001
Rump width 0.060 0.004 6 176.72 0.001
Angulosity 0.277 0.005 7 3722.306 0.001

Rear insertion height 0.083 0.004 6 388.694 0.001
Median suspensor ligament 0.514 0.006 3 6373.985 0.001

Udder width 0.156 0.005 8 1054.802 0.001
Udder depth −0.387 0.008 7 2220.205 0.001

Nipple placement/insertion 0.065 0.005 6 196.097 0.001
Nipple diameter −0.347 0.008 6 2056.723 0.001

Primipara Does Standardized Coefficients
df F Sig.

Measurements Beta Bootstrap (1000) MSEP

Stature (height to withers) in cm 0.020 0.007 1 7.835 0.005
Chest width in cm 0.130 0.008 1 250.042 0.001
Rump width in cm 0.104 0.008 1 190.155 0.001

Angulosity in degrees 0.249 0.007 1 1414.712 0.001
Anterior insertion in cm −0.100 0.006 1 251.958 0.001

Median suspensor ligament in cm 0.313 0.008 1 1604.109 0.001
Udder width in cm 0.178 0.006 1 889.746 0.001
Udder depth in cm −0.223 0.006 1 1185.176 0.001

Nipple placement/insertion in cm −0.104 0.006 1 298.665 0.001
Nipple diameter in cm −0.232 0.006 1 1348.291 0.001

Table 5. β-standardized coefficients to replace the Z score in each of the respective equations in
Supplementary Table S5 and a 0.632 bootstrap mean squared error of prediction (MSEP) for the
comparison of model validity between the two linear regression models using linear appraisal traits as
opposed to Murciano-Granadina zoometric traditional assessment in does.

Multipara does Standardized Coefficients
df F Sig.

LAS Scores Beta Bootstrap (1000) MSEP

Stature (height to withers) 0.065 0.009 4 57.649 0.001
Chest width 0.171 0.005 5 1071.447 0.001
Rump width 0.060 0.004 6 176.72 0.001
Angulosity 0.277 0.005 7 3722.306 0.001

Rear insertion height 0.083 0.004 6 388.694 0.001
Median suspensor ligament 0.514 0.006 3 6373.985 0.001

Udder width 0.156 0.005 8 1054.802 0.001
Udder depth −0.387 0.008 7 2220.205 0.001

Nipple placement/insertion 0.065 0.005 6 196.097 0.001
Nipple diameter −0.347 0.008 6 2056.723 0.001

Primipara does Standardized Coefficients
df F Sig.

Measurements Beta Bootstrap (1000) MSEP

Stature (height to withers) in cm 0.020 0.007 1 7.835 0.005
Chest width in cm 0.130 0.008 1 250.042 0.001
Rump width in cm 0.104 0.008 1 190.155 0.001

Angulosity in degrees 0.249 0.007 1 1414.712 0.001
Anterior insertion in cm −0.100 0.006 1 251.958 0.001

Median suspensor ligament in cm 0.313 0.008 1 1604.109 0.001
Udder width in cm 0.178 0.006 1 889.746 0.001
Udder depth in cm −0.223 0.006 1 1185.176 0.001

Nipple placement/insertion in cm −0.104 0.006 1 298.665 0.001
Nipple diameter in cm −0.232 0.006 1 1348.291 0.001
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Table 6. β-standardized coefficients to replace the Z score in each of the respective equations in
Supplementary Table S5 and a 0.632 bootstrap mean squared error of prediction (MSEP) for the
comparison of model validity between the two linear regression models using linear appraisal traits as
opposed to Murciano-Granadina zoometric traditional assessment in bucks.

Bucks Standardized Coefficients
df F Sig.

LAS Scores Beta Bootstrap (1000) MSEP

Stature (Height to withers) 0.274 0.028 6.000 98.843 0.001
Chest width 0.212 0.027 4.000 61.434 0.001
Rump width 0.174 0.023 4.000 57.311 0.001
Angulosity 0.282 0.018 7.000 250.375 0.001

Bucks Standardized Coefficients
df F Sig.

