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Abstract. Subgrid variability introduces non-negligible scale
effects on the grid-based representation of snow. This hetero-
geneity is even more evident in semiarid regions, where the
high variability of the climate produces various accumulation
melting cycles throughout the year and a large spatial hetero-
geneity of the snow cover. This variability in a watershed
can often be represented by snow accumulation–depletion
curves (ADCs). In this study, terrestrial photography (TP) of
a cell-sized area (30× 30 m) was used to define local snow
ADCs at a Mediterranean site. Snow-cover fraction (SCF)
and snow-depth (h) values obtained with this technique con-
stituted the two datasets used to define ADCs. A flexible sig-
moid function was selected to parameterize snow behaviour
on this subgrid scale. It was then fitted to meet five differ-
ent snow patterns in the control area: one for the accumula-
tion phase and four for the melting phase in a cycle within
the snow season. Each pattern was successfully associated
with the snow conditions and previous evolution. The re-
sulting ADCs were associated to certain physical features of
the snow, which were used to incorporate them in the point
snow model formulated by Herrero et al. (2009) by means
of a decision tree. The final performance of this model was
tested against field observations recorded over four hydro-
logical years (2009–2013). The calibration and validation of
this ADC snow model was found to have a high level of accu-
racy, with global RMSE values of 105.8 mm for the average
snow depth and 0.21 m2 m−2 for the snow-cover fraction in

the control area. The use of ADCs on the cell scale proposed
in this research provided a sound basis for the extension of
point snow models to larger areas by means of a gridded dis-
tributed calculation.

1 Introduction

Subgrid variability plays a crucial role in grid-based dis-
tributed hydrological modelling. The scale issue introduced
when a point model is applied to a gridded area conditions
the accuracy of the processes represented (Blöschl, 1999).
This is especially important in physical modelling because
of the non-linearity usually found in natural systems, which
does not allow the assumption of homogeneity within each
grid cell.

This is the case of snow models based on energy and water
balance (Anderson, 1976; Herrero et al., 2009; Tarboton and
Luce, 1996; Wigmosta et al., 1994). The spatial distribution
of snow can be very heterogeneous. In cold northern regions,
wind-drifting, canopy interception, and micro-relief make
the distribution of snow rather discontinuous (Sturm and
Holmgren, 1994). Moreover, in warm mid- and low-latitude
locations, such as the mountainous areas in Mediterranean-
type regions, the changeable climate conditions make the al-
location of the snow even more variable and irregular. There
may be several accumulation–melting cycles throughout the
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year, and a wide range of snow-depth states can occur even
within small areas. Micro-topography plays an important role
in this high spatiotemporal variability, being the characteris-
tic snow-depth values usually of the same order of magnitude
than this micro-relief (0–1000 mm), and this effect, despite
complexities, should be included in gridded representations
(Anderton et al., 2004).

Accumulation–snowmelt models tackle this problem from
different approaches. Wigmosta et al. (1994) include the ef-
fects of local topography and vegetation cover in physical
snow modelling in the distributed hydrology soil vegetation
model (DHSVM). In contrast, the cold regions hydrologi-
cal model (CRHM) (Pomeroy et al., 2007), which includes
a full range of modules that represent hydrological processes
in cold regions, employs a single conception of cascading
hydrological response units (HRU). Neither of these mod-
els, however, consider the effects of the interaction between
micro-topography and snow. This could be a constraint for
their application on smaller scales.

Isnobal (Marks and Dozier, 1992) introduces the effect of
topography interaction on snow-wind redistribution by deter-
mining the formation of drifts and scour zones at the element
scale. However, it does not address the effect of low relief
on the cell size. Luce et al. (1999) take a physically based
snow model and enrich it with the concept of the depletion
curve (DC), previously used in runoff prediction based on
temperature-index-based melting estimates (Buttle and Mc-
Donnel, 1987; Ferguson, 1984). They use DCs for parame-
terizing subgrid variability in a physical model, which con-
sidered the study area as a single model element to reduce
the area involved in mass and energy balance as snow re-
gression progresses. These DCs relate a snow-state variable,
such as snow water equivalent (SWE) or snow depth (h), to
the snow-cover fraction (SCF) in a selected area. Following
this approach, Luce and Tarboton (2004) define a DC in a
watershed based on in situ SWE measurements. In addition,
Kolberg et al. (2006) used remote sensing information and a
Bayesian approach to parameterize a DC on watershed scale.
These results show the applicability of this approach to re-
produce snow regression in medium- to large-sized areas.

Nevertheless, the heterogeneous spatial and temporal
snow distribution in semiarid environments makes it difficult
to define a single DC for a whole watershed because the evo-
lution of the different snow accumulation–melting cycles that
usually occur during the snow season in these regions can
differ considerably (Pimentel et al., 2015). A distributed ap-
plication of DCs could be used to capture this variability, and
thus provide a better representation of the physical processes
underlying the evolution of snow cover and snow quantity in
a given area. This is the approach that was followed in this
research study.

A general sigmoid shape is representative of these cycles:

1. an asymptotic trend at the end (beginning) of the ac-
cumulation (melting) processes, when most of the cell
area is covered by snow;

2. a increasing (decreasing) trend, corresponding to the
period in which snow is falling (melting) in the
accumulation–melting processes; and

3. a final phase, in which the accumulation (melting) be-
gins (finishes) and small isolated areas can be found
with snow patches.

The basic snow variable needed to define a DC is the snow-
cover fraction over the area to be scaled. Remote sensing is
the most common and powerful extended source to obtain
this information in medium- and large-sized areas. However,
to represent the snow distribution at subgrid scales, higher
temporal and spatial resolutions may be required. Terrestrial
photography (TP) of a snow-covered scene is an efficient al-
ternative because its temporal and spatial resolution can be
adapted to the scale of the processes driving the snow evo-
lution (Corripio, 2004; Farinotti et al., 2010; Pérez-Palazón
et al., 2014; Pimentel et al., 2012, 2015; Rivera et al., 2008).
Moreover, TP at this scale also provides snow-depth mea-
surements at selected points within the images. This is ac-
complished by means of coloured poles located in the area
that can be clearly identified and differentiated from the rest
of the image.

