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Simple Summary: Our study aimed to apply a quantitative method based on mRNA counting as
nCounter (NanoString Technologies, Inc). This method can obtain precise and accurate measures
of RNA expression compared to RT-PCR, and which might represent an alternative to the NGS-
genomic/transcriptomic profiling frequently used to generate molecular data in bladder cancer and
provide clinically meaningful datasets for the molecular classification of bladder cancer. The current
study generated a four-gene classifier, incorporating GATA3 and KRT20 (typically related to luminal
molecular subtype) and KRT5 and KRT14 (typically related to basal molecular subtype). This method-
ology allowed us to explore differences in clinicopathologic parameters and potential sensitivities to
ICI immunotherapy in a cohort series of 91 urothelial carcinomas of the bladder.

Abstract: Molecular classification of bladder carcinoma is a relevant topic in modern bladder cancer
oncology due to its potential to improve oncological outcomes. The available molecular classifi-
cations are generally based on transcriptomic profiles, generating highly diverse categories with
limited correlation. Implementation of molecular classification in practice is typically limited due
to the high complexity of the required technology, the elevated costs, and the limited availability
of this technology worldwide. We have conducted a gene expression analysis using a four-gene
panel related to luminal and basal subtypes in a series of 91 bladder cancer cases. NanoString-
based gene expression analysis using typically luminal (GATA3+/KRT20+) and basal markers
(KRT14+/KRT5+/GATA3low/-/KRT20low/-) classified urothelial bladder carcinoma samples as
luminal, basal, and a third category (KRT14-/KRT5-/GATA3-/KRT20-), null/double negative (non-
luminal/non-basal). These three categories were meaningful in terms of overall cancer-specific
survival (p < 0.0001) or when classified as conventional urothelial carcinoma and variant histology
urothelial carcinoma (p < 0.0001), NMIBC vs. MIBC (p < 0.001), or by AJCC stage category Ta
(p = 0.0012) and T1 (p < 0.0001) but did not reach significance in T2-T4 (p = 0.563). PD-L1 expression
(low vs. high) was also different according to molecular subtype, with high PD-L1 expression mostly
seen in basal and null subtypes and carcinomas with variant histology (p = 0.002). Additionally,
the luminal subtype was enriched in NMIBC with favorable cancer-specific survival (p < 0.0001).
In contrast, basal and null subtypes resulted in aggressive MIBC tumors with shorter cancer-specific
survival (p < 0.0001), some of which presented variant histology. In conclusion, a comprehensive
evaluation of a gene classifier related to molecular taxonomy using NanoString technology is feasible.
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Therefore, it might represent an accessible and affordable tool in this rapidly expanding area of
precision genomics.

Keywords: bladder cancer; molecular taxonomy; molecular; classification; NanoString; luminal; basal

1. Introduction

Bladder carcinoma has been traditionally classified as non–muscle-invasive bladder
cancer (NMIBC), including Ta, T1, and urothelial carcinoma in situ, and muscle-invasive
bladder cancer (MIBC), including T2-T4 disease [1–3]. About 70% of patients belong to the
NMIBC category, a disease characterized by frequent tumor recurrence, limited tendency
to progress, and high survival rate following guidelines recommended therapy; however,
recent risk-stratified NMIBC categories show higher variability than initially thought
regarding tumor progression [4–8].

In contrast, patients with MIBC typically receive neoadjuvant chemotherapy (NAC)
followed by radical cystectomy [9]. The locally advanced and metastatic disease typically
requires biomarker-guided immune checkpoint inhibitors (ICI), targeted therapies, or other
novel drugs conjugates [10–19].

In an attempt to better define urothelial carcinoma, molecular classification of these
tumors might provide meaningful information to stratify prognostically relevant categories
or to define the proper treatment in a given patient [13,20]. In this clinical scenario, the
development of the molecular taxonomy of bladder cancer probably represents the most
fascinating and important novelty in decades. Furthermore, using complex methodologies,
MIBC has been classified into two wide molecular subtypes, luminal and basal, following
the categorization currently in use in breast cancer [21–28]. Reportedly, these two wide
categories present differences in prognosis and sensitivity to the current therapies, with the
basal subtype being more aggressive than luminal [22,25,27,29,30].