Measurements Beta Bootstrap (1000) MSEP

Stature (Height to withers) in cm 0.250 0.036 1.000 48.220 0.001
Chest Width in cm 0.236 0.036 1.000 42.081 0.001
Rump Width in cm −0.264 0.026 1.000 107.334 0.001

Angulosity in degrees 0.353 0.017 1.000 451.181 0.001

3.4. Categorical Linear Regression (CATREG) Modelling Validation

Tables 4–6 report a summary of the parameters computed to compare the CATREG models
comprising Murciano-Granadina LAS scores to those comprising zoometric traditional assessment
variables. Concretely, Tables 4 and 5 report a 0.632 bootstrap mean squared error of prediction (MSEP)
to test for model cross validation in bucks and does, respectively. Table 6 shows a summary of the
determination coefficients (R2 and Adj. R2) to compare the explanatory variability. R2 values were
0.779, 0.660 and 0.734 for primipara does, multipara does and bucks, respectively, when computed
through the model using Murciano-Granadina zoometric traditional assessment.

Values of R2 slightly (0.859) to moderately/highly increased (0.883 and 0.813) for bucks, primipara
and multipara does, respectively, for models which used LAS scores (Table 7). All models reported a
highly statistically significant ability to predict the outcome of the variables measured when compared
to the raw models exclusively consisting of the interception but excluding any predictor, as suggested
by the values of MSPE and P < 0.001 for the ANOVA for regression analysis.

Table 7. β-standardized coefficients to replace the Z score in each of the respective equations in
Supplementary Table S5 and a 0.632 bootstrap mean squared error of prediction (MSEP) for the
comparison of model validity between the two linear regression models using linear appraisal traits as
opposed to Murciano-Granadina zoometric traditional assessment in does and bucks.

Gender Method Multiple R R Square
(R2)

Adjusted R Square
(Adj, R2)

Primipara does Measurements 0.631 0.399 0.398
LAS Scores 0.883 0.779 0.779

Multipara does Measurements 0.630 0.397 0.397
LAS Scores 0.813 0.661 0.660

Bucks
Measurements 0.804 0.647 0.646

LAS Scores 0.859 0.738 0.734

Following the premises of information theory, several methods have been presented for the
comparison of models with regard to their ability to explain or capture the variability observed in the
data set being studied (Akaike information criterion (AIC) and corrected Akaike information criterion
(AICc)) and the predictive potential (Bayesian information criterion (BIC)) of the model designed for
the data being modeled. Additionally, the mean square residual or error (MSE) measures how close a
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regression line is to a set of points; that is, how well a certain model fits the data being observed. The
minimum mean-square residual or error (MMSE) was calculated as shown in Asherson, et al. [22]:

MMSE = (1/N) × (MSE) (1)

where N is the number of animals and MSE is the mean square residual or error.
The Akaike information criterion (AIC), Corrected Akaike information criterion (AICc) and

Bayesian information criterion (BIC), were calculated as suggested in [23] as follows:

AIC = Nln(RSS/N) + 2K (2)

where RSS is the residual sum of squares, N is the number of data points and K is the number of IVs of
the model.

With data sets without a large number of data points (N) or for models containing several
parameters, the corrected AICc may be more accurate; however, similar results of AIC and AICc are
likely to be reported if a high number of observations are studied.

AICc = AIC + 2K(K + 1)/N(N + 1) (3)

where K is the number of parameters and N is the number of observations.
The Bayesian information criterion (BIC; [24]) is a model order selection criterion which penalizes

more complicated models for the inclusion of additional parameters.

