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ABSTRACT. In this paper we analyze trajectories of spacelike curves which are critical points
of a Lagrangian depending on its total torsion. We focus on two important families of space-
times, Generalized Robertson-Walker and standard static spacetimes. For the former, we show
that such trajectories are those with constant curvature. For the latter we also obtain a character-
ization in terms of the curvature of the trajectory, but in this case measured with an appropriate
conformal metric.

1. INTRODUCTION

We consider a generalization of the action which models the geodesic trajectory of a rela-
tivistic particle, adding the total torsion of its worldline. In the last years, models of relativistic
particles whose action contains terms depending on the curvature or torsion (or other higher
curvatures) have deserved the attention of many authors. This is in part due to their interesting
practical applications:

e The so-called Fermi-Bose transmutation of a charged bosonic particle in an external
Chern-Simons field, to be discussed below, is connected with the appearance of a tor-
sion term in the path integral, as is shown in [1]. This in turn may shed light on planar
phenomena including superconductivity, the Hall effect and the physics of anyons.

e Curvature-depending actions can be used to describe polymer physics. This has been
applied to simulate the behaviour or proteins [2].

e Some models are also linked to the Gauss-Landau-Hall problem on manifolds, which
is an abstraction of the problem of determining the motion of a charged particle in a
magnetic field [3].

o Their quantization provides an unusual route to the Dirac equation [4].

From the point of view of the theoretical and mathematical physics, there also exist important
reasons to study these models:

o In this approach, trajectories are derived from suitable Lagrangians defined over the
original spacetime, i.e. it is intrinsic, instead of requiring extra variables that provide
the additional, spinning degrees of freedom.

e The Poincaré and invariance requirements show that a physically acceptable Lagrangian
density must be constructed from the extrinsic curvatures of the curves in the back-
ground gravitational field.

e They follow the Polyakov argument for bosonic strings [5]. Therefore, such models
furnish an extension of the usual free particle dynamics tantamount to Polyakov’s ex-
pansion of the classical Nambu-Goto action for strings.
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e They allow to obtain new particle models by means of a simple and purely geometrical
procedure.

The inclusion into the action of terms depending on the extrinsic curvatures of the worldline
appears to be due to Pisarski [6], who extends in this way the free particle dynamical model in
the same way that Polyakov extends the classical Nambu-Goto action to model the dynamic of
bosonic strings [5].

Later, authors such as Nesterenko, Plyushchay and other collaborators popularized the study
of these more geometric Lagrangians in the context of particle modelling [7, 8, 9, 10, 11, 12],
sometimes including higher powers of the curvature or torsion [13] or force fields acting on
the particles [14]. A similar analysis has been used to implement the dynamics of strings and
other higher-dimensional objects [15]. It is often said that this allows to codify spinning de-
grees of freedom, and thus model diverse families of bosons and fermions, without having to
add new, artificial coordinates lacking physical meaning. Therefore, this procedure provides
an intrinsic means of representing the dynamics of relativistic particles to which the methods
of modern differential geometry can be readily applied. We remark, however, that these works
are developed using typically physical techniques such as Dirac’s generalized Lagrangian dy-
namics and the corresponding Hamiltonian formalism in order to extract the trajectories from
Lagrangians cotaining higher-order derivatives [16]. Most of these investigations are set in
Minkowski spacetime, with the exception of e.g. [17], and usually quantize the model to some
extent.

In the following decades, these variational problems have become a subject of study in
the mathematical physics and pure mathematics communities, due to their aforementioned
physical content and rich mathematical features. Although some have been carried out in
Minkowski spacetime [18], the application of geometrical devices makes it possible to ele-
gantly handle curved backgrounds. Indeed, the moduli space of trajectories for models whose
action depends linearly on the curvature or torsion (or both) has been studied in some non-
trivial gravitational fields such as spacetimes of constant curvature [19, 20]. For the class of
cosmological models known as generalized Robertson-Walker spacetimes a mathematical test
for the curvature-dependent action in the case of dimension three and for curves contained in
the rest spaces for comoving observers has been given in [21] and a subsequent generalization
to four dimensions can be found in [22]. These latter investigations, to which the present work
belongs, do not address the issue of quantization.

