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Abstract: The presence of missing data in hydrometeorological datasets is a common problem,
usually due to sensor malfunction, deficiencies in records storage and transmission, or other recovery
procedures issues. These missing values are the primary source of problems when analyzing and
modeling their spatial and temporal variability. Thus, accurate gap-filling techniques for rainfall time
series are necessary to have complete datasets, which is crucial in studying climate change evolution.
In this work, several machine learning models have been assessed to gap-fill rainfall data, using
different approaches and locations in the semiarid region of Andalusia (Southern Spain). Based on
the obtained results, the use of neighbor data, located within a 50 km radius, highly outperformed the
rest of the assessed approaches, with RMSE (root mean squared error) values up to 1.246 mm/day,
MBE (mean bias error) values up to −0.001 mm/day, and R2 values up to 0.898. Besides, inland area
results outperformed coastal area in most locations, arising the efficiency effects based on the distance
to the sea (up to an improvement of 63.89% in terms of RMSE). Finally, machine learning (ML) models
(especially MLP (multilayer perceptron)) notably outperformed simple linear regression estimations
in the coastal sites, whereas in inland locations, the improvements were not such significant.

Keywords: gap-filling; rainfall series; machine learning; Bayesian optimization

1. Introduction

The spatial and temporal analysis of meteorological parameters, such as rainfall is
crucial to numerous environmental, hydrological, and agroclimatic studies, as well as
optimizing issues, such as water resource management or irrigation scheduling [1–4].
However, one of the most common problems in time series analyses, such as rainfall
datasets, is the presence of gaps of different widths, making this task harder to carry out.
This usually results from malfunctioning sensors or data loggers, lack of maintenance,
meteorological events, or power outages. Sometimes, the solution is not instantaneous and
causes delays because it needs the interaction of qualified personnel. Therefore, before
starting with analyses, a common practice is to fill these gaps using different methodologies
and applying automatic detection algorithms to detect spurious signals in automated
weather stations [5].

Due to its high spatio-temporal variability and the large number of interconnected
variables involved, rainfall is one of the most challenging atmospheric variables to char-
acterize, estimate, and forecast [6], especially on a daily basis, with higher volatility and
chaotic patterns [7]. A variety of techniques have been developed on both a monthly and
daily basis. One of the most frequent algorithms to estimate missing rainfall records is
the inverse distance weighting method (IDWM), where the estimated values are calcu-
lated with a weighted average (it resorts to the inverse of the distance when assigning the
weights) from neighbor stations [8,9]. Another simple method to apply is the gauge mean
estimator, which uses an average value of observations from the nearby stations, which can
be obtained by optimization, proximity metric, or correlation, among other techniques [10].
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Ordinary kriging is a spatially-dependent variance, based on scalar measurements at differ-
ent locations, where the weights are derived from the distance between the source and the
target stations [11–13]. However, these three methods tend to overestimate the number of
rainy days and underestimate their magnitudes, and even a negative correlation is found
in several reports between close stations [13,14]. Xia et al. [15] evaluated six methodolo-
gies (simple arithmetic averaging, inverse distance interpolation, normal ratio method,
single best estimator, multiple regression analysis (REG), and closest station method) for
estimating missing data in two stations in Germany and concluded that REG consistently
obtained the best performance. Teegavarapu and Chandramouli [8] highlighted that the
use of the coefficient of correlation provided an improvement in estimating the missing
data and recommended the coefficient of correlation weighing method, artificial neural
network estimation method, and kriging estimation method for this purpose, due to their
conceptually superior performance. Teegavarapu et al. [16] introduced the fixed functional
set genetic algorithm method (FFSGAM), eliminating the use of rigid functional forms
and weighting approaches for gap-filling. FFSGAM outperformed conventional IDWM.
Adhikary et al. [12] developed genetic programming-based ordinary kriging (GPOK) as a
new variant of the kriging method, using the genetic programing-derived variogram model
and ordinary kriging. GPOK obtained the best results, when compared to ANN-based
ordinary kriging and traditional ordinary kriging. Different authors [17–19] have evaluated
the k-nearest-neighbor algorithm, in conjunction with machine learning models, such as
multilayer perceptron (MLP), support vector machine (SVM), and random forest (RF), with
promising results. Bagirov et al. [20] evaluated clusterwise linear regression (CLR), using
different combinations of maximum and minimum daily air temperature, evaporation,
vapor pressure, and solar radiation to predict monthly rainfall in Victoria, Australia. Their
results showed a higher performance of CLR against different methods, such as cluster
regression-expectation maximization, multiple linear regression, support vector regression
(SVR), and MLP. Kajewska-Szkudlarek [21] assessed the use of cluster analysis with SVR to
outperform daily rainfall prediction in urban areas.

Additionally, other researchers study the performance of processing algorithms, such
as wavelets [22,23], variational mode decomposition (VMD) [24], or singular spectrum
analysis (SSA) [25,26]. Estévez et al. [22] evaluated different combinations of wavelet
analysis with thermo-pluviometric variables, using MLP in sixteen locations of Spain to
forecast monthly rainfall. The results indicated the suitability of the models using thermo-
pluviometric variables without requiring long-term datasets. Partal and Kisis [23] assessed
a wavelet analysis, in conjunction with neuro-fuzzy models, to forecast daily rainfall in
Turkey. The developed models were significantly superior to traditional machine learning
approaches, with a coefficient of determination (R2) around 0.8–0.9. Li et al. [24] studied
the performance of VMD, coupled with an extreme learning machine (ELM) model, to
improve monthly rainfall forecasts in the northwest of China. This hybrid model highly
outperformed traditional algorithms, with a meager computational cost, due to the non-
training requirement of ELM. Filho and Lima [25] evaluated the singular spectrum analysis
(SSA) forecasting monthly rainfall in Brazil. Based on the results, it could be concluded
that the SSA caterpillar algorithm can deal with the inherent non-stationary nature of
rainfall records, extracting its long varying trends and periodic components. Sun et al. [26]
assessed SSA in Korea with linear recurrent formulas (LRF) and MLP. MLP obtained the
best performance when forecasting monthly rainfall.

Finally, due to the significant advances in computation, deep learning algorithms are
gaining very high popularity. In this sense, Kim et al. [27] evaluated the convolutional
neural network (CNN), in conjunction with long short-term memory (LSTM), named con-
vLSTM, to nowcast 1 and 2 h in advance, using two years dataset periods. ConvLSTM was
able to reduce RMSE by 23%, when compared to linear regression. Ha et al. [28] developed
a deep belief network model to forecast rainfall one day ahead in Seoul, performing better
than MLP. Chen et al. [29] studied the performance of convLSTM with group normalization
(GN) to improve the optimization process and employ a multi-sigmoid loss, inspired in the
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critical success index (CSI) and compared to the COTREC model. COTREC obtained better
performance, in terms of intensity in some areas, whereas convLSTM got a generally more
reliable forecast.

