
Spacelike hypersurfaces with functionally bounded mean

curvature in Lorentzian warped products and generalized

Calabi-Bernstein type problems

Juan A. Aledoa, Rafael M. Rubiob and Juan J. Salamancac
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Abstract

We study spacelike hypersurfaces with functionally bounded mean curvature in Lorentzian
warped products M = I ×f F , where F is a (non-compact) complete Riemannian mani-
fold whose universal covering is parabolic. In particular, we provide several rigidity results
under appropriate mathematical and physical assumptions. As an application, several Calabi-
Bernstein type results are obtained which widely extend the previous ones in this setting.
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1 Introduction

In this work we are interested in providing some rigidity results for spacelike hypersurfaces whose
mean curvature is controlled by natural geometrical functions of the ambient spacetime. Recall
that a maximal spacelike hypersurface M immersed in an (n+1)-dimensional Lorentzian manifold
M , ψ : M −→ M , is a hypersurface whose induced metric via ψ is Riemannian and whose mean
curvature H vanishes identically. This terminology comes from the fact that such hypersurfaces



locally maximize the n-volume among all nearby hypersurfaces having the same boundary values
(see [13] and [21]). The study of such hypersurfaces has attracted the attention of a great deal of
researchers due to several mathematical and physical reasons.

From a physical point of view, these hypersurfaces and more generally those spacelike hypersur-
faces with constant mean curvature (CMC), have been used as initial data for solving the Cauchy
problem of the Einstein equation. In fact, Lichnerowicz [25] showed that such Cauchy problem
reduces to a linear differential system of first-order and to a non-linear second-order elliptic dif-
ferential equation when a maximal hypersurface is considered as initial data. On the other hand,
maximal hypersurfaces can be used to describe the transition between expansive and contractive
phases in several relevant models of the universe [12].

From a mathematical point of view, maximal hypersurfaces present interesting Bernstein-type
properties. As is well-known, the Calabi-Bernstein theorem states that the only entire solutions to
the equation for maximal hypersurfaces in the Lorentz-Minkowski spacetime Ln+1 are the spacelike
affine hyperplanes. This central result was firstly proved by Calabi [14] for n ≤ 4 and later
extended to arbitrary dimension by Cheng and Yau [18]. Moreover, this result has motivated the
study of entire maximal graphs in more general Lorentzian spacetimes. In the particular case
when M = I ×f F is a Lorentzian warped product (see Section 2), the mean curvature of a graph
Σu = {(u(p), p) : p ∈ F} is given by the operator

H(u) = div

(
Du

nf(u)
√
f(u)2− | Du |2

)
+

f ′(u)

n
√
f(u)2− | Du |2

(
n +

| Du |2

f(u)2

)
,

where div and D, denote the divergence and the gradient operators, respectively, in the Riemannian
manifold F . Observe that the case f ≡ 1 corresponds to Lorentzian products and the mean
curvature operator reduces to

H(u) = div

(
Du

n
√

1− | Du |2

)
.

Hence, the equation for maximal spacelike graphs becomes H(u) = 0 jointly with a constraint
condition to assure that the graph is spacelike. For n = 2 and f ≡ 1 Albujer and Aĺıas [1, Cor.
8] proved a uniqueness result for entire solutions in the the maximal case, when the Gaussian
curvature of F is non-negative and positive at some point (see also [2], [20]).

In the particular case when F = R2, Latorre and Romero [23] provided a uniqueness type result
for the equation H(u) = 0 when the warping function f is non locally constant and satisfies that
f ′′ ≤ 0. The same result was obtained by Romero and Rubio [31] by means of an upper bound for
the integral, on a geodesic disc, of the squared length of the gradient of a distinguished function.

More general extensions can be found in more recent papers [15], [16] when F is a (non-compact)
complete Riemannian surface under appropriate conditions for its Gaussian curvature and certain
assumptions on the warping function as convexity of its logarithm. For arbitrary dimension,
and provided that the (non-compact) complete Riemannian manifold F has a parabolic universal
Riemannian covering, several uniqueness and non-existence results for the equation H(u) = 0
have been recently obtained in [32] and [34]. On the other hand, Li and Salavessa generalized
a Bernstein-type result due to Albujer and Aĺıas [2] for maximal surfaces in a 3-dimensional
Lorentzian product, to higher dimension and codimension [24]. It worths pointing out that in
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the simpler case when F is a (without boundary) compact manifold, the equation H(u) = cte
has been widely studied in various papers [7], [8], [17]. In fact, if F is compact then every closed
entire spacelike graph is complete. Nevertheless, in general the induced metric on a closed entire
spacelike graph in a complete Lorentzian manifold could be geodesically non-complete (see, for
instance, [6]) in contrast to what happens in Riemannian ambients.

A natural generalization of this kind of problems consists in considering differential inequations
involving the operator H(u) to obtain several rigidity results for spacelike hypersurfaces. In a
previous paper [30], Romero and Rubio obtained rigidity results for spacelike complete surfaces
immersed in a warped product I ×R2 such that its mean curvature at every point does not exceed
to the mean curvature of the spacelike slice through this point, under the additional assumption
f ′′ ≤ 0. They also solved the corresponding Calabi-Bernstein type problem. A more general
approach to this problem on Riemannian surfaces with finite total curvature is given in [33]. In
[35], Wang and Liu studied the parametric version of a similar problem for arbitrary dimension
making use of a technique provided by Yau [36]. A non-parametric approach for this type of
problem is given in [10] by Aquino and de Lima, when the mean curvature is constant. Also in
the case of constant mean non-zero curvature Albujer, Camargo and de Lima studied a differential
inequation in a Lorentzian warped product whose fiber has constant sectional curvature [3]. On
the other hand, Colares and de Lima [19], applying a maximum principle at the infinity due to
Yau, obtained a uniqueness result for complete hypersurfaces immersed in a semi-Riemannian
warped product whose warping function has convex logarithm, under the assumption that the
hypersurface is timelike bounded and its mean curvature satisfies a natural inequality involving
the mean curvature of the slices which determine the region where the hypersurface is contained.

