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Abstract— A large number of rules increases the complexity 

of fuzzy classifiers and reduces the linguistic interpretability of 

the classification. A tabular rule simplification method that 

extends the Quine-McCluskey algorithm of Boolean design to 

fuzzy logic is analyzed in detail in this paper. The method 

obtains a few compound rules from many initial atomic rules. 

The influence of membership functions as well as t-norms and 

s-norms operands, which can be even null if many atomic rules 

are used, becomes apparent in the classification regions 

(decision boundaries) induced by the compound rules. Since the 

compound rules can be ordered according to the covering 

indexes that measure the number of atomic rules covered, more 

or less generic classification rules and rules with particular 

indexes can be further identified, which could ease subsequent 

classification or decision-making. 

Keywords—fuzzy systems, rule base simplification, fuzzy 

classifiers 

I. INTRODUCTION 

In the field of fuzzy system design, enormous efforts have 
been made to achieve the minimum set of fuzzy rules 
(especially to improve their interpretability) [1]-[2]. In [3], 
the trade-off between a reduced set of rules and its efficiency 
is analyzed in the context of information theory and neural 
networks. To apply that approach in the context of fuzzy 
logic, the existence of cost metrics must be assumed for each 
rule set to be minimized. 

Many authors have focused on the simplification of the 
fuzzy sets to simplify subsequently the redundancies 
appearing in the rule bases [4]-[6]. Concerning the 
simplification of the rule base itself, a technique widely 
followed by several authors is to apply orthogonal 
transformation methods to identify the most important rules 
[7]. The firsts to apply these techniques in the field of fuzzy 
logic were Wang and Mendel in [8], proposing an orthogonal 
least squares algorithm. In that work, they introduced the 
concept of "fuzzy basis functions" and demonstrated that, 
given certain parameters, a fuzzy system can be represented 
by a series expansion of these basis functions. The reason 
why fuzzy basis functions are used instead of other basis 
functions (such as polynomial, radial, etc.) is because the 
rules of the system can be naturally related to these basis 
functions. They apply the classical Gram-Schmidt 
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orthogonalization procedure to determine the most significant 
fuzzy basis functions and select the most important rules 
based on the contribution of them to the output variance. The 
problem with the latter consideration is that a low variance 
does not necessarily mean that the corresponding rule is 
unimportant. Therefore, several works appeared later to 
improve the application of the orthogonal least squares 
method [9]-[10]. Among them, the proposal in [11] obtains 
zero-order Takagi-Sugeno-Kang fuzzy systems from data, 
with interpretable rule bases. The authors apply the least 
squares algorithm twice. The first time to select the most 
important rules, and the second time to optimize the 
consequents of the rules. Then, using the Hard C-means 
algorithm, they reduce the number of consequents. More 
recently, the authors in [12] propose a new rule reduction 
method for fuzzy modelling by the fusion of similar rules into 
a single rule, redefining the membership functions for the 
new rules. Once the number of rules is reduced, they apply a 
space projection mechanism, where low-dimensional space 
features are projected to a higher-dimensional space, 
transforming non-linear into linear relationships. 

Another method for the simplification of fuzzy rule bases 
was proposed in [13]. In that work, since fuzzy systems can 
be viewed as an extension of Boolean systems, a tabular 
simplification of the rules is presented as an extension of the 
Quine-McCluskey algorithm of Boolean design. The tabular 
simplification is applied to every consequent and the simplest 
set of rules for each consequent is obtained from the best 
prime implicants of the minimization table. Finally, linguistic 
hedges are employed to improve the linguistic interpretability 
of the rules. The method was applied in [14] to extract fuzzy 
rules describing linguistically the low-level features (such as 
color, texture, etc.) of images. It can be carried out with the 
CAD tools of the Xfuzzy environment. 

This paper analyzes in detail the rule simplification 
method presented in [13] for classification systems. The 
method starts from a complete rule base of atomic rules, 
without any fuzziness, and finishes with a simpler rule base 
of compound rules whose antecedent parts cover more than 
one fuzzy set in at least one of the input variables. It is 
illustrated that the use of compound rules not only make the 
classifier simpler and more interpretable, but also introduces 
fuzzy features even to classifiers with complete rule bases. 
The covering index of a compound rule is employed to 
measure how many atomic rules not covered by other rules 
can be represented by the compound rule. Once the rules are 
ordered according to the covering indexes, the resulting 
classifier can be simplified even further. 

