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Resumen 
  

Las redes, tanto de origen antrópico como natural, han sido 
ampliamente estudiadas debido a su presencia en múltiples disciplinas Así, 
numerosas investigaciones han descrito sus propiedades estructurales y 
dinámicas y las relaciones entre ellas. En esta tesis se investiga una 
propiedad de estas redes conocida como multifractalidad, que está 
directamente relacionada con la auto-similitud y es una extensión del 
concepto de fractalidad. 

 
La fractalidad implica invarianza de escala, es decir, un objeto es fractal 

cuando presenta la misma apariencia independientemente del nivel de 
ampliación con el que se observa. Un objeto fractal se define mediante su 
dimensión fractal. No obstante, en determinadas ocasiones esta dimensión 
no es suficiente para describir toda la complejidad del objeto, siendo 
necesario la aplicación de la multifractalidad en la que se considera un 
conjunto de dimensiones fractales. La presente tesis investiga si esta 
multifractalidad, entendida como una extensión de la auto-semejanza, puede 
ser usada en la descripción de redes de diferente origen. 

 
La presente tesis doctoral se estructura en tres capítulos cuyo contenido 

se describe de manera sucinta a continuación:  
 

En el Capítulo 1 se describió la distribución de la velocidad de flujo 
en un medio poroso simulado haciendo uso del análisis multifractal. 
Además, se compararon los resultados proporcionados por dos algoritmos 
multifractales. El primero de ellos, conocido como Box-Counting, es uno 
de los más usados y el segundo, denominado Sandbox, es particularmente 
útil para superar ciertas limitaciones del anterior algoritmo cuando es 
aplicado al estudio de redes.  
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En el Capítulo 2 se estudió la multifractalidad de redes de origen 
antrópico como son los patrones del entramado urbano. Así, se analizaron 
dos barrios de la ciudad de Córdoba (Andalucía, España). Ambos con 
morfología diferente, regular e irregular, consecuencia del crecimiento de la 
ciudad bajo diferentes planes de ordenación urbana y condiciones 
socioecnómicas. También se discutió la importancia del estudio de la 
morfología urbana bajo un punto de vista multifractal, y la información o 
características morfológicas aportadas por dicho análisis al conocimiento de 
la estructura o forma de una ciudad.  

 
En el Capítulo 3 se exploró un nuevo uso del análisis multifractal como 

herramienta de estudio de redes naturales. Con este fin, se compararon 
redes de ríos obtenidas por restitución fotogramétrica y mediante la 
extensión ArcHydro del programa ArcGIS. Además, la propiedad 
multifractal de las redes se usó para determinar el valor umbral más 
apropiado de acumulación de flujo que permite reproducir con mayor 
precisión la red de ríos generada por la herramienta ArcHydro.  

 
Finalmente, las conclusiones generales de la presente tesis destacan la 

conveniencia de usar el conjunto de dimensiones fractales determinadas en 
el análisis multifractal para describir redes de origen antrópico y natural a 
diferentes escalas de trabajo.  
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Summary 

 

  Networks, both anthropogenic and natural, have been widely studied 
due to its presence in multiple disciplines. Thus, numerous studies have 
described their structural and dynamic properties and the relationships 
between them. In this thesis it is investigated a property of these networks 
known as multifractality, which is directly related to self-similarity and is an 
extension of the concept of fractality. 

 
Fractality implies scale invariance (i.e., an object is fractal when it 

presents the same appearance regardless of the magnification level with 
which it is observed). A fractal object is defined by its fractal dimension. 
However, on occasion this dimension is not enough to describe the 
complexity of the object, requiring the application of multifractality in what 
is considered a set of fractal dimensions. This thesis investigates whether 
this multifractality, understood as an extension of self-similarity, can be used 
in the description of networks with different origin. 

 
This thesis is divided into three chapters which contents are described 

succinctly below: 
 

In Chapter 1 there was elucidated the distribution of flow velocity in a 
simulated porous medium using multifractal analysis. Furthermore, we 
compared the results provided by two multifractal algorithms; the first, 
known as Box-Counting, is one of the most used, and the second, called 
Sandbox, is particularly useful to overcome certain limitations of the 
preceding when applied studying networks. 

 
In Chapter 2 we studied multifractality of anthropogenic networks such 

as urban fabric patterns. Thus, we analyzed two neighborhoods in the city 
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of Córdoba (Andalusia, Spain) both with different morphologies, regular 
and irregular, due to the growth of the city under different urban planning 
and socioeconomic conditions. It was also discussed the importance of the 
study of urban morphology under a multifractal standpoint, and 
morphological information provided by such analysis to the knowledge of 
the structure or shape of a city. 

 
In Chapter 3, we explored a new use of multifractal analysis as a tool 

for the study of natural networks. To this end, we compared networks of 
rivers obtained by photogrammetric restitution and by the extension 
ArcHydro from ArcGIS software. Furthermore, the multifractal property of 
the networks was used to determine the most appropriate threshold value 
of flow accumulation that allows reproducing more accurately the network 
of rivers generated by the computer tool ArcHydro. 

 
Finally, the general conclusions of this thesis highlight the convenience 

of using the set of fractal dimensions determined by multifractal analysis to 
describe networks of anthropogenic and natural networks at different scales 
of implementation. 
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General Introduction & 
Objectives 

 

 
“Fractal geometry will make you see  

everything differently. 
There is danger in reading further. 

You risk the loss of your childhood visions of  
Clouds, forest, galaxies, leaves, feathers, rocks, 

Mountains, torrents of water, carpets, bricks 
 and much else besides.  

Never again will your interpretation of 
these things be quite the same.” 

  
Michael F. Barnsley (1988) 
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General Introduction 

The study of networks has attracted an enormous amount of interest 
in the last few years (Boccaletti et al., 2006). A large amount of systems can 
be regarded as networks: social relationships between individuals (Toivonen 
et al., 2006; Wong et al., 2006), molecular interactions and transformations 
(Barabási & Oltvai, 2004), transportation or communication systems (Latora 
& Marchiori, 2002; Wang et al., 2011), internet (Pastor-Satorras, et al., 2001; 
Wu et al., 2011), power grids (Crucitti et al., 2004; Sun, 2005), and even 
urban streets are composed by networks(Porta et al., 2006; Jiang, 2007).   

A network is defined as a set of items, called nodes, with connections 
between them better known as edges (Newman, 2003). One of the 
properties of networks is self-similarity which is commonly related to 
fractality. Self-similarity essentially means that there is some correspondence 
between parts of the object and the total characteristics of it (i.e., they look 
similar under different magnifications level or range of scales, being able to 
build a simplified theory that captures the main features of these objects). 
When fractals appear identical at different scales the self-similarity is exact 
(e.g., the Sierpinski triangle and the Koch snowflake exhibit exact self-
similarity). In the case of fractals, those that appear approximately (but not 
exactly) identical at different scales are quasi-self-similar (e.g., the 
Mandelbrot set). On the other hand, when each part of an object has 
statistical measures which are conserved across different scales, the self-
similarity is defined as statistical; a prominent example is the coast of Britain 
introduced by Mandelbrot in 1967.  