BIC = N × N ln(RSS/N) + K × ln(N) (4)

A small numerical value of MSE, MMSE, AIC, AICc and BIC indicates a better fit when comparing
models. Table 8 shows a summary of the measures for model fit using the mean square residual or
error and minimum square residual or error (MSE and MMSE), explanatory variability power using the
Akaike information criterion (AIC) and corrected Akaike information criterion (AICc) and predictive
power using the Bayesian information criterion for the two linear regression models comprising linear
appraisal traits as opposed to Murciano-Granadina zoometric traditional assessment in does and bucks.

Table 8. Summary of the measures for model fit using the mean square residual or error and minimum
square residual or error (MSE and MMSE), explanatory variability power using the Akaike information
criterion (AIC) and corrected Akaike information criterion (AICc) and predictive power using the
Bayesian information criterion for the two linear regression models comprising linear appraisal traits
as opposed to Murciano-Granadina zoometric traditional assessment in does and bucks.

Sex/Lactation Phase Primipara Does Multipara Does Bucks

Parameters LAS Scores Measurements LAS Scores Measurements LAS Scores Measurements

RSS 5012.853 13,665.474 5804.558 10,318.972 389.064 523.915
MSE 0.221 0.602 0.340 0.603 0.267 0.354

MMSE 0.000 0.000 0.000 0.000 0.000 0.000
N 22,727.000 22,727.000 17,111.000 17,111.000 1485.000 1485.000
K 10.000 10.000 10.000 10.000 4.000 4.000

AIC −34,332.961 −11,540.796 −18,478.327 −8633.672 −1981.048 −1539.133
AICc −34,332.961 −11,540.796 −18,478.327 −8633.672 −1981.048 −1539.133
BIC −780,739,648.63 −262,742,116.00 −316,524,770.59 −148,072,892.00 −2,953,706.92 −2,297,463.71

4. Discussion

The present study aimed to compare, validate and optimize the linear appraisal methodological
approaches proposed by Martinez et al. (2010) for does and bucks in the Murciano-Granadina goat
breed to determine the quality of the LAS, which is routinely applied in opposition to traditional
zoometric analysis, for dairy-related morphological traits. The combination of principal components
and regression analyses has been reported to yield good estimates for the coefficients of explanatory
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variables aiming to measure the same DV. Reddy and Claridge [25] suggested that regression analysis
and principal component analysis (PCA) can be used to determine reduced numbers of explanatory
variables to explain the variability described by a certain DV.

With regard to the optimization of CAPRIGRAN LAS, principal components analysis reported
quite conservative results, as only the rump angle was omitted from the variables considered for
primipara and multipara does and bucks. Additionally, the optimization of the models reported a
substantial internal consistency [26]; i.e., the optimized linear appraisal scales used showed good
reliability (with values over 0.9). Thus, there was a significant validated ability to explain internal
variability, as suggested by the Cronbach’s alpha values.

The Cronbach’s alpha values were slightly higher for primipara and multipara does than for bucks,
with the set of variables evaluated for does reporting a Cronbach’s alpha value of 0.956 and 0.949 as
opposed to the value of 0.936 reported for bucks, which suggested a slightly greater internal consistency
in the case of females, which could be attributed to the dairy-related nature of the zoometric traits used
in this study. However, the variability that each of the models was able to explain was moderately
higher in males than in females, with values of 60.932% for bucks as opposed to values of 57.558 and
54.445% for primipara and multipara does. This could be ascribed to the slightly greater variability
found in bucks, which was suggested by the descriptive statistics shown in Tables S3–S5, respectively.

The computation of Cronbach’s alpha was used as it is based on the comparison of the reliability
of a test relative to other tests with the same number of items and measuring the same construct of
interest [27]; thus, its application in the validation of linear appraisal system scales allowed us to report
solid and objective results regarding the reliability of the translation from zoometric measurements to
LAS scores.

PCA identifies the variables that explain the highest fraction of variability in a dataset, and then
it uses this information to create a dataset with a reduced number of variables with minimal loss of
descriptive power. Bearing this in mind, the greater percentage of variability explained in the case of
bucks may be ascribed to the greater variability found in the population of males, as suggested by the
descriptive statistics in Tables S3–S5.