Differences in methodologies and the interpretation of earlier data resulted in several
molecularly defined classifications currently available [13,20,28,31–38]. Figure 1 depicts
how molecular classifications of bladder cancer have evolved over the years.

Figure 1. Evolving schemes of molecular classification of urothelial carcinoma of the bladder.
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Despite the recent consensus on some molecular subtypes, the application of molecu-
lar classification still requires complex, expensive, and not frequently available technol-
ogy [34,39–42]. However, the recent introduction of the novel NanoString technology to
analyze gene expression provides an alternative for molecular subtyping, with the potential
advantage of lower cost per sample to analyze and produce accurate gene classifiers with
clinical application [35,43]. Therefore, a study conducted to explore NanoString technol-
ogy in the context of the molecular taxonomy of urothelial carcinoma would be relevant
and helpful to provide less expensive and reproducible tools to investigate the molecular
classification of urothelial bladder carcinoma.

Our study aimed to apply a quantitative method based on mRNA counting as
nCounter (NanoString Technologies, Inc., Seattle, DC, USA). This method can obtain
precise and accurate measurements of RNA expression compared to RT-PCR and might
represent an alternative to the NGS-genomic/transcriptomic profiling frequently used to
generate molecular data in bladder cancer and provide clinically meaningful datasets for
the molecular classification of bladder cancer. The current study generated a four-gene
classifier, incorporating GATA3 and KRT20 (typically related to luminal molecular subtype)
and KRT5 and KRT14 (typically related to basal molecular subtype). This methodology al-
lowed us to explore differences in clinicopathological parameters and potential sensitivities
to ICI immunotherapy in a cohort series of 91 urothelial carcinomas of the bladder.

2. Materials and Methods
2.1. Tumor Samples

In this study, we analyzed a retrospective cohort of cases that were collected from
patients that underwent transurethral resection of bladder tumor between 2005 and 2014 at
Reina Sofia University Hospital, Cordoba, Spain. Only patients with a primary diagnosis of
MIBC or NMIBC bladder carcinoma, and no previous therapy other than the surgical pro-
cedure were included in the study series. After the surgical procedure, samples were imme-
diately divided into two halves, one was snap-frozen and stored at –80 ◦C until processing,
and the second one was formalin-fixed and paraffin-embedded. Histological evaluation
was done on hematoxylin and eosin–stained glass slides. An experienced pathologist (ALB)
classified, graded, and assessed the pathologic stage of each case following the 2016 WHO
(World Health Organization, Geneva, Switzerland) classification of urologic tumors and the
8th edition of the AJCC (American Joint Committee for Cancer) [2,44]. Tumors classified as
NMIBC were additionally stratified according to risk categories (low, intermediate, high
and very high) [7,8].

A total of 91 samples were chosen for the current study after excluding 16 samples
due to poor quality, patient loss to follow-up, or limited tumor volume present. All selected
cases yielded adequate tumor volume and high-quality total RNA suitable for NanoString
technology. Informed consent was obtained from all patients, and the study was approved
by the Local Ethical Committee (Act #274-ref 3800/2018).

The number of months from the date of the surgical procedure to the date of the latest
cystoscopy (or the last visit or death) defined the patient’s follow-up. The survival time
was defined as the period between the diagnosis and death, and cancer-related death was
caused by bladder carcinoma.

2.2. NanoStringcodeset Design

The mRNA expression levels of the four markers, GATA3 and KRT20, typically used
to define luminal molecular subtype, and KRT5 and KRT14, typically used to define basal
subtype, were considered the gold standard for molecular classification in the current study.
Custom NanoString probes were designed to match the four classifier gene signatures. A
verification set of five housekeeping genes (TBP, TUBA1B, ALAS1, ACTB, and SDHA) was
selected based on their low coefficients of variance. The probe set verification was carried
out using NanoString’s standard custom codesets, consumables, and assay procedures.
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2.3. RNA Isolation and Quantification

Total RNA was extracted from pulverized bladder tumor tissue using RNeasy Mini
Kit (Qiagen Inc., Valencia, CA, USA) according to the manufacturer’s protocol.
RNA concentrations were assessed by spectrophotometry (NanoDrop; Thermo Fisher
Scientific, Waltham, MA, USA) and re-assessed by BioAnalyzer (Agilent Technologies,
Inc., Santa Clara, CA, USA). RNA quality was measured by the RNA integrity num-
ber and by the percentage of RNA fragments >100–300 nucleotides in size (DV100–300).
Across high-quality samples, a minimum of 80% of RNA fragments >100 nucleotides
(DV100 > 80) were included in our study.

