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Abstract: Accurately forecasting reference evapotranspiration (ET0) values is crucial to improve 

crop irrigation scheduling, allowing anticipated planning decisions and optimized water resource 

management and agricultural production. In this work, a recent state-of-the-art architecture has 

been adapted and deployed for multivariate input time series forecasting (transformers) using past 

values of ET0 and temperature-based parameters (28 input configurations) to forecast daily ET0 up 

to a week (1 to 7 days). Additionally, it has been compared to standard machine learning models 

such as multilayer perceptron (MLP), random forest (RF), support vector machine (SVM), extreme 

learning machine (ELM), convolutional neural network (CNN), long short-term memory (LSTM), 

and two baselines (historical monthly mean value and a moving average of the previous seven days) 

in five locations with different geo-climatic characteristics in the Andalusian region, Southern Spain. 

In general, machine learning models significantly outperformed the baselines. Furthermore, the ac-

curacy dramatically dropped when forecasting ET0 for any horizon longer than three days. SVM, 

ELM, and RF using configurations I, III, IV, and IX outperformed, on average, the rest of the con-

figurations in most cases. The best NSE values ranged from 0.934 in Córdoba to 0.869 in Tabernas, 

using SVM. The best RMSE, on average, ranged from 0.704 mm/day for Málaga to 0.883 mm/day 

for Conil using RF. In terms of MBE, most models and cases performed very accurately, with a total 

average performance of 0.011 mm/day. We found a relationship in performance regarding the arid-

ity index and the distance to the sea. The higher the aridity index at inland locations, the better 

results were obtained in forecasts. On the other hand, for coastal sites, the higher the aridity index, 

the higher the error. Due to the good performance and the availability as an open-source repository 

of these models, they can be used to accurately forecast ET0 in different geo-climatic conditions, 

helping to increase efficiency in tasks of great agronomic importance, especially in areas with low 

rainfall or where water resources are limiting for the development of crops. 

Keywords: machine learning; transformers; neural networks; support vector machine; reference 

evapotranspiration; forecasting; Bayesian optimization 

 

1. Introduction 

The worldwide population is increasing to alarming values that will require almost 

50% more food to meet the demand in 2050 [1]. Therefore, research into new methodolo-

gies to outperform agroclimatic forecasts (solar radiation, precipitation, or evapotranspi-

ration) is a relevant task that allows the optimization of water resource management, the 

improvement of irrigation scheduling, and, indeed, contributes to the great challenge of 

increasing food production. Furthermore, it is significantly impactful in arid and semiarid 
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areas such as the Andalusian region (Southern Spain), where crop water uses are elevated 

and the scarce precipitation is limiting growth and agricultural yield. 

Crop evapotranspiration measures the crops’ water demand, being affected by at-

mospheric parameters (such as temperature, wind speed, or solar radiation), specific crop 

type, soil characteristics, as well as management and environmental conditions. The evap-

otranspiration rate from a reference surface with no shortage of water is named reference 

evapotranspiration (ET0), which studies the evaporative demand of the atmosphere inde-

pendently of the surface, the crop type, its development stage, and the management prac-

tices. Its calculation can be accurately determined using physics-based methods such as 

the FAO56-PM [2], which has been assessed globally in different climatic conditions and 

countries, including Korea [3], Argentina [4], and Tunisia [5], among others. However, 

measuring all the required parameters (air temperature, relative humidity, wind speed, 

and solar radiation) is very costly in installation and maintenance. Moreover, Automated 

Weather Stations (AWS) usually contain non-reliable long-term datasets, mainly for wind 

speed and solar radiation, due to a lack of maintenance or miscalibration [6]. These are 

the reasons why the geographical density of complete AWS is generally low, especially in 

rural areas and developing countries [7,8]. 

Therefore, developing new algorithms with fewer climatic input parameters is of 

high interest. In this context, Hargreaves and Samani [9] introduced an empirical equation 

(HS) that uses maximum and minimum daily air temperature values (Tx and Tn, respec-

tively) and extraterrestrial solar radiation (Ra). Different studies have assessed HS in dif-

ferent aridity conditions and countries, such as Iran [10], Italy [11], Bolivia [11], China [12], 

and others. Nevertheless, advances in computation during the last several decades led to 

the application of new methodologies based on Artificial Intelligence (AI) with a very in-

tensive computational cost. Thanks to the progress in CPU and GPU computation, the 

time spent training these models has dropped significantly, allowing scientists to apply 

them without needing a vast CPU/GPU farm and obtaining promising results in all sec-

tors, especially agriculture. For example, Karimi et al. [13] evaluated the performance of 

random forest (RF) and other empirical methods to estimate ET0 when several meteoro-

logical data were missing. RF surpassed the other models for temperature-based data 

availability when using Tx, Tn, Ra, and relative humidity (RH) as input features. Ferreira 

and da Cunha [14] assessed RF, extreme gradient boosting (XGB), multilayer perceptron 

(MLP), and convolutional neural network (CNN) to estimate daily ET0 through different 

approaches, using hourly temperature and relative humidity as features in different AWS 

in Brazil. CNN outperformed the rest of the models for most statistics and locations in 

both local and regional approaches. However, no optimization algorithm was used during 

hyperparameter tuning. Yan et al. [15] evaluated XGB to estimate daily ET0 in two differ-

ent regions (an arid and humid region) from China and seven meteorological input com-

binations using maximum and minimum daily temperature (Tx and Tn, respectively), ex-

traterrestrial solar radiation (Ra), relative humidity (RH), wind speed (U2), and sunshine 

hours (n). In order to tune the different hyperparameters, the Whale Optimization Algo-

rithm (WOA) was used. Their results showed that using local and external (neighbor sta-

tions) datasets obtained even better performance than using only local data in some cases. 

Therefore, this strategy is very promising when there is a lack of long-term records. Wu 

et al. [16] studied the performance of extreme learning machines (ELM) in different loca-

tions from China. They analyzed the use of the K-means clustering algorithm and the 

Firefly Algorithm (FFA) to estimate monthly mean daily ET0 using Tx, Tn, Ra, and Tm 

(mean daily temperature). Nourani et al. [17] assessed support vector regression (SVR), 

Adaptive Fuzzy Inference System (ANFIS), MLP, and multiple linear regression (MLR) to 

forecast monthly ET0 in Turkey, North Cyprus, and Iraq. Moreover, three ensemble meth-

ods were applied (simple averaging, weighted averaging, and neural ensemble) to out-

perform the performance and reliability of single modeling. The use of neural ensemble 

models highly outperformed single modeling in all cases, although simple and weighted 

averaging did not significantly perform better. Ferreira and da Cunha [18] evaluated the 
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performance of daily ET0 forecasts (up to 7 days) using CNN, long short-term memory 

(LSTM), CNN-LSTM, RF, and MLP using hourly data from different weather stations with 

heterogeneous aridity index characteristics in Brazil. In all cases, the use of the machine 

learning (ML) models outperformed the baselines, where CNN-LSTM performed the best 

in both local and regional scenarios using Tx, Tn, maximum and minimum relative hu-

midity (RHx and RHn, respectively), wind speed, solar radiation (Rs), Ra, the day of the 

year (DOY), and ET0 values from a lag window in the past (up to 30 days). In order to tune 

the different hyperparameters, a random search algorithm with 30 epochs was used. 

In addition to these well-known and standard ML models, new architectures have 

been recently developed to deal with natural language programming (NLP) problems 

with outstanding results, called transformers [19]. The transformer model is an encoder–

decoder architecture based on a self-attention mechanism that looks at an input sequence 

and decides which timesteps are valuable. The promising results of transformers have 

fostered their use on time series problems due to its apparent relationship. In both types 

of problems, words/parameter values are more or less meaningful based on their position. 

Therefore, several scientists have evaluated attention-based architectures in forecasting 

problems. For example, Wu et al. [20] proposed an Adversarial Sparse Transformer (AST) 

based on generative adversarial networks (GAN). They assessed it to forecast five differ-

ent public datasets: (I) an hourly time series electricity consumption dataset, (II) an hourly 

traffic level from the San Francisco dataset, (III) an hourly solar power production dataset, 

and (IV) an hourly time series dataset from the M4 competition. Furthermore, [21] ana-

lyzed a transformed-based architecture to forecast influenza-like illness (ILI), obtaining 

promising results. Finally, Li et al. [22] evaluated the performance of transformers in time 

series forecasting using the same public datasets as Wu et al. [20] and obtained more ac-

curate modeling with long-term dependencies.  