This study used an innovative approach for incorporating
the effects of the spatial variability of the snow distribution at
the subgrid scale into snow modelling by means of TP, based
on previous work (Pimentel et al., 2015). For this purpose, a
4-year series of TP images of a 30× 30 m scene at a snow
monitoring site in the Sierra Nevada (southern Spain) was
used to derive DC parameterizations representative of differ-
ent snow accumulation–melting cycles. The resulting DCs
were included in the snow model developed by Herrero et
al. (2009) and Herrero and Polo (2012), and the performance
of this DC model was finally tested against field observa-
tions.

2 Study site and available data

This study was carried out in Sierra Nevada, southern Spain
(37◦N latitude), where the highest altitudes in the Iberian
Peninsula can be found (3479 m a.s.l.). Sierra Nevada is a lin-
ear mountain range, which run 90 km parallel to the Mediter-
ranean coast. The interaction between the semiarid Mediter-
ranean climate and the alpine conditions in this area results
in a highly variable snow regime. The snow usually appears
above 2000 m a.s.l. during winter and spring even though the
snowmelt season generally lasts from April to June. The typ-
ically mild Mediterranean winters produce several snowmelt
cycles before the final melting phase, which distributes the
snow in patches over the terrain. Precipitation is heteroge-
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neously distributed over the area because of the steep orog-
raphy, with a high annual variability (400–1500 mm). The
average temperature during the snow season can range from
−5 to 5 ◦C, reaching values as low as−20 ◦C at certain times
in the winter (Pérez-Palazón et al., 2015).

A control area of 900 m2 was selected and sized, accord-
ing to a grid-cell area of 30× 30 m. This cell size corre-
sponds to the resolution of Landsat TM scenes, which are
used to monitor snow extension over long time periods. This
area is located near the weather monitoring station, Refugio
Poqueira (Fig. 1), at 2500 m a.s.l. This plot is composed of
rocks as well as of compact, low, densely branched shrubs,
mainly Genista versicolor and Festuca indigesta, which act
as insulators between the soil and the snowpack. They con-
stitute the main representative elements of the low relief of
Sierra Nevada above 2000 m a.s.l., where there are only iso-
lated patches of reforested pine trees.

The weather station has been operating since 2004. It gen-
erates 5-minute data records pertaining to precipitation, solar
radiation, long-wave radiation, wind velocity, temperature,
air humidity, and atmospheric pressure. In the summer of
2009, an automatic CC640 Campbell Scientific camera was
also installed and programmed to obtain 5 images per day,
every 2 h between 08:00 and 16:00 LT, of the control area
with a resolution of 640× 504 pixels. This camera is able to
capture both the rapid snow melting cycles and the spatial
heterogeneity exhibited by the snow cover at the study site
in relation to its micro-topography. Additionally, two snow
measuring poles were installed in the photographed area to
measure snow depth. Thus, the TP was able to monitor SCF
and a representative snowpack depth (href) at the study site
with a high recording frequency. The SCF and href series in
Pimentel et al. (2015), which extend up to the summer of
2013, were used in this work. Tables 1 and 2 show represen-
tative climate and snow variables in the control area during
the study period.

A digital elevation model (DEM) with a resolution of
0.05× 0.05 m was derived from topographic surveys of the
control area. This DEM was used to project the TP images
and analyse their information.

3 Methods

Four consecutive hydrological years (2009–2013) were anal-
ysed at the study site. The DCs at subgrid scale were derived
from the SCF and average snow-depth (h) values obtained
from the TP images during the study period, and were pa-
rameterized by means of flexible sigmoid functions. These
DCs were incorporated into the point model of the study site,
elaborated by Herrero et al. (2009). This section describes
the steps in this process: (i) the definition of DCs, (ii) the
way that SCF and h values were obtained from TP, (iii) the
point snowmelt–accumulation model, and (iv) the inclusion
of DCs in the model.

3.1 Accumulation–depletion curves (ADCs)

The h over the control area and the SCF values were se-
lected to express the curves representative of accumulating–
melting cycles. Each cycle corresponds to the time period
between the beginning of a snowfall event and the end of the
complete ablation of the snow or the occurrence of a new
snowfall event. Each cycle thus has two consecutive phases,
accumulation and melting, and for this reason, a different
curve was obtained for each phase in every cycle during the
study period. In the accumulation–depletion curve (ADC)
definition, dimensionless h (h

∗
= h/hmax [x axis]) and SCF

(SCF∗ = SCF/SCFmax [y axis]) values scaled based on the
maximum average snow depth (hmax) and the maximum SCF
(SCFmax), of each cycle respectively, were used to mini-
mize the variability throughout the cycles in the study period.
Both variables were obtained from the TP series recorded
at the study area (see Sect. 3.2). The flexible sigmoid func-
tion given by Eq. (1) was used as the ADC parameterization.
This function, which was adapted from that proposed by Yin
et al. (2003) to characterize crop growth, provides a flexible
description of asymmetrical sigmoid patterns, numerical sta-
bility of parameters in statistical estimation, prediction of a
zero value at the origin of the coordinates, and easy trunca-
tion to represent asymptotic behaviour.
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which are, respectively, the maximum value of SCF∗ for a
given cycle, the dimensionless snow depth when the melting
begins, and the dimensionless snow depth when the maxi-
mum melt rate is reached during a cycle. The sub-index i
represents each of the cycles during the study period.