 

Fractal objects are defined, through the fractal dimension, as a measure 
of complexity (Feder, 1988). The fractal dimension is a non-integer number 
that quantifies the density of the fractal in the metric space, and it is 
commonly used as a tool to identify how complex a fractal is, allowing its 
comparison with another fractal (Mandelbrot, 1982; Tricot, 1995; Schroeder 
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et al., 2009). However, sometimes just a single fractal dimension might not 
always be enough to characterize complex and heterogeneous behaviour. In 
order to solve this deficiency the multifractal approach is developed to 
describe the data with a set of fractal dimensions instead of a single value. 
This approach is originally introduced by Mandelbrot, 1972 and 1974, in the 
discussion of turbulence and, later, expanded to many other contexts 
(Mandelbrot, 1982). Multifractal formalisms involve that self-similar 
measures can be represented as a combination of intertwined fractal sets 
each of which characterized by its singularity strength and fractal dimension. 
This set is called multifractal spectrum and the method of variability 
characterization, based on the multifractal spectrum, is referred to as a 
multifractal analysis (Frish and Parisi, 1985).  

Multifractals are more flexible in describing locally irregular phenomena 
than monofractals, which are governed by single fractal dimension. 
Moreover, other advantage using this approach is that the multifractal 
parameters can be independent of the size of the studied object (Cox & 
Wang, 1993). On the other hand, multifractal analysis transforms irregular 
data into a more compact form and amplifies slight differences among the 
variables’ distribution (Lee, 2002).  

 

Multifractals approach has been used along the last two decades in many 
studies fields. They are been applied to characterize natural phenomena 
such as the spatial variability of soil properties (Kravchenko et al., 1999; 
Zeleke & Cheng, 2004) and rainfall distributions (Olson & Niemczynowicz, 
1996; Kim et al, 2008), the spatial and temporal distribution of 
environmental pollution (Salvadori et al, 1997; Shi et al, 2009), and even 
earthquakes (Hirabayashi et al, 1992; Zamani et al, 2009). Other discipline 
where multifractal analysis has been utilized is medicine: studying the 
cellular and neurons morphology (Smith et al, 1996; Fernández et al, 1999), 
characterizing volumetric texture in medical imagines (Lopes et al, 2011), 
detecting microcalcifications in digital mammograms (Stojic, 2006) as well 
as classifying malign tissues from normal and benign (Andjelkovic, 2008), 
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among others. Equally, this approach has been employed in economy to 
analyse crude oil prices (Alvarez-Ramirez, 2002), price fluctuations of stock 
and commodities (Matia et al, 2003), market volatility (Chen and Wu, 2011) 
and stock market inefficiency (Zunino et al, 2008), etc.   

This thesis investigates the suitability of applying multifractal approach 
to the description of different types of networks, anthropogenic and 
naturals, and how this method is able to extract different features of the 
network in 2D and 3D. 

 Objectives 

 
In summary, there is a promising approach, based on the multifractality 

property of some objects, which help to describe them in a more suitable 
way further than other traditional methods that are not able to perceive 
slight differences among the variables distribution. Therefore, the main 
objectives of this thesis are:  

 
i. To characterize different kinds of networks: flow in idealised 

porous media, urban patterns, and river morphologies. 
 

ii. Comparison of multifractal algorithms: Box-Counting and 
Sandbox. 
 

iii. To extend the use of multifractal as a pattern recognition tool. 
 

iv. To use multifractal analysis as a tool to check the validity of 
results provided by models. 
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Chapter 1 
 
 
 
 
 

“A las plantas, a los animales y a los humanos 
nos recorre por dentro al menos un doble río. 
Para que la sangre llegue a todas partes, las 

venas se hacen cuenca, cauce y caudal. Es 
más, para que el chisporroteo de las ideas, los 

recuerdos y las emociones nos concedan la 
condición humana, necesitamos el enramado 

río de las neuronas, que son puro plagio de la 
voluptuosidad que comparten las estructuras 

fractales que el agua inicia.” 
 

Joaquín Araújo (1947- ) 
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Chapter 1. Multifractal 

description of simulated flow 
velocity in idealised porous 

media by using the Sandbox 
method. 

Abstract 
 

The spatial description of flows in porous media is a main issue due 
to their influence on processes that take place inside. In addition to 
descriptive statistics, the multifractal analysis based on the Box-Counting 
fixed-size method has been used during last decade to study some porous 
media features. However, this method gives emphasis to domain regions 
containing few data points that spark the biased assessment of generalized 
fractal dimensions for negative moment orders. This circumstance is 
relevant when describing the flow velocity field in idealised three-
dimensional porous media. The application of the Sandbox method is 
explored in this work as an alternative to the Box-Counting procedure for 
analyzing flow velocity magnitude simulated with the lattice model approach 
for six media with different porosities. According to the results, simulated 
flows have multiscaling behaviour. The multifractal spectra obtained with 
the Sandbox method reveal more uniformity in the distribution of flow 
velocity magnitudes as porosity increases. This situation is not so evident 
for the multifractal spectra estimated with the Box-Counting method. As a 
consequence, the description of the influence of porous media structure on 
flow velocity distribution provided by the Sandbox method improves the 
results obtained with the Box-Counting procedure. 

KEYWORDS: Flow velocity; lattice Boltzmann model; multifractal 
analysis, porous media; Sandbox method. 
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1. Introduction 
 