The paper is organized as follows. Section II summarizes 
first the proposal for simplifying rules by covering indexes 
and then details the fuzziness introduced by using a small 
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number of compound rules instead of all the possible atomic 
rules. Section III illustrates the results obtained by applying 
the proposal to application examples that differ in the 
objective of the classification, more generic in one example 
and more particular in the other. Finally, Section IV presents 
the conclusions. 

II.  RULE SIMPLIFICATION BASED ON COVERING INDEXES 

FOR FUZZY CLASSIFIERS 

Fuzzy classifiers are usually fuzzy not because of the 
categories they employ, which can be crisp, but mainly 
because of the way input variables are described, which is 
usually fuzzy. The defuzzification method used mainly by 
fuzzy classifiers provides as output the consequent (category) 
of the rule with the highest activation degree. This method 
will be called MaxLabel in this work (as it is so named in the 
Xfuzzy environment). 

Let us consider a fuzzy classifier whose rule base has a 
grid structure and contains all the atomic rules defined by its 
grid partition, i.e. it has a complete rule base. If the MaxLabel 
defuzzification method is used, then it is equivalent to a 
system with a non-fuzzy rule base, i.e. a rule base whose 
antecedents can be represented by crisp instead of fuzzy sets. 
Actually, the shape of the membership functions has no 
influence on the result, only the point of intersection between 
the membership functions matters, i.e. the value at which a 
function starts to have a higher degree of membership than its 
neighboring functions (for that reason they can be 
rectangular). The t-norm applied to connect the antecedents 
has no influence on the result either, because a t-norm is a 
monotonic function. One could say that a complete rule base 
with atomic rules for classification contains so much 
information that there is no place for ambiguity or 
uncertainty. Hence, it is not necessary to use fuzzy sets in the 
antecedents. In this sense, classifier systems with a complete 
set of atomic rules should not be called "fuzzy". 

However, let us analyze what happens when using 
compound rules that include several atomic rules. In the 
tabular simplification technique described in [13], the atomic 
rules are considered as the minterms in Quine McCluskey 
method, and the compound rules as the prime implicants. The 
covering index of a compound rule (prime implicant) 

measures the number of atomic rules (minterms) only 
represented by the compound rule. The latter with the highest 
covering index is the one that covers the maximum number 
of atomic rules. The next compound rule with the highest 
covering index is the one that covers the largest number of 
uncovered atomic rules and so on. In this way, the implicants 
(and the rules associated with them) resulting from the 
tabular simplification in [13] can be ordered according to 
their covering index. 

Depending on the features of the categories considered by 
the classifier, a condition for each category can be set for the 
covering indexes. For example, if the category to classify has 
generic features, the rules with covering indexes above a 
threshold can be selected, and the others are eliminated. In 
the other side, if the category responds to a particular 
description, then the rules with particular covering indexes 
are selected, and the others are not considered. 

Let us consider an example of classification rule base 
consisting of 6 x 6 = 36 atomic rules, as shown in Fig. 1(a). 
For simplicity, it considers two categories represented by 
“black” and “not black” in a two-dimensional input space 
defined by the variables �� and ��. As noted above, since the 
rule base is complete, it is in principle not necessary to define 
a fuzzy system with membership functions to describe the 
antecedents and a t-norm for connecting them, since the same 
result can be obtained with a non-fuzzy system. Using a 
complete rule base, the region in which a rule has a higher 
degree of activation than the others (classification region) has 
a square shape and the frontiers of squares (decision 
boundaries) are given by the values at which the membership 
degrees of �� and �� to one fuzzy or non-fuzzy set, ���, and 
its neighbor, �����, are equal. This is also explained in [15].  

Let us see how the tabular simplification technique 
changes the classification regions (and decision boundaries) 
of the fuzzy classifier. The simplification applies to rules 
having as consequent "black" on the one hand, and applies to 
rules having as consequent "not black" on the other hand. 
Following the steps described in [13], 4 compound rules with 
the consequent "black" (Fig. 1(a)) and 6 compound rules with 
the consequent "not black" (Fig. 1(b)) are obtained. By 
ordering them from higher to lower covering indexes (rules 
with one consequent are independent of those with the other), 

 

Figure 1.   (a) Tabular simplification applied to the consequent "black"; (b) Tabular simplification applied to the consequent "not black"; (c) 

Classification regions after tabular simplification using the product as t-norm. 
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the following rule base is obtained (the linguistic hedges 
“smaller than or equal to” and “greater than or equal to” are 
represented by the symbols “≤” and “≥”, respectively): 

[1a.] If (�� is ≤ ��� and �� is ≥ ���), then there is black; 

[2a.] If (�� is ≥ ��� and �� is ≤ ���), then there is black; 