The time evolution of the SCF during the study period was
analysed to define the set of accumulation–melting cycles.
The accumulation phase exhibited low variability whereas
the melting phase of the cycles showed considerable varia-
tion. Consequently, a single sigmoid function fits all the ac-
cumulation phases in the selected cycles, whereas different
curves were fitted for each snowmelt phase. The fitting pro-
cedure was iterative to cluster the ADCs after cycles with a
similar regime. ADCs with close fitted values (10 % differ-
ence) were clustered, and then a second fit was performed
for the whole dataset, and so on.

3.2 Terrestrial photography analysis: SCF and
snow-depth measurements

The SCF and h series used in this work were obtained by fol-
lowing the methodology proposed by Pimentel et al. (2012,
2015) and Pérez-Palazón et al. (2014), which consists of a
two-step method involving georeferencing and snow detec-
tion. Firstly, georeference provided the photo with spatial
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Figure 1. Location of the study site at Sierra Nevada, Spain (top), and DEM of the control area located near the Refugio Poqueira (RP)
weather station (bottom). The black dot indicates the location of the weather station and the black solid line, the area covered by the images
obtained from terrestrial photography.

Table 1. Statistical descriptors of selected meteorological variables at the Refugio Poqueira weather station during the study period (2009–
2013).

Mean Max. Min.

Annual precipitation (mm) 1072 1460 537
Annual snowfall fraction (% of the annual precipitation) 65 83 45
Daily temperature during the year (◦C) 6.7 24.7 −15
Daily temperature during the snow season (◦C) 1.3 16.3 −15
Daily solar radiation (J m−2) 20.5× 106 35.8× 106 0.5× 106

Daily wind speed (m s−1) 3.6 13.5 0.1

references in order to identify a function that related the 3-D
point in the DEM to the associated 2-D pixel in the image.
For this purpose, standard automatic computer vision algo-
rithms were applied (Fiume et al., 1989; Foley et al., 1990).
Secondly, the snow detection was performed with a cluster-
ing algorithm, namely, a K means algorithm (MacQueen,
1967), which classified pixels into two clusters: snow cov-
ered and non-covered. Following this pixel classification, the
SCF in each image was easily calculated by the sum of pixels
in each cluster (Pimentel et al., 2012).

The average snow depth, h, was obtained in each image us-
ing the poles installed in the plot. They were painted bright
red, which made them easy to distinguish from the other el-
ements in the photo. A three-step procedure was followed:
(1) snow pole detection in the images (Fig. 2a), (2) transfor-
mation between pixel snow depth in the pole (href) (Fig. 2b),
and (3) transformation between href−h (Fig. 2c). For this, a
predefined searching window was used to isolate the poles in
the images. Then, the same clustering algorithm was applied
to determine pole and no-pole pixels. Only data from one
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Table 2. Statistical descriptors of the SCF and h datasets measured by using TP in the control area (Pimentel et al., 2015) for each year and
during the whole study period (2009–2013).

2009–2010 2010–2011 2011–2012 2012–2013 Study period

mean SCF (m2 m−2) 0.8 0.88 0.5 0.75 0.75
maximum SCF (m2 m−2) 1 1 1 1 1
mean h (m) 0.30 0.56 0.12 0.31 0.1
maximum h (m) 1.04 1.19 0.41 0.88 1.19
number of accumulation–melting cycles 24 17 12 18 71
annual number of days with snow accumulation (days) 62 55 29 50 196
annual number of days with snow melting (days) 119 127 87 99 432

Figure 2. (a) Pole detection in the original image using a predefined searching window; (b) transformation between pixel snow depth in the
pole (href); (c) a simplified 2-D representation of the relationship between href and h in each TP image of the control area.

pole were used in the study. The second one was a control
test for the horizontality hypothesis adopted in the calcula-
tion of h. A linear equation was applied to the thus-identified
pole pixels to transform them into (href) (Fig. 2a). The asso-
ciated h value for the whole control area was estimated for
each image by assuming a horizontal surface of the snow-
pack accumulation distribution (Luce et al., 1999). An em-
pirical relationship (Eq. 2) between the href value in the pole
and the value of h was derived from this hypothesis, by us-
ing the exact location of the pole and the topography in the
control area (Fig. 2b). A piecewise function, composed of a
cubic expression for a reference snow depth below the influ-
ence height of the micro-topography, 0.6 m (calculated as the
99th percentile of the micro-topography distribution in the
control area), and a linear relationship for reference snow-
depth values higher than this threshold were obtained, where
both h and href are expressed in metres, in Eq. (2).

h=

{
−0.2764 ·h3

ref+ 0.8066 ·h2
ref+ 0.2608 ·href if href ≤ 0.6m

href− 0.2129 if href > 0.6m
(2)

3.3 Snow modelling

3.3.1 Point model

The snowmelt–accumulation model for a Mediterranean site,
developed by Herrero et al. (2009) is a point physical model

based on a mass and energy balance. The model assumes a
uniform horizontal snow-cover surface distributed in one ver-
tical layer. This snow column per unit area defines the con-
trol volume, which has the atmosphere as an upper boundary
and the ground as the lower one. The lateral mass and energy
fluxes between adjacent snow columns are regarded as null.
The energy and mass balances are given by Eqs. (3)–(4):

dSWE
dt
= P −E+W −M, (3)

d(SWE · u)
dt

=
dU
dt
=K +L+H +G+R · uR

−E · uE +W · uW −M · uM , (4)

where SWE is the water mass in the snow column and u is the
internal energy per unit of mass (U for total internal energy).
In the mass balance, P defines the precipitation flux, E is the
flux of water vapour diffusion (evaporation/condensation),
W represents the mass transport flux due to wind, and M
is the melting water flux. On the other hand, regarding the
energy fluxes, K is the solar or shortwave radiation, L is the
thermal or long-wave radiation,H is the flux of sensible heat
exchange with the atmosphere,G is the flux of heat exchange
with the soil, and uR , uE , uW , and uM are the advective heat
flux terms associated with each of the mass fluxes in Eq. (3),
respectively.