In this work we deal with the problem of the trajectories corresponding to a functional
whose Lagragian density is linear in the torsion function of the particle worldline trajectory
in backgrounds covering two relevant families of spacetimes represented by warped prod-
uct Lorentzian manifolds: generalized Roberson-Walker and standard static spacetimes. It
is argued in [23, 24] that such a torsion term is relevant for the understanding of planar phe-
nomena modelled by means of gauge field theories in two spatial dimensions, including high-
temperature superconductivity and the quantum Hall effect. More precisely, this feature is
produced in the effective action of charged excitations of the fields when the Lagrangian is
made to contain the Chern-Simons term depending on some constant factor 8. As shown in
[24], for 8 = m, the torsion part leads to bosonic excitations with large momenta effectively
behaving as fermions with small momenta. This occurrence is known as Fermi-Bose trans-
mutation induced by the gauge field. More generally, for other values of the 6 parameter, the
excitations obey fractional statistics, i.e. they behave as anyons [25].
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The paper is organized as follows. In Section 2, we review some generalities of the theory
of variational calculus on manifolds. In particular, we deduce the field equations associated to
an action which is linear in the torsion (see Theorem 2.1).

Section 3 reviews the notion of warped products and outlines some mathematical and phys-
ical properties of both generalized Robertson-Walker (GRW) and standard static spacetimes.
The remaining sections focus on characterizing the solutions of the variational problem in these
backgrounds. Thus, in Section 4.1, the generic equations of motion are studied in GRW space-
times and for curves lying in spacelike slices, obtaining Theorem 4.1. This theorem states that
one such curve satisfies the field equations if and only if it has constant curvature with respect
to the two-dimensional geometry of the slice.

Lastly, in Section 4.2 we discuss the problem having a standard static spacetime as the
background. Even if the resulting equation is not as elegant as that of the GRW scenario, we
are able to ensure existence of solutions in Theorem 4.3. The study is supplemented with some
numerical simulations of the trajectories corresponding to the particular case of (Anti-)de Sitter
Schwarzschild spacetime.

2. PRELIMINARIES

2.1. The variational problem. With such a physical scenario in mind, we will consider 3-
dimensional oriented and time-oriented Lorentzian manifolds (.#,g), modelling a relativistic
spacetime [26]. As discussed above, the dynamics of interest are governed by an action prin-
ciple, that is to say, the allowed trajectories are the stationary curves of a functional of the
form

ST — R, y»—>/.$ds,
Y

where I is a suitable space of curves y: I C R — ., s is the arc-length parameter for the
Lorentzian metric g and .Z is a smooth function, the so-called Lagrangian. In three dimensions,
we consider the class of sufficiently differentiable timelike and spacelike curves, such that there
exists an orthonormal frame {7, N, B} along ¥, where T is the normalized tangent vector of the
curve and whose Frenet apparatus is well defined, i.e., the following ODE are satisfied,

VT = &xN (D)
ViN = —g kT + &1B )
VrB = —&7N. (3)

Here, V denotes the Levi-Civita connection on (., g), and €], & and &3 are the signature of the
causal characters of T, N and B, respectively. The functions x and 7 are known as the curvature
and the torsion of the curve y. A curve satisfying this will be called a Frenet curve.

In the present paper, we will consider trajectories which are critical points of the following
functional

20)= [ zds (4)

Y
We will consider the vast family of spacetimes admitting a splitting as a warped product (see

for instance [27]). These encompass a wide variety of physically relevant models such as
classical cosmological models, (Anti-)de Sitter space, models of black holes and standard static
spacetimes.

Next, we present some formal developments to deal with the variational problem. The
functional (4) is to be evaluated along curves belonging to some suitable space I" to be specified
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later. When endowed with an appropriate differentiable manifold structure, the tangent space at
acurve y € I', T,T" can be naturally identified with the space of smooth vector fields W € X(y)
[28].

To properly make sense of whether a curve y: [a,b] — .# is a critical point of a functional
such as (4), let us consider a variation of the curve given by a smooth two-parameter map € :
(—¢€,€) x [a,b] — . such that Q(0,7) = y(r). Associated to this variation are the following
two vector fields

V(z,t) = a;:(z,t) W(z,t) = %?(z,t)

Clearly, V (z,t) is tangent to each curve in Q, whereas W (z,¢) is said to be transverse. In par-
ticular, W(t) := W(0,7) € X(y). As it is well known, this gives us a one-to-one correspondence
between variations of y and elements of 7,I". For this reason, the vector field W(z) is known as
a variational vector field.