This work is motivated by the need to minimize error in daily ET0 forecasts, which is 

one of the main drawbacks in the reviewed literature, as well as the outstanding and 

promising performance of transformers and transformer-based models in different fields. 

Thereby, this work is the first one using a multivariate input transformer-based architec-

ture in order to forecast daily ET0 (from one to seven days ahead). The development and 

assessment have been carried out using past values of ET0 and temperature-based meas-

ured variables as features in five sites of Andalusia (Córdoba, Málaga, Conil, Tabernas, 

and Aroche) with different geo-climatic characteristics. Moreover, standard ML models 

such as RF, MLP, SVR, ELM, CNN, and LSTM have been also evaluated in conjunction 

with Bayesian optimization to tune all their different hyperparameters. Thus, the main 

objectives of this work are (a) to assess the performance of the proposed transformer 

model to forecast ET0 and to compare it to standard ML models and two simple baselines 

(historical monthly mean value and mean of previous seven days); (b) to evaluate differ-

ent input feature configurations based on ET0 past values and several temperature-based 

features to forecast ET0, and (c) to analyze the forecast efficiency depending on the differ-

ent geo-climatic characteristics of the sites. 

2. Materials and Methods 

2.1. Study Area and Dataset 

Andalusia is located in the southwest of Europe, ranging from 37° to 39° N, from 1° 

to 7° W, and occupying an extension of 87,268 km2. This work was carried out with data 

from five locations in Andalusia (Figure 1), with different geo-climatic characteristics and 

representing great variability in terms of UNEP aridity index [23] in this region (ranging 

from 0.555—dry subhumid—in Aroche, to 0.177—arid—in Tabernas). The coordinates 

and other characteristics of the AWS are reported in Table 1. In contrast, in Table 2, the 

minimum, mean, maximum, and standard deviation values of minimum, mean, and max-

imum daily air temperature (Tn, Tm, and Tx, respectively), relative humidity (RHn, RHm, 

RHx, respectively), wind speed (U2), solar radiation (Rs), and reference 
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evapotranspiration (ET0) data are shown. The dataset used in this study belongs to the 

Agroclimatic Information Network of Andalusia (RIA), which can be downloaded at 

https://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/servlet/FrontController 

(Accessed on 1 February 2022).  

 

Figure 1. Spatial distribution of Aroche, Conil, Córdoba, Málaga, and Tabernas in the Andalusia 

region, south of Spain. 

Table 1. Geo-climatic characteristics of the locations assessed in this work (ARO—Aroche, CON—

Conil de la Frontera, COR—Córdoba, MAG—Málaga, and TAB—Tabernas). Time period from 2000 

to 2018. 

Site 
Lon. 

(⁰W) 

Lat. 

(⁰N) 

Alt. 

(m) 

Mean Annual  

Precipitation 

(mm) 

UNEP 

Aridity  

Index 

Total 

Available Days 

Aroche (ARO) 6.94 37.95 293 632 0.555 (dry-subhumid) 6399 

Conil de la Frontera (CON) 6.13 36.33 22 470 0.479 (semiarid) 5868 

Córdoba (COR) 4.80 37.85 94 589 0.462 (semiarid) 6397 

Málaga (MAG) 4.53 36.75 55 434 0.366 (semiarid) 6438 

Tabernas (TAB) 2.30 37.09 502 237 0.178 (arid) 6694 

Table 2. Minimum (Min), mean, maximum (Max), and standard deviation (Std) values of all the 

daily parameters measured: maximum air temperature (Tx), mean air temperature (Tm), minimum 

air temperature (Tn), maximum relative humidity (RHx), mean relative humidity (RHm), minimum 

relative humidity (RHn), wind speed at 2 m height (U2), solar radiation (Rs), reference evapotran-

spiration (ET0) at each location (ARO—Aroche, CON—Conil de la Frontera, COR—Córdoba, 

MAG—Málaga, and TAB—Tabernas) and for the whole dataset (2000–2018). 

  
Tx 

(⁰C) 

Tm 

(⁰C) 

Tn 

(⁰C) 

RHx 

(%) 

RHm 

(%) 

RHn 

(%) 

U2 

(m/s) 

Rs 

(MJ/m2 day) 

ET0 

(mm) 

ARO Min 2.5 −0.2 −8.0 32.5 17.2 5.0 0.3 1.0 0.3 

 Mean 23.2 16.1 8.9 89.5 65.9 39.0 1.2 17.8 3.2 

 Max 44.0 34.1 24.9 100.0 100.0 100.0 5.8 34.3 8.7 

 Std 8.1 6.8 5.6 11.2 17.7 19.4 0.5 8.8 2.0 

CON Min 6.4 0.7 −5.3 39.9 24.3 6.9 0.0 0.5 0.4 

 Mean 23.0 17.4 12.1 89.3 72.5 50.5 1.3 18.0 3.2 

 Max 41.3 31.9 26.9 100.0 99.6 97.1 7.9 31.7 9.3 

 Std 5.7 5.2 5.3 9.0 12.3 14.6 1.0 7.8 1.8 
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COR Min 3.3 0.0 −8.3 38.9 21.8 4.3 0.0 0.5 0.3 

 Mean 24.6 17.4 11.0 86.8 64.1 37.3 1.6 17.7 3.6 

 Max 45.7 34.7 27.6 100.0 100.0 100.0 7.5 33.2 9.6 

 Std 8.5 7.3 6.2 12.0 18.1 19.3 0.7 8.5 2.3 

MAG Min 6.2 3.3 −4.2 36.0 19.4 4.6 0.0 0.3 0.4 

 Mean 23.9 18.2 12.6 85.1 63.4 39.1 1.3 18.2 3.4 

 Max 42.7 33.7 26.8 100.0 99.7 98.3 4.6 32.4 10.3 

 Std 6.3 5.8 5.5 10.5 14.2 15.1 0.5 8.2 1.9 

TAB Min 4.3 −1.2 −8.2 28.6 16.8 2.8 0.1 0.2 0.4 

 Mean 23.2 16.4 9.8 85.7 59.9 32.9 1.9 18.4 3.8 

 Max 42.5 32.1 26.0 100.0 97.5 95.0 9.9 32.8 10.6 

 Std 7.2 6.6 6.2 11.9 15.1 14.8 0.9 7.8 2.0 

In this work, because the accurate estimation of ET0 using limited meteorological data 

has been improved in recent years [14,24] and due to the high availability of temperature 

records, only temperature-based and ET0 values from the past have been used as input 

features to forecast ET0. Specifically, two different windows have been evaluated, the use 

of 15 and 30 days from the past. Moreover, several temperature-based variables have been 

calculated, such as EnergyT (the area below the intraday temperature in a whole day), 

HourminTx (the time when Tx occurs), HourminTn (the time when Tn occurs), Hourmin-

Sunset (the time when sunset occurs), HourminSunrise (the time when sunrise occurs), es 

(mean saturation vapor pressure), ea (actual vapor pressure) and VPD (vapor pressure 

deficit), Tx-Tn, HourminSunset-HourminTx, and HourminSunrise-HourminTn. All the 

configurations assessed in this work contained Tx, Tn, Tx-Tn, and Ra as features due to 

their very high Pearson correlation (Figure 2), and the rest of the configurations were se-

lected based on their Pearson correlation values and the previous results on these same 

locations regarding ET0 and solar radiation [24–26] estimations. The 27 different assessed 

configurations are shown in Table 3. 

 

Figure 2. Pearson correlation values of the assessed features in all the stations. 
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Table 3. Configuration table with all configurations. HTx represents HourminTx, HTn represents 

HourminTn, HSs represents HourminSunset, and HSr represents HourminSunrise. 