The aim of this paper is to provide uniqueness and non-existence results to several general-
ized Calabi-Bernstein type problems on (non-compact) complete parabolic Riemannian manifolds.
More specifically, we deal with differential inequalities H(u)2 ≤ β(u) which widely extend the
maximal case, where the real functions β will arise from natural geometrical situations involving
the warping function f . Our first approach to these problems will be geometric, so providing
some parametric type rigidity results (see Section 3). Next, making use of these results, we study
several Calabi-Bernstein type problems (see Section 4) which widely extend the previous ones in
this setting.

2 Preliminaries

Let (F, g
F

) be an n-dimensional (n ≥ 2) connected Riemannian manifold and I ⊆ R an open
interval in R endowed with the metric −dt2. The warped product M = I ×f F endowed with the
Lorentzian metric

ḡ = −π∗
I
(dt2) + f(π

I
)2 π∗

F
(g

F
) (1)

where f > 0 is a smooth function on I, and πI and πF denote the projections onto I and F
respectively, is said to be a Lorentzian warped product or, in physical contexts, a Generalized
Robertson-Walker (GRW) spacetime with fiber (F, g

F
), base (I,−dt2) and warping function f (see

[7]).

These Lorentzian warped products widely extend the classical Robertson-Walker spacetimes,
whose fiber have constant sectional curvature. Recall that the family of Robertson-Walker space-
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times includes the usual big-bang cosmological models. Contrary to these spacetimes, our ambient
spacetimes are not necessarily spatially-homogeneous. Note that to be spatially-homogeneous,
which is reasonable as a first approximation of the large scale structure of the universe, could not
be appropriate when we consider a more accurate scale.

The coordinate vector field ∂t := ∂/∂t globally defined on M is (unitary) timelike, and so M
is time-orientable. We will also consider on M the conformal closed timelike vector field K :=
f(πI) ∂t. From the relationship between the Levi-Civita connections of M and those of the base
and the fiber [27, Cor. 7.35], it follows that

∇XK = f ′(πI)X (2)

for any X ∈ X(M), where ∇ is the Levi-Civita connection of the Lorentzian metric (1).

A smooth immersion ψ : Mn −→M of an n-dimensional (connected) manifold M is said to be
a spacelike hypersurface if the induced metric g via ψ is a Riemannian metric on M .

Since M is time-orientable we can take, for each spacelike hypersurface M in M , a unique
unitary timelike vector field N ∈ X⊥(M) globally defined on M with the same time-orientation
as ∂t, i.e. such that ḡ(N, ∂t) < 0. From the wrong-way Cauchy-Schwarz inequality (see [27, Prop.
5.30], for instance), we have ḡ(N, ∂t) ≤ −1, and the equality holds at a point p ∈M if and only if
N = ∂t at p. The hyperbolic angle ϕ, at any point of M , between the unit timelike vectors N and
∂t, is given by ḡ(N, ∂t) = − coshϕ.

We will denote by A and H := −(1/n)tr(A) the shape operator and the mean curvature function
associated to N . A spacelike hypersurface with H = 0 is called a maximal hypersurface. The reason
for this terminology is that the mean curvature is zero if and only if the spacelike hypersurface is
a local maximum of the n-dimensional area functional for compactly supported normal variations.

In any Lorentzian warped product M there is a remarkable family of spacelike hypersurfaces,
namely its spacelike slices {t

0
} × F , t

0
∈ I. The spacelike slices constitute for each value t

0
the

restspace of the distinguished observers in ∂t. A spacelike hypersurface in M is a (piece of) spacelike
slice if and only if the function τ := πI ◦ ψ is constant. Furthermore, a spacelike hypersurface in
M is a (piece of) spacelike slice if and only if the hyperbolic angle ϕ vanishes identically.

The shape operator and the mean curvature of the spacelike slice t = t
0

are, respectively, A =
−f ′(t0)/f(t0) I, where I denotes the identity transformation, and the constant H = f ′(t0)/f(t0).
Thus, a spacelike slice t = t0 is maximal if and only if f ′(t0) = 0 (and hence, totally geodesic).

If we put ∂Tt = ∂t+g(∂t, N)N the tangential part of ∂t and NF = N+g(N, ∂t)∂t the projection
of N onto the fiber, it follows by using that both N and ∂t are unitary timelike vectors that∣∣∂Tt ∣∣2 =

∣∣NF
∣∣2 = sinh2 ϕ. (3)

Hence, a spacelike hypersurface M in M is a (piece of) spacelike slice if and only if
∣∣∂Tt ∣∣2 =

∣∣NF
∣∣2

vanishes identically on M .

We will say that the spacelike hypersurface is contained in a slab, if it is contained between two
slices. Analogously, we will say that the hypersurface is contained in an open slab if it is contained
in the unbounded region determined for a slice, i.e. if there exists t0 ∈ I such that τ > t0 or τ < t0
on M .
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2.1 Parabolicity in Lorentzian warped products

A Lorentzian warped product M = I×fF is said to be spatially parabolic [32] if its fiber is parabolic;
i.e. it is a non-compact complete Riemannian manifold such that the only superharmonic functions
on it which are bounded from below are the constants. Analogously, a Lorentzian warped product
is said to be spatially parabolic covered if its universal Lorentzian covering is spatially parabolic.
Observe that the universal Lorentzian covering of I ×f F is I ×f F̃ , where F̃ is the universal
Riemannian covering of the fiber F . In particular, every spatially parabolic Lorentzian warped
product is spatially parabolic covered, and both notions agree when the fiber is simply-connected.