This study aims to create a daily rainfall estimation model using only precipitation
data, with different approaches in semiarid regions, such as Andalusia, to fill possible
gaps in precipitation datasets. Additionally, a new approach is tested in daily rainfall
estimations, which uses future precipitation values for this purpose. Thus, in this work,
several machine learning models (MLP, SVM, and RF) and approaches for estimating
missing rainfall data were tested and compared to empirical algorithms, such as linear
interpolation (LI), in 14 locations from two different regions of Andalusia (coastal and
inland areas) in Southern Spain. The first approach (A) uses neighbor stations’ rainfall data
of the same gap day and its distance to the target station. All these neighbor stations are
located within a radius up to 50 km, following the recommendations of Barrios et al. [9]
on a monthly basis and Estévez et al. [30] on a daily basis. Secondly, a new approach is
considered, using only rainfall data (past and future values) from the target station as the
model’s inputs. Specifically, two different configurations were tested: (B) one day before
and after the gap day and (C) two days before and after the gap day.

The rest of the work is organized as follows. Section 2 shows the information about
the locations, the dataset, the theoretical background of the different machine learning
(ML) models assessed, the preprocessing algorithms, and the evaluation metrics. Then, in
Section 3, the results are reported and discussed. Finally, Section 4 describes the conclusions
achieved in this work.

2. Materials and Methods
2.1. Source of Data

This study was carried out in Andalusia, Southern Spain, located in the southwest of
Europe. Andalusia is a semiarid region with the following features: the meridians range
from 1 to 7◦ W, the parallels from 37◦ to 39◦ N, an elevation above mean sea level from 26
to 822 m, and a total area of 87,268 m2.

The datasets used belong to the Agroclimatic Information Network of Andalusia
(RIAA) and can be downloaded at the following link: https://www.juntadeandalucia.es/
agriculturaypesca/ifapa/riaweb/web (accessed on 30 July 2021). A total of 14 stations,
divided into two areas (coastal and inland locations), were evaluated. The first group of
areas included Jaen, La Higuera de Arjona, Linares, Mancha Real, Marmolejo, Sabiote, and
Torreblascopedro and the second group included Málaga, Antequera, Archidona, Cártama,
Churriana, Pizarra, and Vélez. Figure 1 shows their geographical locations, and Table 1
shows their geo-climatic characteristics.

https://www.juntadeandalucia.es/agriculturaypesca/ifapa/riaweb/web
https://www.juntadeandalucia.es/agriculturaypesca/ifapa/riaweb/web
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Figure 1. Spatial distribution of the fourteen automated weather stations used in this work. 

Table 1. Geo-climatic characteristics of the AWS assessed in this work (lat.: latitude; long.: longitude; alt.: elevation above 
mean sea level). 

Station Alt. [m] Lat. 
[ºN] 

Long. 
[ºW] 

Mean Annual 
Rainfall [mm] 

Time-Period (Number of Days) 

Area 1:      
Jaen (JAE) 299 37.89 3.77 446.54 From April 2001 to June 2021 (7361) 

La Higuera de Arjona (ARJ) 257 37.95 4.00 477.68 From January 2001 to June 2021 (7456) 
Linares (LIN) 432 38.07 3.65 466.70 From August 2000 to June 2021 (7601) 

Mancha Real (MAN) 407 37.92 3.60 390.86 From August 2000 to June 2021 (7602) 
Marmolejo (MAR) 208 38.06 4.13 523.36 From September 2000 to June 2021 (7590) 

Sabiote (SAB) 791 38.08 3.24 446.98 From August 2000 to June 2021 (7615) 
TorreblascoPedro (TOR) 275 37.99 3.69 434.37 From August 2000 to June 2021(7615) 

Area 2:      
Antequera (ANT) 440 37.03 4.56 444.72 From November 2000 to June 2021 (7512) 
Archidona (ARC) 516 37.08 4.43 457.83 From December 2000 to June 2021 (7483) 
Cártama (CAR) 78 36.72 4.68 490.51 From June 2001 to June 2021 (7300) 

Churriana (CHU) 17 36.67 4.50 510.32 From February 2001 to June 2021 (7426) 
Málaga (MAL) 55 36.76 4.54 461.63 From October 2000 to June 2021 (7546) 
Pizarra (PIZ) 71 36.77 4.72 463.47 From January 2001 to June 2021 (7447) 
Vélez (VEL) 33 36.80 4.13 490.49 From October 2000 to June 2021 (7546) 

  

Figure 1. Spatial distribution of the fourteen automated weather stations used in this work.

Table 1. Geo-climatic characteristics of the AWS assessed in this work (lat.: latitude; long.: longitude; alt.: elevation above
mean sea level).

Station Alt. [m] Lat. [ºN] Long. [ºW] Mean Annual
Rainfall [mm] Time-Period (Number of Days)

Area 1:
Jaen (JAE) 299 37.89 3.77 446.54 From April 2001 to June 2021 (7361)

La Higuera de Arjona
(ARJ) 257 37.95 4.00 477.68 From January 2001 to June 2021 (7456)

Linares (LIN) 432 38.07 3.65 466.70 From August 2000 to June 2021 (7601)
Mancha Real (MAN) 407 37.92 3.60 390.86 From August 2000 to June 2021 (7602)

Marmolejo (MAR) 208 38.06 4.13 523.36 From September 2000 to June 2021 (7590)
Sabiote (SAB) 791 38.08 3.24 446.98 From August 2000 to June 2021 (7615)

TorreblascoPedro
(TOR) 275 37.99 3.69 434.37 From August 2000 to June 2021(7615)

Area 2:
Antequera (ANT) 440 37.03 4.56 444.72 From November 2000 to June 2021 (7512)
Archidona (ARC) 516 37.08 4.43 457.83 From December 2000 to June 2021 (7483)
Cártama (CAR) 78 36.72 4.68 490.51 From June 2001 to June 2021 (7300)

Churriana (CHU) 17 36.67 4.50 510.32 From February 2001 to June 2021 (7426)
Málaga (MAL) 55 36.76 4.54 461.63 From October 2000 to June 2021 (7546)
Pizarra (PIZ) 71 36.77 4.72 463.47 From January 2001 to June 2021 (7447)
Vélez (VEL) 33 36.80 4.13 490.49 From October 2000 to June 2021 (7546)
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2.2. Methodology

An essential prerequisite to guarantee reliable results using raw meteorological data is
the application of quality assurance procedures. The quality control guidelines, reported by
Estévez et al. [31], were followed, as well as the procedure to detect spurious precipitation
signals from automated weather stations (AWS), also Estévez et al. [5].

Afterward, data preprocessing was required for every approach, obtaining the corre-
sponding input configuration, according to every strategy (see Table 2). Three different
methodologies were evaluated: approach (i)—the use of rainfall neighbor data and its
distance data to estimate the precipitation values at a different site (all locations are located
within a 50 km radius); approach (ii)—the use of one day before and ahead rainfall data
values from the target station; and approach (iii)—the use of two days before and ahead
rainfall data values from the target station.

Table 2. Inputs configurations of the different models and approaches assessed. DOY represents the day of year, P
corresponds to precipitation, D corresponds to distance, and i represents an index to the dataset-specific day.