[3a.] If ((�� is ≥ ��� and ≤ ���) and (�� is ≥��� and is 
≤ ���)), then there is black; 

[4a.] If ((�� is ≥ ��� and ≤ ���) and (�� is ≥ ��� and is 
≤ ���)), then there is black; 

[1b.] If (�� is ≥ ��� and �� is ≥ ���), then there is not 
black; 

[2b.] If (�� is ≤ ��� and �� is ≤ ���), then there is not 
black; 

[3b.] If (�� is ≥ ��� and �� is ≥ ��
), then there is not 
black; 

[4b.] If (�� is ≥ ��
 and �� is ≥ ���), then there is not 
black; 

[5b.] If (�� is ��� and �� is ≤ ���), then there is not 
black; 

[6b.] If (�� is ≤ ��� and �� is ���), then there is not 
black; 

Among the rules with the consequent "there is black", 
rules 1a and 2a have the same covering index, since both 
group 6 atomic rules not covered by other ones. The next rule 
with the highest covering index can be either rule 3a or 4a, 
since both group 4 rules of which 3 are not covered (one of 
the rules of rule 3a is already covered by rule 1a and one of 
rule 4a is already covered by rule 2a). By choosing rule 3a as 
the next in order, rule 4a has a lower covering index, since, 
although it groups 4 rules, only 2 of them are not covered 
(one of them covered by rule 2a and one by rule 3a). 

In the case of the rules corresponding to the consequent 
"there is not black", rule 1b is the one with the highest 
covering index, since it groups 9 rules and none of them is 
covered. The next in order is rule 2b, since it groups 4 rules 
and none is covered. Rules 3b and 4b have the same covering 
index, since they both group 8 rules, of which 2 are 

uncovered (in both cases, rule 1b covers 6 of its rules). The 
rules with the lowest covering index for this consequent are 
rules 5b and 6b, which also have the same index, since both 
group 3 rules, of which only one is uncovered (since, in both 
cases, rule 2b covers 2 of its rules). 

Rules grouping a larger number of rules may have a 
lower covering index than other rules grouping fewer rules. 
This is the case of rules 3b and 4b which, grouping 8 rules, 
have a lower covering index than rule 2b, which groups 4. 

A. Fuzziness introduced by compound rules 

Tabular simplification produces compound rules that 
consider a range between one linguistic label and another for 
each antecedent (making some linguistic labels unused). This 
affects the classification regions depending on whether one t-
norm or another is used to connect the antecedents. If the 
minimum is used as the t-norm, the regions (shown in Fig. 
1(a) and Fig. 1(b)) are the same independently of the atomic 
or compound nature of the rules. In this case, the shape of the 
membership functions does not modify the decision 
boundaries but only the point of intersection between them is 
influential. However, if the product is used as t-norm, the 
classification regions change, as can be seen in Fig. 1(c). 
Therefore, the behavior of the simplified system changes 
with respect to the initial one. 

In addition, if the rules with the same consequent are 
connected with an s-norm, the behavior of the simplified 
classifier depends on the s-norm employed. If the minimum 
is used as t-norm and the maximum as s-norm, the same 
result is obtained as without grouping rules. However, if the 
product is used as t-norm and the bounded sum as s-norm, the 
result is shown in Fig. 2(a), where the bounded sum is 
defined by the expression: 

����, �� = ����1, � + �� (1) 

Using t-norms other than the minimum and/or s-norms 
other than the maximum, the behavior does depend on the 
membership functions chosen to cover the antecedents. For 
example, using the product as t-norm and the maximum as s-
norm, if instead of using families of triangles in Fig. 1, 
Gaussians are used, the final behavior is shown in Fig. 2(b).   
The behavior offered by this system is highly similar to that 
shown in Fig. 1(c), but changing the decision boundaries, 

 

Figure 2.  Final behavior of the fuzzy system in Fig. 1(a) after tabular simplification: (a) Using triangular functions to cover the antecedents, product as 
t-norm and bounded sum as s-norm; (b) Using Gaussian functions to cover the antecedents, product as t-norm, and maximum as s-norm; (c) Using 

Gaussian functions to cover the antecedents, product as t-norm and bounded sum as s-norm. 
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from polygonal to curved. Similarly, if the bounded sum is 
applied to the latter system as s-norm, the behavior obtained 
is shown in Fig. 2(c). Therefore, tabular simplification not 
only reduces the number of rules, but also restores to the 
classifiers a degree of fuzziness that they lacked before being 
simplified. 