2.4. Molecular Classification Based on NanoString Analysis

Transcripts were counted using the automated NanoStringnCounter system (NanoS-
tring Technologies, Seattle, WA, USA). Counts were normalized with the nSolver Analysis
Software (version 4.0) with the Advanced Analysis (module 2.0.115) plugin. Raw counts
data were normalized to internal positive control probes and housekeeping genes using
background thresholding with a threshold count value of 20.

For the molecular classification, bladder urothelial carcinoma samples with high
KRT20or GATA3 (GATA3+ or KRT20+) expression were considered luminal, high KRT5
or KRT14 expression and low-to-negative expression of luminal markers (KRT14+ or
KRT5+/GATA3low/-/KRT20low/-) defined the basal subtype, and a third category with
no expression of the four genes (KRT14-/KRT5-/GATA3-/KRT20-) was classified as
null/double-negative (non-luminal/non-basal). We have observed rare GATA3+ and
KRT20+/KRT14low/KRT5low cases also considered within the luminal subtype. Immuno-
histochemistry using antibodies against GATA 3, CK20, CK5/6, and CK14 was used as an
additional internal control of the reaction.

2.5. PD-L1 mRNA Quantification by RT-qPCR

SYBR Green quantitative RT-PCR was applied to quantitate PD-L1 and the housekeep-
ing gene RPS23 (ribosomal protein S23) expression. Each patient sample was analyzed in
duplicate. Forty amplification cycles were applied, and the cycle quantification threshold
(Ct) values of PD-L1 and RPS23 for each sample were estimated as the mean of the two
measurements. Ct values were normalized by subtracting the Ct value of the housekeeping
gene RPS23 from the Ct value of the target gene (∆Ct). Expression results were then
reported as 40-∆Cq.

2.6. Statistical Analysis

All statistical analyses were performed with SPSS 25.0 (SPSS Inc, Chicago, Illinois)
and MedCalc Statistical Software version 17.6 (MedCalc Software bvba, Ostend, Belgium).
Patient and clinical characteristics were summarized as numbers and percentages. Nor-
malized data were generated using the nSolver Analysis Software, and Metaboanalyst
was used to generate the heatmaps, which were mean-centered and divided by the SD
of each variable (scaled Z-score) [45]. Hierarchical clustering of RNA expression was
performed using Euclidean distances and the Ward algorithm. The differentially expressed
classifications of genes were dichotomized using the median and the receiver operating
characteristic curve (Youden index) to determine the best cutoff point that allowed optimal
separation between high versus low PD-L1 expression with maximum combined sensi-
tivity and specificity. Survival analysis for cancer-specific survival (CSS) was carried out
by Kaplan–Meier curves and compared by the log-rank test. Univariate and multivariate
analyses were performed using Cox proportional hazards model. A p-value ≤0.05 was
considered statistically significant.

3. Results

Table 1 presents the characteristics of the 91 cases of bladder urothelial carcinoma
with conventional urothelial morphology or variant histology (24 cases [26.4%]), includ-
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ing micropapillary (6.6%), nested (6.6%), plasmacytoid (5.5%), or other variants (7.7%)
(squamous [3] or trophoblastic [1] divergent differentiation, giant cell carcinoma [2], and
lymphoepithelioma-like carcinoma [1]). Eleven patients were female (12.1%), and the me-
dian age ranged from 45–95 years. In the current series, the AJCC stage category included
Ta (39.6%), T1 (32.9%), and T2–4 (27.5%). Patient follow-up and survival status ranged
from 2–125 months and 8–125 months, respectively, and CSS ranged from 2–71 months
(Figure 2). Patients whose tumors were classified as NMIBC received BCG therapy (bacillus
Calmete–Guerin) with maintenance according to validated guidelines at the time of diagno-
sis. In the current study, patients with MIBC did not receive neoadjuvant chemotherapy.