Target
Station Inputs Approach A Inputs Approach B Inputs Approach C

Area 1:

Jaen

DOY(i) + PARJ(i) + DJAE-LIN + PLIN(i)
+ DJAE-LIN + PMAN(i) + DJAE-MAN +

PMAR(i) + DJAE-MAR + PSAB(i) +
DJAE-SAB + PTOR(i) + DJAE-TOR

DOY(i) + PJAE(i − 1) +
PJAE(i + 1)

DOY(i) + PJAE(i − 1) + PJAE(i
− 2) + PJAE(i + 1) + PJAE(i + 2)

La Higuera
de Arjona

DOY(i) + PJAE(i) + DARJ-JAE + PLIN(i)
+ DARJ-LIN + PMAN(i) + DARJ-MAN +

PMAR(i) + DARJ-MAR + PSAB(i) +
DARJ-SAB + PTOR(i) + DARJ-TOR

DOY(i) + PARJ(i − 1) +
PARJ(i + 1)

DOY (i) + PARJ(i − 1) + PARJ(i
− 2) + PARJ(i + 1) + PARJ(i + 2)

Linares

DOY(i) + PJAE(i) + DLIN-JAE + PARJ(i)
+ DLIN-ARJ + PMAN(i) + DLIN-MAN +

PMAR(i) + DLIN-MAR + PSAB(i) +
DLIN-SAB + PTOR(i) + DLIN-TOR

DOY(i) + PLIN(i − 1) +
PLIN(i + 1)

DOY (i) + PLIN(i − 1) + PLIN(i
− 2) + PLIN(i + 1) + PLIN(i + 2)

Mancha
Real

DOY(i) + PJAE(i) + DMAN-JAE + PARJ(i) + DMAN-ARJ +
PLIN(i) + DMAN-LIN +

PMAR(i) + DMAN-MAR + PSAB(i) +
DMAN-SAB + PTOR(i) + DMAN-TOR

DOY(i) + PMAN(i − 1)
+ PMAN(i + 1)

DOY (i) + PMAN(i − 1) +
PMAN(i − 2) + PMAN(i + 1) +

PMAN(i + 2)

Marmolejo
DOY(i) + PJAE(i) + DMAR-JAE + PARJ(i) + DMAR-ARJ +

PLIN(i) + DMAR-LIN + PMAN(i) + DMAR-MAN + PSAB(i) +
DMAR-SAB + PTOR(i) + DMAR-TOR

DOY(i) + PMAR(i − 1)
+ PMAR(i + 1)

DOY (i) + PMAR(i − 1) +
PMAR(i − 2) + PMAR(i + 1) +

PMAR(i + 2)

Sabiote

DOY(i) + PJAE(i) + DSAB-JAE + PARJ(i)
+ DSAB-ARJ + PLIN(i) + DSAB-LIN + PMAN(i) + DSAB-MAN

+ PMAR(i) +
DSAB-MAR + PTOR(i) + DSAB-TOR

DOY(i) + PSAB(i − 1) +
PSAB(i + 1)

DOY (i) + PSAB(i − 1) + PSAB(i
− 2) + PSAB(i + 1) + PSAB(i + 2)

Torreblasco
Pedro

DOY(i) + PJAE(i) + DTOR-JAE + PARJ(i) + DTOR-ARJ +
PLIN(i) + DTOR-LIN + PMAN(i) + DTOR-MAN + PMAR(i) +

DTOR-MAR + PSAB(i) + DTOR-SAB

DOY(i) + PTOR(i − 1) +
PTOR(i + 1)

DOY (i) + PTOR(i − 1) +
PTOR(i − 2) + PTOR(i + 1) +

PTOR(i + 2)

Area 2:

Antequera

DOY(i) + PARC(i) + DANT-ARC + PCAR(i) + DANT-CAR +
PCHU(i) + DANT-CHU +

PMAL(i) + DANT-MAL + PPIZ(i) +
DANT-PIZ + PVEL(i) + DANT-VEL

DOY(i) + PANT(i − 1) +
PANT(i + 1)

DOY (i) + PANT(i − 1) +
PANT(i − 2) + PANT(i + 1) +

PANT(i + 2)

Archidona

DOY(i) + PANT(i) + DARC-ANT + PCAR(i) + DARC-CAR +
PCHU(i) + DARC-CHU +

PMAL(i) + DARC-MAL + PPIZ(i) +
DARC-PIZ + PVEL(i) + DARC-VEL

DOY(i) + PARC(i − 1) +
PARC(i + 1)

DOY (i) + PARC(i − 1) +
PARC(i − 2) + PARC(i + 1) +

PARC(i + 2)
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Table 2. Cont.

Target
Station Inputs Approach A Inputs Approach B Inputs Approach C

Cártama

DOY(i) + PANT(i) + DCAR-ANT + PARC(i) + DCAR-ARC +
PCHU(i) + DCAR-CHU +

PMAL(i) + DCAR-MAL + PPIZ(i) +
DCAR-PIZ + PVEL(i) + DCAR-VEL

DOY(i) + PCAR(i − 1) +
PCAR(i + 1)

DOY (i) + PCAR(i − 1) +
PCAR(i − 2) + PCAR(i + 1) +

PCAR(i + 2)

Churriana

DOY(i) + PANT(i) + DCHU-ANT +
PARC(i) + DCHU-ARC + PCAR(i) +

DCHU-CAR + PMAL(i) + DCHU-MAL +
PPIZ(i) + DCHU-PIZ + PVEL(i) + DCHU-VEL

DOY(i) + PCHU(i − 1)
+ PCHU(i + 1)

DOY (i) + PCHU(i − 1) +
PCHU(i − 2) + PCHU(i + 1) +

PCHU(i + 2)

Málaga

DOY(i) + PANT(i) + DMAL-ANT +
PARC(i) + DMAL-ARC + PCAR(i) +

DMAL-CAR + PCHU(i) + DMAL-CHU +
PPIZ(i) + DMAL-PIZ + PVEL(i) + DMAL-VEL

DOY(i) + PMAL(i − 1)
+ PMAL(i + 1)

DOY (i) + PMAL(i − 1) +
PMAL(i − 2) + PMAL(i + 1) +

PMAL(i + 2)

Pizarra
DOY(i) + PANT(i) + DPIZ-ANT + PARC(i) + DPIZ-ARC +
PCAR(i) + DPIZ-CAR + PCHU(i) + DPIZ-CHU + PMAL(i) +

DPIZ-MAL + PVEL(i) + DPIZ-VEL

DOY(i) + PPIZ(i − 1) +
PPIZ(i + 1)

DOY (i) + PPIZ(i − 1) + PPIZ(i
− 2) + PPIZ(i + 1) + PPIZ(i + 2)

Vélez
DOY(i) + PANT(i) + DVE-ANT + PARC(i) + DVEL-ARC +

PCAR(i) + DVEL-CAR + PCHU(i) + DVEL-CHU + PMAL(i) +
DVEL-MAL + PPIZ(i) + DVEL-PIZ

DOY(i) + PVEL(i − 1) +
PVEL(i + 1)

DOY (i) + PVEL(i − 1) + PVEL(i
− 2) + PVEL(i + 1) + PVEL(i +

2)

Later, in order to tune all the different hyperparameters from the different models, train
them, and evaluate their performance, the full dataset was split into training, validation,
and test. The train (to fit all the final weights and biases from the final model) and test
dataset (never-seen data to assess the performance) were randomly split into 70% and 30%,
respectively. Prior to this stage, it is necessary to determine all the hyperparameters of the
models (such as the number of hidden layers and neurons in a multilayer perceptron). To
this purpose, the training dataset was divided into train_2 and validation (random 80%
and 20%, respectively) to train and test the different hyperparameters until the fittest set
is found. It is worth noting that the seed used in the random algorithm is the same in all
cases, so all assessed models (from different approaches) have the same train, test, and
validation dataset. Then, the Bayesian optimization algorithm took place, where different
hyperparameters were tested, using the validation dataset, until the fittest set was found.
Afterward, the entire train dataset from the initial split was used to adjust all the different
weights and biases. Finally, the performance accuracy was assessed, using the testing
dataset, which was never seen during previous processes. All this methodology is shown
in a flowchart in Figure 2.