The spatially parabolic GRW spacetimes are a natural counterpart of the well-known family of
spatially closed GRW spacetimes, i.e. those whose fiber is compact. In fact, the parabolicity of the
fiber implies a nice control of the geometry of the physical space. For instance, when the volume
(or the area) growth of the geodesic balls has a certain behavior, such parabolicity is attained
[22]. The assumption of parabolicity can be also suitable to describe physical spaces with a certain
symmetry. Among them, it worths mentioning the quasi-spherical case (see [11]). From a physical
point of view, an interesting fact occurs when the fiber is parabolic: as galaxies can be understood
as molecules, if a sonde is sent to the space its motion may be approached by a Brownian motion. In
fact, the distribution of galaxies and their velocities are not completely known. Thus, parabolicity
may favor that the sonde can be observed in any region, since the Brownian motion is recurrent
in any parabolic Riemannian manifold (see [22]).

Lorentzian warped products which admit a complete parabolic spacelike hypersurface have been
studied in [32], where the following result is proved:

Let M be a complete spacelike hypersurface in a spatially parabolic covered Lorentzian
warped product M = I×f F . If the hyperbolic angle of M is bounded and the restriction
f(τ) on M of the warping function f satisfies:

i) sup f(τ) <∞, and

ii) inf f(τ) > 0,

then M is parabolic.

This result will be used in Section 3. Another way to get parabolicity on M is through a pointwise
conformal change of metric (see [34, Theorem 4]):

Let M be a complete spacelike hypersurface in a spatially parabolic covered Lorentzian
warped product M = I×f F . If sup f(τ) <∞ and the hyperbolic angle of M is bounded,
then M , endowed with the conformal metric ĝ = 1

f(τ)2 g, is parabolic.

In particular, when n = 2 the superharmonic functions on (M, g) and (M, ĝ) coincide, and so,
as (M, g) is complete, parabolicity on (M, g) follows from parabolicity on (M, ĝ). Regarding the
general case of arbitrary dimension n ≥ 2, the following result is proved in [34, Proposition 7])

Let M = I ×f F be a Lorentzian warped product which admits a simply-connected
spacelike hypersurface M such that sup f(τ) <∞, the hyperbolic angle of M is bounded,
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and the conformal metric 1
f(τ)2 g is parabolic on M . Then (F̃ , g

F̃
) is also parabolic and,

in particular, M is spatially parabolic.

3 Parametric type results

Let ψ : M → M be a spacelike hypersurface in a Lorentzian warped product M = I ×f F . It is
easy to check that the gradient of τ = πI ◦ ψ on M is given by

∇τ = −∂Tt (4)

and its Laplacian by

∆τ = −f
′(τ)

f(τ)

{
n+ |∇τ |2

}
− nH g(N, ∂t). (5)

Let us take G : I −→ R such that G′ = f . Using (4) we have that the gradient of G(τ) on M
is given by

∇G(τ) = G′(τ)∇τ = −f(τ)∂Tt = −KT ,

where KT = K + g(K,N)N is the tangential component of K along ψ, and so its Laplacian on M
(see [7, Eq. 6])) yields

∆G(τ) = div(∇G(τ)) = −nf ′(τ)− nHg(K,N).

Analogously, a direct computation from (2) gives

∇g(K,N) = −AKT ,

where we have also used (4), and so the Laplacian of g(K,N) on M becomes (see [7, Eq. 8])

∆g(K,N) = div(∇g(K,N)) = Ric(KT , N) + ng(∇H,K) + nf ′(τ)H + g(K,N)tr(A2).

Now, let us consider on M the metric ĝ = 1
f(τ)2 g, which is pointwise conformal to the induced

metric g. If we denote by ∆̂ the Laplacian with respect to the metric ĝ, then from (5) we get

∆̂τ = −f(τ)f ′(τ)
{
n+ (n− 1)|∇τ |2

}
− nHf(τ)2 g(N, ∂t) (6)

and

∆̂f(τ) = −n f(τ)f ′(τ)2 − nHf ′(τ)f(τ)2 g(N, ∂t)

+f(τ)3
{

(log f)′′(τ)− (n− 2)
f ′(τ)2

f(τ)2

}
|∇τ |2. (7)

In what follows, in order to make easier the statements of the results, we will adopt the following
convention: the function f : I −→ (0,+∞) will be said to be globally constant if I = R and f is
constant. Recall that a Lorentzian warped product M = I ×f F is said to be static or simply a
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Lorentzian product if the warping function f is constant on its domain I (non-necessarily I = R).
In particular, if the warping function f is globally constant then M = I ×f F is a Lorentzian
product, but the converse is not true since I could be different from R.

Next we characterize the spacelike slices of a spatially parabolic covered Lorentzian warped
product whose warping function satisfies that (log f)′′ ≤ α(log f)′2, α ≥ 0, under a pinching
condition on the square of its mean curvature. Note that the hypothesis (log f)′′ ≤ α(log f)′2 is
weaker than the widely used assumption (log f)′′ ≤ 0. In fact, in the framework of Mathematical
Relativity, several energy conditions are usually assumed as the Timelike Convergence Condition
(TCC), the Ubiquitous Energy Condition (UEC) and the Null Convergence Condition (NCC),
among others. It is well known (see [9]) that in a Lorentzian warped product M = I ×f F obeying
the TCC, its warping function satisfies f ′′ ≤ 0 and consequently the condition (log f)′′ ≤ 0 also
holds. When the Lorentzian warped product satisfies the UEC, it holds the stricter condition
f ′′ < 0 and so (log f)′′ < 0 [9]. On the other hand, when the fiber of a Lorentzian warped product
obeying the NCC is Ricci-flat, then also (log f)′′ ≤ 0 [4].