Table 1. Demography and clinicopathological characteristics of 91 bladder urothelial carcinomas
included in the study.

Variables N (%)

Age (median ± SD, range), in years 73 ± 10.25, 45–95
Gender
Female 11 (12.1)
Male 80 (87.9)
* Stage category (%)
Ta 36 (39.6)
T1 30 (32.9)
T2–4 25 (27.5)
Urothelial carcinoma categories 91 (100)
Conventional 67 (73.6)
Ta 36 (39.5)
T1 24 (26.4)
T2–4 7 (7.7)
Variant histology 24 (26.4)
Ta -
T1 6 (6.6)
T2–4 18 (19.8)
Grade
LG 27 (29.7)
HG 64 (70.3)
Risk categories NMIBC
Low 14 (21.2)
Intermediate 13 (19.7)
High 33 (50)
Very High 6 (9.1)
Variant histology subtypes
Micropapillary 6 (6.6)
Nested 6 (6.6)
Plasmacytoid 5 (5.5)
Other variants 7 (7.7)
Followup (median ± SD, range), in months
Overall 46 ± 40.51, 2–125
Conventional urothelial carcinoma 49 ± 37.88, 2–125
Carcinoma with variant histology 9 ± 41.44, 2–122
Stage category

Ta 78 ± 40.08, 8–125
T1 48.5 ± 33.69, 2–123
T2–4 9 ± 19.88, 2–90

Survival status (median ±SD, range), in
months
Alive 74 ± 36.78, 8–125
Cancer-specific survival 9.5 ± 17.30, 2–71

* Stage category based on AJCC/TNM 2016 revision.
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Figure 2. Sample distribution (A) and survival differences (B) by AJCC/TNM stage category in the current series.

NanoString-based gene expression analysis using markers typically considered lu-
minal (GATA3+ and/or KRT20+) and basal (KRT14+ and/or KRT5+ and GATA3low/-
/KRT20low/-) classified urothelial bladder carcinoma samples as luminal, basal and
null/double negative (null/DN; non-luminal/non-basal), a third category (KRT14−/
KRT5−/GATA3−/KRT20−). These three categories were meaningful in terms of CSS
(Figure 3) and their associations to clinicopathological variables (Table 2), but also in
terms of association to the clinical classification (NMIBC vs. MIBC) and AJCC stage
categories (Figure 4), and PD-L1 correlations (Figure 5). A summary of the main char-
acteristics of the three molecular subtypes is presented in Table 3. Table 4 illustrates a
univariate and multivariate predictive model for CSS with model A incorporating Ta, T1
and T2-T4 AJCC categories, and model B incorporating T1 and T2-T4 AJCC categories.
Interestingly, the analysis identified histological subtype, PD-L1 expression and molecular
subtype as independent predictors of CSS, with higher values in model A.
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Figure 3. NanoString gene expression generated molecular classification of bladder cancer. The heatmap shows the luminal
(GATA3+ and/or KRT20+), basal (KRT14+/KRT5+/GATA3low/-/KRT20low/-), and null (GATA3−, KRT20−, KRT5−,
KRT14−) subtypes (A). Box and whisker plots of the normalized values (mean ± SD), illustrate the expression of GATA3,
KRT20, KRT5, and KRT14 (B). The Kaplan–Meier plots identify meaningful molecular subtypes for CSS with luminal
subtype as the less aggressive and basal/null-double negative subtypes being the more aggressive end of the spectrum (C).
A subsequent substudy of “C” excluding stage Ta tumors is presented in (D). Molecular subtypes also expressed differences
according to pathologic tumor classification (conventional vs. variant histology urothelial carcinoma) (E).

Table 2. Relationship between molecular subtypes and clinicopathological parameters of 91 bladder carcinomas included in
the study.