In the mass-balance Eq. (3), W was disregarded because
of the rapid snow metamorphosis, which compacts the snow
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Figure 3. Selected examples of the final SCF maps (0.05× 0.05 m) obtained from the terrestrial photography treatment procedure at the
study site for certain representative states during the snow season: (a) original images for each date (30× 30 m); (b) georeferenced images;
and (c) snow masks obtained from the georeferenced image by using aK mean algorithm (snow presence in red). The algorithm is capable of
capturing snow presence under different atmospheric conditions: cloudy, foggy, and sunny days (left to right panel in each row, respectively).

and reduces its mobility (Marks and Winstral, 2001). G was
not considered in the energy-balance Eq. (4) since it is re-
garded as a secondary term in itself in this balance (Kuusisto,
1986). The calculation of the shortwave radiation (K) was
based on the measured downwelling short-radiation flux and
the albedo (Aguilar et al., 2010; Pimentel et al., 2016). The
calculation of the long-wave radiation was based on the for-
mulation for atmospheric long-wave emissivity, developed in
the Sierra Nevada area by Herrero and Polo (2012). Finally,
the H term was modelled as a diffusion process (Dingman,
2002). A detailed description of the formulation of each term
can be found in Herrero et al. (2009).

3.3.2 Incorporation of accumulation–depletion curves
in the point model

The point model described in the previous section was ex-
panded to perform calculations for a 30× 30 m cell by in-
cluding the ADCs obtained from TP. In this way, SCF be-
came a new state variable in the snow model. In time step t1,
when a snowfall event begins, the mass and energy balances
are solved for the whole cell, and the snow-state variables are
calculated per unit of area. SCF at this time (SCF1) is esti-
mated from the h calculated at this time (h1) and by using
the associated ADC. In the next time step (t2), SCF1 is used
as a reduction factor of the area affected by the mass and en-
ergy balance. This iterative process is repeated in the model
whenever snow is still present in the cell.

Three hydrological years were used for calibration: 2009–
2010, a wet year; 2010–2011, a very wet year; and 2011–
2012, a dry year. The stability correction factors for turbu-
lent transfer (φM , φV , and φW ) (Cline, 1997), the sensible-
heat transfer coefficient in windless conditions (KH0), and
the value of snow surface roughness (z0) are the calibration
parameters in the snow model by Herrero et al. (2009). A 4th
year of data (2012–2013) was used to validate the previous
results. The mean error (ME), mean-absolute error (MAE),
and root-mean-squared error (RMSE) were employed in the
calibration and validation process as an objective function to
be minimized and tested in the validation step with SCF and
h as test variables.

4 Results

4.1 Terrestrial photography measurements

Figure 3 shows some representative examples of the SCF
maps obtained from the TP georeferencing and snow-
detection processes. As can be observed, the detection algo-
rithm was able to capture snow presence even under adverse
atmospheric conditions such as foggy and extremely cloudy
days.

The temporal evolution of h and SCF, both measured from
the TP images, is represented in Fig. 4. A high variability is
observed in the accumulation–melting cycles that occurred
during the 4 years of the study period. The number of cycles
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Figure 4. Temporal evolution of the daily snow-cover fraction, SCF (gray bars), and average snow depth, h (black line), obtained from TP at
the control area during the 4-year study period. The accumulation–melting events are numbered for each year. Red circles indicate the events
selected for the subgrid variability analysis during the 3-year calibration period.

and their duration varied considerably during each year, with
a mean number of 18± 5 cycles per year and a mean dura-
tion of 3± 1 and 6± 5 days for the accumulation and melting
phases of each cycle, respectively. On an annual basis, the
mean numbers of days with melting and accumulation domi-
nance were 49± 14 and 108± 18 days, respectively. Further-
more, the mean daily snow depth fluctuated greatly from year
to year, ranging from 0.12 m in the driest year (2011–2012)
to 0.56 m in the wettest (2010–2011). There was a maximum
average snow depth, h, of 1.19 m in the most humid year.
As for the SCF, each year the control area was completely
covered for at least for 1 day, with mean daily SCF values
ranging from 0.50 m2 m−2 to 0.88 m2 m−2 (Table 2).

In order to analyse subgrid variability, 16 of the 53 cy-
cles during the 3 calibration years (2009–2010, 2010–2011,
2011–2012) were finally selected. Those cycles that either
had a short duration of less than 5 days, or took place when
the study area was completely covered by snow, were not
considered in the study since they did not provide a signif-
icant amount of information. The events finally selected are
those marked with a red circle in Fig. 4.

4.2 The formulation of depletion curve and snow
processes

The ADC given by Eq. (1) was fitted to each of the cy-
cles in Fig. 4, as explained in Sect. 3. Since the duration of
the accumulation phase showed a low deviation when com-
pared to that of the melting phase in each cycle, the data of
this phase were jointly considered in the procedure. In con-
trast, the melting phases were individually treated for each
event. Table 3 shows the fitted values of the parameters as-

sociated with the melting phase of each event. As explained
in Sect. 3.1, these individually fitted parameters during the
melting phase were used to cluster the melting phases and
identify common patterns within the cycles. The final re-
sults clustered the melting phases in four groups (identified
as curves 1–4 in Table 3). The associated values of their fitted
parameters are shown in Table 4, together with those corre-
sponding to the accumulation phase (Curve 0).

Regarding the five ADCs given by the values in Table 4,
their shape can be associated with the description of the
evolution of the snowpack within the control area (Fig. 5).
More specifically, Curve 0, which describes the accumula-
tion phase of the selected cycles, produces a very fast initial
accumulation that covers almost half of the maximum snow
area during the accumulation phase. This rapid accumulation
is followed by a somewhat slower increase, which finishes
with a dimensionless snow-depth value of 0.7, a maximum
threshold beyond which the area is completely covered. As
for the melting phases, Curve 1 is representative of cycles
with a large amount of snow (a high h

∗
value) resulting from

a long accumulation phase, and it is associated with a very
compact state of the snow with a high level of metamor-
phism.