Theorem 1 Let M = I ×f F be a spatially parabolic covered Lorentzian warped product whose
warping function is not globally constant and satisfies that (log f)′′ ≤ α(log f)′2, for a certain real
constant α ≥ 0. Let ψ : M → M be a complete hypersurface with bounded hyperbolic angle and

such that sup f(τ) <∞ and inf f(τ) > 0. If H2 ≤ f ′2(τ)
f2(τ) cosh2 ϕ, then M is a spacelike slice.

Proof: First, notice that from the hypotheses it follows that (M, ĝ) is parabolic (see Section 2.1).

Given a positive real number σ, it is a straightforward computation to get from (7) that

∆̂f−σ(τ) = −σf−σ−1
{
−nf(τ)f ′(τ)2 − nHf ′(τ)f(τ)2 coshϕ

+f(τ)3
[
(log f)′′(τ)− (n+ σ − 3)

f ′(τ)2

f(τ)2

]
|∇τ |2

}
. (8)

Hence, taking σ ≥ 3 such that σ − 3 = α, (8) can be rewritten as

∆̂f−σ(τ) = −σf−σ−1
{
−nf(τ)f ′(τ)2 cosh2 ϕ− nHf ′(τ)f(τ)2 coshϕ

+f(τ)3
[
(log f)′′(τ)− αf

′(τ)2

f(τ)2

]
|∇τ |2

}
,

where we have used (3) and (4).

Observe that from the assumptions on the warping function f and the pinching condition for
H2, it follows that ∆̂f−σ(τ) is non negative. Thus, as f−σ(τ) is bounded from below, it follows from

the parabolicity of (M, ĝ) that f−σ(τ) is constant (i.e. f(τ) is constant) and H2 = f ′2(τ)
f2(τ) cosh2 ϕ.

If M is a spacelike slice, i.e. τ is constant, the proof finishes. Otherwise, J = Im τ is a
subinterval of I and f|J is constant, whence f ′(t) = 0 for all t ∈ J . Hence, f ′(τ) vanishes
identically and so M is maximal.

Therefore, from (6), τ is a harmonic function on the parabolic Riemannian manifold (M, ĝ).
Finally, since f(τ) is constant and we are assuming that f is not globally constant, it can be easily
reasoned that τ is bounded from below or from above, and consequently τ is constant on M (i.e.
M is a slice). �
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Remark 2 Several examples of non-constant spacelike graphs can be provided when some of the
hypotheses in Theorem 1 are removed. To justify this, we refer the reader to [34] where some
examples for the maximal case are shown. On the other hand, from a physical point of view, the
boundedness of the warping function (on the spacelike hypersurface), can be interpreted as the
hypersurface cannot approach to a physical singularity.

As a consequence of Theorem 1 we obtain (compare with [28, Cor. 4.5], which is formulated in
a much more restrictive ambient of dimension (2 + 1)),

Corollary 3 Let M = I ×f F be a spatially parabolic covered Lorentzian warped product whose
warping function is not globally constant and satisfies that (log f)′′ ≤ α(log f)′2, for a certain real
constant α ≥ 0. The only maximal complete hypersurfaces of M with bounded hyperbolic angle and
such that sup f(τ) <∞ and inf f(τ) > 0 are the spacelike slices.

Remark 4 Observe that Theorem 1 and Corollary 3 remain true if we change the assumption “f
is not globally constant” by “M is contained in a (possibly open) slab”, namely τ is bounded from
below or from above. It can also be expressed, in a more physical language, asking the spacelike
hypersurface to be bounded away from −∞ or from +∞.

On the other hand, recall that a Lorentzian warped product is said to be proper if the warping
function f is non-locally constant, i.e. there is no open subinterval J(6= ∅) of I such that f|J is
constant. Hence, the assumption “f is not globally constant” is satisfied by requiring the Lorentzian
warped product to be proper.

Remark 5 Let H = HN be the mean curvature vector at a point p ∈M and Hslice = f ′(τ(p))
f(τ(p)) ∂t(p)

the mean curvature vector at the same point ψ(p) ∈ M for the spacelike slice t = τ(p). Then the

assumption H2 ≤ f ′2(τ)
f2(τ) cosh2 ϕ admits an equivalent form in natural geometric terms regarding

these vectors as
|g (H,H)| ≤ |g (H,Hslice)|

On the other hand, note that the extrinsic assumption H2 ≤ f ′2(τ)
f2(τ) cosh2 ϕ is weaker that the

natural comparison hypothesis H2 ≤ f ′2(τ)
f2(τ) commonly used in several works (see [30], [33], [35],

[10], [3], [19], [26]). This last inequality can be geometrically interpreted as follows: the mean
curvature of the spacelike hypersurface, at any point, is bounded, in absolute value, by the mean
curvature of the spacelike slice at that point.

In the following result we are able to keep away from the assumption on the lower bound of
the warping function f in Theorem 1 by asking (log f)′′ to satisfy a functional inequality, which in
particular is satisfied when log f is convex.

Theorem 6 Let M = I ×f F be a spatially parabolic covered Lorentzian warped product whose
warping function is not globally constant and satisfies that (log f)′′ ≤ (n − 2 + αf)(log f)′2, for a
certain real constant α > 0. Let ψ : M → M be a complete hypersurface with bounded hyperbolic

angle and such that sup f(τ) <∞. If H2 ≤ f ′2(τ)
f2(τ) cosh2 ϕ

, then M is a spacelike slice.
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Proof: Again, observe that from the hypotheses it follows that (M, ĝ) is parabolic.