Many relevant biogeochemical phenomena in porous media are greatly 
influenced by flows that take place in them (Rinck-Pfeiffer et al, 2000; Islam 
et al, 2001; Thullner et al, 2005). In order to improve the predictability of 
flow processes in porous media, factors that control the fluid distribution 
and flow velocity must be understood. Following Lehmann et al., 2008, it is 
a difficult task to find the dominant factors because the geometrical 
properties of the pore space are difficult to visualize and to quantify. As a 
solution, idealized pore networks with well defined geometry can be 
constructed and the flow behavior is computed therein numerically. In 
recent years, among the numerical models for simulating low-Reynolds-
number incompressible flows within a domain with complex solid 
immovable boundaries, the lattice Boltzmann model (Succi, 2001) has 
shown itself to be a suitable and efficient approach (Martys & Chen, 1996; 
Zhang et al, 2005; Cithan et al, 2009). The results obtained from the 
simulations carried out in these works are frequently analyzed by using 
descriptive statistics. However, the multifractal analysis provides some 
information that can complete the understanding of the flow features and 
their relationships with some soil properties such as porosity. The 
multifractal theory (Mandelbrot, 1982; Feder, 1998) implies that the 
complex and heterogeneous behaviour of a self-similar measure (i.e. 
statistically similar on any scale) can be represented as a combination of 
interwoven fractal sets with corresponding scaling exponents (Kravchenko 
et al, 2009). The advantages of multifractal approach are that its parameters 
are independent over a range of scales and that no assumption is required 
about the data following any specific distribution. Multifractal analysis has 
been applied to characterize different soil features such as particle size 
distribution (Martin & Taguas, 1998; Gruot et al, 1998; Posadas et al, 2001; 
Montero, 2005), hydraulic conductivity (Liu & Molz, 1997; Giménez et al, 
1999; Veneziano & Essiam, 2003; Perfect et al, 2006) or porosity (Posadas 
et al, 2003, Bird et al, 2006; Kravchenko et al, 2009). In the above works, 
the multifractal analysis is based on the application of the Box-Counting 
fixed-size methods that are advantageous for computational aspects (Meisel 
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et al, 1992) but whose main drawback is the incorrect determination of the 
fractal dimensions for negative moment orders, due to the emphasis given 
to regions with few points not centered on them (De Bartolo et al, 2004; 
Gaudio et al, 2006). This problem can be minimized by using the Sandbox 
algorithm (Tél et al, 1989; Vicsek, 1990; Vicsek et al, 1990) that is also a 
fixed-size method. In order to overcome this limitations De Bartolo et al. 
(2004) developed Sandbox. This circumstance could be especially 
interesting when describing the flow in porous media, where the existence 
of a solid phase leads to the presence of regions with a small number of 
velocity field samples.  

 
The main aim of this work is the application of Sandbox method to 

describe steady state flows in idealized porous media. The Sandbox method 
belongs to the class of fixed-size algorithms (Barth et al, 1992; Veneziano et 
al, 1995; Pastor-Satorras et al, 1996; Yamaguti & Prado, 1995; Paredes & 
Elorza, 1999; Cheng, 1999; Feeny, 2000) in which the problem of the right-
part estimation of the multifractal spectrum, related to negative moment 
orders, is highly stressed. The same computational problems were dealt 
with, in other contexts and with good results, the fixed-mass procedures 
(Badii & Broggi, 1998; Mach et al, 1995). According to De Bartolo et al., 
2006, the performance of fixed-mass algorithms shows two main 
improvements when comparing them to the Box-Counting fixed-size 
method: i) the scaling curves oscillation is lesser for negative moment orders 
of probabilities and ii) the errors in the determination of multifractal spectra 
were smaller. However, in addition to overcoming the drawbacks of 
applying the Box-Counting algorithm when considering negative moment 
orders, the Sandbox method was selected here by taking into account its 
computational efficiency. This aspect is relevant when analyzing a three-
dimensional variable because the execution of this algorithm is very 
competitive in computation cost compared to fixed mass methods. Thus, 
the Sandbox approach permits the reconstruction of entire and accurate 
multifractal spectra in acceptable execution times. Some fixed-size methods 
such as the Gliding Box have shown their capacity to obtain suitable 
multifractal spectra to describe soil properties (Grau et al, 2006). For this 
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reason, the peculiarity of the present work lies in the first time application 
of the Sandbox method to describe flows in porous media. 

 
The three-dimensional velocity fields were simulated with the lattice 

Bathnagar-Gross-Krook (BGK) model (Succi, 2001), an improved version 
of the lattice Boltzmann model. These porous media were generated by 
using the method proposed by Rappoldt and Crawford (Rappoldt & 
Crawford, 1999).  

 
 

2. Methods 
 

2.1. The lattice Bathnagar-Gross-Krook (BGK) model 
 

In the lattice BGK model (Chen et al, 1992; Qian et al, 1992), the fluid 
particles move in a regular lattice where each node is linked to its 
neighbours following a vicinity model that is chosen depending on the 
complexity of the phenomenon to be simulated. The vicinity model d3Q19 
is frequently used to calculate the flow velocity field in three dimensions 
(Succi, 2001), in which d = 3 means the number of dimensions and Q = 19 
denotes the number of particles considered, in this case eighteen moving 
particles and one at rest.  

 
The equation of the lattice BGK model for a node r at time t, is 
 

 
       
 

eq1 1
( , ) ( , ) 1 ( , )k k k kf t t t f t f tr c r r

                  
(1) 

 
 

where the independent variable kf  varies continuously between 0 and 1 

according to the Boltzmann molecular chaos hypothesis and represents the 
probability of finding a fluid particle in a link k that connects a node with 
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one of its neighbours. The interactions of the particles keep up the mass 
and momentum ((Rothman & Zaleski, 1997; Chopard & Droz, 1998). 

 
The vector ck stands for the velocity of a fluid particle in the link k and it 

is defined by Eq. (2).  
 


    
       

(0, 0, 0)                                               ( 0),

( 1,0,0), (0, 1,0), (0, 0, 1),          ( 1 to 6),

( 1, 1,0), ( 1, 0, 1), (0, 1, 1),   ( 7 to 18) 
k

k

c c c k

c c c k

c

         

(2) 

 

where   c r t , with r being the length of the lattice spacing. 

 
eq

kf  is the local equilibrium function and  is the relaxation time 

parameter that represents the difference between kf  and eq
kf . The right 

hand side of Eq. (1) has been obtained from a Taylor series expansion 

under the assumption that kf  is near to eq
kf , implying that  has to be 

small enough to neglect the high order terms of the expansion. Using the 
Chapman–Enskog expansion, it is mathematically demonstrable that Eq. (1) 
can recover the Navier-Stokes equations to the second order of accuracy 

(Succi, 2001; Chopard & Droz, 1998) if eq
kf  is chosen in the following way: 

 

     

 





  
        

   
 

   
 

2

eq

2 2 2

eq

2

1
1 ,   [1, 1]

2 2

1 ,   0
2

k k
k k

s s s

k k

s

c v c v v v
f b k Q

c c c

v v
f b k

c
              

(3) 

 

where the Einstein summation convention has been adopted. v and ck are 

the components of the vectors v and ck in the  dimension ( = x, y, z, the 
spatial coordinates). bk are weighting factors associated with the lattice 
directions and the parameter cs, known as the speed of sound, is selected 
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according to the vicinity model chosen. For the d3Q19 neighborhood model 

it is found that 2 2 3sc c , b0 = 1/3, b1-6 = 1/18 and b7-18 = 1/36. The fluid 

density  and velocity v are deduced from
kf  according to 

 





















1

0

1

1

( , ) ( , )

( , )
( , )

( , )

Q

k
k

Q

k k
k

t f t

f t
t

t

r r

r c
v r

r                                              

(4) 

 

and the kinematic viscosity, , is defined as  
 

       

2
2 1

2s

r
c

t                                              
(5) 

 

Thus, the relaxation time  should be greater than 1/2 to ensure positive 

values for . In this work, it is assumed that         1r x y z  lattice 

unit (l.u.) and t = 1 time-step (ts) as is frequently adopted in lattice model 
simulations (Succi, 2001). The conversion rules between the magnitudes 
used in the lattice BGK model and their real physical values can be obtained 

from  realt t t ,  realr r r ,   ( ) realv r t v  and    2( ) real r t , 

where the scale factors r and t are expressed in SI units. 
 