One of the advantages that datasets with a reduced number of variables present compared to more
complex datasets is that these should have less noise in the data, thus requiring less processing power,
which in turn results in optimized variable sets that can be considered to explain or estimate a joint
outcome; for example, in the present paper, the dairy-related morphological value of a certain animal.
Still, the features of the most highly variable predictors may not necessarily be the best predictors of
the variability in the whole dataset. Concretely, the most relevant predictors will bethose with a higher
influence on the dimensions identified by PCA and thus with a larger absolute component loading
(shown in Tables 2 and 3 for primipara and multipara does and bucks, respectively).

According to Wang and Wu [28], in PCA, the differences in the variability of the features considered
may differ as a result of the differences in their related eigenvalues. However, this difference is not
equivalent to that of the importance of the different components to the PCA pattern classification
described. Indeed, these authors suggest that the contribution of each component is determined by the
specific construct itself (the dairy-related morphological value of each animal).

In this context, some elements may address common features of all the dimensions that are
included in the analyses, while others may be less significant in the process of classification across
dimensions. In contrast, other elements or features may correspond to the characteristics of individual
dimensions and thus may present a greater significance in PCAs. Because of the differences in variability
across the different elements, it could be stated that the largest variabilities shown in Tables S3–S5
may be caused mainly by the differences between different dimensions. Such differences are larger
in bucks than in does; thus, a rather significant contribution could be expected in the process of the
classification of variables into principal components (dimensions), which may translate into a higher
ability to capture the variability in the dataset.

Our results suggest the existence of five reorganized major categories (principal components/
dimensions). In the case of primipara does (Table 2), the first category includes the variables of stature
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(height to withers), chest width, rump width, angulosity, bone quality and rear insertion height, as
suggested by values of component loadings over |0.5|. In this case, the results suggest the restructuration
of the existing major categories of structure and capacity, dairy structure and mammary system.
Although chest width, rump width and angulosity kept their relative importance within the first
dimension of PCA for both primipara and multipara does, udder width and body depth became relevant
for multipara does to the detriment of stature, bone quality and rear insertion height.

Considering the variables classified in the first dimension for both primipara and multipara
does, the newly statistically suggested major category could be called “structural dairy-related
capacity”. The relationship between morphological characteristics and dairy production-related
traits reported by our results has been widely described in the literature. The relationship between
indirectly dairy-related morphological variables and dairy-related morphological ones may be based
on the fact that Murciano-Granadina goats could be ascribed to a dairy morphological trunk, as
suggested by Jordana, et al. [29]. From a genetic–morphological perspective, the inclusion of the
Murciano-Granadina breed within a dairy purpose-linked morphological pattern suggests that the
morphological characteristics which may be empirically related to milk production may be relevant
to define the purpose of certain breeds, but may also address the fact that other zoometric features
somehow adapt, through selection practices, to the maximization of the achievement of this purpose.

The second dimension in primipara does clusters together variables in the fourth dimension for
multipara does. These dimensions comprised the variables of body depth, rear legs side view and
mobility, which suggests a relationship between rump conformation and rear legs with mobility quality.
Additionally, the variable of rump angle was clustered in the fourth dimension of multipara does as
well. In view of our results, we propose the category of the “mobility and propulsion system” for the
identified principal component/dimension. Although no reference has been reported for the connection
of these measurements for goats or large ruminants, a close connection between limb mobility and the
back was reported by Dyce, et al. [30], due to the continuity of some soft tissue structures; for instance,
the common aponeurosis of the longissimus dorsi muscle given its implication with the development of
back motion, and the middle gluteal muscle given its instrumental role in the mechanisms of propulsion.
Additionally, Jeffcott [31] suggested that the protraction of the forelimbs extends the back, as does the
retraction of the hindlimbs; thus, forelimb retraction and hindlimb protraction may have opposite effects,
which accounts for the statistical exclusion of forelimb-related variables from this dimension. Although
the relationship of movements with goat milk yield and quality has not been directly approached in
the literature, Di Grigoli, et al. [32] suggested goats that goats possess a great capacity of movement
which is improved by a lower milk yield but compensated by a better milk quality and a reduction
in manpower. Both aspects may represent interesting research lines given the economic importance
derived from increasing milk quality at a lower production cost.