B. Fuzziness introduced by removing rules 

Returning to the complete rule base example in Fig. 1(a), 
if the atomic rule 21 were removed and the system were non-
fuzzy (the membership functions covering the inputs were 
rectangular), then the region determined by that rule would 
not provide any category. However, using fuzzy membership 
functions, such as those in Fig. 3(a), the neighboring rules 
have a non-zero activation degree in that area. The closest 
rules (i.e., rules 15, 20, 22 and 27) share the region equally in 
this example, as illustrated in Fig. 3(b). Hence, the final 
behavior of the classifier is illustrated in Fig. 3(c). 

Consider now that, instead of one, four rules (rules 15, 16, 
21 and 22) are eliminated. If the membership functions in the 
inputs are triangular, as shown in Fig. 3, in a large part of the 
gap left by those rules, the twelve neighboring rules have 
non-zero activation degree. However, the whole gap left by 
the four rules is not covered by the neighboring rules, leaving 
an undefined space in the center. This occurs because the 

membership functions used are triangular. If, instead of 
triangular, Gaussian functions are used, there is no undefined 
zone, since, even if the activation degree of a rule is very 
small, it is sufficient to dominate over smaller ones and 
provide its category as the output value. In this sense, fuzzy 
classifiers with incomplete rule bases are truly "fuzzy", since, 
depending on the membership function used, different results 
are obtained. 

Let us know see what happens when compound rules 
obtained after tabular simplification are eliminated. After 
ordering the rules according to their covering index, among 
all the rules corresponding to the consequent "there is black", 
rule 4a is the one with the lowest covering index. If this rule 
is removed (Fig. 4 (a)), the neighboring rules (rules 2a, 3a, 
1b, 2b, 4b and 6b) have a non-zero activation degree in the 
gap left by this rule. The regions in which the neighboring 
rules have a higher activation degree than the rest in the gap 
left by rule 4a are shown in Fig. 4(b). The resulting 
classification regions can be seen in Fig. 4(c). In this example 
the t-norm product is used.  

III. APPLICATION EXAMPLES 

The advantages of using rule simplification based on 
covering indexes is illustrated in the following with two 

 

 

Figure 4. (a) Elimination of the rule with the lowest covering index with the consequent "there is black" in Fig. 1(c); (b) Regions of higher 
activation of neighboring rules; (c) Final behavior of the fuzzy system with one rule less. 

 

Figure 3.  (a) Elimination of one of the atomic rules shown in Fig. 1(a); (b) Regions of higher activation of neighboring rules; (c) Final behavior of the 
fuzzy system with one rule less. 
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examples. In one of them, it is desirable to select rules with a 
high covering index, while in the other, the objective is to 
select rules with a low index. 

The first example considers the image shown in Fig. 5(a), 
which shows a crack in the asphalt of a road. By applying a 
texture filter to this image, it is possible to determine which 
points of the image belong to the crack and which do not. 
Specifically, the filter returns an image whose dark points 
correspond to the crack and light points to the background.  
The image can be understood as a set of numerical data 
corresponding to the vertical (��) and horizontal (��) position 
of the pixel, each pixel with an associated category (in this 
case, the existence or not of a crack). Hence, the fuzzy 
classifier has two inputs (vertical and horizontal position of 
the pixel) and an output indicating whether or not there is a 
crack at that position.  Let us consider an application context 
in which the classifier is used as part of the navigation system 
of an unmanned vehicle that wants to avoid the crack. In 
order to reduce the complexity of the navigation system, the 
objective is to design a classifier with a small number of 
generic rules (with high covering indexes). 

Let us consider an initial system with 625 rules (25 
membership functions for each of the inputs). The result 
obtained is shown in Fig. 5(b). The area highlighted in red in 
Fig. 5(b) are the 36 rules of the example in Section II.  
Applying the tabular simplification technique, the rules are 
reduced from 625 to 39 (16 modeling the crack and 23 
modeling the background). Once the rules are grouped, 
different behaviors can be obtained according to the 
membership functions chosen to cover the antecedents as 
well as the t-norms and s-norms operators employed. 
Specifically, using triangular membership functions, the 
product as t-norm, and the bounded sum as s-norm, the 
behavior is shown in Fig. 5(c). If the same t-norm and s-norm 
are used, but Gaussian membership functions are employed, 
the result is that of Fig. 5(d). Using the minimum as t-norm 

and the maximum as s-norm, the result is identical to that 
obtained without grouping the rules, regardless of the 
membership functions chosen. 