2.2. Features of the numerical simulations 
 

In all the cases, the three-dimensional computational domain was 
represented by a cube of L = 64 l.u. in side length. The idealised porous 
media were generated by using the random fractal lattice proposed by 
Rappoldt and Crawford (Rappoldt & Crawford, 1999), in which the 

porosity, , is determined by   1 p , where p is the probability that a 

node comprises solid phase and   1 is the number of levels of recursion, 
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which was set at 4. Six porous media of  = 0.41, 0.44, 0.49, 0.54, 0.58 and 
0.64 (p = 0.876, 0.865, 0.845, 0.823, 0.805 and 0.774, respectively) were 

tested.  has to be greater than 0.2 - 0.3 to ensure the continuity of the pore 
phase (Rappoldt & Crawford, 1999). This condition was satisfied in all the 
cases. 

 
The flow was settled along the vertical direction z by assigning, at the top 

of the computational domain, an initial velocity  (0,0, 0.1)v  l.u.ts-1 in all 

the numerical experiments. Thus, the standard Courant constraint has been 

observed because a fluid particle cannot travel further than r during one 

time step t, zv << c , to make sure of  0kf . This flow settlement was 

adopted because the execution time to reach the steady state was low 
compared to other options such as the use of a pressure gradient. Periodic 
boundary conditions were applied in all the spatial directions with the aim 
of isolating the simulated flows from the influence of the computational 
domain faces. The use of other boundary conditions at these sites, such as 
no flow, may cause, in small computational domains (as has happened here 
643 l.u.3), backward propagating disturbances, which influence the simulated 
velocity field. The non-slip condition was assumed at solid boundaries and 
solved by applying the bounce-back method (Chen et al, 1996; He et al, 
1997). All the simulations started from a zero-velocity field, except at the 
top of the computational domain, and were terminated once the flow 

reached a steady state, when the criterion     7max ( , ) ( , ) 10v t t v t
r

r r  

l.u.ts-1 was fulfilled by the flow velocity magnitude 

  2 2 2 0.5( , ) ( ( , ) ( , ) ( , ))x y zv t v t v t v tr r r r . The relaxation time parameter was 

0.95   in all the tests, ensuring the validity of Eq. (1) and giving a 

positive value for . The magnitude values of ( , )v tr  simulated with the 

lattice BGK model for the steady state flow were the corresponding data 
used to carry out the multifractal analysis described below. 
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2.3. Multifractal analysis based on Box-Counting method. 
 
The Box-Counting method was defined by Russel et al. (1980) which it 

is based in the strange attractor formalism (Hentschel & Procaccia, 1983; 
Grassberg, 1983; Halsey et al., 1986). This approach deals with the fractal 
dimension of the geometric set associated with singularities of the 
measure. A set of cubic cells of δ in side length was superimposed on the 
porous media studied. The grid size δ and the magnitude of the flow 
velocity vi characterized each grid cell i. The minimum grid size, δini, was 
chosen so that every initial cell contains at least one sample of the 
magnitude of the flow velocity field, vini, in the pore phase. The flow 
velocity magnitude was set to be equal to the sample measurement or to 
the average, if there was more than one sample in every initial cell. Thus 
the probability mass function vi (δ) at grid size δ is defined in each i as (e.g. 
Kravchenko et al., 1999) 

 






1

( )
ini

i
i n

ini j
j

v
v

v

                           (6) 

 
where vi is calculate on the basis of the vini values and nini is the number of 
initial cells of δini in side length. The distribution of the probability mass 
function was analyzed by using the method of moments (Evertsz & 
Mandelbrot, 1992), in which the partition function χ(q, δ) of order q is 
calculate from the vi (δ) values:  
  

1

  


( , ) [ ( )]
n

q
i

i

q v                                        (7) 

 
with n being the number of cells of δ in side length and q ]−∞,∞[. The 
partition function has the following scaling property for a multifractal 
measure 

   ( )( , ) qq                                                 (8) 
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where τ(q) is a nonlinear function of q (Feder, 1988)and is known as the 
mass exponent function. For each q, τ(q) can be obtained as the slope of 
the linear segment of a log-log plot of χ(q, δ) versus δ. For q  1, the value 
of χ(q, δ) is mainly determined by the large data values, while the influence 
of the small data values contributes most to the partition function for q 
  -1 (Kravchenko et al., 1999).  
 
 Based on the work of Rényi (1995) the generalized dimension, Dq, can 
be calculated from the mass exponent function (Hentschel and Procracia, 
1983) 
 





( )

( )
1

q
D q

q
                                                  (9) 

 
D0 is called the fractal dimension of the set over which the measure is 

carried out. 1D  is the information dimension and it describes the degree 

of heterogeneity in the distribution of the measure. 2D  is the correlation 

fractal dimension, associated with the correlation function. qD  is a 

decreasing function with respect to q for a measure multifractally 
distributed (e.g. Caniego et al., 2005).  

 

2.4. Multifractal analysis based on Sandbox method. 
 

The Sandbox method (Tél et al, 1989; Vicsek et al 1990; Vicsek , 1990) 
considers the mass (sum of the sample measurements), ( )M R , within a 

region i of given radius R (i.e. a sphere in 3D) centred on the fractal. 
Choosing arbitrary points as centres, the average value of the mass and their 
qth moments over randomly distributed centres can be computed as 

 ( )
q

M R , q being the probability moment order. Thus, 
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       
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
1 ( 1)

0 0

q
q q D

i i

i

M M R

M M L                               
(10) 

 

where 0M  stands for the total mass of the cluster or lattice mass and L is 

the lattice size, equal to 1 after normalization. This normalization does not 
modify the measure because it is a geometrically invariant transformation 
(Falconer, 1990). 
 

Considering the ratio 0iM M  as a probability distribution on an 

approximating fractal, the following averaged expression can be derived for 
R L : 

 
          

1 ( 1)

0

( ) q
q q D

M R R

M L
                                 

(11) 

 

According to Eq. (11), the selection of the centres has to be uniform on 
the approximating fractal. With this aim, the “minimal” random number 
generator of Park and Miller combined with a Marsaglia shift (Press et al, 
1996) has been used to determine the position of the sphere centres in the 
pore phase sites. 