The fourth and fifth dimensions for primipara does and third and fifth dimensions for multipara
does comprised anterior insertion, rear insertion height, median suspensor ligament, udder width,
udder depth, nipple placement/insertion and nipple diameter. Thus, for primipara does, median
suspensor ligament, udder depth, nipple placement/insertion and nipple diameter were clustered
together in the fourth dimension, while anterior insertion was taken separately in the fifth dimension.
This suggests the denomination of the fourth dimension as “udder stability quality and nipple
configuration” and the fifth dimension as “anterior insertion of the udder” in primipara does.
The fourth and fifth dimensions in primipara does and third and fifth dimensions in multipara does
suggested the evolution of the importance of the suspensory system of the udder as the lactation of
certain does progress over time.

Contextually, for multipara does, variables within the third and fifth dimensions are clustered in
such a way that the third dimension could be defined as the major category of “udder stability quality”
(anterior insertion, median suspensor ligament and udder depth). This could be supported by the
relationship that has been identified by our results and those of other authors [33], who suggested that
the variables comprising this dimension should be treated equally with respect to their importance
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and the increase in the coefficients by which they should be multiplied to improve dairy-related
morphological selection indexes aimed at the maximization of dairy production in Ayrshire cattle.

Then, the fifth and last dimension in multipara does comprised the variables of nipple placement
and nipple diameter; thus, we decided to name this major category “nipple configuration”. Studies
in regards to the relationship between nipple characteristics and milk yield or quality-related traits
are scarce. Among the nipple characteristics, the spacing between the nipples has been suggested to
affect the peak lactation of goat milk production [34], and nipple length may present a positive effect
on goat milk production, as suggested by El-Gendy, et al. [35]. This was supported by the results of
other authors who reported that values of nipple morphological parameters such as length, and the
circumference of nipples may have a positive correlation to goat milk production [36], which may
support our results, according to which nipple diameter may be a relevant factor to explain population
variability with regard to milk production-related traits.

Despite nipple attributes being directly related to milk quality in goats, as previously suggested,
studies have focused rather on the relationship between the technological features of the udder in
terms of its adaptability to milking machines, and the relationship of nipple position with dairy
production-related traits is infrequent. In this context, the relationship between udder conformation
traits and milk composition—and as a consequence, its effects on milk quality—was supported by the
findings of the study by Wagay, et al. [37]. These authors suggested that animals presenting thinner
teats and less fore-udder depth will produce milk with higher fat and solids-not-fat (SNF) percentages,
while animals with teats held high from the ground and deeper and wider udders will produce
healthy milk with a lower somatic cell count, which may imply a potential relationship between nipple
attributes—especially, nipple diameter and milk quality—in cattle. In this context, for goats, the study
by Eyduran, et al. [38] reported a significant relationship between teat angle (which could indirectly
measure nipple position) and lactation duration or milk yield, which may support our results.