If the 39 rules are ordered according to their covering 
indexes, the rules with the highest covering indexes can be 
selected for modeling the crack and the background. 
Specifically, Fig. 5(e) and 5(f) highlight the 7 most important 
rules for modeling the crack and the 9 most important rules 
for modeling the background, respectively. One way to 
achieve a fairly simplified classifier is to select the 7 rules 
that best represent the crack and determine the background 
with an "otherwise" rule (i.e., if none of the 7 rules are 
activated, then it is the background). This can only be applied 
in situations with only two categories, like in this example. 
The initial number of rules is reduced in a 98.72%. As a 
result, the squared behavior shown in Fig. 5(g) is obtained. 
This behavior is highly similar to that obtained with a system 
with rectangular functions to cover the background but the 
corners present some roundness due to the Gaussians. 

Another approach is to opt for a fuzzy classifier with an 
incomplete rule base. By selecting the 7 most important rules 
to model the crack and the 9 most important rules to model 
the background, the rule base with 39 rules is further 
simplified to 16 rules. The initial number of rules is reduced 
in a 97.44%. The gap generated by rule elimination is large 
enough so that triangular membership functions give poor 
results, and Gaussian functions are better chosen. The system 
with the incomplete rule base of 16 compound rules and the 
product as t-norm presents the behavior of Fig. 5(h). This 
simplification offers a smooth classification with high 
linguistic interpretability. 

The second example considers the image shown in Fig. 
6(a), in which several elements can be seen on the ground, 
like a piece of wood, an almond, and several woodlice. In the 
same way as in the previous example, using a texture filter, 

 

Figure 5.  (a) Image of a crack in the asphalt; (b) Behavior of a fuzzy classifier with 625 rules (36 of them are highlighted); (c) Simplified system 
with 39 (instead of 625) rules, triangular membership functions to cover the background, product as t-norm, and the bounded sum as s-norm; (d) 

System with 39 rules, Gaussian membership functions to cover the background, product as t-norm, and the bounded sum as s-norm; (e) The 7 most 
important rules for the crack; (f) The 9 most important rules for the background; (g) System with 7 rules to describe the crack and an "otherwise" rule 

for the background; (h) Further simplified system with an incomplete rule base of 16 rules with the highest covering indexes. 
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an image is obtained whose dark pixels belong to the 
elements and light pixels to the background. The fuzzy 
classifier has two inputs (vertical and horizontal position of 
the pixel) and an output indicating whether or not there is 
something on the ground at that position.  Let us consider an 
application context in which the classifier is used by an 
unmanned aerial mini drone that wants to find the woodlice. 
In this case, the objective is to design a classifier with a small 
number of particular rules (with low covering indexes). 

Again, a fuzzy classifier with 625 rules (25 Gaussian 
membership functions for each input) is created, obtaining 
the behavior shown in Fig. 6(b). By applying the tabular 
simplification technique to this system, the 625 rules are 
reduced to 35 (14 for modeling the elements and 21 for 
modeling the background). Sorting the 35 obtained rules 
according to their covering indexes, the 3 rules with the 
lowest index are highlighted in Fig. 6(c). As can be seen, 
each of them belongs to a different woodlouse. Therefore, a 
system can be created with these 3 rules and an "otherwise" 
rule to describe the rest of the image. The resulting classifier 
locates the 3 woodlice in the image. The behavior of this 
system is illustrated in Fig. 6(d). The initial number of rules 
is reduced in a 99.36%. 

IV. CONCLUSIONS 

In this work, the tabular simplification algorithm based on 

the Quine-McCluskey algorithm of Boolean logic expanded 

to fuzzy logic has been analyzed to simplify the rule bases of 

fuzzy classifiers. The simplification method allows reducing 

the number of rules by not only merging several atomic rules 

into compound rules but also eliminating rules according to 

their covering indexes. The use of compound rules 

introduces fuzziness into classifiers with complete rule 

bases, and rule elimination further increases fuzziness. Since 

the tabular simplification method allows ranking the rules 

according to their covering index, the method facilitates the 

choice of rules to be selected or removed (rules with 

intermediate indexes, above, and below particular threshold 

values). This is illustrated with two application examples 

with opposite objectives: one looking for generic 

classification rules and the other interested in particular 

rules. In both cases, the method allows designing efficient 

classifiers with a significant reduction (from 97.44% to 

99.36%) of the initial number of rules. 
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Figure 6.  (a) Several elements on the ground; .(b) Behavior of a fuzzy classifier with 625 rules; (c) The 3 rules with the lowest covering indexes for 
describing the elements; (d) System with 3 rules to describe the location of the woodlice and an "otherwise" rule for the background; 