Curve 2 also represents melting phases with a large quan-
tity of snow, with high initial values of snow depth. In this
case, they are preceded by a short, non-persistent accumu-
lation phase. Moreover, since melting occurs directly after
the accumulation process ends, this snow is only slightly
compacted. Finally, both Curve 3 and 4 represent snowmelt
cycles with significantly lower snow-depth values. In these
cases, the micro-topography is very likely the direct and
main driver of the melting process from the beginning of
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Figure 5. (a) Accumulation–melting cycles used in the study. These include selected cycles during each year of the calibration period
(2009–2012) with their classification in the depletion curves (DCs) in Table 5. (b) Also included are the following ADC patterns: Curve 0,
accumulation phase for all the cycles; Curve 1, melting phase of cycles with initial high snow depth, following a long accumulation stage;
Curve 2, melting phase of cycles with initial high snow depth, following a short accumulation stage; Curve 3, melting phase of cycles with
low snow depth at the beginning of the annual snow season (autumn–winter); and Curve 4, melting phase of cycles with low snow depth at
the end of the annual snow season (spring).

this phase. In fact, the length of the snow season is the main
difference between both curves: the autumn–winter cycle
(Curve 3) in comparison to the spring cycle (Curve 4). In
the cold months, the snowmelt rate has a fast initial value
followed by a slowdown in its final stage. In contrast, in the
warmer spring months, the snow decay is faster and approx-
imately constant throughout the melting phase.

This difference in dynamics is described by the fitted pa-
rameter values in the associated DCs (Table 4). More specif-
ically, h

∗

e defines the beginning of the melting phase in each
cycle. It is lower in Curve 1 than in Curve 2 (0.759 vs. 0.861)
and reflects the effect of snow consolidation, which delays
the beginning of the melting phase. Furthermore, its value is
1 in Curves 3 and 4, as it corresponds to cycles in which
the melting phase immediately occurs after the accumula-
tion maximum. Regarding h

∗

m, which determines the moment
with maximum melting rates, it drops to zero in Curves 1 and
4, which are associated with quasi-stationary melting rates

during this phase. In contrast, melting phases represented by
Curve 2 (h

∗

m = 0.264) and Curve 3 (h
∗

m = 0.617) exhibit two
different rates: a fast value and a slow value, associated with
the initial and final melting stages, respectively.

Based on the previous data, a decision tree was defined to
incorporate the corresponding ADC given by the fitted pa-
rameters in Table 4 into the snowmelt–accumulation point
model. Figure 6 shows this decision tree, which answers
this sequence of questions: (0) type of curve, accumulation
or depletion; (1) the duration of the snow (number of days
greater or lesser than 30) in the control area when the melt-
ing phase begins to discriminate the effects on the com-
paction of the snowpack; (2) the maximum snow depth dur-
ing a given cycle (a threshold value of 0.60 m was identi-
fied as representative of the topography of the control area);
and (3) the month when the cycle occurs to discriminate be-
tween autumn–winter and spring. The conditions formulated
in each diamond translate these previous snow-state-related
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Table 3. Fitted values of the parameters in Eq. (1) (h∗e and h∗m) and
the associated determination coefficient (R2) for the melting phase
of each selected cycle during the calibration period. The last column
to the right shows the groups in which each DC was finally clustered
(identified as Curves 1 to 4).

Year Cycle Number of h∗e h∗m R2 Type
days of

the cycle

2009–2010 9 4 0.80 0.14 0.85 Curve 1
2009–2010 11 10 0.75 0.15 0.90 Curve 1
2009–2010 13 12 0.85 0.10 0.88 Curve 1
2009–2010 22 20 0.78 0.13 0.94 Curve 1
2010–2011 2 12 0.80 0.40 0.97 Curve 2
2010–2011 15 18 0.76 0.16 0.97 Curve 1
2010–2011 16 6 1.10 0.05 0.97 Curve 4
2010–2011 17 6 1.15 0.13 0.90 Curve 4
2011–2012 2 22 0.91 0.56 0.97 Curve 2
2011–2012 4 9 0.99 0.77 0.93 Curve 3
2011–2012 5 5 1.00 0.76 0.97 Curve 3
2011–2012 6 3 1.00 0.65 0.97 Curve 3
2011–2012 7 11 1.05 0.80 0.89 Curve 3
2011–2012 8 9 1.00 0.65 0.96 Curve 3
2011–2012 9 4 1.01 0.45 0.95 Curve 4
2011–2012 11 10 0.85 0.38 0.97 Curve 2

Table 4. Fitted values of the parameters in Eq. (1) (h∗e and h∗m) and
the associated determination coefficient (R2) for both the accumu-
lation pattern (Curve 0) and melting phase patterns (Curves 1 to 4)
identified within the selected cycles during the calibration period.

Curve h∗e h∗m R2

Curve 0 0.707 0.000 0.85
Curve 1 0.759 0.000 0.91
Curve 2 0.861 0.264 0.94
Curve 3 1.000 0.617 0.85
Curve 4 1.000 0.157 0.98

conditions into test variables that the model is capable of
checking out (e.g. the model does not simulate the rate of
compaction but, since this process is closely related with the
age of the snow, this condition has been simplified by using
the number of days with continuous presence of snow). The
sequence in the decision tree stems from the observations and
therefore, from the importance of the process on the melting
parameterized in each of them. Once the curve is selected,
the use of SCF as a reduction factor is applied following the
procedure explained in Sect. 3.3.2.

4.3 Calibration and Validation

Once the decision tree was implemented into the snow point
accumulation–melting model with the ADCs given by the
fitted parameter values in Eq. (1) (Table 4), different simu-
lations were performed to optimize the performance of the
model in regard to the daily h and SCF values during the cal-

Figure 6. Decision tree included in the snow model extension for
a control area of 30× 30 m to select the depletion curve associated
with each accumulation–melting cycle during the snow season.

ibration period. Table 5 shows selected simulations for both
variables with different calibration hypotheses, and the com-
parative statistics for each of the variables.