The third dimension of primipara does and the second dimension of multipara does comprise the
variable of rear legs rear view. However, for primipara does, rear legs rear view is clustered together
with the variable of udder width. Given this finding, the dimension could be designated as “udder size
and mobility permission”. The importance of the mobility of milk quality has already been suggested
in the paragraph above; however, additionally, the relationship between udder size and rear limbs has
been addressed in the literature by authors such as Bölling and Pollott [39], who suggested that more
bulgy udders of mature animals may form an obstacle for hindlimbs and force animals to describe
a circle to circumvent the udder [40,41], which may result in a splay-legged walk, uneven footwear
and could lead to lameness [42], with consequent detrimental effects on mobility and a potential effect
on the reduction of milk quality. By contrast, for multipara does (second dimension), udder width
loses its relevance in favor of stature (height to the withers), bone quality and rear insertion height.
Rear insertion height is the distance between the vulva and the noble secretor tissue. This suggests
that, as lactation phases progress, the udder starts to hang lower from its insertion, which may be
counteracted by the stature and bone quality of the animal. This was suggested given the significant
component loadings for these variables in the second dimension for multipara does, who reported the
opposite sign; thus, a relationship to the first dimension in primipara does was shown, by which stature
(height to the withers) and bone quality were clustered together. This may suggest that “structural
dairy-related capacity” in multipara does is not affected by the conformation of the rump and angulosity
of the animal, as occurs in primipara does. Additionally, stature may play a stronger role in structural
dairy-related capacity when does are in the first phase of lactation, while rear insertion height and
bone quality may be decisive as lactation phases progress. Thyroid hormone responsive (THRSP) gene
has been reported to encode for small acidic nuclear protein, which is associated with growth, and to
promote the synthesis of medium-chain fatty acids in goat mammary epithelial cells [43,44], which may
account for the clustering patterns found in our study.

In the case of bucks, only rump angle was discarded given its lack of representation in the
explanation of milk yield and milk quality-related traits. In the case of males, this lack of representation
may be ascribed to the lack of milk production capacity, which reduces the implication and relevance of
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this variable. Three principal components/dimensions were identified; thus, only three major categories
were determined, which are listed as follows.

The first dimension comprised the variables of stature (height to withers), chest width, body
depth, rump width, and angulosity, which may match the observations previously been described
for does. However, in this case, we opted to term this dimension “body structure”. After comparing
the results for males and females, we observed moderate repercussions of body depth in males and
a lack of repercussions in females. This could agree with the results found by Waheed, et al. [45],
who reported body depth at heart to be moderately genetically but slightly phenotypically correlated
to milk productive traits such as lactation milk yield or lactation length (0.42 ± 0.09 and 0.28 ± 0.09
genetic correlations with milk yield and lactation length, respectively, and 0.29 ± 0.07 and 0.22 ± 0.07
phenotypic correlations with milk yield and lactation length, respectively). The same authors reported
that these correlations increased when body depth was measured at the belly (with genetic correlations
of 0.82 ± 0.09 and 0.28 ± 0.11 with milk yield and lactation length, respectively, and phenotypic
correlations of 0.43 ± 0.07 with milk yield and 0.29 ± 0.08 lactation length, respectively). As we can
observe from the values reported by these authors, the standard errors of prediction were high in
comparison to the magnitude of the correlations detected, which may account for the variability with
regard to these traits. This moderate effect is supported by the component loading of 0.611 for males
and can be inferred as it is slightly below the limits of |0.5| for does in the third dimension, which we
have previously designated as the “mobility and propulsion system”. The moderate (0.02; i.e., below
the threshold for component loadings) relationship between body depth (the distance between the top
of the spine and the bottom of the barrel at the last rib, as described by Akpa, et al. [46]) with the rest of
variables within the “mobility and propulsion system” for does may be ascribed to the involvement
of back muscles in the development of hindlimb mobility and propulsion, which has already been
mentioned in the present paper and suggested by Dyce, et al. [30]. Contrastingly, this increase in the
relevance of body depth in males, and its inclusion within the “body structure” dimension, rather than
its relationship with the movement quality and propulsion system could be derived from the residual
destination of kids for meat production, which may have indirectly resulted in the selection of this trait
in male kids.