Besides, after splitting the dataset into train and test, a standardization was carried
out, which is highly recommended to outperform machine learning models, especially
neural network-based models [32]. This can be expressed as Equation (1):

x∗ =
x − x

σ
(1)

where x represents the input data and x and σ correspond to the mean and standard
deviation of the training dataset, respectively, and x∗ is the standardized data.
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hyperparameters
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Determine the error using RMSE, MBE and R²

Data preprocessing

Figure 2. Methodology flowchart.

2.3. Multilayer Perceptron (MLP)

Multilayer perceptron is one of the most used models in different sectors, especially in
hydrology [22,33]. Its functionality is based on neurons in the biological nervous system,
where many interconnected neurons work together to generate an interaction, based on
different stimuli. It is structured in three types of layers, the input and output correspond
to the input and output of the model, respectively, as well as the hidden layer, where
neurons are located. The activation function determines the output of a node, given a set
of inputs. For example, rectified linear output (ReLU) represents a ramp for positive input
values. The process in which the neurons learn (value adjustment of weights and biases) is
carried out automatically, which is why this layer is called hidden. ADAM, a very common
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algorithm for this purpose, uses squared gradients to scale the learning rate and a moving
average of the gradients.

A single neuron mathematical logic is represented in Figure 3, where w represents the
weight and b is the bias factor.
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For further information, the following works can be reviewed [34,35].

2.4. Support Vector Machine (SVM)

Support vector machine (SVM) is a supervised machine learning model that analyzes
data for classification and regression tasks (also known as support vector regression (SVR)).
For classification tasks, its functionality is based on searching the fittest hyperplane to
separate different datapoints’ classes (classification). On regression, it finds the hyperplane
and margins that fit all of them (regression). Thus, an easy way to understand SVM for
regression is similar to a linear regression, where a hyperplane (that includes the data) is
searched, while having the flexibility to define how much error is considered acceptable.
Figure 4 shows an example of SVM for classification (a) and regression (b).
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The main feature of SVM models is the use of kernels (linear, sigmoid, or gaussian,
among others) to enable operation in a high-dimensional feature map, where the number
of features is greater than the number of observations.

SVM models are often used in rainfall forecasts, with promising results [36–38]. For
further details, the following work can be reviewed [36,37].

2.5. Random Forest (RF)

Random Forest (RF) was first introduced by [39] as a supervised learning algorithm,
where the “term” forest defines that it is built as an ensemble of decision tree models.
The general idea is that the conjunction of multiple models increases the overall result.
Additionally, RF introduces an extra-randomness when the number of trees starts to grow.
Instead of searching for the best feature when splitting nodes, it searches for the best
features among a random subset of them. The maximum number of features can be defined
in scikit-learn as auto, sqrt, log2, none, or the exact number of maximum features (where
auto and sqrt refer to the squared root of the initial number of features, log2 refers to the
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logarithm base 2 of the number of features, and none is to use all the features). This results
in a broader diversity and, as a consequence, a better final performance.

Other researchers have already assessed RF in rainfall with promising results [40–42].
For further details, the following work can be revised [42].

2.6. Bayesian Optimization

One of the critical aspects of machine learning models’ efficiency is hyperparameter
selection. Depending on whether the correct values have been set, the performance can
dramatically change from outstanding to very poor results. A common practice in the
scientific community uses a trial-and-error technique [22], where different values are
evaluated, varying from dozens to thousands of possibilities. However, this method is far
from efficient because if the hyperparameter space is ample, the algorithm (apart from
being very slow) wastes significant time in non-promising configurations. On the other
hand, when the hyperparameter space is tiny, an accurate hyperparameter configuration set
may be missing, despite being quick. To solve this problem, several algorithms have been
assessed in different works. In [6], the authors studied the effectiveness of particle-swarm
optimization (PSO) and genetic algorithm (GA) to predict the monthly rainfall with MLP
in a subtropical monsoon climate in Guilin, China. Wang et al. [43] assessed an artificial
bee colony (ABC) with MLP to forecast rainfall values in 17 stations in the Wujiang River
Basin. Banadkooki et al. [35] evaluated the flow regime optimization algorithm (FRA) with
MLP and SVM to forecast monthly rainfall values in Iran.

In this study, Bayesian optimization was used, due to its high popularity in new
automated machine learning (AML) models [44–47] and its good performance in [34,48]. It
was first introduced by Wang et al. [43] as an algorithm, based on the Bayes theorem, to
search the minimum/maximum function. Part of its popularity is due to its close relation
to human behavior when tuning hyperparameters [49,50]. The prior results are taken
into account to choose the following promising values to test, following the next four-
step procedure: (1) the hyperparameter space is defined, which limits the values of the
hyperparameter space; (2) the algorithm considers previous evaluations, in order to choose
the following set of values to be assessed (acquisition function)—two kinds of possibilities
can be handled, exploitation (consists of testing hyperparameters values that are assumed
to be optimal) and exploration (the opposite of exploitation, to identify new best options);
(3) to assess the new hyperparameter configuration using an objective function; and (4) if
the optimization process has not finished yet, it goes to the second point. In this work, this
algorithm was implemented using Python and the scikit-optimize library, following the
instructions of Bellido-Jiménez et al. [34]. All the final hyperparameter sets, used for each
model, approach, and location, can be seen in Table 3.

Table 3. Hyperparameter set for each model, approach, and location, after carrying out Bayesian optimization, where
activation represents the activation function, the optimizer represents the optimizer function, epochs represents the number
of epochs, neurons represents the number of hidden layers and the number of neurons of each, kernel is the kernel function,
c and epsilon represent internal hyperparameters of SVR, n_estimators is the number of trees in RF, and max_features is the
number of features to consider when looking for the best split.

Approaches:
Location Models Hyperparameters A B C

La Higuera de
Arjona

MLP

activation ReLU ReLU ReLU
optimizer ADAM ADAM ADAM

epochs 100 87 53
neurons (20, 20) (9, 15, 10) (6, 15, 9)

SVM
kernel RBF RBF poly

c 10.0 10.0 1.855
epsilon 0.01 0.01 0.01

RF
n_estimators 100 100 91
max_features sqrt auto log2
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Table 3. Cont.