Conf. Tx Tn Tx-Tn Ra EnergyT ea es VPD HTx HTn HSs-HTx HSr-HTn ET0 

I X X X X  X       X 

II X X X X X X       X 

III X X X X X  X      X 

IV X X X X X        X 

V X X X X X      X  X 

VI X X X X X       X X 

VII X X X X X     X   X 

VIII X X X X X X   X    X 

IX X X X X X  X  X    X 

X X X X X X    X    X 

XI X X X X X    X  X  X 

XII X X X X X    X   X X 

XIII X X X X X X X X X X X X X 

XIV X X X X X X   X X   X 

XV X X X X X  X  X X   X 

XVI X X X X X    X X   X 

XVII X X X X X    X X X  X 

XVIII X X X X X    X X  X X 

XIX X X X X X   X X X   X 

XX X X X X X   X X    X 

XXI X X X X X   X     X 

XXII X X X X   X      X 

XXIII X X X X         X 

XXIV X X X X       X  X 

XXV X X X X        X X 

XXVI X X X X      X   X 

XXVII X X X X     X    X 

2.2. Preprocessing Methodology 

In machine learning applications, a vital prerequisite to guarantee accurate modeling 

is the use of reliable datasets. In this work, the control guidelines reported by Estévez et 

al. [6] have been followed to identify erroneous and questionable data from sensor meas-

urements by applying different tests (range, internal consistency, step, and persistence) 

and a spatial consistency test [27]. These quality assurance procedures have been success-

fully employed in different countries [4,28,29]. Afterward, the input and output matrices 

had to be built depending on the number of lag days from the past (15 or 30), the features 

to use (up to 27 input configurations), and the number of days to forecast (up to 7 days). 

In Figures 3 and 4, a mind map with all the possibilities is shown. It is worth noting that 

a MIMO (Multiple Input Multiple Output) approach was used in models that allowed it, 

whereas a direct approach was considered in the others according to the results of Ferreira 

and da Cunha [18].  

Consequently, using configuration 1 and 15 lag days as an example, the values from 

day to day—14 of Tx, Tn, Tx-Tn, Ra, ea, and ET0 are used as input features (a total of 90 

values) for all the ML models (except for transformers—see Section 2.5.7), where Tx and 

Tn are directly given by AWS, and Ra and ea can be calculated using Tx, Tn, and the 

latitude, as stated by [2]. Finally, ET0 is calculated using the well-known FAO56-PM 

method. 
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Figure 3. Mind map of the matrix data structure. 

 

Figure 4. Forecasting approaches using configuration 1 as an example. 

Later, in order to train, tune all the hyperparameters, and assess the final perfor-

mance of the model, for each location, the dataset was split into training (70% of the entire 

dataset length), validation (20% of the training dataset length), and testing (30% of the 

entire dataset length) using a holdout technique. Next, the Bayesian optimization algo-

rithm was used to tune all the hyperparameters (the hyperparameter space can be seen in 

Table S1 from Supplementary Data). Eventually, after the best hyperparameter set was 

found, the final model was trained using the entire training dataset (70% of the entire 

dataset length) and evaluated using the testing dataset. Figure 5 shows an overview of 

this methodology. 
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Figure 5. Methodology flowchart. 

2.3. Reference Evapotranspiration Calculation 

In this work, the ET0 (FAO56-PM) values were used as input and target values. They 

were determined following the procedure of [2], and can be mathematically expressed as 

Equation (1): 

ET0 =
0.408∆(Rn − 𝐺) + 𝛾

900
𝑇 + 273

𝑈2(es − ea)

∆ + 𝛾(1 + 0.34U2)
 (1) 

where ET0 is the reference evapotranspiration (mm day−1), 0.408 corresponds to a coeffi-

cient (MJ−1 m2 mm), ∆ is the slope of the saturation vapor pressure versus temperature 

curve (kPa °C−1), Rn is the net radiation calculated at the crop surface (MJ m−2 day−1), G is 
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the soil heat flux density at the soil surface (MJ m−2 day−1), 𝛾 is the psychrometric constant 

(kPa °C−1), T is the mean daily air temperature (°C), U2 is the mean daily wind speed at 2 

m height (m s−1), and es and ea are the saturation vapor pressure and the mean actual 

vapor pressure, respectively (kPa). 

2.4. Baselines 

In order to compare the performance of the developed models and configurations, it 

is crucial to have a baseline performance as a starting point. In this sense, two empirical 

baselines have been proposed in this work, following the methodology proposed by Fer-

reira and da Cunha [18]. In the first place, a moving average from the last 7 days was used. 

Secondly, the historical average monthly values from the training dataset were used for 

the corresponding forecast day. 

2.5. Machine Learning Models 

2.5.1. Multilayer Perceptron 

The multilayer perceptron (MLP) is one of the most used agronomical and hydrolog-

ical AI models [14,30,31]. Its popularity is based on its similarities to neurons in the bio-

logical nervous system, easy coding, and promising results in most cases. They are struc-

tured in three kinds of layers, the input and output layer, representing the inputs and 

outputs of the model, respectively, and the hidden layers, where all the neurons are lo-

cated. The neurons work together to create stimuli (reference evapotranspiration forecast 

values) based on different inputs (the input matrix containing features from the past). A 

back-propagation algorithm makes the neurons learn (automatically update all weights 

and biases) and improve every mini batch every epoch. A single neuron architecture can 

be seen in Figure 6. 

I1

I2

I3

I4

B

I1W1 + I2W2 + I3W3 
+ I4W4 + B

Activation 
function

Neuron
W1

W2

W3

W4

O

 

Figure 6. Single neuron architecture. I1, I2, I3, and I4 represent the inputs of the neuron; W1, W2, W3, 

and W4 correspond to the weights of every input; B is the bias, and O represents the output of the 

neuron after passing through an activation function. 

2.5.2. Extreme Learning Machine 

Extreme learning machine models (ELM) were first introduced by Huang et al. [32] 

as a single hidden layer feed-forward neural network with the following main character-

istics: (I) the input weights and biases are randomly generated and (II) the output weights 

and biases are analytically determined. As a result, these models do not require any train-

ing process and have a meager computational cost, with promising results in ET0 

[24,33,34]. However, on the other hand, when the model is working with massive datasets, 

the amount of random access memory (RAM) required is enormous. 

2.5.3. Support Vector Machine for Regression 

Support vector machine (SVM) models for regression tasks, also known as support 

vector regression (SVR) models, are supervised AI models based on a different function-

ality than neuron-based architectures such as MLP and ELM. They search for the best 

hyperplane (and its margins) that contains all data points. Thus, it could be easily related 

to linear regression with the flexibility of defining how much error can be considered 
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acceptable. Moreover, one of their most important features is the use of kernels to allow 

the model to operate on a high-dimensional feature space. SVMs can be mathematically 

expressed as a minimization problem of Equation (2) with the constraints in Equation (3).  

𝑀𝐼𝑁 (
1

2
 ‖𝑤‖2 + 𝐶 ∑|𝜉𝑖| 

𝑛

𝑖=1

)  ≥ 0 (2) 

|𝑦𝑖 − 𝑤𝑖𝑥𝑖| ≤ 𝜀 + |𝜉𝑖| (3) 

where wi corresponds to the weight vector, xi to the input vector, yi to the output vector, 𝜀 

represents the margins, ξ represents the deviation of values to the margins, C is a coeffi-

cient to penalize deviation to the margins, and n is the length of the training dataset. For 

further details, the work of [35] can be consulted. 

2.5.4. Random Forest 

A random forest (RF) is composed of the conjunction of multiple tree-based models 

in order to improve the overall result (ensemble model). The general idea is that different 

models are trained on different data samples (bootstrap) and feature sets. Instead of 

searching for the best features when splitting nodes, it searches among a random subset 

of the features. Thus, it results in greater diversity and better final performance. 

2.5.5. Convolutional Neural Network 

Convolutional neural network (CNN) models were first developed for image classi-

fication problems, where the convolution algorithm captures local patterns to learn a rep-

resentation of figures to classify them. Moreover, this process can be extrapolated to 1D 

sequences of data such as time series datasets. One of the advantages of using convolu-

tions is that they can obtain local features’ relationships without the requirement of an 

extensive preprocessing method and can obtain outstanding results in ET0 [14,36,37] and 

in other agro-climatic parameters [25,38,39]. 