Clinicopathological Features Overall
n = 91 (100%)

Luminal
n = 65 (%)

Basal
n = 19 (%)

Null/DN
n = 7 (%) p-Value *

Survival status <0.0001
Alive 34 32 (94.1) 1 (2.9) 1 (2.1)
Alive with disease 3 0 (0) 3 (100) 0 (0)
Dead bladder cancer 26 9 (34.6) 12 (46.2) 5 (19.2)
Dead other causes 28 24 (85.7) 3 (10.7) 1 (3.6)
Urothelial carcinomas 0.001
Conventional 67 55 (82.1) 8 (11.9) 4 (6)
Micropapillary 6 4 (66.7) 2 (33.3) 0 (0)
Nested 6 1 (16.7) 4 (66.7) 1 (16.7)
Plasmacytoid 5 1 (20) 2 (40) 2 (40)
Other variants 7 4 (57.1) 3 (42.9) 0 (0)
Stage category <0.0001
Ta 36 31 (86.1) 3 (8.3) 2 (5.6)
T1 30 27 (90) 3 (10) 0 (0)
T2-T4 25 7 (28) 13 (52) 5 (20)
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Table 2. Cont.

Clinicopathological Features Overall
n = 91 (100%)

Luminal
n = 65 (%)

Basal
n = 19 (%)

Null/DN
n = 7 (%) p-Value *

PD-L1 expression 0.002
High 36 19 (52.8) 12 (33.3) 5 (13.9)
Low 54 46 (85.2) 7 (13) 1 (1.9)

* Chi-squared test. Molecular subtype by NanoString. PD-L1 by RT-PCR. DN: Double negative. Stage category based on AJCC/TNM
2016 revision.
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Figure 4. The three identified molecular subtypes correlate with tumor stage related features. The heatmap shows
differentially expressed luminal and basal markers by stage category (A). Box and whisker plots of the normalized
values (mean ± SD) illustrate the expression of GATA3, KRT20, KRT5, and KRT14 by stage category (ANOVA test) (B).
The Kaplan–Meier plots identified differences for cancer specific survival (CSS) by clinically meaningful categories (NMIBC
vs. MIBC) (C) and separately for Ta (D), T1 (E), and T2−4 (F) stage categories.
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yielded an AUC of 0.774 (p < 0.001) for the optimal cutoff point of PD-L1 expression (A), which illustrated survival
differences in our study series (B). The heatmap shows the expression of the four genes stratified by high vs. low PD-L1
expression (C). The enclosed histograms depict differences between high vs. low PD-L1 expression according to molecular
subtypes (D) and stage category (E).

Table 3. Characteristics of the molecular subtypes using NanoStringnCounter analysis in the current study of 91 urothelial
carcinoma (UC) samples.

Molecular Subtypes
(n, %)

Histological Subtypes
(n; %) T Stage Category (n) High PD-L1

Expression (%)

Survival Status,
Median ±SD (Range),

in Months

LUMINAL (65; 71%)
GATA3+ and/or KRT20+

Conventional UC
(55; 84.6%)

Ta (31);
T1 (21);

T2–T4 (3)
15 (27.3%) 49 ± 35.70 (12–125)

Variant histology UC
(10; 15.4%)

(Micropapillary (4); Nested
(1); Plasmacytoid (1); Other

Variants (4))

Ta (0);
T1 (6);

T2–T4 (4)
4 (40%) 45 ± 55.36 (4–119)
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Table 3. Cont.

Molecular Subtypes
(n, %)

Histological Subtypes
(n; %) T Stage Category (n) High PD-L1

Expression (%)

Survival Status,
Median ±SD (Range),

in Months

BASAL (19; 21%)
KRT5+ and/or KRT14+;

GATA3−; KRT20−

Conventional UC
(8; 42.1%)

Ta (3);
T1 (3);

T2–T4 (2)
4 (50%) 21 ± 7.34 (12–60)

Variant histology UC
(11; 57.9%)

(Micropapillary (2); Nested
(4); Plasmacytoid (2); Other

Variants (3))

Ta (0),
T1 (0);

T2–T4 (11)
8 (72.7%) 9.5 ± 21.42 (2–21)

NULL/DOUBLE
NEGATIVE (7; 8%)
GATA3−; KRT20−;
KRT5−; KRT14−

Conventional UC
(4; 57.1%)

Ta (2);
T1 (0);

T2–T4 (2)
2 (66.7%) 32 ± 36.77 (6–58)

Variant histology UC
(3; 42.9%)

(Nested (1); Plasmacytoid
(2))

Ta (0);
T1 (0);

T2–T4 (3)
3 (100%) 4 ± 1.15 (2–4)

Table 4. Univariate and multivariate analysis of clinic-pathological parameters related to cancer-specific survival prediction
in the current study.