Approaches:
Location Models Hyperparameters A B C

Jaen

MLP

activation ReLU ReLU ReLU
optimizer ADAM ADAM ADAM

epochs 92 61 98
neurons (20, 20) (2, 1, 12) (1, 10, 8)

SVM
kernel linear linear RBF

c 1.758 9.730 10.0
epsilon 0.739 0.01 0.01

RF
n_estimators 94 95 100
max_features auto log2 log2

Linares

MLP

activation ReLU ReLU ReLU
optimizer ADAM ADAM ADAM

epochs 100 100 100
neurons (20, 20) (1, 1, 1) (1, 1, 1)

SVM
kernel linear RBF RBF

c 10.0 4.023 10.0
epsilon 0.01 0.018 0.01

RF
n_estimators 100 97 80
max_features auto sqrt log2

Mancha Real

MLP

activation ReLU ReLU ReLU
optimizer ADAM ADAM ADAM

epochs 100 99 100
neurons (20, 20) (5, 14) (1, 1, 1)

SVM
kernel RBF RBF RBF

c 10.0 6.235 9.211
epsilon 0.01 0.010 0.01

RF
n_estimators 75 41 46
max_features auto sqrt log2

Marmolejo

MLP

activation ReLU ReLU ReLU
optimizer ADAM ADAM ADAM

epochs 100 96 10
neurons (20, 6) (5, 3, 11) (1, 11)

SVM
kernel linear RBF RBF

c 10.0 4.350 9.970
epsilon 0.01 0.01 0.01

RF
n_estimators 100 31 100
max_features auto auto sqrt

Sabiote

MLP

activation ReLU ReLU ReLU
optimizer ADAM ADAM ADAM

epochs 100 100 95
neurons (20, 20) (1, 1, 1) (2, 11, 9)

SVM
kernel linear RBF RBF

c 10.0 10.0 10.0
epsilon 0.01 0.01 0.01

RF
n_estimators 72 39 57
max_features log2 log2 log2

Torreblascopedro

MLP

activation ReLU ReLU ReLU
optimizer ADAM ADAM ADAM

epochs 100 72 73
neurons (20, 12) (1, 4, 13) (5, 1, 17)

SVM
kernel linear RBF poly

c 3.795 3.108 6.205
epsilon 0.01 0.01 0.012

RF
n_estimators 81 64 94
max_features log2 sqrt sqrt
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Table 3. Cont.

Approaches:
Location Models Hyperparameters A B C

Antequera

MLP

activation ReLU ReLU ReLU
optimizer ADAM ADAM ADAM

epochs 200 174 61
neurons (13, 8) (5, 2, 20) (14, 11, 13)

SVM
kernel linear RBF RBF

c 8.684 7.627 4.981
epsilon 0.225 0.01 0.014

RF
n_estimators 55 94 41
max_features auto auto log2

Archidona

MLP

activation ReLU ReLU ReLU
optimizer ADAM ADAM ADAM

epochs 94 40 11
neurons (13, 5, 18) (11, 12, 1) (16, 11, 19)

SVM
kernel linear poly RBF

c 7.246 4.531 4.104
epsilon 0.01 0.01 0.013

RF
n_estimators 81 93 100
max_features auto auto sqrt

Cártama

MLP

activation ReLU ReLU ReLU
optimizer ADAM ADAM ADAM

epochs 129 10 112
neurons (8, 13, 17) (1, 1, 1) (14, 17, 6)

SVM
kernel linear RBF poly

c 6.273 7.830 3.862
epsilon 0.01 0.01 0.01

RF
n_estimators 92 10 38
max_features auto sqrt log2

Churriana

MLP

activation ReLU ReLU ReLU
optimizer ADAM ADAM ADAM

epochs 180 200 70
neurons (20, 20, 18) (1, 1, 1) (5, 15, 7)

SVM
kernel linear RBF RBF

c 10.0 10.0 5.963
epsilon 0.01 0.01 0.01

RF
n_estimators 100 40 36
max_features log2 log2 sqrt

Málaga

MLP

activation ReLU ReLU ReLU
optimizer ADAM ADAM ADAM

epochs 158 97 127
neurons (20, 20, 20) (17, 11, 10) (13, 4, 16)

SVM
kernel linear RBF RBF

c 8.784 9.999 6.952
epsilon 0.01 0.01 0.011

RF
n_estimators 69 14 10
max_features log2 log2 log2

Pizarra

MLP

activation ReLU ReLU ReLU
optimizer ADAM ADAM ADAM

epochs 192 94 171
neurons (13, 15, 8) (3, 4, 6) (14, 1, 6)

SVM
kernel linear RBF RBF

c 7.642 10.0 4.031
epsilon 0.015 0.01 0.01

RF
n_estimators 76 45 95
max_features auto sqrt sqrt
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Table 3. Cont.

Approaches:
Location Models Hyperparameters A B C

Vélez-Málaga

MLP

activation ReLU ReLU ReLU
optimizer ADAM ADAM ADAM

epochs 200 180 139
neurons (20, 20, 20) (15, 13, 10) (8, 2, 10)

SVM
kernel RBF RBF RBF

c 10.0 6.032 10.0
epsilon 0.01 0.01 0.01

RF
n_estimators 72 62 78
max_features sqrt log2 sqrt

2.7. Evaluation Metrics

To assess the efficiency of the developed models, the statistics root mean square error
(RMSE), mean bias error (MBE), and coefficient of determination (R2) were used. All of
them are mathematically expressed as Equations (2)–(4), respectively:

RMSE =

√
1
n

n

∑
i = 1

(measi − predi)
2 (2)

MBE =
1
n

n

∑
i = 1

(measi − predi) (3)

R2 =
(∑n

i = 1(measi − µmeas)
(

predi − µpred)
)2

∑n
i = 1(measi − µmeas)

2 ∑n
i = 1

(
predi − µpred

)2 (4)

where n represents the number of prediction days, measi corresponds to the measured
value for a specific day, predi is the predicted value, i represents every single gap day, and
µ corresponds to the mean.

3. Results and Discussion

In order to help the reproducibility of this work, the best ML models were up-
loaded to an open access repository in Github (https://github.com/Smarity/gap-filling-
precipitation-atmosphere-special-issue.git, accessed on 30 July 2021).