 
Generalized fractal dimension, Dq, of moment order q is defined as (Tél 

et al, 1989): 
 

                   

  


 



1

0

0

ln ( )1
( ) lim ,  for 1

1 ln( )

q

q
R L

M R M
D R L q

q R L                
(12) 

 

De Bartolo et al., 2004, obtained the solution for Dq when q = 1 through 
the Taylor’s expansion around 1+dq 
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 0
1 0
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ln( )R L
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(13) 

 

Generalized dimensions can be obtained through the least squares linear 

regression as the slope of the scaling curves   1

0ln ( )
q

M R M  versus 

ln( )R L  for q ≠ 1 and  0ln ( )M R M  versus ln( )R L  for q = 1, 

between ln( )lowerR L and ln( )upperR L , ( )lowerR L  and ( )upperR L  being the 

inner and outer cut-off lengths. D0 is the fractal dimension of the set over 
which the measure is carried out while D1 is the information dimension and 
it describes the degree of heterogeneity in the measure distribution. D2 is 
the correlation fractal dimension (Grassberger, 1983; Grassberger & 
Procaccia, 1983), associated with the correlation function. Dq is a decreasing 
function with respect to q for a measure multifractally distributed (Caniego 
et al, 2005).  
 

The relation between the spectrum of the generalised fractal 

dimensions, Dq, and the multi-fractal spectrum, ( )f with  being the 

Lipschitz-Hölder exponent, is given through the sequence of mass 

exponents q  (Hentschel  Procaccia, 1983), that is a function connecting 

the moments of probability to the radius length of the covering regions, 
given by the expression  

 

                           ( 1)q qq D                                               (14) 

 
The mass exponent sequences were interpolated with fifth order 

polynomials in order to obtain the multifractal spectrum ( )f by means of 

the Legendre transform defined by the relations (Halsey et al., 1986): 
 

                              
 
  
 
 ( )

q q

q q q

d dq

f q
                                      (15) 
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The Lipschitz-Hölder or singularity exponent, q, quantifies the 

strength of the measure singularities. ( )qf  is an inverted parabola for 

measures multifractally distributed with a wider range of  values when the 
heterogeneity of the distribution increases. In the case of measures 

monofractally distributed,  is the same for all regions of the same size and 
the multifractal spectrum consists of a single point (Kravchenko et al., 
1999). The highest value of the multifractal spectrum,  0( )f , corresponds 

to the fractal dimension D0. Both of them give information about the 
degree of the filling of the space. 
 

3. Results and Discussion 
 

Table 1 lists a summary of the results obtained from applying the 
statistical analysis of the simulated velocity v distribution for different values 

of porosity, , with N being the amount of sites of the pore phase where v 
> 0 (number of data points). The Reynolds numbers Re of the simulated 
flows were calculated according to  

 

                                     


 


1 c

v
Re L

                                          
(12) 

 

where v , is the mean flow velocity magnitude,  = 0.15 l.u.2 ts-1 the 
kinematic viscosity and Lc = 1 l.u. the characteristic flow length. From the 
statistical analysis shown in Table 1, it can be seen that the mean of the flow 
velocity magnitude, v , and the Reynolds number increase as porosity is 
higher. However, the coefficient of variation (CV) exhibits the opposite 
behaviour, meaning that the velocity magnitude distribution dispersion is 
higher for the media with lower porosity. In the same way, the coefficients 
of skewness (Sk) and kurtosis (K) increase as the porosity decreases. Thus, 
the distributions of the simulated flow velocity magnitude have longer right 
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tails and sharper peaks around the mean when the lowest values of porosity 
are considered. 
 

In order to perform the multifractal analysis applying Sandbox method, 

0M  was calculated as the sum of the flow velocity magnitudes determined 

for all the sites belonging to the pore phase. In addition, the mass M(R) was 
the sum of the sample flow velocity magnitudes falling in a sphere of given 
normalized radius R. One hundred values of this radius R, equally 

distributed for  ( ) 0.032,0.25R L , were considered in the calculations 

with the aim of keeping R L , L = 1 being the normalized lattice size. 
This selection ensures accuracy when using the Sandbox method (De 
Bartolo et al, 2004; Dombradi et al, 2007). For each radius, the number of 
spheres, ns, whose centres were randomly located on the pore phase sites 
with nonzero flow velocity, was determined by R/L. The scaling curves 
shown in Fig. 1.1 were obtained for selected values of  [ 5,5]q . The 

range of q was limited in this work to avoid instability of the multifractal 
parameters, because higher moment orders may magnify the influence of 
outliers in the measurements. Lower and upper cuts, (R/L)lower and (R/L)upper 
shown in Table 1. 2 for q = 0, were chosen to maximise the goodness of the 
fits obtained by applying the least squares linear regression to determine the 
generalized fractal dimensions Dq as the slope of these plots. As can be 
checked in Table 1. 2, for q = 0, the coefficient of determination yielded, 
R2

q=0, was larger than 0.998 in all the cases.  
 

Porosity (ε) N  CV Skewness Kurtosis Re
0.41 102526 0.0015 1.57 4.91 33.62 0.007
0.44 110796 0.0019 1.25 4.16 23.27 0.010
0.49 124577 0.0028 1.11 4.05 21.45 0.018
0.54 137956 0.0033 1.05 3.78 18.34 0.026
0.58 148846 0.0041 0.93 3.55 16.25 0.038
0.64 165045 0.0550 0.85 3.45 16.21 0.065

Statistical Parameters

v

 

 Table 1. 1. Statistical parameters of the flow velocity magnitude, v, simulated for 

idealized porous media with different porosity, ε 



Chapter 1 

~ 30 ~ 

 

Figure 1. 1. Scaling curves of the flow velocity magnitude distribution in idealised
media with different porosity ε obtained from the application of the Sandbox
method by considering selected values of the order q. 
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Figure 1. 2. Plots of the partition function χ(q, δ) of the flow velocity
magnitude distribution for idealized media with different porosity є 
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The minimum grid size selected to carry out the Box-Counting method 
was δini=4 l.u. Fig. 1. 2 shows the plot of the partition function of v, χ(q, δ), 
versus the grid size, that ranges from δ = δini = 4 l.u to δ = 64 l.u., for 
different values of ε. For all the statistical orders tested, q=-5 to 5, the log 
transformated χ(q, δ) are straight lines meaning that the estimation of τ(q) as 
theirs slopes can be trusted. The coefficient of determination, R2, was larger 
than 0,99in all the fits (Fig. 1. 2). 

 
The mass exponents functions of v, τ(q), were obtained from the slopes 

of these fits and are plotted in Fig. 1. 3. Note that the slopes of the τ(q) 
curves for q < 0 are different from that of q > 0 for all the porosity values 
tested, indicating that τ(q) curves are convex and increased in convexity as 
the porosity decreases. 