The simulations reflect the expected sensitivity of the
model to the different calibration parameters. As can be ob-
served, the use of null values of the φ factors together with
high values of both KH0 and z0 accelerate the melting stage
(reflected in the positive values of ME in Simulations 1, 2
and 3 in Table 5). Furthermore, this sensitivity is more en-
hanced for h estimation than for SCF estimation (e.g. the
reduction of the RMSE value from 214.9 to 126.7 mm be-
tween Simulations 1 and 3). In the same way, low values of
these two parameters also delay the extinction of the snow
and result in more mismatching between observed and simu-
lated values (e.g. Simulation 5). The optimal calibration val-
ues selected for the snow model modified by ADCs were
those for Simulation 7 (Table 5): (a) null values of φ fac-
tors, as proposed in other studies (e.g. Tarboton and Luce,
1996); (b) KH0 = 1 Wm−2K, which is a value lower than
what Herrero et al. (2009) found from point snow-depth mea-
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Table 5. Performance of the ADC snow model (following ADCs in Table 4) during the calibration and validation periods: calibration values
used in the selected simulation trials (top) and in the validation simulations (bottom) along with the associated error indicators for both daily
h and SCF in each phase. Bold values indicate the best-performance parameters in the simulation trials.

Calibration (2009–2012)

Simulation (φM , φV , φW ) KH0 z0 ME MAE RMSE
(W m−2 K−1) (mm)

h (mm) 1 None 6 25 85.1 93.2 214.855
2 Cline 6 25 65.0 74.7 171.2
3 Cline 1 25 43.1 57.2 126.7
4 Cline 1 5 −19.4 50.4 98.1
5 Cline 1 1 −77.0 88.3 156.8
6 None 1 1 −28.3 50.2 98.7
7 None 1 2.5 −0.7 39.6 84.2
8 None 2 2.5 5.0 39.3 85.7

SCF (m2 m−2) 1 None 6 25 0.069 0.109 0.243
2 Cline 6 25 0.028 0.091 0.207
3 Cline 1 25 0.002 0.093 0.205
4 Cline 1 5 −0.070 0.102 0.221
5 Cline 1 1 −0.118 0.135 0.259
6 None 1 1 −0.066 0.091 0.201
7 None 1 2.5 −0.040 0.079 0.180
8 None 2 2.5 −0.033 0.077 0.177

Validation (2012–2013)

Simulation (φM , φV , φW ) KH0 z0 ME MAE RMSE
(W m−2 K−1) (mm)

h (mm) – None 1 2.5 −5.110 66.841 105.8
SCF (m2 m−2) – None 1 2.5 −0.112 0.134 0.219

surements at the study site, but closer to those proposed by
Jordan (1991) and Jordan et al. (1999) in previous works;
and (c) z0 = 2.5mm, which lies within the range of 0.0001–
0.01 m, as proposed by various authors (i.e. Andreadis et al.,
2009; Jordan, 1991; Marks and Dozier, 1992; Marks et al.,
2008; Tarboton and Luce, 1996).

Figures 7 and 8 show the values of h and SCF, respec-
tively, during both the calibration and validation periods,
along with the values simulated with the optimal calibra-
tion parameters. The simulation of SCF (Fig. 7) resulted in
a high level of overall accuracy, with ME= 0.040 m2 m−2,
MAE= 0.079 m2 m−2, and RMSE= 0.180 m2 m−2. All the
snowmelt cycles are represented though the simulated val-
ues generally overestimate the dataset measured during short
snowmelt cycles, i.e. at the beginning of the first year or dur-
ing the winter of the 3rd year. In contrast, the model tends to
underestimate the SCF during snow-persistent periods. The
simulation of the average snow depth (Fig. 8) also satisfacto-
rily reproduced snow behaviour during the calibration period
with a global RMSE= 84.2 mm. This accuracy, however, is
lower in the first year, from the beginning of the winter, in
which measured and simulated values show a clear mismatch
even though their trends follow the same pattern. The other

2 years in the calibration period are accurately represented,
and the different snowmelt cycles are adequately reproduced.
This includes both the intense rates at the beginning and the
end of the annual snow season as well as the long periods
with a persistence of snow.

Both Figs. 7 and 8 also include the results of the model
in contrast to the observations during the 4th year of data
(2012–2013) in the form of a validation period (graph b in
both figures) of the parameters calibrated in Simulation 7
(Table 5). Table 5 also shows the results and the statistics
of this validation for both variables h and SCF. The results
generally reproduced statistics similar to those achieved for
the calibration period with the same behaviour observed dur-
ing calibration: a general overestimation of SCF during short
cycles and a mismatch in the simulated snow-depth values
for certain states.

5 Discussion

The five proposed ADCs are capable of explaining the
accumulation–melting dynamics of snow on a grid-cell scale
by using (a) a similar accumulation behaviour during the
study period (accumulation curve, Curve 0) and (b) four
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Figure 7. Temporal evolution of the measured and simulated daily SCF values, based on the calibration parameters in Simulation 7 (Table 5)
during (a) the calibration period and (b) the validation period. Dispersion graphs for each year are also provided on the right.

Table 6. Importance of selected descriptors of the initial conditions and main processes associated with each depletion curve identified in
this study. The number of crosses indicates the level of importance of the condition and/or process in each curve.

Initial conditions State of the snow Melting
(level of compaction∗)

Duration of Amount of Snow Metamorphism Deformation Grain Air Ground
accumulation snow drift strain size-Albedo temperature temperature

stage depth

CURVE 1 +++ ++ +++ +++ + +++ ++ +

CURVE 2 ++ ++ +++ ++ + ++ + +

CURVE 3 + + ++ + +++ + ++ +++

CURVE 4 + + + + +++ + +++ +++

∗ According to Armstrong and Brun (2008), the main processes that work in the compaction rate of the snow pack: (a) snow drift, (b) metamorphism, and (c) deformation
strain.

melting patterns (depletion curves, Curves 1 to 4) depend-
ing on the initial condition of the snow at the beginning of
the melting process, the state of the snow and, consequently,
the main processes involved.