Typically, such CNNs are composed of three layers: the convolutional layer, the pool-

ing layer, and a fully connected layer. The convolutional layer is used to extract local re-

lationships between the different features and timesteps. The pooling layer is added after 

the convolutional layer, and it gradually reduces the feature map. Finally, a fully con-

nected layer is used to forecast the seven-day horizon ET0 values (in this work). For further 

details, the work of Aloysius et al. [40] can be reviewed. 

2.5.6. Long Short-Term Memory 

Long short-term memory (LSTM) models were first introduced by Hochreiter et al. 

[41] as a recurrent neural network (RNN)-based model that could deal with long-term 

dependencies and address the vanishing gradient problem. In order to control the infor-

mation flow, the LSTM block contains an input gate, an output gate, a forget gate, a cell 

state, and a hidden state. The gates are in charge of deciding which information is allowed 

on the cell state, i.e., whether a piece of information is relevant to keep or forget during 

training. The cell and hidden state can be seen as the memory of the network, used to 

carry relevant information throughout the sequence. 

2.5.7. Transformers 

A new state-of-the-art architecture has been recently presented for NLP problems, 

the transformers [19]; see Figure 7. One of the main motivations of transformers is to deal 

with the vanishing gradient problem of LSTM when working with long sequences. Alt-

hough LSTMs can theoretically propagate crucial information over infinitely long se-

quences, due to the vanishing gradient problem, they pay more attention to recent tokens 

and eventually forget earlier tokens. In contrast, transformers use an attention 
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mechanism, which learns the relevant subset of the sequences to accomplish the specific 

task. For a single head, the operation can be expressed as Equation (4), 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄 𝐾𝑇

√𝑑𝑘

)𝑉 (4) 

where Q, K, and V represent the query, key, and value, respectively, as an analogy to a 

database, and dk corresponds to queries and keys' dimension. As stated by Yıldırım and 

Asgari-Chenaghlu( 2021), the attention mechanism can be defined as follows: “This can 

also be seen as a database where we use the query and keys in order to find out how much various 

items are related in terms of numeric evaluation. Multiplication of attention score and the V matrix 

produces the final result of this type of attention mechanism”. In particular, transformers use a 

multi-head attention mechanism, which can be mathematically expressed as Equation (5). 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = [𝐻𝑒𝑎𝑑1, … , 𝐻𝑒𝑎𝑑ℎ]𝑊0 (5) 

where Headi is attention (QWi, KWi, VWi) and W denotes all the learnable parameter ma-

trices. 

 

Figure 7. Original transformer architecture. 

Generally, the transformer is an encoder–decoder architecture. Considering a trans-

lation task from English to Spanish, the encoder takes an input sequence (‘I am from 

Spain’) and maps it into a higher-dimensional space using a multi-headed attention, an 

adding, a normalization, and a fully connected feed-forward layer. The abstract vector 
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obtained in the encoder module is fed into the decoder, which uses it to obtain the trans-

lated sentence (‘Soy de España’). It is worth noting that both the encoder and decoder are 

composed of modules that can be stacked on top of each other multiple times. However, 

before carrying out any mathematical operation to the input data, it is required to convert 

words into numbers. The embedding layer is used for this purpose, transforming words 

into a vector of numbers that can be easily recognized by the model.  

Another vital aspect to consider is the need for transformers to learn the temporal 

dependencies of the different timestamps through positional encoding because they do 

not inherently carry it out. In this work, the positional encoding was achieved using Equa-

tions (6) and (7) for monthly and daily values (Figure 8). In this way, 31 January and 2 

February are close, but 5 May and 26 July are not. 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin (
𝑝𝑜𝑠

10,0002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
) (6) 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos (
𝑝𝑜𝑠

10,0002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
) (7) 

where pos represents the position, dmodel is the input dimension, and i represents the index 

in the vector. It is worth noting that this temporal dependency information is shared with 

the rest of the models as new features in this work to make the comparison between mod-

els as fair as possible. Thus, new features are included in all configurations. For example, 

in configuration 1, the input features would be Tx, Tn, Tx-Tn, Ra, ea, ET0, Sin_day (sine 

of days over 31 days period), Cos_day (cosine of days over 31 days period), Sin_month 

(sine of days over 12 month period) and Cos_month (cosine of days over 12 month pe-

riod). 

  

(a) (b) 

Figure 8. Sine/cosine positional encoding for 31 days in a month (a) and 12 months in a year (b). 

The architecture used in this work can be seen in Figure 9. It is based on the original 

transformer architecture from Vaswani et al. [19] and the attention-based architecture of 

Song et al. [42]. Several aspects were modified. First, since the input data already have 

numerical values, the embedding layer was omitted. Then, the positional encoding in-

cluded new features in the input matrix instead of adding their values to the “embedded 

vector”. Consequently, four more features were used in this model (sine and cosine posi-

tional encoding for days in a month, and sine and cosine positional encoding for months 

in a year). Finally, the SoftMax layer was also deleted because we are dealing with a re-

gression problem (forecasting ET0). Thus, the processing of data in the proposed trans-

former-based model can be described as follows. Firstly, the input matrix passes through 

a positional encoding mechanism. Then, the positional encoding features are added to the 
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input matrix. Later, the data go to an attention-based block containing multi-head atten-

tion, dropout, normalization, addition, and feed-forward layers. Two different variations 

have been tested depending on the model used in the feed-forward layer: Trans-

formerCNN, where a convolutional approach has been used, and TransformerLSTM, 

where an LSTM approach has been implemented. Eventually, the processed data go to an 

MLP model to carry out the regression task. The following works provide further details 

[19,21,43,44] and the code can be checked at the AgroML GitHub repository. 

Multihead 
attention 

block

Input 
matrix

Normalization

Feed-forward
layer

+

Stacked N times

Positional 
encoding

Convolutional 
layers

LSTM layers

MLP Output

+Dropout

Feed-forward
layer

Dropout Normalization +

 

Figure 9. The architecture of the proposed multi attention-based model. 

2.6. Bayesian Optimization 

The most critical aspect to obtain accurate performance in machine learning models 

is choosing the fittest hyperparameter set. The results could dramatically change from 

outstanding to very poor. A prevalent practice among the scientific community in agron-

omy and hydrology is using a trial-and-error approach [14,18,36], evaluating from dozens 

to hundreds of sets. However, it is not an efficient approach because the process is too 

slow if the hyperparameter space is large, spending a significant amount of time on non-

promising configurations. Otherwise, if the hyperparameter space is made to be small, 

one may obtain a suboptimal model. Several optimization algorithms have been assessed 

to solve this problem—for example, Particle Swarm Optimization (PSO), Grey Wolf Opti-

mizer (GWO), Genetic Algorithms (GA), Bayesian Optimization (BO), and the Whale Op-

timization Algorithm (WOA), among others [31,45–47].  

In this work, the BO algorithm has been proposed due to its high sample efficiency 

and popularity in automated machine learning libraries such as Auto-Weka 2.0 [48], Auto-

Keras [49], and Auto-Sklearn [50] and they can be consulted in Hutter et al. [51]. Part of 

its popularity is related to the close relationship to human behavior when carrying out 

this same process [52,53], where prior results are considered to choose the following set. 

BO is based on Bayes’ theorem, and it can be explained using the following four steps: (I) 

definition of the hyperparameter space; (II) the algorithm first tries several random sets; 

(III) the algorithm takes into account the previously assessed configuration sets when 

choosing the following one, balancing between exploitation (it exploits regions that are 

known to have good performance) and exploration (choosing region with higher uncer-

tainty), and evaluating it; (IV) if the process has not finished yet, it goes to step 3. 

In this work, BO has been implemented using Scikit-Optimize (gp_minimize) and 

Python 3.8. In all cases, this process was configured using 50 Bayesian epochs (80% of 

them were randomly chosen), selected after a trial-and-error algorithm among 50, 100, 

150, and 200 Bayesian epochs, the mean absolute error (MAE) as the objective function, 
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and the rest of parameters as default. The hyperparameter space can be found in Table 1 

from the Supplementary Material and their results in Table 2. 