Variable
(Model A)

Univariate Analysis Multivariate Analysis

HR 95% CI p Value HR 95% CI p Value

Age, median,
in years

≤73
1.389 0.642–3.004 0.405 - - ns

>74

Stage
categories

Ta-T1
24.250 9.262–63.496 <0.0001 - - ns

T2-T4

Grade
LG

44.390 1.575–1250.955 0.026 - - ns
HG

Risk
Categories

Low/Intermedium/High
2525.64 1.202–5,315,156 0.045 - - ns

Very High

Histological
Subtypes

Conventional UC
6.660 3.013–14.721 <0.0001 3.825 1.590–9.202 0.003Variant Histology UC

PD-L1
expression

Low
4.685 1.951–11.253 0.001 2.651 1.040–6.760 0.041High

Molecular
Subtypes

Luminal
7.124 3.148–16.124 <0.0001 3.870 1.570–9.541 0.003Basal/Null

Variable
(Model B)

Age, median,
in years

≤73
0.926 0.420–2.038 0.848 - - ns

>74

Stage
categories

T1
11.792 4.265–32.602 <0.0001 - - ns

T2-T4

Grade
LG

20.958 0.000–2,048,943 0.604 - - ns
HG

Risk
Categories

Low/Intermedium/High
241.387 5.392–10,806.678 0.005 - - ns

Very High
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Table 4. Cont.

Variable
(Model A)

Univariate Analysis Multivariate Analysis

HR 95% CI p Value HR 95% CI p Value

Histological
Subtypes

Conventional UC
2.899 1.277–6.582 0.011 2.074 0.888–4.844 0.092Variant Histology UC

PD-L1
expression

Low
3.537 1.471–8.505 0.005 2.267 0.890–5.772 0.086High

Molecular
Subtypes

Luminal
4.843 2.104–111.47 <0.0001 3.673 1.505–8.967 0.004Basal/Null

HR Hazard Ratio; 95% CI 95% Confidence Interval. Model A incorporates Ta, T1 and T2-T4 AJCC categories; Model B incorporates T1 and
T2-T4 AJCC categories.

4. Discussion

Studies have focused on developing a molecular classification potentially useful to
predict prognosis and guide novel therapies in patients with bladder urothelial carcinoma to
improve the current scientific knowledge of bladder cancer and provide a better framework
for patient management [10,17,19,24,27–29,31,33,37,42,45–56].

During the last decade, several molecular classifications of urothelial bladder car-
cinomas have appeared. Following the major subtypes observed in breast carcinoma,
these two categories were also recognized in urothelial carcinomas: luminal and basal
molecular subtypes [13,28]. Interestingly, some of the reported classifications divided the
luminal category into further subtypes; meanwhile, the basal subtype remained largely
stable across the different classifications. For instance, Robertson et al. identified five
categories (luminal-papillary, luminal-infiltrated, luminal, basal-squamous, and neuronal)
to divide the luminal subtype into three additional categories [27]. Luminal categories
were recently further delineated in the so-called consensus classification, which reported
the luminal-papillary, luminal-unstable, and the luminal nonspecified [34]. Most of the
reported molecular classifications to date incorporate the potential therapeutic implications
associated with the reported category [20,37]. Then, the potential for fibroblast growth
factor receptor 3 (FGFR3) inhibitors, low sensitivity to NAC, and variable ICI treatment re-
sponse characterize the luminal subtypes. Cisplatin-based NAC, the potential for epidermal
growth factor receptor (EGFR) inhibitors, and good response to ICI treatment characterize
the basal molecular subtypes [37,54,55]. These molecular classifications originated from
genomic and transcriptomic profiles that produced highly diverse classifications lacking
any correlation between each other, a fact considered behind their limited clinical imple-
mentation. However, some improvements brought by the recently published consensus
molecular classification of MIBC might change the landscape of molecular classifications
of bladder cancer in the future [34].