Consider now the function e−σf(τ), σ > 0, which is bounded from above. From (7), its ĝ-
Laplacian can be easily calculated to obtain

∆̂e−σf(τ) = −σe−σf(τ)
{
−nf(τ)f ′(τ)2 − nHf ′(τ)f(τ)2g(N, ∂t)

+f(τ)3
[
(log f)′′(τ)− (n− 2 + σf)(log f)′(τ)2

]}
.

Taking σ = α, then ∆̂e−σf(τ) ≥ 0. The parabolicity of (M, ĝ) implies that f(τ) must be constant.
The proof ends by a reasoning analogous to the one in Theorem 1. �

Corollary 7 Let M = I ×f F be a spatially parabolic covered Lorentzian warped product whose
warping function is not globally constant and satisfies that (log f)′′ ≤ (n − 2 + αf)(log f)′2, for
a certain real constant α > 0. The only maximal complete hypersurfaces of M with bounded
hyperbolic angle and such that sup f(τ) <∞ are the spacelike slices.

3.1 The case of monotonic warping function

Now, we focus on the particular case where the warping function f is monotone. This assumption
has a natural physical interpretation. In fact, if for each p ∈ F we parametrize I × {p} by
γp(t) = (t, p), since ∂t is the velocity of each galaxy γp , they are its integral curves. In particular,
the function t is the common proper time of all the galaxies. By taking t as a constant, we get the
hypersurface

M(t) = {t} × F = {(t, p) : p ∈ F}.

Then, the distance between two galaxies γp and γq in M(t) is f(t)d(p, q), where d is the Riemannian
distance in the fiber F . In particular, when f has positive (resp. negative) derivative, the spaces
M(t) are expanding (resp. contracting).

Under such assumption, a primitive F(t) of f(t) will be a suitable distinguished function to
deal with our problems.

Given a positive continuous function f on an interval I = (a, b), −∞ ≤ a < b ≤ +∞, we will

write f ∈ L1(a) (resp. f ∈ L1(b)) to mean that
∫ c
a
f(s) ds < +∞ (resp.

∫ b
c
f(s) ds < +∞) for

some (and therefore for every) c ∈ (a, b). We will write f ∈ L1(I) to express that f ∈ L1(a) and
f ∈ L1(b).

Throughout this section we will assume that the warping function f is defined on I = (a, b),
−∞ ≤ a < b ≤ +∞. If f : I −→ R verifies that f ∈ L1(a) (resp. f ∈ L1(b)) and we fix c ∈ (a, b),
we will consider the functions

F(t) =

∫ t

a

f(s) ds

(
resp. G(t) =

∫ b

t

f(s) ds

)
, t ∈ (a, b), (9)

and F(τ) := F ◦ τ (resp. G(τ) := G ◦ τ). From (6) we get that

∆̂F(τ) = −f(τ)2f ′(τ)
[
n cosh2 ϕ− 2 sinh2 ϕ

]
− nHf(τ)3g(N, ∂t) . (10)

Then we have
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Theorem 8 Let M = I ×f F be a spatially parabolic covered Lorentzian warped product whose
warping function is non-decreasing (resp. non-increasing). Let ψ : M → M be a complete hyper-
surface with bounded hyperbolic angle and such that sup f(τ) <∞.

If H ≤ 0 and f ∈ L1(a) (resp. H ≥ 0 and f ∈ L1(b)), then M is a maximal spacelike slice.

Proof: Let us assume that f is non-decreasing and H ≤ 0. Then, defining the positive function
F(t) as in (9) and using (10), it follows that F(τ) is superharmonic for the metric ĝ. Therefore,
since (M, ĝ) is parabolic, F is constant and we conclude that M is a spacelike slice. The proof

finishes observing that ∆̂F(τ) = 0 and all its addends have same sign.

The other case is analogous, now working with the function G(t). �

Remark 9 If f is non-decreasing (resp. non-increasing), and a 6= −∞ (resp. b 6=∞), taking into
account that f is positive and continuous, we do not have to assume the integrability condition,

since F(t) =
∫ t
a
f(s) ds

(
resp. G(t) =

∫ b
t
f(s) ds

)
is automatically finite in this case.

In particular, no convergence integral condition is necessary when the interval I is finite. This
fact must be borne in mind throughout all this subsection.

As can be easily checked, n cosh2 ϕ− 2 sinh2 ϕ ≥ n coshϕ for n ≥ 4. Using that, we can derive
the following consequence from (10).

Theorem 10 Let M = I×f Fn, n ≥ 4, be a spatially parabolic covered Lorentzian warped product
whose warping function is non-decreasing (resp. non-increasing) and f ∈ L1(a) (resp. f ∈ L1(b)).
Let ψ : M →M be a complete hypersurface with bounded hyperbolic angle and such that sup f(τ) <
∞.

If H2 ≤ f ′(τ)2

f(τ)2 , then M is a spacelike slice.

Proof: It follows from a reasoning analogous to the one in Theorem 8, by checking that under the
assumptions the Laplacian (10) is non-positive (resp. non-negative). �

For arbitrary dimension n, we can state the following result which can be proved alike.

Theorem 11 Let M = I ×f F be a spatially parabolic covered Lorentzian warped product whose
warping function is non-decreasing (resp. non-increasing) and f ∈ L1(a) (resp. f ∈ L1(b)). Let
ψ : M →M be a complete hypersurface with bounded hyperbolic angle and such that sup f(τ) <∞.

If H2 ≤ f ′(τ)2

f(τ)2 cosh2 ϕ
, then M is a spacelike slice.

Again for n ≥ 4, we have

Theorem 12 Let M = I×f Fn, n ≥ 4, be a spatially parabolic covered Lorentzian warped product
whose warping function f ∈ L1(I) does not attain any local minimum. Let ψ : M → M be a
complete hypersurface with bounded hyperbolic angle and such that sup f(τ) <∞.