The second dimension comprised the variables of bone quality and rear legs rear view, while
the third dimension comprised the variables of rear legs side view and mobility. These results match
our findings for does except for bone quality, which in the case of does was clustered in “structural
dairy-related capacity”, while in males it appeared to be related to “bone structure and aplomb”. Such
a difference between the ascription of bone quality to markedly different dimensions when males and
females are compared may derive from the changes which occur in bone quality across lactational
stages in does [47]. However, for males, according to Guo, et al. [48], a potential explanation of the
relationship between these two variables may stem from the single nucleotide polymorphism (SNP)
effects that have been reported for the lactoferrin gene on milk production traits. For instance, the same
authors reported a significant effect on bone growth and the content of milk protein. Furthermore,
bovine or human lactoferrin has been suggested to influence skeletal tissue as an anabolic factor and a
potent osteoblast survival factor [49], as it may stimulate the proliferation of bone formation promotion
cells, osteoblasts and cartilage cells at physiological concentrations in vitro. The third dimension in
bucks comprised the same variables as in does, except for rump angle, which could not be attributed to
any dimension. For these reasons, we decided to name this dimension or major category as “mobility”
for the reasons that have been already reported for does.

Categorical regression analysis and 0.632 bootstrap estimates confirmed that the models comprising
LAS scores for all the variables studied across major areas for does and males were more capable of
capturing and explaining the variability found in the population as suggested by the R2 values in the
range of 80% and adjusted values of R2 in the range of 0.7 in opposition to those reported by the model
comprising direct zoometric measurements expressed in cm and degrees (Table 7). All models were
statistically significant and presented a negligible squared error of prediction, which suggested the
high reliability of the linear regression models proposed.
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When model fit (scored by MSE), variability explanation power (scored by AIC and AICc) and
predictive power (scored by BIC) of linear regression models for Murciano-Granadina LAS scores
and zoometric traditional assessment were compared in does and bucks, LAS scores always reported
a better fit, a better ability to capture the variability in the data sets and better predictive potential
as suggested by the lower values for each respective parameter (Table 8). Bucks reported lower
estimates for the aforementioned parameters; however, the differences in the number of variables
comprised by the two models and the nature of the variables considered may make it necessary to
carefully analyze these estimates when the objective is to make a direct comparison of models between
genders. This drawback can be overcome as, when the coefficients used to build regression models are
standardized, the intercept obtains a value of 0.00 from the compensation of standard deviation after
the standardization process. Thus, MSE, AIC, AICc, and BIC can be directly used to compare each
model with one exclusively comprising the interception on each case, without the need to include the
same variables, for these variables to be scored using the same methods or even for these variables
to be scored using the same measurement units, as in our study, in which an ordinal LAS scale is
compared to a numeric zoometric scale with variables expressed in centimeters and degrees.