 

Porosity ( ε) D 0 D 1 D 2 D 0 D 1 D 2 (R/L) lower (R/L) upper  R 2
q=0

0.41 3 2.7837 2.5548 2.8960 2.8040 2.6330 0.0540 0.250 0.99867
0.44 3 2.8398 2.6621 2.8530 2.7760 2.6510 0.0630 0.250 0.99903
0.49 3 2.8664 2.7109 2.8520 2.7930 2.7020 0.0630 0.250 0.99839
0.54 3 2.8738 2.7279 2.8470 2.7870 2.6990 0.0630 0.250 0.99911
0.58 3 2.8959 2.7743 2.8220 2.7730 2.7020 0.0570 0.250 0.99907
0.64 3 2.9100 2.8041 2.8400 2.7960 2.7390 0.0610 0.250 0.99909

Box-Counting Method Sandbox Method

Multifractal Parameters

 
Table 1. 2. Box-Counting and Sandbox multifractal parameters Rényi spectra. 

Figure 1. 3. Mass exponent of the flow velocity magnitude obtained from Box-
Counting method. 
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Figure 1. 4. The generalized fractal dimensions spectra of the flow velocity
magnitude distribution estimated with the Sandbox and Box-Counting
methods for idealized media with different porosity ε. Bars represent the
standard errors. 
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Figure 1. 4 shows the spectra of the generalized fractal dimensions 

obtained with Sandbox and Box-Counting methods. Dq is a decreasing 
function in all the cases, with D0>D1>D2 as can be checked in Table 1. 2, 
denoting a multiscaling behaviour. According to the lengths of the error 
bars shown in Fig. 1. 4, the estimation of Dq by applying the Sandbox and 
Box-Counting procedures can be trusted. For q < 0, the error in the 
estimation of Dq with Box-Counting procedure is lower as the porosity 
increases. However, the error values obtained for the same situation with 
Sandbox method do not display any relevant variations when the porosity 
varies. Figure 1. 5 shows the average relative differences between both 
methods and it can be verified that they increase as q is more negative. In 
addition, these differences for q < 0 are higher compared to the case of q > 
0. This dissimilarity can be explained because Sandbox method solves the 
border effect problem caused by the presence of almost empty cubic cells 
containing few points not centred on them.  

Figure 1. 5. Comparison of the generalized fractal
dimensions spectra, Dq, estimated with the Sandbox
method and Box-Counting procedures. 
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Differences were found the spectra of the generalized fractal dimensions 
determined with Box-Counting and Sandbox methods. Higher values for Dq  
were obtained with Box-Counting method, especially when considering q < 
0 (Figs. 1.4 and 1.5). This circumstance is a consequence of the emphasis 
given in the Box-Counting algorithm to regions with few data. In addition, 
Sandbox method reduces the shape effect of pore network, due to the 
overlap of the spheres centred on the fractal. Although these differences in   
values continue for q > 0, they are much lower. 

 
From the spectra of the generalized fractal dimensions obtained with 

Sandbox method, it can be verified that D0 < 3 in all the cases (Table 1. 2). 
This fact is in contrast with D0 = 3 found for the analysis performed on the 
same flows considered here through the application of Box-Counting 
procedure.  Thus, the sphere centres were randomly located on the pore 
phase sites with nonzero flow velocity magnitude when applying Sandbox 
method. In the same way, a set of different grids with non-overlapping 
cubic cells of different size lengths is superimposed on the porous media 
studied when it is used Box-Counting method. The minimum grid size is 
chosen so that every initial box contains at least one sample of nonzero 
flow velocity magnitude field in the pore phase. However, as a consequence 
of using overlapped spheres centred on the fractal, the determination of 
fractal dimensions by the Sandbox algorithm is more suitable. Thus, the 
values obtained for Dq with the Sandbox method demonstrate that flows 
cannot fill the 3D domain where they take place due to the influence of the 
pore phase geometry. This fact can be noted in Fig. 1. 6 that corresponds to 
two cross-sections of the three-dimensional velocity fields simulated by 

using the lattice BGK model, when considering porous media of  = 0.41 

and  = 0.64.  
 
In accordance with Davis et al. (1994), the information dimension D1 

provides a measure of the degree of heterogeneity in the spatial distribution 
of a variable. In addition, D1 characterizes the distribution and intensity of 
singularities with respect to the mean. If D1 is lower, the distribution of 
singularities in the flow velocity will be sparse. On the contrary, if D1 
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becomes greater, these singularities will have lower values exhibiting a more 
uniform distribution. Therefore, for each porosity value, the D1 values 
(Table 1. 2.) of Box-Counting method are higher than those obtained for 
Sandbox method, exhibiting more homogeneity in flow velocity singularities 
distribution. 

 
Correlation dimension D2 describes the uniformity of the flow velocity 

among several selected zones (circles of radius R). If D2 has a higher value 
for a certain region, it shows that the relationship amongst the points is 
closely related. As can be verified in Table 1. 2., the D2 values for both 
approaches increase as porosity increase, showing more uniform flow 
velocities values. 

 
 
 
The better estimation of generalized fractal dimensions Dq provided by 

the Sandbox method has a relevant influence on the shapes of the Rényi 
spectra (Fig.1. 4). The left part of the spectra, q < 0 or lower flow velocity 
values, shows that the Dq values of the Box-Counting approach have a 
higher slope than those obtained for Sandbox procedure, i.e. they show a 
strong dependence on q values. On the other hand, the right part of both 
Rényi spectra, q >0 (higher flow velocity values) are almost overlapped 
exhibiting a higher slope compared with the right part of the spectra, 
showing a strong dependence on q values. These differences in the left part 
of the spectra are due to the presence of regions with few data points, 
especially for Box-Counting method as it was commented above. 

 
As can be seen in Fig.1. 5., the generalized fractal dimension spectra 

obtained with Sandbox method tends having a smaller slope as porosity 
increases. This means that the values of flow velocity tend to be more 

uniform when porosity increases. When porosity decreases (i.e.  = 0.41), 
the distribution of points is not so uniform because the flow is mainly along 
a scant number of channels or preferential paths (Fig. 1. 6), where high 
velocities, compared to the rest of the porous phase, are reached. The 
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description provided by the analysis carried out with Sandbox method 
improves the results obtained with Box-Counting procedure because the 
multifractal spectra estimated by the latter do not show, in such an obvious 
way, the influence of porous media structure on flow velocity distribution. 

Figure 1. 6. Cross-sections of the flow velocity magnitude, expressed in lattice units

(l.u.) by time step (ts), for idealised media with porosities (a)   = 0.41 and (b)   = 0.64.
The black zones correspond to the solid phase of the porous media and the white
arrows indicate the flow direction. 



Chapter 1 

~ 38 ~ 

 

4. Conclusions 
 
Sandbox method has shown to be an efficient algorithm to describe the 

flow velocity distribution in porous media compared with Box-Counting 
method. Sandbox method shows that flow velocity values tend to be more 
uniform when porosity increases. However, this fact is not detected by Box-
Counting method, improving Sandbox approach the results obtained for 
this study.  