If H2 ≤ f ′(τ)2

f(τ)2 , then M must be a spacelike slice.

10



Proof: From Theorem 10, we only have to study the case when f changes from being non-decreasing
to non-increasing. Let t

0
be a point where it happens, and consider the bounded function

F(t) =

∫ t

t
0

f(s) ds .

Observe that F ≥ 0 when t ≥ t
0
, and F ≤ 0 when t ≤ t

0
. Taking again F(τ), from (10) we obtain

that F∆̂F ≥ 0. The proof ends making use of [29, Lemma 2.2]. �

Now, given c ∈ (a, b) let us take

H(t) =

∫ t

c

f(s)−1 ds

and H(τ) = H ◦ τ , whose ĝ-Laplacian is given by

∆̂H(τ) = −f(τ)−1 [nf(τ)f ′(τ) + nHg(N, ∂t)] . (11)

Then we have

Theorem 13 Let M = I ×f F be a spatially parabolic covered Lorentzian warped product whose
warping function is non-increasing (resp non-decreasing) and f−1 ∈ L1(b) (resp. and f−1 ∈ L1(a)).
Let ψ : M →M be a complete hypersurface with bounded hyperbolic angle and such that sup f(τ) <
∞.

If H ≥ 0 (resp. H ≤ 0) or H2 ≤ f ′2(τ)
f2(τ) coshϕ, then M is a spacelike slice. Furthermore, in the

first case M is maximal.

Finally, in the spirit of Theorem 11 we have

Theorem 14 Let M = I ×f F be a spatially parabolic covered Lorentzian warped product whose
warping function does not attain any local minimum and f−1 ∈ L1(I). Let ψ : M → M be a
complete hypersurface with bounded hyperbolic angle and such that sup f(τ) <∞.

If H2 ≤ f ′2(τ)
f2(τ) coshϕ, then M is a spacelike slice.

Proof: Reasoning as in the proof of Theorem 11, we have to check what happens when f changes
from being non-decreasing to being non-increasing. Let t0 be a point where it occurs, and let us
consider the function

H(t) =

∫ t

t
0

f(s)−1 ds .

Using (11), we arrive to H(τ)∆̂H(τ) ≥ 0. Then, using [29, Lemma 2.2] we get that H is constant
and the proof finishes. �

11



3.2 Lorentzian products

Next, we focus on the special class of Lorentzian products, i.e. those whose warping function
is constant. Note that, for such ambient spacetimes, the spacelike slices are maximal. Given a
spacelike hypersurface ψ : M → M in a Lorentzian product, the Laplacian of τ with respect to
the induced metric g becomes (see 5)

∆τ = −nHg(N, ∂t) . (12)

Then we have

Theorem 15 Let M = I ×F be a spatially parabolic covered Lorentzian product and ψ : M →M
a complete hypersurface with bounded hyperbolic angle. If τ is bounded from below (resp. above)
and the mean curvature of M is non-negative (resp. non-positive), then M is a (maximal) spacelike
slice.

Proof: From the hypotheses it follows that (M, g) is parabolic. If H is non-negative, then ∆τ ≥ 0
and, since τ is bounded from below, it must be constant. The other case follows analogously. �

This result improves [5, Cor. 8], where the same conclusion is achieved under the additional as-
sumption of non-negative Ricci curvature of the fiber F (which actually means that the Lorentzian
products satisfies the TCC).

We can also provide the following non-existence result:

Theorem 16 Let M = I × F be a spatially parabolic covered Lorentzian product. Then M does
not admit any complete hypersurface whose hyperbolic angle is bounded and its mean curvature
satisfies inf |H| > 0.

Proof: Let us suppose that such a hypersurface exists. Note that, from the assumption on H, it
follows that the hypersurface cannot be a spacelike slice.

Consider the positive function eστ , where σ is a non-zero real number. From (12), it is easy to
check that

∆eστ = σeστ
{
σ|∇τ |2 − g(N, ∂t)H

}
.

First, let us assume that the hypersurface has positive mean curvature and choose

σ =
− inf H

sup sinh2 ϕ
,

which is well-defined because sinh2 ϕ cannot vanish identically on M (otherwise M would be a
spacelike slice). Then, eστ is a positive superharmonic function on the parabolic manifold (M, g)
and consequently it must be constant, leading to τ to be constant which is a contradiction.

The case of negative mean curvature can be analogously reasoned, taking now σ = inf |H|
sup sinh2 ϕ

.
�

As a consequence we have

Corollary 17 In a spatially parabolic covered Lorentzian product, the only complete CMC hyper-
surfaces whose hyperbolic angle is bounded are the maximal ones.

12



4 Calabi-Bernstein type Problems

Let (F, g
F

) be a (non-compact) n-dimensional Riemannian manifold and f : I −→ R a positive
smooth function. For each u ∈ C∞(F ) such that u(F ) ⊆ I, we can consider its graph Σu =
{(u(p), p) : p ∈ F} in the Lorentzian warped product (M = I ×f F, g). The graph inherits from
M a metric, represented on F by

gu = −du2 + f(u)2g
F
.

This metric is Riemannian (i.e. positive definite) if and only if u satisfies |Du| < f(u) everywhere on
F , where Du denotes the gradient of u in (F, g

F
) and |Du|2 = g

F
(Du,Du). Note that τ(u(p), p) =

u(p) for any p ∈ F , and so τ and u may be naturally identified on Σu.

When Σu is spacelike, the unitary normal vector field on Σu satisfying g(N, ∂t) < 0 is

N =
1

f(u)
√
f(u)2− | Du |2

(
f(u)2∂t +Du

)
.