Evaluating (4) on a variation Q with base curve 7 : [a,b] — . gives

b
2100 = [ w0l dr
a

where 7,(¢) :== Q(z,t) and v,(r) == ||7.(¢)||. Then, yis a critical point of .Z if and only if

d

Jz
for any variation Q constructed from y. Note that V = dQ/dt = vT, where T is the tangent
unitary vector field along ;. In fact, V(z,7) = ¥,(r). By construction, [V,W] = 0.

ZLQ(z,1)] =0
z=0

2.2. Field Equations. To begin with, we will determine the general equations of motion corre-
sponding to action (4). Let ¥ be a Frenet curve in a three-dimensional spacetime and {7, N, B},
a Frenet frame, satisfying equations (1)-(3). Choosing a variation  with associated variational
vector field W'
a "
S 210(1)] = / W (tv)di — / W(2)v+W(v) 1] dr 5)
z % ¥
where we have written ds = vdt. We thus need to compute W (v), W (7). Regarding the first
term and by using v = £(V,V), we have

W) =eW({(V,V)) =2& (VwV,V) =2¢(VyW,V) = 2ev* (V7 W, T)

where the equations VxY — VyX = [X,Y] for any two vector fields X,Y and [V,W] = 0 have
been used. Also

W) =20W (v) = W(v) = ev(VeW,T) (6)
Turn now to the variation of the torsion. From the Frenet equation (3), it follows that
T=— <VTB,N>

Then
W(t)=-W({(VrB,N)) =—=(VwVrB,N) + (VrB,VyN))

'In what follows, v and 7 really mean v; and 7(;), respectively.
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The second term is zero, since
(VrB,VyN) = —&t(N,VyN) = —%82TW(<N,N>) =0
We rewrite the first term using the Riemann curvature by means of
VwVrB=R(W,T)B+VrVwB+ VB
The Lie bracket of W and T is given by

Vv %4 w
Wikﬂw,}—— @V:_ M)
v 1% v
Consequently, using (3)
W W
V[W,T]B = — ‘EV) VrB = Ev) &TN
and W)
v
(ViwrBN) = —=1=e1e(ViW.T)
We also have
(VrVwB,N) =T((VwB,N)) — (VwB,V1N) @)

Take the second term and apply (2)
<VwB, VTN> = <VwB, —& kT + £3TB>
Note that |
<VwB,83’CB> = 583’CW(<B,B>) =0

and

(VwB,T) =W((B,T))— (VwT,B) = —(VyW,B) — ([W,T],B)
where the last term is zero
W)

v

Go back to the first term of (7) inside the derivative

<[W’T]7B> -

(T,B) =0

(VwB.N) = 2 (VyB,V1T) = Z[W((B,VsT)) ~ (Y V1T, B)]
The first term vanishes
W((B,VrT))=&W(k(B,N)) =0
For the second term, we again insert the Riemann tensor
RW,T)T =VyVeT —ViVyT =V T =Vw VT —=ViT =V [W,T] = VT

As Vr[W,T] and Vi 1 T are linear combinations of 7 and N, their scalar product with B is
zero and do not contribute. Summarizing, we can obtain

1
W(t)=ex(VeW,B) —et(VyW,T) — (R(W,T)B,N) + &T {KWQTW —R(W,T)T, B)] ()
Inserting results (6), (8) into the variation (5)

;Zf[ﬂ(z,t)] = /y {81 k(VrW,B) — (R(W,T)B,N) +&T [i(V%W —|—R(W,T)T,B)] } vdt
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We rewrite this integral taking into account that
(R(W,T)B,N) =R(W,T,B,N) = —R(T,W,B,N) = —R(B,N,T,W) = —(R(B,N)T,W)
and the usual integration by parts

k(VrW,B) = T[k(W,B)] — k' (W,B) — k(W,V7B)

Therefore
aaz _ L) = /y T [Z(VW +ROW,T)T,B) +eik(W,B)| ds+ /y (R(BN)T,W) —

— &K' (B,W) — & x(VrB,W)]ds

It follows that this can be written in the standard form

;Z Z[0(z,1)] = /y(gz(y),W) ds+[B(v,W)]§

z=0
where
Q(y) =R(B,N)T — & k'B— & kVrB=R(B,N)T — & KB+ € &KIN

By, W) = %(V%W 4 R(W,T)T,B) + &1 k(W,B)