3.1. Using Neighbor Stations

Table 3 shows the RMSE, MBE, and R2 performances for all locations in Area 1
(inland locations) using the first approach (A), information from other AWS located
within 50 km. In Higuera de Arjona, MLP obtained the best RMSE and R2 values
(RMSE = 1.363 mm/day and R2 = 0.894), very close to RF (RMSE = 1.384 mm/day
and R2 = 0.889). In terms of MBE, LI outperformed the rest of the ML models
(MBE = −0.008 mm/day), followed closely to MLP and RF (MBE = 0.016 mm/day and
MBE = 0.026 mm/day, respectively). In Jaen, all ML models outperformed LI in RMSE
and R2, where MLP obtained the best values (RMSE = 1.767 mm/day and R2 = 0.827),
whereas RF beat the rest, regarding MBE (MBE = 0.023 mm/day). In Linares, RF
and LI obtained the best performance, in terms of MBE (MBE = 0.001 mm/day and
MBE = −0.001 mm/day). Moreover, MLP outperformed the others, regarding RMSE
and R2 (RMSE = 1.723 mm/day and R2 = 0.817), followed closely by RF (RMSE =
1.730 mm/day and R2 = 0.815). In Mancha Real, MLP outperformed the other models
in all statistics (RMSE = 1.662 mm/day, MBE = −0.072 mm/day, and R2 = 0.831),
whereas SVM was the worst (RMSE = 1.948 mm/day, MBE = −0.195 mm/day, and
R2 = 0.780). In Marmolejo, with the highest mean annual rainfall (523.36 mm/year),

https://github.com/Smarity/gap-filling-precipitation-atmosphere-special-issue.git
https://github.com/Smarity/gap-filling-precipitation-atmosphere-special-issue.git
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the performance, in terms of RMSE and R2, showed that RF obtained the best val-
ues (RMSE = 2.129 mm/day and R2 = 0.801), followed closely by SVM (RMSE =
2.154 mm/day and R2 = 0.795) and MLP (RMSE = 2.176 mm/day and R2 = 0.791). In
Sabiote, the location with the highest altitude, MLP obtained the best performance
in RMSE and R2 (RMSE = 2.049 mm/day and R2 = 0.752), but LI beat ML in MBE
(MBE = −0.006 mm/day). Finally, in Torreblascopedro, SVM outperformed the rest for
all statistics (RMSE = 1.246 mm/day, MBE = −0.005, and R2 = 0.894), being the most
accurate from this first region. It is worth noting that MLP generally obtained the best
results, regarding RMSE and R2, in most locations, whereas RF and LI obtained the
best values for MBE. Additionally, even though ML outperformed LI in all locations,
the average improvement was not very significant.

Tables 4 and 5 shows the RMSE, MBE, and R2 values for all locations and models in
the coastal locations (Area 2). In Antequera, MLP beat the other models for all statistics
(RMSE = 1.596 mm/day, MBE = 0.035 mm/day, and R2 = 0.875), sharing the same R2 per-
formance with SVM (R2 = 0.875). All ML models highly outperformed LI, considering
all statistics (especially RMSE and R2), except for MBE using SVM. In Archidona, MLP
also obtained the most accurate modeling in RMSE and R2 (RMSE = 1.811 mm/day and
R2 = 0.844), followed closely to SVM (RMSE = 1.817 mm/day and R2 = 0.844). Regard-
ing MBE, RF outperformed the rest (MBE = −0.019 mm/day). In Cártama, RF obtained
the best MBE value (MBE = 0.002 mm/day), whereas SVM got the best RMSE and R2

performance (RMSE = 2.502 mm/day and R2 = 0.778). In Churriana, MLP highly out-
performed the rest, in terms of RMSE and R2 (RMSE = 2.192 mm/day and R2 = 0.876),
whereas RF beat MLP in MBE (MBE = 0.019 mm/day and MBE = −0.052 mm/day,
respectively). In Málaga, RF obtained the best values for RMSE and MBE (RMSE =
2.433 mm/day and MBE = 0.012 mm/day), whereas MLP got the most accurate values
for R2 (R2 = 0.830). In Pizarra, all models obtained very similar performance (even LI).
RMSE ranged from 2.032 mm/day (by MLP and SVM) to 2.108 mm/day (by LI), MBE
ranged from 0.039 mm/day (by RF) to −0.112 mm/day (by SVM), and R2 ranged from
0.842 (by LI) to 0.854 (by MLP). Finally, in Vélez, MLP outperformed the rest of the
models, in terms of RMSE and R2 (RMSE = 3.219 mm/day and R2 = 0.742), while RF
obtained the best MBE performance (MBE = −0.020 mm/day), followed closely to MLP
(MBE = −0.074 mm/day). Generally, the results obtained by ML highly outperformed
LI in most locations and statistics, except for MBE, in which LI obtained very accurate
results. Thus, the use of ML models to gap-fill daily rainfall data is highly recom-
mended for coastal sites, performing significantly better than LI, arising the effect of
sea distance in rainfall modelling. Eventually, in Figure 5, all these RMSE, MBE, and
R2 values, from both areas and all models, are represented in a scatter plot. Due to the
different performances between the ML models, it can be stated that MLP obtained
the best results, or very close to them, in most locations. On the other hand, SVM had
accurate performances in coastal sites, whereas the behavior was not so good on inland
locations. Finally, RF behaved opposite to SVM, having an accurate performance on
inland locations and a worse modeling on inland sites.

Table 4. RMSE, MBE, and R2 performance values from testing dataset for all locations and models in
the first area (inland locations), using data from neighbor stations. The best values for each site are
in bold.

Stations (Area 1) Model RMSE
[mm/day]

MBE
[mm/day] R2

La Higuera de
Arjona

MLP 1.363 0.016 0.894
SVM 1.800 −0.106 0.818
RF 1.384 0.026 0.889
LI 1.502 −0.008 0.869
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Table 4. Cont.

Stations (Area 1) Model RMSE
[mm/day]

MBE
[mm/day] R2

Jaen

MLP 1.767 −0.097 0.827
SVM 1.822 −0.064 0.823
RF 1.880 0.023 0.804
LI 1.916 0.051 0.797

Linares

MLP 1.723 0.083 0.817
SVM 1.808 −0.106 0.798
RF 1.730 0.001 0.815
LI 1.896 −0.001 0.784

Mancha Real

MLP 1.662 −0.072 0.831
SVM 1.948 −0.195 0.780
RF 1.730 −0.078 0.816
LI 1.852 0.110 0.790

Marmolejo

MLP 2.176 −0.187 0.791
SVM 2.154 −0.169 0.795
RF 2.129 0.041 0.801
LI 2.392 −0.249 0.753

Sabiote

MLP 2.049 −0.101 0.752
SVM 2.135 −0.224 0.739
RF 2.105 −0.061 0.740
LI 2.112 −0.006 0.742

Torreblascopedro

MLP 1.270 −0.035 0.894
SVM 1.246 −0.005 0.898
RF 1.359 0.019 0.878
LI 1.277 0.047 0.894

Mean values 1.792 −0.048 0.815

Table 5. RMSE, MBE, and R2 performance values from testing dataset for all locations and models in
the second area (coastal locations), using data from neighbor stations. The best values for each site
are in bold.

Stations (Area 2) Model RMSE
[mm/day]

MBE
[mm/day] R2

Antequera

MLP 1.595 0.035 0.875
SVM 1.632 −0.104 0.875
RF 2.009 0.042 0.799
LI 2.839 0.100 0.684

Archidona

MLP 1.811 −0.043 0.844
SVM 1.817 −0.168 0.844
RF 2.002 −0.019 0.809
LI 3.286 −0.041 0.594

Cártama

MLP 2.640 −0.075 0.756
SVM 2.502 −0.106 0.778
RF 2.820 0.002 0.737
LI 2.630 0.061 0.756

Churriana

MLP 2.192 −0.052 0.876
SVM 2.465 −0.147 0.860
RF 2.315 0.019 0.862
LI 2.973 −0.061 0.790

Málaga

MLP 2.485 0.099 0.830
SVM 2.448 −0.170 0.825
RF 2.433 0.012 0.816
LI 2.610 0.04 0.785
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Table 5. Cont.