Then the hyperbolic angle ϕ, at any point of M , between the unit timelike vectors N and ∂t, is
given by

coshϕ =
f(u)√

f(u)2− | Du |2
(13)

and the corresponding mean curvature function is

H(u) = div

(
Du

nf(u)
√
f(u)2− | Du |2

)
+

f ′(u)

n
√
f(u)2− | Du |2

(
n +

| Du |2

f(u)2

)
.

In this section, our aim is to derive non-parametric uniqueness results from the parametric ones
provided in Section 3. To do that, we need the induced metric gu to be complete. Observe that, in
general, the induced metric on a closed spacelike hypersurface in a complete Lorentzian manifold
could be non-complete (see, for instance, [6]). In our setting, we can derive the completeness of
Σu as follows [5, Lema 17]

Lemma 18 Let M = I ×f F be a Lorentzian warped product whose fiber is a (non-compact)
complete Riemannian manifold. Consider a function u ∈ C∞(F ), with Im(u) ⊆ I, such that the
entire graph Σu = {(u(p), p) : p ∈ F} ⊂ M endowed with the metric gu = −du2 + f(u)2g

F
is

spacelike. If the hyperbolic angle of Σu is bounded and inf f(u) > 0, then the graph (Σu, gΣu
) is

complete, or equivalently the Riemannian surface (F, gu) is complete.

Since in this setting the projection onto F is a diffeomorphism, it follows that any entire graph
is parabolic in a spatially parabolic GRW spacetime (see [32, Section 5.2] for further details). This
fact means that the simply-connection assumption can be avoided for the non-parametric scenario.

As a consequence of Lemma 18 and the previous parametric results, we can state the following
Calabi-Bernstein type Theorems.

Theorem 19 Let (F, g) be a parabolic Riemannian n-manifold, I ⊆ R an open interval in R and
f : I −→ R+ a non globally constant function satisfying that (log f)′′ ≤ α(log f)′2 for a certain
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α ≥ 0 and such that sup f < ∞ and inf f > 0. Then the only entire solutions u ∈ C∞(F ), with
Im(u) ⊆ I, to the system of non-linear differential inequalities

H(u)2 ≤ f ′2(u)

f2(u)− | Du |2
(14)

| Du |< λf(u), 0 < λ < 1, (15)

are the constant functions u = u0 with H = f ′(u0)
f(u0)

.

Proof: First observe that, from (13), the constraint condition (15) can be written as

coshϕ <
1√

1− λ2
. (16)

Hence, (15) holds if and only if Σu has bounded hyperbolic angle. Moreover, (15) also implies that
the metric gu is spacelike, and furthermore it is complete from Lemma 18.

On the other hand, (14) means that

H(u)2 ≤ f ′2(u)

f2(u)
cosh2 ϕ.

Finally, the thesis follows from Theorem 1. �

Remark 20 Note that the restriction (16) makes H(u) into a uniformly elliptic operator.

Alternatively, Theorem 19 can be stated in the following terms, extending and improving [30,
Th. 4.9].

Theorem 21 Let (F, g) be a parabolic Riemannian n-manifold, I ⊆ R an open interval in R and
f : I −→ R+ a non globally constant function satisfying that (log f)′′ ≤ α(log f)′2 for a certain
α ≥ 0 and such that sup f <∞ and inf f > 0. Then the only bounded entire solutions u ∈ C∞(F ),
with Im(u) ⊆ I, to the system of non-linear differential inequalities

H(u)2 ≤ f ′2(u)

f2(u)− | Du |2

| Du |< λf(u), 0 < λ < 1,

are the constant functions u = u0 with H = f ′(u0)
f(u0)

.

In general, both types of statements are possible for every parametric result in Section 4.
However, to avoid being repetitive, we have opted for stating our Calabi-Bernstein results as in
Theorem 21.

As a consequence of Theorem 21 (see also Corollary 3), we have the following result for maximal
graphs (compare with [15, Th. 6.2 and 6.3] and [31, Cor. 5.3], all of them for the particular case
of surfaces).
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Corollary 22 Let (F, g) be a parabolic Riemannian n-manifold, I ⊆ R an open interval in R and
f : I −→ R+ a non globally constant function satisfying that (log f)′′ ≤ α(log f)′2 for a certain
α ≥ 0 and such that sup f <∞ and inf f > 0. Then the only bounded entire solutions u ∈ C∞(F ),
with Im(u) ⊆ I, to the equation

H(u) = 0,

| Du |< λf(u), 0 < λ < 1,

are the constant functions u = u0 with f ′(u0) = 0.

Similar results to the ones in Theorems 19, 21 and Corollary 22 can be derived from Theorem
6 and Corollary 7. Observe that the additional assumption inf f > 0 must be required to assure
completeness only when non-bounded solutions are studied.

Next, we provide several Calabi-Bernstein type results under the assumption of monotonicity
of the warping function.

Theorem 23 Let (F, g) be a parabolic Riemannian n-manifold, I = (a, b), −∞ ≤ a < b ≤ +∞,
an open interval in R and f : I −→ R+ a non-decreasing (resp. non-increasing) function such
that f ∈ L1(a) (resp. f ∈ L1(b)) and sup f < ∞ and inf f > 0. Then the only entire solutions
u ∈ C∞(F ), with Im(u) ⊆ I, to the system of non-linear differential inequalities

H(u) ≤ 0 (resp. H(u) ≥ 0)

| Du |< λf(u), 0 < λ < 1,

are the constant functions u = u0 with f ′(u0) = 0.