As it is usual, we will consider an adequate space of curves ensuring that 4 vanishes (see for
instance [21, 19, 22]). In particular, in this context we will consider the space of curves I
with fixed endpoints as well as fixed tangent and normal vectors at these. That is, for given
pq € M, x1,51 € Tyt , x2,y2 € Ty Wwith (x1,y1) = (x2,y2) =0

U={y:[a,b] — A :y(a) = p,v(b) =q,T(a) = x1,T(b) =x2,N(a) = y;,N(b) = y2}
Hence, we can then enunciate the following result:

Theorem 2.1. For variations composed of curves in I, the boundary operator 2 correspond-
ing to the functional (4) is zero and its Euler-Lagrange equations are given by Q(y) = 0, that
is

R(B,N)T — &,x'B+¢&16,kTN = 0. 9)

Proof. For such a variation, W is zero at the endpoints and R(W,T)T vanishes due to its ten-
sorial nature. It only remains to study VZW. Begin with

VwV =Vy(OT)=WW)T+vVyT =VyW =vVyW

since [W,V] = 0. By defining
W)

1%

h= = W(logv),

the first covariant derivate is
VW =hT +VyT.
By taking the second derivative then
VIW =Vr(hT+VyT)=T(h)T + &khN +VVyT.
Let us recall the expression of the Riemann tensor

R(T,W)T =VrVyT —VyVrT — Vi T.
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For the second term of the right, let us observe that:
VwVrT = 82VW(KN) = £2W(K')N+ &KkVyN,

while for the third one
V[T,W]T =hVyT = &KhN.
Therefore
VIW =T (h)T +2&;,khN + &W (k)N + &,k VyN.

Finally, let us recall that at the endpoints, Vi N = 0 and the remaining terms are either multiples
of T or N. So their scalar product with B cancels out, which proves that [Z(y,W);=0. O

3. SET UP

The warped product [27] of two semi-Riemannian manifolds (B, gg) and (F, gr) (known as
base and fiber respectively) with warping function f : B— R, f > 0 is the semi-Riemannian
manifold (B x F,g/) = B x s F where

g’ = my(gn) + (f o mp)* 77 ().

Here we denote by 75 : BX F — B, 7p : B X F — F the natural projections of B x F to B
and F respectively. Vector fields X € X(B) and V € X(F) can be lifted to vector fields X,V in
X(B x F). We will denote then as L(B) and L(F) the sets of lifted vector fields from X(B) and
X(F) respectively. For simplicity, we will generally not distinguish between f o 7p and f or
between X and X, as it will be clear from context. There exist useful formulae for evaluating the
Levi-Civita connection and the Riemann curvature tensor on these fields ([27], pages 206 and
210). Indeed, given X,Y € L(B) and V,W € L(F) and denoting by V and V? the Levi-Civita
connections on B X ¢ F and B, respectively, we have

VxY =Viy (10)
VxV=VyX = X;f)V (11)

Furthermore, the following also hold?
R(V,X)Y:—Hf(jf’Y)V (12)

_ 7gf(V,W)
R(X,V)W = —

Vx(Vf) (13)
where H/ is the Hessian of f.

We will focus on those such that either the base or the fibre are 1-dimensional with negative
metric. First, the generalized Robertson-Walker (GRW) spacetimes are Lorentzian warped
products of the type I x s S where I C R is an open interval and (S, g) is a Riemannian surface
[29]. Their metric is thus

¢ =—di*+ g (14)

2There are some sign differences between the curvature equations as given here and in [27]. This is because
we take the Riemann curvature tensor to be R(X,Y)Z = [Vx,Vy|Z — V|x yZ, whereas in the referenced book they

declare R(X., Y)Z = V[X’Y]Zf [Vx,VY]Z.
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with f: 1 — R. Generalized Robertson-Walker spacetimes constitute a relevant family of
relativistic models, as they cover the classical cosmological models as well as other recurring
spacetimes within the field of theoretical physics, including the (Anti-)de Sitter spacetime.

Our second family of spacetimes are the well known standard static spacetimes [27]. Let us
recall that these spacetimes belong to the larger family of stationary spacetimes: A spacetime
is said to be stationary if there exists a globally-defined, timelike Killing vector field U>. Let
us remind that a Killing vector field U is an infinitesimal isometry on (. ,g): i.e., the flow of
U determines a one-parameter family of isometries. Any member on the family of observers
determined by U perceives the same geometry around him as its proper time increases [26].
This is the case when the source of the gravitational field is time-independent, e.g. a Kerr black
hole.