5. Conclusions

Principal component analyses determined that the linear scoring system was solid and internally
consistent for the measurement and capture of the variability of zoometric parameters related to
dairy performance. However, the resulting models were quite conservative, as only one variable
from the whole zoometric panel was discarded for bucks and does. The outputs of linear regression
demonstrate that an optimal fit, variability explanatory power and predictive potential can be achieved
by modeling a reduced number of variables from the entire linear appraisal scoring system and
traditional zoometric evaluation for Murciano-Granadina does and bucks. Conclusively, our results
suggest that the combination of PCA and categorical regression (CATREG) may be successful for the
optimization and validation of the reduction of zoometric evaluation procedures and linear appraisal
scoring systems such that they are not only able to describe the status of a certain population but can
also be used to predict the future evolution of parameters based on their linear correlations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/16/5502/s1,
Figure S1: Graphical depictions of the scale for stature in Murciano-Granadina does for dairy purpose-related
zoometric assessment; Figure S2: Graphical depictions of the scale for chest width in Murciano-Granadina does
for dairy purpose-related zoometric assessment; Figure S3: Graphical depictions of the scale for body depth
in Murciano-Granadina does for dairy purpose-related zoometric assessment; Figure S4: Graphical depictions
of the scale for rump width in Murciano-Granadina does for dairy purpose-related zoometric assessment;
Figure S5: Graphical depictions of the scale for rump angle in Murciano-Granadina does for dairy purpose-related
zoometric assessment; Figure S6: Graphical depictions of the scale for angulosity in Murciano-Granadina does
for dairy purpose-related zoometric assessment; Figure S7: Graphical depictions of the scale for bone quality
in Murciano-Granadina does for dairy purpose-related zoometric assessment; Figure S8: Graphical depictions
of the scale for anterior insertion in Murciano-Granadina does for dairy purpose-related zoometric assessment;
Figure S9: Graphical depictions of the scale for rear insertion height in Murciano-Granadina does for dairy
purpose-related zoometric assessment; Figure S10: Graphical depictions of the scale for median suspensor
ligament in Murciano-Granadina does for dairy purpose-related zoometric assessment; Figure S11: Graphical
depictions of the scale for udder width in Murciano-Granadina does for dairy purpose-related zoometric
assessment; Figure S12: Graphical depictions of the scale for udder width in Murciano-Granadina does for dairy
purpose-related zoometric assessment; Figure S13: Graphical depictions of the scale for nipple placement in
Murciano-Granadina does for dairy purpose-related zoometric assessment; Figure S14: Graphical depictions of the
scale for nipple diameter in Murciano-Granadina does for dairy purpose-related zoometric assessment; Figure S15:
Graphical depictions of the scale for rear legs, rear view in Murciano-Granadina does for dairy purpose-related
zoometric assessment; Figure S16: Graphical depictions of the scale for rear legs, side view in Murciano-Granadina
does for dairy purpose-related zoometric assessment; Figure S17: Graphical depictions of the scale for mobility
in Murciano-Granadina does for dairy purpose-related zoometric assessment; Figure S18: Graphical depictions
of the scale for stature in Murciano-Granadina bucks for dairy purpose-related zoometric assessment; Figure
S19: Graphical depictions of the scale for chest width in Murciano-Granadina bucks for dairy purpose-related
zoometric assessment; Figure S20: Graphical depictions of the scale for body depth in Murciano-Granadina bucks
for dairy purpose-related zoometric assessment; Figure S21: Graphical depictions of the scale for rump width in
Murciano-Granadina bucks for dairy purpose-related zoometric assessment; Figure S22: Graphical depictions of
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the scale for rump angle in Murciano-Granadina bucks for dairy purpose-related zoometric assessment. Figure S23:
Graphical depictions of the scale for angulosity in Murciano-Granadina bucks for dairy purpose-related zoometric
assessment; Figure S24: Graphical depictions of the scale for bone quality in Murciano-Granadina bucks for dairy
purpose-related zoometric assessment; Figure S25: Graphical depictions of the scale for rear legs, rear view in
Murciano-Granadina bucks for dairy purpose-related zoometric assessment; Figure S26: Graphical depictions of
the scale for rear legs, side view in Murciano-Granadina bucks for dairy purpose-related zoometric assessment;
Figure S27: Graphical depictions of the scale for mobility in Murciano-Granadina bucks for dairy purpose-related
zoometric assessment; Table S1. Detailed and analytical composition of the diet provided to the animals; Table S2.
Summary of descriptive statistics for zoometric traits in Murciano-Granadina primipara does derived from
linear appraisal and zoometric assessment; Table S3. Summary of descriptive statistics for zoometric traits in
Murciano-Granadina multipara does derived from linear appraisal and zoometric assessment; Table S4. Summary
of descriptive statistics for zoometric traits in Murciano-Granadina bucks derived from linear appraisal and
zoometric assessment; Table S5. Spearman’s correlation coefficients for linear appraisal-derived zoometric traits in
Murciano-Granadina primipara does; Table S6. Spearman’s correlation coefficients for linear appraisal-derived
zoometric traits in Murciano-Granadina multipara does; Table S7. Spearman’s correlation coefficients for linear
appraisal-derived zoometric traits in Murciano-Granadina bucks; Table S8. Simplification process of categorical
linear regression (CATREG) models for does and bucks from the general description to a reduced dimensionality
after principal components analysis (PCA) and development of linear comparative models to determine the
validity of linear appraisal traits as opposed to Murciano-Granadina zoometric traditional assessment.
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