Stations (Area 2) Model RMSE
[mm/day]

MBE
[mm/day] R2

Pizarra

MLP 2.032 0.043 0.854
SVM 2.083 −0.112 0.853
RF 2.032 0.039 0.854
LI 2.108 0.079 0.842

Vélez-Málaga

MLP 3.219 −0.074 0.742
SVM 3.531 −0.376 0.706
RF 3.306 −0.020 0.719
LI 3.489 −0.157 0.692

Mean values 2.475 −0.041 0.794
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3.2. Using Data from the Target Station

Tables 6 and 7 show the RMSE and MBE values for the inland and coastal locations, us-
ing two different approaches, one day after and before (approach B) and two days after and
before (approach C), as inputs, respectively. Generally, all the results are much worse than
in Tables 2 and 3, for all cases. Mancha Real obtained an RMSE value above 4.0 for all mod-
els, whereas Churriana got the worse values (RMSE > 6.0 mm/day). In terms of MBE, La
Higuera de Arjona obtained the best performance (MBE = −0.021 mm/day) using MLP and
approach B, whereas Marmolejo was the worst (MBE = −1.459 mm/day), using MLP and
this same approach. Finally, in terms of R2, the values obtained are low, from R2 = 0.004 (by
SVM in Archidona) to R2 = 0.079 (by MLP in Málaga), highlighting the non-autocorrelation
between precipitation values from the previous and following days. Comparing the results
between B and C, in terms of RMSE, on average, approach C (RMSE = 4.359 mm/day)
obtained a slightly better performance than approach B (RMSE = 4.323 mm/day). However,
in area 2, the use of approach B (RMSE = 4.986 mm/day) was significantly better than
approach C (RMSE = 5.588 mm/day).

Table 6. RMSE, MBE, and R2 performance values from testing dataset for all locations and models in the first area (inland
locations), using data from the target station in two different approaches, with the use of the previous and following day
and the use of the two previous and two following days. The best values from each station are in bold.

One Day (B) Two Days (C)
Stations
(Area 1) Model RMSE

[mm/day]
MBE

[mm/day] R2 RMSE
[mm/day]

MBE
[mm/day] R2

La Higuera
de Arjona

MLP 4.409 −0.021 0.023 4.079 0.061 0.051
SVM 4.601 −1.218 0.008 4.348 −1.225 0.027
RF 4.524 −0.880 0.020 4.224 −0.932 0.033

Jaen
MLP 3.875 −1.071 0.016 4.423 −0.016 0.022
SVM 3.857 −1.039 0.018 4.613 −1.189 0.007
RF 3.785 −0.771 0.019 4.583 −1.103 0.011

Linares
MLP 4.797 −1.378 0.015 4.455 −1.260 0.010
SVM 4.754 −1.308 0.019 4.423 −1.202 0.010
RF 4.719 −0.940 0.012 4.371 −0.911 0.014

Mancha Real
MLP 3.246 0.128 0.047 3.288 0.305 0.012
SVM 3.450 −0.946 0.005 3.390 −0.842 0.002
RF 3.386 −0.820 0.021 3.383 −0.788 0.003

Marmolejo
MLP 5.530 −1.459 0.012 5.396 −1.374 0.014
SVM 5.501 −1.410 0.022 5.360 −1.307 0.015
RF 5.474 −0.947 0.014 5.235 −0.761 0.028

Sabiote
MLP 3.992 −1.159 0.026 4.186 −1.114 0.008
SVM 3.937 −1.091 0.030 4.155 −1.041 0.006
RF 3.893 −0.797 0.016 4.119 −0.910 0.010

Torreblascopedro
MLP 4.658 −1.287 0.022 4.283 −1.204 0.011
SVM 4.626 −1.236 0.027 4.263 −1.167 0.010
RF 4.539 −0.900 0.021 4.202 −0.802 0.015

Mean values 4.359 −0.978 0.034 4.322 −0.894 0.037
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Table 7. RMSE, MBE, and R2 performance values from testing dataset for all locations and models in the second area
(coastal locations), using data from the target station in two different approaches, with the use of the previous and following
day and the use of the two previous and two following days. The best values from each station are in bold.

One Day (B) Two Days (C)
Stations
(Area 2) Model RMSE

[mm/day]
MBE

[mm/day] R2 RMSE
[mm/day]

MBE
[mm/day] R2

Antequera
MLP 5.035 −0.246 0.027 4.521 −1.246 0.048
SVM 5.243 −1.296 0.021 4.480 −1.197 0.045
RF 5.229 −1.221 0.005 4.467 −1.163 0.017

Archidona
MLP 4.108 −1.095 0.008 4.109 −0.059 0.041
SVM 4.089 −1.012 0.004 4.328 −1.180 0.027
RF 4.083 −0.480 0.023 4.252 −0.695 0.029

Cártama
MLP 5.479 −1.149 0.009 5.235 0.239 0.040
SVM 5.550 −1.144 0.027 5.431 −1.132 0.021
RF 5.631 −0.896 0.021 5.374 −1.054 0.024

Churriana
MLP 6.551 −1.314 0.051 6.849 −1.406 0.017
SVM 6.449 −1.263 0.045 6.817 −1.367 0.009
RF 6.448 −1.148 0.022 6.781 −1.263 0.012

Málaga
MLP 5.028 0.294 0.079 6.850 −1.324 0.044
SVM 5.279 −1.028 0.023 6.765 −1.273 0.056
RF 5.104 −0.884 0.079 6.693 −1.182 0.041

Pizarra
MLP 5.152 0.253 0.031 5.871 0.014 0.050
SVM 5.266 −1.071 0.044 6.064 −1.205 0.081
RF 5.267 −0.785 0.025 6.058 −1.074 0.021

Vélez-
Málaga

MLP 5.295 0.191 0.076 5.360 0.149 0.061
SVM 5.535 −1.198 0.047 5.544 −1.144 0.040
RF 5.465 −1.046 0.052 5.489 −1.054 0.056

Mean values 5.299 −0.835 0.019 5.587 −0.934 0.015

Finally, in Figures 5 and 6, all the RMSE, MBE, and R2 values, from both areas and all
models, are represented in a scatter plot.

3.3. Comparison of the Two Areas

In order to compare the results in the two different areas, Figure 7 shows the RMSE,
MBE, and R2 performance values for these two kinds of locations (inland and coastal),
using the best approach (data from neighbor stations). In terms of RMSE mean values,
MLP outperformed RF and SVM. Besides, the models applied on the coastal locations
underperformed, on average, in all cases and obtained higher variability across sites, rather
than inland ones. In terms of MBE mean values, RF and LI obtained values very close to
0, whereas SVM overestimated in most stations. Finally, in terms of R2, the results by ML
models were quite similar in both inland and coastal locations. However, the results of
LI were significantly worse than ML in coastal sites, whereas SVM performed worse on
inland sites than coastal.