 
The results obtained from generalized fractal dimensions spectra show 

the multifractal nature of flow velocity in porous media. The determination 
of scale-dependent variability of the flows in porous media becomes 
essential to their description (Wnag et al, 2006). Highly heterogeneous 
transport phenomena have been observed from field experiments and the 
flow heterogeneity increases with the measurement scale (Koirala et al, 
2008). For this reason, it is desirable to describe flow and transport 
phenomena in large scales from observations at smaller scales. In line with 
the results obtained here, the combination of lattice BGK model 
simulations with multifractal analysis introduced in this work can be an 
alternative to face this challenge. 

 
This work can be considered as being the first step in a research line that 

will combine numerical simulations of flows taking place in real porous 
media, whose geometry can be obtained by 3D tomography or other 
geometric modelling, and multifractal analysis. The information provided 
will help to improve the quality of future models developed by researchers 
to describe flows in porous media with environmental relevance such as 
involving soil pollutants transport. 
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“Bottomless wonders spring from simple rules,  
repeated without end.” 

 
Benoit Mandelbrot 
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Chapter 2. Multifractal 

analysis of axial maps applied 
to the study of urban 

morphology. 
 
 

Abstract 
 
Street layout is an important element of urban morphology that informs on 
urban patterns influenced by city growing through the years under different 
planning regulations and different socio-economic contexts. It is assumed by 
several authors that urban morphology has a fractal or monofractal nature. 
However, not all the urban patterns can be considered as monofractal because 
of the presence of different morphologies. Therefore, a single fractal 
dimension may not always be enough to describe urban morphology. In this 
sense, a multifractal approach serves to tackle this problem by describing urban 
areas in terms of a set of fractal dimensions. With this aim in mind, two 
different neighbourhoods of the city of Cordoba, in Andalusia (Spain), are 
analyzed by using the Sandbox multifractal method and lacunarity. We analyze 
the street patterns represented by axial maps and obtained from the Space 
Syntax algorithm. The results suggest that the Rényi dimension spectrum is 
superior to a single fractal dimension to describe the urban morphology of 
Cordoba, given the presence of regular and irregular street layouts established 
under different planning and socio-economic regimes. 
 
 

KEYWORDS: urban morphology; axial maps; multifractal analysis; 
Sandbox method; lacunarity 
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1. Introduction 
 
Urban spaces are commonly defined by street layout, which is an 

important component of urban morphology, as determined by the 
distribution of buildings on a certain site. Street patterns have been 
classified as irregular, radial-concentric, rectangular and grid (Dickinson, 
1961); star, satellite, linear, rectangular grid, other grid, baroque network and 
lacework (Lynch, 1981); regular, concentric and irregular (DTLR & CABE, 
2001); and by over 100 additional descriptors for streets outlines, including 
radial, grid, tree and linear (Marshall, 2005). City morphology is classified 
according to the way streets are arranged; over time, several urban 
morphologies in a major community are influenced by various planning 
regulations and socio-economic conditions. Urban morphology provides 
information about the structural characteristics of a city; it provides insight 
into the structural origins of and impacts of historical change on the 
chronological processes concerning construction and reconstruction of a 
city. 

 An understanding of urban morphology facilitates the projection of 
future growth in municipal site. Therefore, different scientific approaches 
have focused on the development of statistical models, such as the 
Geographical Information System (GIS)-based approach (Allen & Lu, 2003; 
Xiao et al., 2006), that can be used to estimate future urban growth and 
obtain information about city sustainability (Czerkauer-Yamu & 
Frankhauser, 2010; Van Diepen & Henk, 2003). By utilising graphic tools to 
quantify and define characteristics of urban morphology, Hillier and 
Hanson (1984) reproduce and simplify the spatial composition of a city by 
determining the minimum number of axial lines required to cover all areas 
of an urban lattice; this approach graphically and accurately represents street 
networks through axial maps. This procedure has been successfully applied 
to city modelling (Jiang & Claramunt, 2002), urban design (Jeong & Ban, 
2011), spatial distribution of urban pollution (Croxford, 1996), prediction of 
human movement (Jiang, 2007) and road network analysis (Duan & Wang, 
2009; Hu et al., 2009). 
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Urban morphology has also been described by several authors as 
exhibiting a fractal nature (Batty & Longley, 1987, 1994; Batty, 2008; 
Benguigui et al., 2000; De Keersmaecker et al., 2003; Feng & Chen, 2010; 
Frankhauser, 1998). Based on this notion, the morphology of a city can be 
described by a single fractal dimension. Milne (1990) argues that not all 
landscapes are fractal due to their contemporary patterns because several 
past processes have individually influenced their complexity. Therefore, a 
single fractal dimension may not always sufficiently describe an urban area 
due to the presence of heterogeneous fractal properties, as Encarnação et al. 
(2012) suggests. The multifractal analysis proposed in this research solves 
this dilemma by obtaining generalised fractal dimensions, or Rényi spectra, 
to describe data. The research is a meaningful contribution to the study of 
urban patterns because the multifractal approach transforms irregular data 
into a compact form and amplifies small differences between variables 
(Folorunso et al., 1994). In addition, a multifractal framework exhibits a 
significant advantage over traditional methods through the integration of 
variability and scaling analyses (Stanley & Meakin, 1988; Kravchenko et al., 
1999; Lee, 2002). 

 
Multifractal analyses have been successfully applied to the study of 

river network morphology with significant results (De Bartolo et al., 2000, 
2004, 2006; Rinaldo et al., 1993). De Bartolo et al. (2004) has applied the 
Sandbox method to overcome limitations detected in the most frequently 
used multifractal fixed-sized algorithm, the Box-Counting algorithm (Mach 
et al., 1995), to describe river networks. River networks and streets have 
common properties such as hierarchy and critical self-organisation (Chen, 
2009). Based on this context, this research proposes to describe urban 
patterns by using the multifractal Sandbox method. Apparently, it is the first 
study that characterises different urban areas to obtain a set of fractal 
dimensions. Two neighbourhoods in the city of Cordoba (Andalusia, 
southern Spain) are analysed. The street networks are defined by the Space 
Syntax algorithm (Hiller & Hanson, 1984). To complete the multifractal 
analysis, a lacunarity study is conducted. Lacunarity describes the texture 
appearance of an image, on different scales, based on the distribution of 
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gaps or holes. It is applied to real data sets that may have a fractal or 
multifractal nature (Plotnick et al., 1996). This analysis is frequently utilised 
to develop urban spatial configurations (Alves Junior & Barros Filho, 2005; 
Amorim et al., 2009; Myint & Lam, 2005) and segregation; Wu Sui, 2001). 

 
The paper is organised as follows: Section 2 introduces the Space 

Syntax algorithm and the multifractal theory that is required to model and 
describe urban patterns. Section 3 details the study areas and discusses the 
main results of a multifractal analysis. Section 4 includes conclusions and 
recommendations for further research. 