On the one hand, the selection of a single curve for the
accumulation cycles (Curve 0) makes the model well able
to simulate the accumulation phases during the study period,
as can be observed in both Figs. 7 and 8, with divergences

occurring mostly in the reproduction of snow-depth values
after those melting events that were not fully captured by the
model (that is, when the memory of the model biases the sim-
ulation). This can be also explained from the general pattern
of the snowfall events in these Mediterranean regions, where
heavy but quick snowfalls are very usual, with less variabil-
ity than that exhibited by the melting phases. On the other
hand, Table 6 sums up the main descriptors of such condi-
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Figure 8. Temporal evolution of daily precipitation, P , and daily minimum (blue), mean (yellow), and maximum (red) temperature, T ,
values, together with the measured and simulated daily h values from the calibration parameters in Simulation 7 (Table 5) during (a) the
calibration period and (b) the validation period. Dispersion graphs of h for each year are also provided on the right. Mismatches are identified
from A to K, and coloured circles are associated with the potential error sources in the modelling.

tions and processes involved in the melting process for each
DC proposed. Thus, Curve 1 represents cycles with a large
amount of consolidated snow, which has undergone a rela-
tively long accumulation phase. This snow is usually highly
metamorphosed due to both its long age and the exposure to
a wide variety of conditions and, hence, its grain size and

consequently its albedo have very likely experienced impor-
tant changes. The horizontal asymptotic initial behaviour of
the curve (from the point 1–1) describes this initial condition
for the melting process; once the snow has retreated in a sig-
nificant portion of the area, the surrounding air and ground
temperature conditions the melting dynamics at the end of
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the process. Curve 2 characterizes cycles with a large amount
of recent snow. The shape of the curve is similar to Curve 1;
nevertheless, this snow is not much compacted and conse-
quently the initial asymptotic behaviour is shorter. The du-
ration of the cycle does not allow changes in the grain size
larger than in the previous case. The final behaviour is very
close to the previous one, with similar influence of the air
and ground temperature gradients. Curve 3 has a completely
different behaviour; it represents cycles with a small amount
of snow during autumn or winter. It is a scarcely metamor-
phosed snow, where the main factors that condition its evo-
lution are the deformation strain, very active in fresh snow
after a snowfall, and the snow drift, since high wind rates are
more usual during winter or autumn. In this case, with low
snow-depth values, the influence of the micro-topography
and ground temperature is one of the main drivers in the melt-
ing process. This is reflected in the shape of the curve, which
does not have the asymptotic trend shown in the previous
ones. Curve 4, cycles with a small amount of snow during
spring, follows a pattern quite similar to Curve 3: a low de-
gree of metamorphism and a high influence of deformation
strain. However, snow drift is less important in spring, due to
frequently lower wind-speed values during this season. For
the same reason, the melting during these cycles is more in-
fluenced by the air temperature.

Furthermore, these ADCs succeeded in parameterizing the
spatial distribution of the snow patches with the same type
of curve. To illustrate this, Fig. 9 shows three images dur-
ing each of the three cycles represented by the same curve
(Curve 2). They correspond to three SCF states during the
cycle (90, 50, and 20 % of the snow coverage in the control
area).

A different snow distribution can be observed in images
from different dates but with the same SCF value. These dif-
ferences stem from the driving atmospheric conditions dur-
ing the accumulation phase and the beginning of the melting
stage, and their interaction with the micro-topography. For
example, in the images for 2011–2012, Cycle 13, the effect
that wind produced on the snow distribution can be clearly
observed, with small accumulation areas close to the largest
rocks.

However, all of these distributions can be accurately rep-
resented with the same curve. Hence, this parameterization
captures the subgrid variability without further need to phys-
ically model the process at this scale, such as the interaction
between wind and micro-topography, among others. Similar
effects on the snow distribution can be observed in the se-
quence of states associated with the other curves.

Moreover, the dimensionless expression of the variables
selected in the ADCs parameterization, h∗ and SCF∗, allows
for analysis of them under the light of the physical conditions
prevailing during each analysed melting cycle (Table 6). The
fact that the observed variability from the different patterns of
the snowmelt dynamics could be associated to specific con-
ditions, which was validated during an additional year, is an

indirect support to the potential application of the DCs not
only in different points in the Sierra Nevada, but also in other
regions and/or similar snow-state cycles, once the order of
magnitude of snow depth is locally estimated. Furthermore,
these results could be used linked to remote sensing sources,
such as Landsat TM data with the same cell size, or other
new sources with higher spatial resolution, to calibrate and
validate the distributed extension of the snow model, and the
development of new data fusion algorithms, to larger areas
(Molotch and Margulis, 2008).

The inclusion of this five-curve set improved the perfor-
mance of the snow model obtained in previous work. The
conclusions of a previous study (Pimentel et al., 2015) sug-
gested that the use of a unique depletion curve was not
enough to capture the complex dynamics of snow on this
scale in these regions. Three different parameterizations of a
lognormal distribution, described by their coefficient of vari-
ation (CV) (CV= 0.4, CV= 0.8, CV= 1.2), were assessed
following the curves proposed by Luce and Tarboton (2004).
The current results show an improved performance of the
snow model, with RMSE values of 84.2 and 105.8 mm dur-
ing the calibration and validation periods, respectively, below
the RMSE values of 321.3, 285.4, and 556.0 mm obtained
in the previous work for each CV-parameterized curve test,
respectively. The performance of the multiple-DC choice in
the snow model is also better than the results obtained with a
single-DC choice plus the assimilation of the observed SCF
values (also in Pimentel et al., 2015). Therefore, this semi-
empirical approximation showed itself to be powerful and, at
the same time, less computationally costly than those data as-
similation techniques. Moreover, this new parameterization
is beyond the traditional regression trees used in snowmelt
models to capture subgrid variability (Balk and Elder, 2000;
Erxleben et al., 2002; Molotch et al., 2005), since it is based
on a parameterization related to some physical features.