A stationary spacetime is called static if the Killing vector field U is also irrotational, that
is, U satisfies

Vpe.# VXY €Uy : (curl U)(X,Y) :=g(VxU,Y) — g(VyU,X) =0

It can be argued that observers in U observe no rotation in their neighbourhood (see [30] and
[26] for more details). Some black hole models, like the exterior Schwarzschild solution,
belong to this class.

Every static spacetime is locally a so-called standard static spacetime, which is a warped
product of the form § x ¢ I, although the time coordinate is usually placed first. So, we will
denote these spacetimes as Iy X § from now on. In this case, time instead of space is warped,
as it is manifest in the metric

g/ =—dr’ +g (15)
where the warping function is defined on S.

Taking into account the decomposition of the above metrics, they admit a global foliation

by spacelike slices

S(t) = {1} xS ={(1,p): p € )

For a GRW spacetime, such slices are extrinsic spheres, that is to say, totally umbilical space-
like hypersurfaces of constant mean curvature. For a standard static spacetime, these slices
are totally geodesic spacelike hypersurfaces. Our idea is then to study curves lying in slices
%:(s) = (,7(s)), where yis a curve in S, as potential candidates for trajectories under the action
principle (4), with the aid of equations (10)-(13). Observe that, under this restriction, we lose
a degree of freedom, and so we only require to fix the tangent vectors at the endpoints. In this
sense, we define the space of clamped curves I as

I={y:la,b] — A :y(a) = p,y(b) = q,T(a) =x1,T(b) = x2}
where the notation is the same as in Section 3.
4. TRAJECTORIES IN TWO RELEVANT BACKGROUNDS

4.1. Generalized Roberson-Walker spacetimes. Our aim in this section is to find solutions
of the field equation (9) in the context of Generalized Roberson Walker spacetimes / X S (with
the metric defined in (14)). Consider a curve ¥(s) in S with Frenet frame {7,N}. In order to
write the equations of motion for curves of the form ¥ (s) = (z,7(s)), with a fixed ¢ in the

3A vector field U on a semi-Riemannian manifold is Killing if %xg =0, where .Z denotes the Lie derivative.
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domain of the warping function, we need to compute a Frenet frame for ¥ (s), which we will
denote {T/,N/ B/}, where T/ = T /f, as well as the curvature k/ and torsion 7/ of ¥ (s) as
a function of k, f and their derivatives. This computation, which is based on equations (10),
(11) and others, was explicitly done in [21] and we merely list the relevant results

Vf: 7fat7
, f__ &
e /gz(Kfz_fz)7 B F(KZ—]&)U§+K&)’
N =2 (ke ]a) o= f(ZK—J;Z)’
(K2 — ) v

where &, & are the signature of the causal characters of N/, B, respectively, k is the curvature
of y(s) and £ = N/f. We need to compute the term R/ (B/,N/)T/ in terms of vector fields
tangent either to the base or the fiber, namely 7/, & and 9,. To carry this out, substitute the
above expressions for N/, B/ and use linearity. We obtain

R/(B/\N/)T = [kfRI(E,8)T + kR (9, 6)T! + R/ (&,9,)T7 + fxR! (9. 9,)T7).

(k% — f?)
Due to the antisymmetry of the Riemannian tensor, R/ (§,&)T/ = R/(d;,0;)T/ = 0. To com-
pute R/ (9,,E)T/ = —R/(&,9,)T/, we use the warped product formula (13)

R =Sy, v =0

concluding that
R/(B/ ,NT/ =0.
Hence, the field equation (9) becomes
(x/)YB' — ek’ t/NS =0
or, in terms of & and d;,
(&) (f& + k) — 267 o/ (K& + f9,) = 0.
This gives us the following two equations
() f-ex/t'k=0, (&)xk—er/t/f=0.