2.7. Evaluation Metrics 

The models’ performance has been evaluated by using the following parameters: 

mean bias error (MBE), root mean square error (RMSE), and the Nash–Sutcliffe model 

efficiency coefficient (NSE). The MBE, RMSE, and NSE are defined as Equations (8)–(10): 

MBE =  
1

𝑛
∑ 𝑥𝑖 − 𝑦𝑖

𝑛

𝑖=1

 (8) 

RMSE =  √
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (9) 

NSE = 1 −
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

 (10) 

where x and y correspond to the observed and forecasted ET0 values, respectively, n rep-

resents the number of records in the testing dataset, and the bar denotes the mean. 

3. Results and Discussion 

It is worth noting that the code developed in this work is available on GitHub in the 

public repository called AgroML, which can be found at https://github.com/Sma-

rity/agroML (Accessed on 1 February 2022). This new library focuses on helping scientists 

to research state-of-the-art machine learning models, mainly focused on agronomy esti-

mations and forecasts but easily extrapolated to other sectors and problems. It lets new 

scientists test these models on their datasets, and experienced scientists commit new fea-

tures and architectures. The code has been programmed in standard Python using Ten-

sorflow, Scikit-Learn, Scikit-Optimize, Pandas, and Numpy. 

3.1. Baseline Performance 

Tables 4 and 5 show the RMSE and NSE performance for the baselines along the dif-

ferent forecast horizons (up to 1 week), where B1 refers to the moving average of the last 

seven ET0 values and B2 the use of mean historical monthly ET0 values (mean ET0 values 

for each month of the year). Generally, B2 outperformed B1 for all the forecast horizons 

except for one day ahead, where B1 performed better in all sites. Moreover, B1 obtained 

the most accurate forecasts on the one day ahead horizon, and it gradually dropped when 

the forecast horizon increased. In Aroche, the most humid site, the best performance in 

both RMSE and NSE values was obtained (NSE = 0.9038 and RMSE = 0.6390), followed by 

Córdoba, Málaga, Conil, and Tabernas (the most arid site), in this order. This suggests a 

relationship between the aridity index, distance to the sea, and the performance of the 

models. In inland locations, the higher the aridity index, the fewer the forecasting errors. 

On the other hand, in coastal locations, the opposite occurs. The higher the aridity index 

and the farther from the sea, the more precise the ET0 modeling. Finally, Table 6 shows 

the MBE values for the different stations and forecast horizons. In this case, B1 outper-

formed B2 in most of the cases. 
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Table 4. RMSE values for ET0 forecast during seven forecast horizons and the two empirical base-

lines (B1—using the average value from the last seven days—and B2—using the mean monthly 

value from the training dataset). 

Location Baseline 
Forecast Horizon 

1 2 3 4 5 6 7 

COR 
B1 0.7551 0.8733 0.9365 0.9926 1.0172 1.0363 1.0644 

B2 0.8374 0.8374 0.8374 0.8374 0.8374 0.8374 0.8374 

MAG 
B1 0.7665 0.9084 0.9439 0.9632 0.9902 1.0140 1.0188 

B2 0.8143 0.8143 0.8143 0.8143 0.8143 0.8143 0.8143 

TAB 
B1 0.8515 0.9961 1.0451 1.0938 1.1075 1.1568 1.1628 

B2 0.9176 0.9176 0.9176 0.9176 0.9176 0.9176 0.9176 

CON 
B1 0.7987 1.0675 1.1950 1.2474 1.2404 1.2444 1.2778 

B2 0.9567 0.9567 0.9567 0.9567 0.9567 0.9567 0.9567 

ARO 
B1 0.6390 0.7882 0.8840 0.9337 0.9820 0.9901 1.0032 

B2 0.8027 0.8027 0.8027 0.8027 0.8027 0.8027 0.8027 

Mean 
B1 0.7622 0.9277 1.0009 1.0461 1.0675 1.0883 1.1054 

B2 0.8667  0.8667  0.8667 0.8667  0.8667  0.8667 0.8667 

Table 5. NSE values for ET0 forecast during seven forecast horizons and the two empirical baselines 

(B1—using the average value from the last seven days—and B2—using the mean daily monthly 

value from the training dataset). 

Location Model 
Forecast Horizon 

1 2 3 4 5 6 7 

COR 
B1 0.8926 0.8564 0.8349 0.8145 0.8052 0.7978 0.7868 

B2 0.8680 0.8680 0.8680 0.8680 0.8680 0.8680 0.8680 

MAG 
B1 0.8376 0.7719 0.7538 0.7436 0.7290 0.7157 0.7129 

B2 0.8167 0.8167 0.8167 0.8167 0.8167 0.8167 0.8167 

TAB 
B1 0.8197 0.7531 0.7283 0.7023 0.6947 0.6671 0.6638 

B2 0.7906 0.7906 0.7906 0.7906 0.7906 0.7906 0.7906 

CON 
B1 0.8235 0.6844 0.6042 0.5684 0.5728 0.5695 0.5455 

B2 0.7465 0.7465 0.7465 0.7465 0.7465 0.7465 0.7465 

ARO 
B1 0.9038 0.8537 0.8160 0.7949 0.7732 0.7696 0.7636 

B2 0.8481 0.8481 0.8481 0.8481 0.8481 0.8481 0.8481 

Mean 
B1 0.8554 0.7849 0.7474 0.7247 0.7150 0.7039 0.6945 

B2 0.8140 0.8140 0.8140 0.8140 0.8140 0.8140 0.8140 

Table 6. MBE values for ET0 forecast during seven forecast horizons and the two empirical baselines 

(B1—using the average value from the last seven days—and B2—using the mean daily monthly 

value from the training dataset). 

Location Model 
Forecast Horizon 

1 2 3 4 5 6 7 

COR 
B1 −0.0002 −0.0001 −0.0001 0.0000 −0.0002 −0.0001 0.0007 

B2 0.1033 0.1033 0.1033 0.1033 0.1033 0.1033 0.1033 

MAG 
B1 0.0000 0.0002 0.0000 0.0000 −0.0008 −0.0016 −0.0015 

B2 0.0710 0.0710 0.0710 0.0710 0.0710 0.0710 0.0710 

TAB 
B1 0.0003 0.0003 0.0000 −0.0018 −0.0034 −0.0041 −0.0046 

B2 0.0972 0.0972 0.0972 0.0972 0.0972 0.0972 0.0972 

CON 
B1 0.0014 0.0047 0.0084 0.0117 0.0157 0.0198 0.0236 

B2 −0.0113 −0.0113 −0.0113 −0.0113 −0.0113 −0.0113 −0.0113 

ARO B1 0.0006 0.0011 0.0012 0.0021 0.0029 0.0036 0.0052 
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B2 0.1787 0.1787 0.1787 0.1787 0.1787 0.1787 0.1787 

Mean 
B1 0.0004 0.0012 0.0019 0.0024 0.0028 0.0035 0.0047 

B2 0.0878 0.0878 0.0878 0.0878 0.0878 0.0878 0.0878 

3.2. Analysis of ML Performance 

Table 7 shows the minimum, mean, and maximum NSE, RMSE, and MBE values for 

all the sites and models using two different lag intervals (15 and 30 days). Generally, in 

terms of NSE and RMSE, the use of 15 days slightly outperformed all the models using 30 

lag days for almost all the cases. On the other hand, the MBE performance for all models, 

locations, and lag days was very similar. Additionally, ML approaches highly outper-

formed the baselines, although the CNN and the transformer-based models gave the 

worst results in all sites. In Tabernas, the most arid site, in terms of NSE and RMSE, all the 

ML models surpassed the baseline performance. SVM obtained the best values (NSE = 

0.869 and RMSE = 0.700 mm/day), followed very closely by RF (NSE = 0.867 and RMSE = 

0.706 mm/day), which outperformed, on average, the rest of the models. On the other 

hand, the CNN model obtained the worst modeling for 30 lag days (NSE = 0.423 and 

RMSE = 1.438 mm/day). All the models obtained high mean MBE metrics, obtaining the 

highest MBE value (−0.974 mm/day) using CNN and 30 lag days. In Conil, the best values 

were obtained by SVM (RMSE = 0.684 mm/day), RF (RMSE = 0.703 mm/day), and ELM 

(RMSE = 0.717 mm/day), in this order and for 15 lag days. In terms of NSE, these three 

models also gave the best performance on mean values and for 15 lag days, whereas the 

worst were obtained by CNN (NSE = 0.520) for 30 lag days. In Córdoba, SVM and ELM 

using 15 lag days outperformed the rest of the models in both RMSE (0.605 and 0.614 

mm/day) and NSE (0.934 and 0.932), respectively. Moreover, on average, the best results 

were obtained in Córdoba compared to the rest of the sites (NSE > 0.85, RMSE < 0.80 

mm/day, and MBE≈0.0 mm/day). In Aroche, the most humid site, the NSE values ranged 

from 0.737 (CNN model) to 0.922 (SVM model) and the RMSE values ranged from 0.597 

mm/day (SVM model) to 1.097 mm/day (CNN model). Finally, in Málaga, the results us-

ing 30 lag days were slightly better for all models. SVM and RF outperformed the rest of 

the models in terms of NSE (0.894 and 0.892, respectively) and RMSE (0.631 mm/day and 

0.640 mm/day, respectively), whereas the worst results were obtained using CNN (NSE = 

0.409 and RMSE = 1.499 mm/day) and LSTM (NSE = 0.202 and RMSE = 1.739 mm/day). 