In spite of the general accuracy of these results, some mis-
matches occurred in certain cycles during the study period,
identified as A to H and I to K , respectively, for the calibra-
tion and validation periods in Fig. 8. They can be classified
according to the following error sources:

1. An incorrect determination of the precipitation fraction
occurring in the form of rain or snow (blue circles in
Fig. 8). In this regard, the model considers precipita-
tion as snow whenever the wet-bulb temperature is un-
der 0 ◦C, an assumption that generally leads to a cor-
rect representation of snowfall events. However, in cer-
tain events, this threshold overestimates the amount of
snowfall, such as in cycles A and E at the beginning of
winter (Fig. 8), and in all likelihood, it also underesti-
mates this amount in the spring cycles (D, G, H, and K
in Fig. 8).

2. The apparently insufficient representation of the effects
of the rain-over-snow events (green circles in Fig. 8) by
the model.
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Figure 9. Selected examples of snow distribution patterns during the snowmelt phase of three different cycles represented by the same
depletion curve (Curve 2).

3. The impossibility of capturing the effects of the blowing
snow associated with high gusts of wind (red circles in
Fig. 8). The model does not incorporate snow transport
by the wind (Sect. 3.2). Despite the fact that DCs can
capture this wind redistribution at the subgrid scale, at
least to a certain extent, they cannot reproduce the net
snow transfer from adjacent areas.

TP images facilitate the analysis of the previously men-
tioned error sources of error since the three factors can
be identified from the original images during a given
accumulation–melting cycle. This has the additional advan-
tage of implementing this technique in snow monitoring net-
works, especially in highly variable conditions, such as those
characterizing the climate and snow regime of Mediterranean
regions.

6 Conclusions

This study analysed the subgrid variability of the snow dis-
tribution in a Mediterranean region and formulated a para-
metric approach that includes these scale effects in the phys-
ical modelling of snow by means of accumulation–depletion

curves associated with snow evolution patterns. The use of
terrestrial photography permitted a continuous monitoring of
the snow distribution that can be easily adapted to both the
spatial and temporal small-scale effects of the physical pro-
cesses governing the accumulation–melting cycles. In this
work, TP economically monitored the evolution of SCF and
h over a 30× 30 m control area in order to study the subgrid
variability of the snow, which cannot be captured by other
more conventional remote sensors.

The TP information provided the data for the definition
of accumulation–depletion curves corresponding to different
patterns of snow accumulation–melting cycles within the an-
nual snow season, which is a usual feature of Mediterranean
environments. The five groups of ADCs succeeded in cap-
turing the subgrid variability of different drivers at this scale,
which have a direct effect on snow distribution, mainly the
interaction between wind and micro-topography. The results
show the importance of including different ADC patterns in-
stead of a single one, to accurately represent snow behaviour
during the different cycles within a snow season. Moreover,
greater variability was found in the melting-phase patterns
in the cycles than in those of the accumulation phase. All of
the patterns of the accumulation phase were almost the same
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(one accumulation curve), whereas up to four patterns were
found for the melting phase (four depletion curves).

These four DCs were found to be associated with the age
of the snow, and the dominant atmospheric conditions dur-
ing the melting. These data were used to derive a decision
tree to select the appropriate DC during a given time inter-
val, which was included in the snow model (Herrero et al.,
2009) used in the study. The tree had the three following
decision indicators: (i) the number of antecedent days with
snow, (ii) the amount of accumulated snow previous to melt-
ing, and (iii) the month of the snow season.

The final optimal calibration of the ADC snow model im-
proved the results previously obtained at the study site by
Pimentel et al. (2015) with a single DC selected among the
best of three standard curves; these results also included as-
similation techniques in the modelling. The improvement of
the model performance is noticeable, especially for the sim-
ulated snow-depth values, with a global error of less than
84.2 mm, and a similarly satisfactory representation of SCF
values with an error of 0.18 m2 m−2.

Despite this improvement, the performance of the ADCs-
snow model was not always satisfactory since certain cycles
were not explained by the modelling. However, the informa-
tion provided by the TP images permitted the analysis of
potential error sources as well as the identification of addi-
tional drivers of the subgrid-scale effects, such as the occa-
sionally incorrect determination by the model of the precipi-
tation fraction in the form of rain or snow, the net transport of
snow from adjacent areas by strong gusts of wind and rain,
and a poor representation of the rain-over-snow effects. Fur-
ther work is currently being carried out to improve the repre-
sentation of these modelling conditions. TP is a valuable data
source that complements standard weather observations (i.e.
overestimation of rain and/or snow measurements) and con-
tributes toward a better understanding of the snow behaviour
under certain drivers (i.e. wind advection).

The results confirm that the use of ADCs on a cell scale,
as proposed in this work, provides a solid foundation for the
extension of point snow models to larger areas by means of
a gridded distributed calculation. Despite the ADCs having
been obtained from local observations in a small control area,
the treatment of the data allows their application beyond this
local scale, and the association of each curve to identified
conditions and/or drivers governing the dominant processes
during the snowmelt phase constitute an indirect but power-
ful validation of their applicability in different areas. More-
over, the 30× 30 m cell size of the control area provides a
direct link to establish fusion algorithms between ground and
remote sensing sources such as Landsat TM satellite and/or
other recent sensors with higher spatial resolution. This con-
stitutes the basis for current work towards the distributed ex-
tension of the ADC snow model over large areas in hetero-
geneous regions.

7 Data availability

Supplementary data are available at
doi:10.1594/PANGAEA.871706 or can be provided
upon request to the corresponding author.
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