To overcome the limitations associated with the complexity of the required tech-
nology, the high costs, and the limited availability of this technology worldwide, we
conducted gene expression analysis using a four-gene panel typically related to lumi-
nal (GATA3+/KRT20+) or basal (KRT5+/KRT14+) based on NanoString technology and
nCounter analysis in a series of 91 bladder cancer cases. This novel technology determined
the molecular subtypes by mRNA expression of GATA3 or KRT20 for luminal (71%) and
KRT5 or KRT14 for the basal (21%) subtypes. Similar to what was reported by other molec-
ular classifications, our data provided different prognostic and therapeutic sensitivities
associated with both major subtypes. Thus, consistent with low aggressiveness, the luminal
molecular subtype was enriched in NMIBC with the morphology of conventional urothelial
carcinoma, low PD-L1 expression, and low bladder cancer-related mortality. Conversely,
consistent with high aggressiveness, the basal molecular subtype was enriched in pT2–4
disease with variant histology in patients who died of bladder cancer. Notably, this cate-
gory was also enriched in high PD-L1 expression, opening an opportunity for these patients
to be treated using ICI protocols [39,52]. A paradoxical situation is seen in MIBC basal
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molecular subtype since, as reported, it is a highly aggressive disease. Nonetheless, a
better CSS than the luminal subtype can be achieved due to the good response to current
therapies associated with the basal molecular subtype.

On the other hand, the lack of expression of the four markers allowed us to identify
a third category, the null/DN subtype, in 8% of our cases. A similar category was also
reported by Rebola et al. and Kim et al. using immunohistochemistry in NMIBC and
MIBC, respectively [29,31,33,37,49]. A similar marker selection signature using immuno-
histochemistry was used to classify bladder cancer into luminal and basal categories with a
high level of accuracy. However, the main limitation of the immunohistochemical method
is the variability in the staining between samples across different institutions and that it
is observer-dependent. A null/double negative category was also recently identified by
Guo et al. analyzing mRNA expressions signature of luminal and basal that was used
to develop a classifier with high sensitivity (80–94%) and specificity (83–93%) to identify
molecular subtypes of bladder cancer [37]. In this study, GATA3/CK5-6 immunohisto-
chemical signature was able to identify molecular subtypes with 80% accuracy. This study
concluded that they had developed a tool for the assessment of molecular subtypes of
bladder cancer in routine clinical practice [37].

In line with these results, our study further supports the feasibility of NanoString
technology to provide a tool to accurately investigate the major molecular subtypes of
urothelial bladder carcinoma using a relatively simplified four-gene expression panel with
low cost and fast turnaround time. Another study in favor of this approach is the recent
study that concurrently compared the so-called BASE47 genes in high-grade urothelial
carcinoma using RNASeq and NanoString [35]. In this study, the classifier for luminal and
basal molecular subtypes based on NanoString and nCounter analysis was validated in an
independent dataset; the training and validation datasets accurately classified 87% and 93%
of samples, respectively [35]. These results support luminal and basal molecular subtypes
as clinically relevant categories when classified by NanoString methods, thus, providing a
rationale for clinical application, as is the case of the Prosigna test, a NanoString-derived
classifier currently in use to manage breast cancer patients [56]. Limitations of the current
study include the retrospective nature and the relatively small sample size. Nonetheless,
the long follow-up (median of 46 ± 40.51, 2–125 months) of our cases may add value to the
current series.

5. Conclusions

In conclusion, using a simplified four-gene signature with NanoString nCounter assay
provides a practical, cost-effective platform to translational research in the field of molec-
ular taxonomy of bladder carcinoma, identifying three clinically meaningful molecular
subtypes (luminal, basal, and null/double negative). Luminal tumors were associated
with NMIBC with conventional urothelial carcinoma morphology, lower levels of PD-L1
expression, and favorable bladder-related survival. Conversely, basal and null/double neg-
ative molecular subtypes shared a higher frequency of MIBC enriched in variant histology,
with high PD-L1 expression (likely to respond to ICI immunotherapy) and worse bladder
cancer-related mortality.
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