Table 7. Minimum (Min.), mean, and maximum (Max.) of NSE, RMSE, and MBE values for all loca-

tions (TAB—Tabernas, CON—Conil, COR—Córdoba, ARO—Aroche, MAG—Málaga) and models 

using two different lag day windows (15 days and 30 days). T_CNN refers to transformer using 

CNN in the feed-forward layer, while T_LSTM refers to transformers using LSTM in this same layer. 

  Lag 

Days 

NSE RMSE MBE 

Station Model Min Mean Max Min Mean Max Min Mean Max 

TAB 

CNN 
15 0.710 0.778 0.862 0.723 0.916 1.050 0.001 0.123 0.484 

30 0.423 0.752 0.848 0.734 0.939 1.438 0.000 −0.026 −0.974 

ELM 
15 0.794 0.820 0.860 0.727 0.825 0.885 0.043 0.082 0.126 

30 0.778 0.807 0.853 0.722 0.830 0.892 −0.000 0.021 0.079 

LSTM 
15 0.749 0.797 0.845 0.766 0.877 0.976 −0.003 0.088 0.236 

30 0.730 0.771 0.828 0.783 0.905 0.984 0.000 −0.009 −0.209 

MLP 
15 0.769 0.810 0.854 0.743 0.848 0.936 0.000 0.046 0.265 

30 0.715 0.781 0.841 0.750 0.883 1.012 −0.000 −0.029 −0.210 

RF 
15 0.802 0.821 0.867 0.710 0.823 0.866 0.057 0.094 0.117 

30 0.799 0.819 0.859 0.706 0.805 0.850 0.000 −0.011 −0.033 

SVM 
15 0.779 0.817 0.869 0.704 0.831 0.915 0.000 0.074 0.183 

30 0.746 0.812 0.862 0.700 0.818 0.955 0.000 −0.018 0.121 

T_CNN 15 0.742 0.789 0.840 0.779 0.893 0.989 0.000 0.100 0.324 
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30 0.705 0.770 0.841 0.750 0.905 1.029 −0.000 −0.017 −0.297 

T_LSTM 
15 0.726 0.780 0.829 0.804 0.912 1.019 0.002 0.099 0.257 

30 0.699 0.765 0.831 0.775 0.916 1.040 0.000 −0.050 −0.312 

CON 

CNN 
15 0.580 0.674 0.817 0.759 1.017 1.154 0.000 −0.037 −0.560 

30 0.303 0.520 0.724 0.889 1.164 1.409 0.002 −0.151 −0.706 

ELM 
15 0.716 0.753 0.837 0.717 0.885 0.959 0.000 0.000 0.048 

30 0.635 0.697 0.779 0.796 0.927 1.021 −0.002 −0.057 −0.122 

LSTM 
15 0.651 0.724 0.788 0.816 0.936 1.055 0.000 −0.029 −0.131 

30 0.378 0.552 0.706 0.919 1.126 1.326 0.000 −0.061 0.304 

MLP 
15 0.579 0.709 0.808 0.778 0.959 1.160 0.000 −0.059 −0.260 

30 0.368 0.573 0.738 0.866 1.099 1.338 0.003 −0.153 −0.371 

RF 
15 0.721 0.754 0.843 0.703 0.883 0.939 0.003 0.026 0.057 

30 0.667 0.704 0.799 0.759 0.915 0.967 −0.020 −0.054 −0.099 

SVM 
15 0.640 0.752 0.851 0.684 0.885 1.065 0.000 −0.146 −0.250 

30 0.547 0.672 0.804 0.749 0.961 1.146 0.015 −0.235 −0.393 

T_CNN 
15 0.561 0.679 0.800 0.794 1.008 1.184 0.000 −0.047 −0.225 

30 0.422 0.569 0.723 0.891 1.104 1.294 −0.001 −0.096 −0.451 

T_LSTM 
15 0.570 0.674 0.746 0.895 1.018 1.177 0.000 −0.035 −0.166 

30 0.389 0.588 0.707 0.917 1.080 1.310 0.000 −0.082 −0.259 

COR 

CNN 
15 0.818 0.882 0.929 0.630 0.808 1.011 0.000 0.056 −0.505 

30 0.522 0.853 0.913 0.670 0.873 1.592 0.000 0.035 1.003 

ELM 
15 0.879 0.900 0.932 0.614 0.745 0.824 0.000 0.015 0.084 

30 0.848 0.874 0.909 0.686 0.813 0.896 −0.001 0.046 0.128 

LSTM 
15 0.877 0.894 0.924 0.649 0.771 0.831 0.000 0.041 0.178 

30 0.835 0.865 0.902 0.713 0.841 0.932 0.000 0.027 0.193 

MLP 
15 0.858 0.893 0.927 0.639 0.773 0.891 −0.000 0.038 0.211 

30 0.801 0.858 0.908 0.690 0.860 1.029 −0.001 0.011 0.172 

RF 
15 0.892 0.903 0.928 0.633 0.734 0.776 0.011 0.029 0.045 

30 0.870 0.883 0.912 0.674 0.783 0.826 0.000 0.015 0.033 

SVM 
15 0.869 0.900 0.934 0.605 0.744 0.855 −0.000 0.053 0.130 

30 0.832 0.875 0.914 0.667 0.809 0.942 0.000 0.064 0.167 

T_CNN 
15 0.857 0.885 0.906 0.725 0.802 0.896 0.003 0.052 0.207 

30 0.815 0.855 0.892 0.749 0.870 0.988 0.000 0.023 −0.280 

T_LSTM 
15 0.842 0.880 0.906 0.724 0.818 0.939 −0.000 0.048 0.204 

30 0.824 0.859 0.885 0.773 0.859 0.965 0.000 0.037 0.230 

ARO 

CNN 
15 0.799 0.851 0.913 0.624 0.816 0.951 0.000 0.106 0.436 

30 0.737 0.840 0.916 0.620 0.851 1.097 0.001 0.056 0.256 

ELM 
15 0.850 0.874 0.917 0.609 0.751 0.823 −0.001 0.056 0.113 

30 0.853 0.878 0.918 0.613 0.744 0.819 0.020 0.082 0.141 

LSTM 
15 0.823 0.860 0.912 0.627 0.792 0.892 0.000 0.068 0.196 

30 0.798 0.850 0.908 0.647 0.827 0.960 −0.002 0.038 0.220 

MLP 
15 0.803 0.861 0.911 0.632 0.789 0.943 −0.001 0.079 0.288 

30 0.793 0.853 0.913 0.630 0.815 0.972 0.000 0.020 0.164 

RF 
15 0.860 0.877 0.914 0.620 0.742 0.794 0.022 0.098 0.139 

30 0.855 0.883 0.920 0.606 0.730 0.814 0.009 0.047 0.070 

SVM 
15 0.817 0.869 0.918 0.607 0.764 0.908 −0.003 0.136 0.200 

30 0.810 0.868 0.922 0.597 0.772 0.931 0.006 0.091 0.201 

T_CNN 
15 0.802 0.845 0.902 0.664 0.834 0.945 0.002 0.099 0.281 

30 0.794 0.845 0.901 0.674 0.840 0.970 0.000 0.018 0.210 

T_LSTM 15 0.800 0.843 0.885 0.719 0.840 0.950 0.000 0.089 0.278 
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30 0.780 0.838 0.882 0.736 0.859 1.001 0.000 0.042 0.238 