The derivative of k/ is

- KK
(k) = ——
vel(xk?—f?)
turning the first equation into
& KK &(K2—f2) gK'f

a2 o f -

Note that k> — f? # 0. Otherwise, N/ would be lightlike. Then, the above equation is equiva-

lent to
f'm’(l—‘jf) —0 (16)
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Next, consider the other equation of motion. Upon substitution of k7, (x/)’, 7/, we get

KK &(Kk2—f2) gK'f i—o
Wete—p T F e T
Again using k% — f2 # 0, the equation reduces to
K (o f
(+-5)

Simultaneous verification of (16) and (17) occurs if and only if ¥ = 0, independently of the
warping function. We can therefore state:

Theorem 4.1. Let us consider I X ¢ S a three-dimensional Generalized Robertson-Walker space-
time, and let ; be a curve with ¥, (s) = (t,Y(s)) and t fixed. Then, the curve ¥; is a critical point
of (4) in the space of clamped curves 1 if and only if v has constant curvature.

Remark 4.1. The fact that solutions are independent of the warping function f makes it pos-
sible to find trajectories in large classes of spacetimes. This is in contrast with the case where
the functional (4) is defined by using the curvature instead the torsion (see [21] for details). In
these cases, the critical curves depend crucially on the warping function f.

In particular, curves with ¥’ = 0 living in Riemannian surfaces of constant curvature are
well-known. Let us show some examples:

Example 4.2. Let us consider the models of 2-dimensional simply-connected, complete Rie-
mannian manifolds with constant curvature. In this cases, the non trivial trajectories (i.e., non
geodesics) are:

(i) If we assume that the fibre is the plane R?, such curves are circumferences.
(ii) If we assume that the fibre is S?, such curves are those resulting from the non empty
intersection of the sphere with a (non tangent) plane which does not contain the origin.
(iii) Finally, in the case where the fibre is the hyperbolic plane, we have the circles, hyper-
cycles and horocycles (see [31, Chapter XI]).

Observe that there are important spacetime models including these fibres, such as the Fried-
mann cosmological models, the static Einstein or the de Sitter spacetimes, etc.

4.2. Standard static spacetimes. Let us now consider the standard static case whose metric
g/ is given by (15). A g/-orthonormal frame for y(s) = (¢,¥(s)) is {T,N,9,/f}. Our aim, as
usual, is to determine a Frenet frame {Tf =T,N/,B/ }. Note that here 7, N are tangent to the
base space whereas d;/f is tangent to the fiber. Then, applying (10)

VI, Tf =ViT =&kN

from which it follows that k/ = k and N/ = N. The only choice is then B/ = d;/f. Let us find

the torsion of ¥
» 2 1 1

From (11) we get
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So, as expected, these curves have 1t/ = 0. Thus, the last term of (9) vanishes. We need to

calculate the Riemann tensor
) 1 H/(N, T
R/ (B N T =R/ (t,N> r—_1HWT)
f fr

where in the last step we have used (12). By definition

H/(N,T)=H/(T,N) = (Vr(V[),N)

o

Expand the gradient of Vf in the orthonormal basis {7, N}
Vf=(Vf,T)T+ (Vf,N)N.
Then
Vr(VA) =TV, DT +(Vf, T)ViT+T[(Vf,N)IN+(Vf,T)VrN
and the Hessian is
H/(N,T) = k(Vf,T)+(Vf,N).
Therefore

1
RIBI NI = = (R(V,T) + (V. N) )
and substituting everything into the field equation (9)
1 1
F(K<Vf7 T> + <Vf7N>/)at + 781 Kjat = 07

or, equivalently

£1K’+;<Vf7T>K+]1C(Vf,N>’ =0.

We conclude then:

Theorem 4.2. Let Iy x S be a standard static spacetime, and consider a curve Y;(s) = (¢,7Y(s))

for constant t. The curve %, is a critical point of (4) in the space of clamped curves 1" if and
only if

£1K’+}<Vf,T>K+JIC(Vf,N>’—0. (18)

is satisfied.

We can show that previous equation (18) has always solutions in any standard static space-
time. In fact, we can prove:

Theorem 4.3. In a standard static spacetime Iy x S, any curve ¥ (s) = (t,Y(s)) is solution of
equation (18) if and only if it satisfies

. C
where K is the curvature of y with respect to the metric § = e~ "/ g and C is a constant. Hence,
for each C € R there exist critical points of (4) obeying (19). In particular, the geodesics of the
conformal metric § = e~ "¢ satisfy the equations of motion (by considering C = 0).
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Proof. For spacelike trajectories, that is, & = 1, (18) reads
JT()+(Vf, T)x =T((Vf,N)) = T(fk+(Vf,N)) =0
In other words, there is a constant of motion, C
(VAN + fx=C
From (1) we have k = (V7 T,N). Thus
(Vf+fVrT,N)=C
Alternatively, writing Vin f = Vf/f, we have
C=f(Vinf+VrT,N) (20)