Proof: It follows from Theorem 8. �

Note that when I is finite the integral convergence conditions can be omitted since they hold
immediately (see Remark 9), and the same occurs when we study bounded entire solution. Thus,
as a consequence of Theorem 23 we have

Corollary 24 Let (F, g) be a parabolic Riemannian n-manifold, I = (a, b), −∞ ≤ a < b ≤ +∞,
an open interval in R and f : I −→ R+ a non-decreasing (resp. non-increasing) function such that
sup f <∞ and inf f > 0. Then the only bounded entire solutions u ∈ C∞(F ), with Im(u) ⊆ I, to
the system of non-linear differential inequalities

H(u) ≤ 0 (resp. H(u) ≥ 0)

| Du |< λf(u), 0 < λ < 1,

are the constant functions u = u0 with f ′(u0) = 0.

Although by stating our results as in Corollary 24 instead as in Theorem 23 we are losing some
generality, we have opted for enunciating them in that way as we have been doing throughout this
section.

For n ≥ 4, we get as a consequence of Theorem 10
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Theorem 25 Let (F, g) be a parabolic Riemannian (n ≥ 4)-manifold, I ⊆ R an open interval in
R and f : I −→ R+ a non-decreasing (resp. non-increasing) function such that sup f < ∞ and
inf f > 0. Then the only bounded entire solutions u ∈ C∞(F ), with Im(u) ⊆ I, to the system of
non-linear differential inequalities

H(u)2 ≤ f ′(u)2

f(u)2

| Du |< λf(u), 0 < λ < 1,

are the constant functions u = u0 with H = f ′(u0)
f(u0)

.

For arbitrary dimension n, as a consequence of Theorem 11 we can state

Theorem 26 Let (F, g) be a parabolic Riemannian n-manifold, I ⊆ R an open interval in R and
f : I −→ R+ a non-decreasing (resp. non-increasing) function such that sup f <∞ and inf f > 0.
Then the only bounded entire solutions u ∈ C∞(F ), with Im(u) ⊆ I, to the system of non-linear
differential inequalities

H(u)2 ≤ f ′(u)2(f2(u)− | Du |2)

f(u)4
(17)

| Du |< λf(u), 0 < λ < 1,

are the constant functions u = u0 with H = f ′(u0)
f(u0)

.

Proof: Observe that (17) means that

H(u)2 ≤ f ′2(u)

f2(u) cosh2 ϕ
.

The results follows from Theorem 11. �

Also for n ≥ 4 we have from Theorem 12

Theorem 27 Let (F, g) be a parabolic Riemannian (n ≥ 4)-manifold, I ⊆ R an open interval in
R and f : I −→ R+ a function which does not attain any local minimum and such that sup f <∞
and inf f > 0. Then the only bounded entire solutions u ∈ C∞(F ), with Im(u) ⊆ I, to the system
of non-linear differential inequalities

H(u)2 ≤ f ′(u)2

f(u)2

| Du |< λf(u), 0 < λ < 1,

are the constant functions u = u0 with H = f ′(u0)
f(u0)

.

Now, from Theorems 13 and 14 we have
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Theorem 28 Let (F, g) be a parabolic Riemannian n-manifold, I ⊆ R an open interval in R and
f : I −→ R+ a non-decreasing (resp. non-increasing) function such that sup f <∞ and inf f > 0.
Then the only bounded entire solutions u ∈ C∞(F ), with Im(u) ⊆ I, to the system of non-linear
differential inequalities

H(u) ≤ 0 (resp. H(u) ≥ 0)

| Du |< λf(u), 0 < λ < 1,

are the constant functions u = u0 with f ′(u0) = 0.

Theorem 29 Let (F, g) be a parabolic Riemannian n-manifold, I ⊆ R an open interval in R and
f : I −→ R+ a non-decreasing (resp. non-increasing) function such that sup f <∞ and inf f > 0.
Then the only bounded entire solutions u ∈ C∞(F ), with Im(u) ⊆ I, to the system of non-linear
differential inequalities

H(u)2 ≤ f ′2(u)

f2(u)− | Du |2

| Du |< λf(u), 0 < λ < 1,

are the constant functions u = u0 with H = f ′(u0)
f(u0)

.

Theorem 30 Let (F, g) be a parabolic Riemannian n-manifold, I ⊆ R an open interval in R and
f : I −→ R+ a function which does not attain any local minimum and such that sup f < ∞ and
inf f > 0. Then the only bounded entire solutions u ∈ C∞(F ), with Im(u) ⊆ I, to the system of
non-linear differential inequalities

H(u)2 ≤ f ′2(u)

f2(u)− | Du |2

| Du |< λf(u), 0 < λ < 1,

are the constant functions u = u0 with H = f ′(u0)
f(u0)

.

Next, we will provide some type Calabi-Bernstein results derived from Section 3.2. To begin,
as a consequence of Theorem 15 we have

Theorem 31 Let (F, g) be a parabolic Riemannian n-manifold. Then the only entire solutions
u ∈ C∞(F ) to the system of non-linear differential inequalities

div

(
Du√

1− | Du |2

)
≥ 0

(
resp. div

(
Du√

1− | Du |2

)
≤ 0

)

| Du |< λ, 0 < λ < 1,

which are bounded from below (resp. above) are the constant functions u = u0.

From Theorem 16 we derive the following non-existence result
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Theorem 32 Let (F, g) be a parabolic Riemannian n-manifold. Then there is no entire solutions
u ∈ C∞(F ) to the system of non-linear differential inequalities

inf

∣∣∣∣∣div

(
Du√

1− | Du |2

)∣∣∣∣∣ > 0

| Du |< λ, 0 < λ < 1.

Finally, we have

Corollary 33 Let (F, g) be a parabolic Riemannian n-manifold and H0 ∈ R∗ a non-zero real
constant. Then there is no entire solutions u ∈ C∞(F ) to the equation

div

(
Du√

1− | Du |2

)
= H0

| Du |< λ, 0 < λ < 1.
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