MAG 

CNN 
15 0.734 0.800 0.871 0.681 0.847 0.980 0.000 0.046 0.311 

30 0.409 0.819 0.880 0.672 0.823 1.499 0.000 −0.003 1.113 

ELM 
15 0.821 0.841 0.878 0.662 0.756 0.804 0.000 0.031 0.071 

30 0.841 0.857 0.884 0.663 0.736 0.777 −0.001 −0.040 −0.084 

LSTM 
15 0.810 0.830 0.862 0.705 0.782 0.828 0.000 0.036 0.132 

30 0.202 0.840 0.872 0.695 0.773 1.739 0.000 −0.069 −1.052 

MLP 
15 0.773 0.823 0.872 0.678 0.798 0.904 0.000 0.036 0.195 

30 0.763 0.835 0.880 0.672 0.788 0.948 0.000 −0.048 −0.261 

RF 
15 0.832 0.849 0.882 0.651 0.738 0.778 0.000 0.027 0.044 

30 0.859 0.869 0.892 0.640 0.704 0.732 −0.020 −0.039 −0.061 

SVM 
15 0.797 0.843 0.885 0.643 0.750 0.855 0.000 0.049 −0.138 

30 0.814 0.858 0.894 0.631 0.731 0.839 0.000 −0.006 −0.094 

T_CNN 
15 0.741 0.809 0.853 0.727 0.829 0.967 0.001 0.009 0.198 

30 0.773 0.825 0.864 0.716 0.812 0.928 0.002 −0.097 −0.371 

T_LSTM 
15 0.768 0.801 0.835 0.771 0.846 0.916 0.000 0.001 −0.130 

30 0.787 0.827 0.852 0.749 0.808 0.897 0.000 −0.063 −0.247 

In Figures 10–12, the RMSE and NSE values for all forecasting predictions in the dif-

ferent sites are shown in a boxplot, respectively. Firstly, no significant performance dis-

tinctions were observed from the two approaches depending on the number of lag days 

(15 and 30 days). However, the first approach (15 lag days) slightly outperformed the sec-

ond (30 lag days) on mean values, and more precision was observed (a lower interquartile 

range). Moreover, the number of outliers having non-accurate modeling was much higher 

using the second approach. Then, as a general rule, using daily values from 15 days in the 

past is recommended over using 30 days. Furthermore, regarding the efficiency of differ-

ent models, SVM, RF, and ELM were predominantly better than the rest of the models 

according to NSE and RMSE values, giving more precise results. In contrast, CNN and 

both transformer models were at the bottom in the ranking. Finally, the MBE results are 

plotted in a boxplot. The results were very accurate in both approaches and for all the 

models and sites, but CNN gave more outliers, especially using the 30 lag days approach. 

  

(a) (b) 

Figure 10. Boxplot with RMSE values from all models and configurations in the different AWS, 

using 15 lag days (a) and 30 lag days (b). 
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(a) (b) 

Figure 11. Boxplot with NSE values from all models and configurations in the different AWS, using 

15 lag days (a) and 30 lag days (b). 

  

(a) (b) 

Figure 12. Boxplot with MBE values from all models and configurations in the different AWS, using 

15 lag days (a) and 30 lag days (b). 

To further analyze these results, Figures 13–15 show the best statistic values (NSE, 

RMSE, and MBE, respectively) of all the models and sites for the different forecast hori-

zons used. In terms of NSE (Figure 13), all ML models highly outperformed B1 and B2 in 

all the forecast horizons and locations, except for Conil. In Conil, only SVM, RF, and ELM 

outperformed both B1 and B2 in all cases. On the other hand, the transformers, CNN, and 

MLP models underperformed B1 and B2 for a horizon higher than 3 days. Regarding 

RMSE, the results were similar to those shown in Figure 12. However, a more significant 

improvement in ML models is appreciated for most models and horizons. In terms of MBE 

(Figures 13–15), B2 obtained significantly worse results in Aroche, Córdoba, Málaga, and 

Tabernas, where ML performed very accurately in all cases. In Conil, there were no major 

differences in performance between all the models. Thereby, due to these results, it could 

be stated that the use of ML models to forecast ET0 up to a week is highly recommended, 

especially SVM, RF, and ELM models. Generally, B1 highly outperformed B2 to forecast 

ET0 values one day ahead, but its performance profoundly decreased for higher horizons, 

obtaining even worse results than B2. This denotes a low autocorrelation of daily ET0 val-

ues but a higher relation with historical monthly values. Moreover, SVM generally 

showed the best performance in terms of NSE and RMSE, whereas, regarding MBE, all 

models performed very accurately. Finally, it is worth noting that in Conil (a coastal site 

with an aridity index close to being a dry sub-humid climate), the best ML models (SVM, 

RF, and ELM) could not highly outperform B2 as in the rest of the locations when fore-

casting more than two days ahead, due to the effect of the close distance to the sea and the 

higher aridity index. 
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Figure 13. Scatter plot with the best NSE value for each model and location. 

 

Figure 14. Scatter plot with the best RMSE value for each model and location. 

 

Figure 15. Scatterplot with the best MBE value for each model and location. 
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3.3. Assessing the Different Configurations 

In order to evaluate the performance of the different configurations at all locations, 

Table 8 shows the average and best RMSE values of each configuration in the different 

sites. In Tabernas, configurations III, XXII, IV, and IX obtained the most accurate results 

on mean, whereas configurations XVI, XII, and XXIV were the worst. In Conil, the best 

configurations in terms of mean RMSE were XXV, VI, and XX. Furthermore, configuration 

XXVI obtained the best value in absolute terms. On the other hand, configurations XIII, 

XI, and XII performed the worst on average. In Córdoba, regarding mean values, config-

urations XVII, XXIV, and V were at the bottom, whereas configurations III, XXVII, and II 

were at the top of the ranking. In Aroche, configuration V obtained the lowest RMSE value 

(RMSE = 0.598 mm/day). Moreover, considering the mean values, all configurations ob-

tained very similar performance, beginning with RMSE = 0.764 mm/day (configuration I), 

followed closely by configurations IV (RMSE = 0.764 mm/day), III (RMSE = 0.767 

mm/day), IX (RMSE = 0.767 mm/day), and XXII (RMSE = 0.768 mm/day), and finally RMSE 

= 0.788 mm/day (configurations XIII and XVII). Thus, it could be stated that in terms of 

the mean, although there were no significant differences in performance between the best 

and worst configurations, the use of configurations I, III, IV, and IX is recommended. 

Table 8. Mean and minimum RMSE values (mm/day) for the different configurations at each loca-

tion. The format is: mean (minimum). The best values are in bold. 