Additionally, Table 8 displays the maximum improvement, in terms of RMSE, R2, and
MBE, comparing ML to LI (using the first approach). In inland sites, the RMSE improve-
ment ranged from 0.031 mm/day in Torreblascopedro to 0.263 mm/day in Marmolejo, as
well as from 0.004 (Torreblascopedro) to 0.048 (Marmolejo), in terms of R2. On the other
hand, the upgrades in coastal sites ranged from RMSE = 0.076 mm/day and R2 = 0.012 (in
Pizarra) to RMSE = 1.475 mm/day and R2 = 0.25 (in Archidona). Thus, coastal locations
significantly differed between linear interpolation and ML models for gap-filling daily
rainfall. In contrast, in inland areas, the improvement was not substantial.
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the third interquartile (Q3), the maximum, and the outlier values are represented.

Table 8. Best improvements between simple arithmetic averaging and the best ML model from each
site for R2 and RMSE. A positive value means that ML outperformed LI.

Station RMSE (mm/day) R2

La Higuera de Arjona 0.139 0.025
Jaén 0.149 0.03
Linares 0.173 0.033
Mancha Real 0.19 0.041
Marmolejo 0.263 0.048
Sabiote 0.063 0.010
Torreblascopedro 0.031 0.004
Antequera 1.244 0.191
Archidona 1.475 0.25
Cártama 0.128 0.022
Churriana 0.781 0.086
Málaga 0.177 0.045
Pizarra 0.076 0.012
Vélez-Málaga 0.265 0.05

Thus, using empirical approaches (such as LI) to gap-fill daily rainfall data is not
recommended, especially in coastal sites; the results are worse than ML, due to the effect of
sea distance.

3.4. Seasonality Performance

In order to assess seasonal performance, the RMSE, MBE, and R2 of all the stations
and approaches, for the different evaluated models (SVM, MLP, and RF), are represented
in Figure 8. Regarding RMSE, summer, autumn, and spring obtained very similar average
performances, whereas, in winter, the mean results were the worst. Moreover, summer
obtained the narrowest interquartile range, but spring and winter got the more extensive
range, with LI being the model with the worst range (the less confident between different
stations) among all seasons and models. MBE, MLP, RF, and LI always performed with
very similar average results, although LI had the widest interquartile range for all seasons.
Besides, SVM always performed the worst, in terms of MBE. In terms of R2, the highest
mean values were carried out in winter, whereas the worst results were achieved in
summer and spring. Regarding mean, all models performed with similar values during
the same season.
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Additionally, in Figures 9 and 10, the values predicted by the different ML models
using the first approach are shown and compared to LI. In Figure 9, the predictions from
Torreblascopedro are plotted (the site that obtained the best performance, in terms of RMSE
and R2). In winter, all predictions are close to the 1:1 line, which denotes the excellent
performance of this model during this season. The predictions were also close to the 1:1
line in spring and autumn, although the points were more dispersed than in winter. Finally,
summer obtained the worst results, with farthest points to the 1:1 line, especially with high
rainfall values.

Finally, Figure 10 plots the prediction rainfall values in Archidona. Spring obtained
the best general predictions among all models, followed by autumn, summer, and winter,
in this order. The highest differences between ML and LI were found in winter and autumn,
where most LI predictions were farther from the 1:1 line.

Generally, summer obtained worse results than the rest of the seasons, due to the
Mediterranean climate; during summers in Andalusia, precipitation is very occasional.
They usually respond to local events, such as local torments. So, gap-filling rainfall
data using neighbor stations with very different pluviometry makes models fail in those
specific dates. Comparing the results between Torreblascopedro and Archidona, the
most significant differences can be seen in winter, where LI performed much worse than
ML approaches.

3.5. General Discussion

In terms of R2, the results obtained in this work outperformed those obtained by
Kim and Ryu [51] (Pocatello, ID, USA) using IDWM, OK, and GME, in conjunction with
cluster analysis, having the best R2 performance, with a value below 0.7 (R2 = 0.689 or
R = 0.83). Besides, the models developed in this work highly improved the RMSE and R2

performance of Wuthiwongyothin [52] in Northern Thailand, using the K-means technique
with the inverse distance weighting (IDW) and correlation coefficient weighting (CCW),
where the mean R2 values among all stations were below 0.6. Moreover, in terms of R2,
the values obtained by Sehad et al. [53] in North Algeria using multispectral MSG SEVIRI
imagery were slightly worse, on average, than the obtained in this work, with a mean
R2 = 0.7241. However, in absolute terms, its developed model outperformed this work’s
best results (R2 = 0.921 against R2 = 0.898 in Torreblascopedro using SVM). Thus, ML
models with neighbor station data located within a 50 km radius are highly recommended
to gap-fill rainfall values in coastal locations, due to their accurate performance (among
other approaches) in the different areas assessed along the Andalusia region, being the
preferred use of neighbor stations, over the use of cluster analysis with stations located
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within a further radius distance. However, in inland sites, the performances carried out
by ML against LI were not as significant as in coastal sites. Finally, in order to improve
the state of the art of these approaches, future works could analyze the possibility of false
alarms and missing rainfall cases using the models developed in this work.
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4. Conclusions

Three different approaches were evaluated for gap-filling daily rainfall values: (A) the
use of data from neighbor stations within 50 km, (B) the use of one day before and ahead
from the target station, and (C) the use of two days before and ahead from the target station.
Fourteen different locations were evaluated from two areas, corresponding to inland and
coastal sites. Additionally, three different ML models were assessed for this purpose: MLP,
SVM, and RF. Daily large datasets of around 21 years were used (from 2000 to 2021), where
70% was used for training and a random 30% for testing purposes. Besides, 20% from the
training dataset was used to find the fittest hyperparameters. Finally, a seasonality analysis
was carried out. Based on the arisen results, no ML model significantly outperformed the
rest, although MLP obtained the best results, or very close to them, in most locations. On
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the other hand, SVM had accurate performances in coastal sites, whereas the behavior
was not so good at inland locations. RF behaved the opposite to SVM, having an accurate
performance at inland locations and worse modeling at inland sites. Moreover, the first
approach (the use of neighbor data) was notably better than the other approaches, with
RMSE values below 2.0 mm/day and R2 values above 0.85 in most stations. There were
no significant seasonal differences in performance, in terms of RMSE and MBE values in
winter, spring, and autumn, but the results obtained in summer were generally worse for all
locations. Besides, coastal area location models performed slightly worse and with higher
performance differences between ML and LI, in most sites and models, highlighting the
differences in rainfall prediction efficiency, depending on the sea distance. In conclusion,
it could be stated that the use of neighbor data with MLP is highly recommended as a
rainfall gap-filling technique, rather than the use of data from the target station from the
past and future. Moreover, when these work’s results are compared to different paper’s
approaches using a cluster analysis from wider ranges, the use of closer stations (within a
50 km radius) obtained better results in terms of R2.

Finally, due to the significant need to have a complete time series rainfall dataset on
a daily basis and the increasing interest in installing low-cost wireless sensors (IoT), the
models developed and assessed in this work can help with gap-filling datasets in this work
near-real-time, thanks to the decreasing price of the low-cost automated weather stations
using these new devices.
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