We will now perform a conformal transformation § = e??g. The corresponding Levi-Civita
connections are related as follows [32]

ViT = VT +2d¢(T)T — g(T,T)V¢
where, under our assumptions, g(7,7T) = 1. Taking ¢ = —In f, we find
g(Vinf+VyT,N) = g(V7T,N)
Moreover, note that, for any two vectors X ,Y
(1_ 1 1 [Ty
g X,Y) =—gX,)Y)=—=eMg(X,)Y)=g(X,Y
(x4 ) = ) = Seigxr) = gix.y)
Accordingly, if {T,N} is a Frenet frame of y with respect to g, then {T =T /f,N=N/f}isa
Frenet frame with respect to . As a consequence
g(VrT.N) = f’g(V;T.N) = fg(Vi(fT),N) = 8(V7(fT).N) = f3(V+T,N) = &
where in the last step (1) was again used. Going back to (20)
C=fg(VrT.N) = fg(V+T.N) = f°k.
O
Remark 4.3. Here we can see a major difference with the critical points of a Lagrangian
depending on the curvature of the worldline. In such a case geodesics are always critical

points while, in our case, this is no longer true in general. In fact, we can only ensure that
geodesics for the conformal metric § are critical points for (4).

Let us give some examples of the applicability of previous theorem. The first one will be a
case where some explicit solutions are obtainable:

Example 4.4. Consider a standard static spacetime R #xH where

H={(x,y)eR*:y>0}

and the warping function is f(x,y) = by with b € RY. The gradient is the constant vector
Vf = (0,b). If we further admit that x = O, that is, we restrict to straight lines, equation (18)
becomes

(Vf.N)' =0
Since N is also constant for any curve with zero curvature, the above equation holds for all
straight lines, which are geodesics for both the base and the ambient.
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For the second one, we will consider the spacetime models known as the (Anti-)de Sitter
Schwarzschild spacetimes. A (Anti-)de Sitter Schwarzschild model is a standard static space-
time which is both, spherically symmetric and solution of the Einstein equations for vacuum
but with cosmological constant not necessarily zero.

Example 4.5. Let (M, g) be a spacetime where:
M=RxIx(0,2n), g=—h(r)dt>+h(r)"'dr* +r*d6>,

2M
being h(r) = f2(r) = (1 — =— + Er?) for some constants M > 0 and E; and I is the connected
r

interval where r > 0 and f(r) > 0.
Our aim is to analyse curves Y (s) = (¢,7(s)) = (¢t,r(s), 6(s)) with constant t, contained in
the spatial slice {t} x I x (0,27) = S and satisfying (19). In this case, the metric g given in

Theorem 4.3 induced on S takes the form gs := h(r)~2dr* + %d@.
In order to compute K, we will assume that 7 is arc-length parametrized, and so, it satisfies:
B2 (0 = 1 e
r) (7 — =1.
h(r)

Therefore, K* = g(Vy7,Vy7), where V denotes the Levi-Civita connection for (S,gs). If we
denote Vyy = Ad, + Bdg, from Koszul formulae it follows:

AR2(r) = y(Fh~2(r)) = ih=2(r) = 2ih 3 (r)h(r) = A = # — 27 In(h(r)), (22)

2
B R~ (r) == 0720 (r) + 200~ (r)ri — 0r2h 2 (1) sh(r) = B = 6 + 09, ln(ﬁ) 23)
In conclusion, (19) is translated in these terms as,
A%+ B*?h(r) =C. (24)

A first nice consequence is the following result:

Proposition 4.6. The radial lines are, up to a parametrization, solutions of equation (24) for
an arbitrary C.

Finally, we also depict numerically the trajectories in the (Anti-)de Sitter Schwarszchild
spacetime for different values for the constants M, E and C. (see Fig. 1).
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M=3E=0C=5

s € [0,20000]

M=3E=1C=5

s € [8,25.6)

M=0E=1,C=5

s € [5,6.5]

FIGURE 1. In this figure are represented different trajectories for a curve
v:J—=1Ix St satisfying (21) and (24) for different values of M,E and C.

Different intervals J are chosen for visualization.
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