Conf. TAB CON COR ARO MAG Mean 

I 0.806 (0.704) 0.886 (0.695) 0.720 (0.614) 0.686 (0.605) 0.724 (0.648) 0.764 

II 0.801 (0.709) 0.909 (0.697) 0.718 (0.618) 0.703 (0.615) 0.732 (0.631) 0.772 

III 0.786 (0.701) 0.920 (0.694) 0.710 (0.633) 0.693 (0.603) 0.730 (0.643) 0.767 

IV 0.794 (0.703) 0.897 (0.694) 0.724 (0.630) 0.693 (0.604) 0.734 (0.646) 0.768 

V 0.812 (0.706) 0.914 (0.700) 0.741 (0.621) 0.704 (0.598) 0.732 (0.632) 0.780 

VI 0.812 (0.709) 0.870 (0.687) 0.720 (0.622) 0.725 (0.602) 0.743 (0.645) 0.774 

VII 0.805 (0.703) 0.902 (0.689) 0.728 (0.621) 0.710 (0.601) 0.733 (0.648) 0.775 

VIII 0.805 (0.709) 0.925 (0.693) 0.737 (0.617) 0.717 (0.606) 0.725 (0.642) 0.781 

IX 0.799 (0.708) 0.883 (0.694) 0.735 (0.642) 0.693 (0.613) 0.726 (0.639) 0.767 

X 0.803 (0.704) 0.897 (0.699) 0.734 (0.620) 0.687 (0.613) 0.730 (0.641) 0.770 

XI 0.811 (0.709) 0.931 (0.698) 0.740 (0.617) 0.686 (0.597) 0.702 (0.640) 0.774 

XII 0.823 (0.712) 0.926 (0.697) 0.732 (0.640) 0.706 (0.605) 0.722 (0.641) 0.781 

XIII 0.814 (0.708) 0.933 (0.691) 0.734 (0.605) 0.726 (0.615) 0.737 (0.642) 0.788 

XIV 0.809 (0.714) 0.892 (0.688) 0.737 (0.643) 0.721 (0.615) 0.741 (0.643) 0.780 

XV 0.811 (0.708) 0.899 (0.715) 0.730 (0.614) 0.698 (0.612) 0.721 (0.645) 0.771 

XVI 0.824 (0.709) 0.904 (0.693) 0.722 (0.619) 0.706 (0.599) 0.736 (0.633) 0.778 

XVII 0.810 (0.708) 0.921 (0.691) 0.753 (0.615) 0.726 (0.599) 0.734 (0.633) 0.788 

XVIII 0.805 (0.707) 0.904 (0.718) 0.729 (0.622) 0.719 (0.606) 0.735 (0.647) 0.778 

XIX 0.803 (0.707) 0.905 (0.688) 0.736 (0.616) 0.711 (0.605) 0.722 (0.633) 0.775 

XX 0.816 (0.713) 0.879 (0.695) 0.733 (0.610) 0.719 (0.604) 0.747 (0.642) 0.778 

XXI 0.801 (0.700) 0.920 (0.721) 0.725 (0.623) 0.696 (0.608) 0.738 (0.643) 0.776 

XXII 0.792 (0.709) 0.893 (0.698) 0.728 (0.615) 0.709 (0.609) 0.722 (0.637) 0.768 

XXIII 0.803 (0.713) 0.904 (0.696) 0.719 (0.627) 0.705 (0.604) 0.786 (0.643) 0.783 

XXIV 0.823 (0.709) 0.917 (0.695) 0.741 (0.640) 0.696 (0.608) 0.731 (0.635) 0.781 

XXV 0.821 (0.711) 0.863 (0.691) 0.720 (0.618) 0.714 (0.613) 0.733 (0.655) 0.770 

XXVI 0.822 (0.713) 0.894 (0.684) 0.736 (0.615) 0.711 (0.605) 0.730 (0.647) 0.778 

XXVII 0.803 (0.710) 0.917 (0.699) 0.714 (0.627) 0.718 (0.612) 0.734 (0.636) 0.777 

3.4. Overall Discussion 

In this work, several aspects were evaluated in forecasting daily ET0 at five locations 

in the Andalusia region (Southern Spain) with different geo-climatic conditions. Firstly, a 

new state-of-the-art architecture for NLP problems was assessed to forecast daily ET0, the 

transformers. Specifically, two different approaches were evaluated, TransformerCNN 

and TransformerLSTM, and they were compared to standard machine learning models 
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such as MLP, SVM, RF, or CNN, among others. In general, the results obtained using 

standard machine learning approaches such as RF, SVM, and ELM highly outperformed 

the rest of the models assessed in this work. Moreover, transformer-based models did not 

perform as expected in all cases when compared to standard ML models. However, their 

results were better than the baselines for most sites and cases (except for Conil). Secondly, 

another critical aspect to highlight in this work is that even using a self-attention mecha-

nism (transformer-based models), the use of 30 lag days instead of 15 lag days was not 

beneficial to forecasting daily ET0. On the contrary, slightly better results were obtained 

when 15 lag days were used, along with fewer serious outliers. Moreover, when compar-

ing the different feature input configurations proposed in this study, none of them pre-

dominantly outperformed the rest, although configurations XIII, XIV, XX, and XXI were 

better on average. Figures 16–18 show a scatter plot of measured vs. predicted ET0 values 

using the best ML model and configuration for 1 and 7 days ahead. 

 
 

(a) (b) 

 
 

(c) (d) 

Figure 16. Scatter plot for measured vs. predicted values for (a) forecast horizon 1 in Tabernas, (b) 

forecast horizon 1 in Conil de la Frontera, (c) forecast horizon 7 in Tabernas, and (d) forecast horizon 

7 in Conil de la Frontera. 
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(a) (b) 

  

(c) (d) 

Figure 17. Scatter plot for measured vs. predicted values for (a) forecast horizon 1 in Aroche, (b) 

forecast horizon 1 in Málaga, (c) forecast horizon 7 in Aroche, and (d) forecast horizon 7 in Málaga. 

  

(a) (b) 

Figure 18. Scatter plot for measured vs. predicted values for (a) forecast horizon 1 in Córdoba, (b) 

forecast horizon 7 in Córdoba. 

Furthermore, the results of the proposed models were significantly better than those 

reported by Ferreira and da Cunha [18] in terms of RMSE and NSE using different deep 

learning approaches in Brazil in AWS with an aridity index ranging from 0.3 to 1.6. The 

best NSE performances in Brazil ranged from 0.35 to 0.62 (approximately), whereas in this 

work, the best NSE values ranged from 0.60 to 0.95 (approximately). Moreover, this work 

also obtained slightly better NSE values than those reported by Nourani et al. [17] using 

ensemble modeling in different weather stations from Iran, Turkey, and Cyprus. These 

previous works used temperature, relative humidity, solar radiation, and wind speed val-

ues as input features, whereas all the configurations of this work were temperature-based 

variables. Additionally, comparing the results to those obtained by de Oliveira and Lucas 
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et al. [54], the assessed models in the present work outperformed their CNN and ensemble 

CNN results in Brazil. 

In all, the models developed in this work, especially SVM, ELM, and RF, are able to 

accurately forecast ET0 for one week ahead using only temperature-based parameters and 

ET0 past values. This issue is vital for improving crop irrigation scheduling, allowing ad-

equate and anticipated planning, and contributing to agricultural production. Further-

more, providing reliable ET0 future values positively impacts the current challenge of op-

timizing water resource management, especially in arid and semiarid locations.  

4. Conclusions 

In this work, several machine learning models have been developed and assessed for 

daily ET0 forecasting from 1 to 7 days ahead using different input configurations, as well 

as different lag days. In general, all the ML approaches outperformed the baselines for all 

the forecast horizons and most locations, but SVM, RF, and ELM highly outperformed the 

rest of the models evaluated for most sites except for Conil de la Frontera, with unusually 

low wind speed values in this region. On the other hand, the transformers were, on aver-

age, at the bottom of the ranking. Moreover, all configurations obtained very similar re-

sults in terms of RMSE, but configurations I, III, IV, and IX slightly outperformed the rest. 

The NSE values were above 0.85 for Conil, Tabernas, and Málaga and above 0.9 for Cór-

doba and Aroche for their best modeling. In terms of RMSE, the average performance for 

Tabernas was 0.92 mm/day, 1.00 mm/day for Conil, 0.81 mm/day for Córdoba, 0.80 

mm/day for Aroche, and 0.78 mm/day for Málaga. This denotes a relationship in perfor-

mance regarding the aridity index and the distance to the sea. For inland locations, the 

higher the aridity index, the lower the error of forecasting ET0 will be. On the other hand, 

for coastal sites, the higher the aridity index, the higher the error. Regarding MBE, most 

stations and models obtained very accurate values on average for most cases, with a mean 

performance value of 0.011 mm/day.  

Further studies can deeply explore using these models in new regions with different 

geo-climatic conditions, different scenarios (a different time interval and a regional sce-

nario), and for other parameters, such as solar radiation or precipitation. Moreover, accu-

rate feature selection or reduction could be researched because, as could be stated based 

on the present results, the configurations containing the worst related features based on 

Pearson correlation (HTx, HTn, HSr-HTn) obtained very accurate minimum and mean 

RMSE (Table 8 and Figure 2). The approaches proposed in this work may result in greater 

efficiency for optimizing water resources, improving irrigation scheduling, and anticipat-

ing the decision-making for agricultural goals. Finally, the creation of an open-source re-

pository will allow novel scientists to apply these models using their own datasets, as well 

as experienced scientists to commit improvements with new features and architectures. 

Overall, the ultimate aim is to democratize the use of machine learning to more efficiently 

solve today’s agricultural problems. 
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