 

2. Combination of Axial Maps and Multifractal Analysis to 
Describe Urban Morphology 

 
2.1. Axial Maps 

 
Space Syntax is a set of tools that describes spatial configuration 

through connectivity lines that cover all areas of a plane. This set of lines 
comprises an axial map (Peponis et al., 1998; Turner et al., 2005), which is 
one of the primary tools of Space Syntax. According to Turner (2006), an 
axial map is an abstraction of the space between buildings, which is depicted 
by straight lines and drawn according to a formal algorithm. The lines 
represent edges and intersections of lines represent junctions or 
connections between edges. Based on the algorithm, the axial map is the 
minimal set of axial lines that are linked in such a way that they completely 
cover the space. 

 
 Several authors have developed different computer programs for the 

construction of axial maps based on the initial proposal of Hiller and 
Hanson (1984). Some programs have been implemented in GIS, such as 
Axman, which was created by Nick Dalton at University College in London 
(Major et al., 1997) and Axwoman, which was developed by Jiang et al. 
(1999). Both are used to draw axial lines with a computer and analyse axial 
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maps of urban and interior spaces; the main difference between the 
programs is that Axman is a Mac-based application and Axwoman is a 
Windows-based application.  

 
Other software have been designed to generate axial maps 

automatically. Turner et al. (2005) introduced a universal-platform software, 
called Depthmap, to perform a set of spatial network analyses designed to 
explain social processes within a built environment. AxialGen, which was 
developed by Jiang and Liu (2009a), is a research prototype for 
automatically generating axial maps to demonstrate that axial lines 
constitute a true skeleton of an urban space. Although it is a good 
approximation of the axial map proposed by Hiller and Hanson (1984), this 
prototype has not been sufficiently tested.  

 
This research, which follows the method proposed by Tuner et al. 

(2005), extracts axial maps that successfully demonstrate and implement the 
algorithm proposed by Hiller and Hanson (1984) by obtaining accurate 
results with Depthmap. To translate formal language into algorithmic 
implementation, the definition of axial maps given by Hiller and Hanson 
(1984) was clarified and rewritten as “An axial map is the minimal set of 
lines such that the set taken together fully surveils the system and every axial 
line that may connect two otherwise unconnected lines is included”. To 
create the axial map, Tuner et al. (2005) establish two conditions: i) the 
reduction from the all-lines map to a unique minimal axial graph of the 
system and ii) the ability to surveil the entire system through axial lines and 
the preservation of topological rings. 

 
Any possible axial lines are calculated from a map in which all streets 

and blocks (polygons) are displayed. Every axial line is defined by joining 
two intervisible vertices. There are three different possibilities (Fig. 2.1): i) 
both of the vertices are convex, ii) one vertex is convex and one is concave 
or iii) both vertices are concave. 
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Figure 2. 1.  Different ways to define an axial line: (a) convex-convex; (b) convex-
concave; (c) concave-concave vertex 

 
 
The reduction to a single minimal axial-line map is based on the rule 

that if any line connects to a line, its neighbours do not join the two lines; 
the single line is retained or removed. When two lines have the same 
connection, the longest line is chosen and the other one is removed. A 
second condition needs to be applied to obtain the preservation of 
topological rings and surveillance of the entire system. To surveil the 
system, the algorithm chooses those lines from which every point of the 
system is visible. Therefore, this new condition is added to the last criterion. 
To complete the topological rings, the algorithm executes a triangulation 
around a polygon edge so that it is visible from the three axial lines that are 
around the geometry (Fig. 2.2). 

 
This research describes urban morphology as studied through axial 

maps and obtained with Depthmap software for two areas of Cordoba in 
Andalusia, which is in southern Spain (Fig. 2.3). This city is situated at 37º 
50' 44'' latitude and 04º 50'23'' longitude; its average elevation is 123 m 
above sea level. Cordoba, which is located in the Guadalquivir River Valley, 
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 has an area of 1245 km² and a population of 329723 inhabitants (data 
provided by the Statistic National Institute). Cordoba was founded by the 
Romans in the first half of the 2nd century B.C. because of its privileged 
geographical location. The city has been walled since its founding. Its 
fortification was expanded when the Arabs conquered Cordoba. With the 
arrival of Christians to the city, the wall was enlarged further. Due to 
population growth, Cordoba began to expand beyond its walls in 1905. 
Today, the city centre is situated in the area that was previously walled. 
 

Two neighbourhoods of Cordoba are studied, through a combination 
of axial maps, to understand their urban morphology (Fig. 2.4) and 
multifractal analysis. These areas were chosen because they exhibit similar 
densities of axial lines (Table 2.1). 

 
 

Figure 2. 2. Example of a topological ring
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Figure 2. 3. Location of the city of Cordoba 

 

Figure 2. 4. Areas selected for this work 
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3. Multifractal Analysis  
 

3.1. Lacunarity 
 

The lacunarity concept was introduced by Mandelbrot (1982) to 
differentiate texture patterns that may have the same fractal dimension but 
are different in appearance. It can be used with both binary and quantitative 
data in one, two and three dimensions. It is a measure of the gaps or holes 
in a space distribution. Thus, lacunarity measures the spatial heterogeneity 
of pixels in an image. If an image has large gaps or holes, it has a high 
lacunarity; in contrast, if an image has a translational invariance, it has a low 
lacunarity. Several algorithms have been proposed to measure this property 
(Gefen et al., 1983; Lin and Yang. 1986; Mandelbrot, 1982). 

 
Regarding this issue, the current research is based on the use of the 

“Gliding Box” algorithm proposed by Allain and Cloitre (1991) and 
popularised by Plotnick et al. (1993). This method consists of a square box 
of size r2 that slides over a space of total size M; the mass S is counted 
inside of the box at each point in the sliding process. Beginning with the 
first pixel located in the first column and row of images, the box slices along 
each pixel of the image. In this research, the images are binary, thus, the 
mass corresponds to the number of pixels that fill the space, whose value is 
1. The process is repeated for each new box size until the box size equals 
the image size. The frequency distribution of the box masses is n(S, r). This 
frequency distribution is converted into a probability distribution Q(S, r) by 
dividing each frequency value by the total number of boxes for each size 
N(r). Then, the first and second moment of the distribution are defined as: 







 2

(1) ( , )

(2) ( , )

Z SQ S r

Z S Q S r
    (7) 
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The lacunarity is defined through the relation between these moments 
as: 

  2( ) ( 2 )/ (1)r Z Z     (8) 

 
The first moment can be described by the mean E(S) and the second 

moment can be described by the variance Var(S) of the masses as follows: 
 

    


  2

(1) ( )

(2) ( ) ( )

Z E S

Z Var S E S
                                (9) 

 
Therefore, the lacunarity for each box size can be defined by, 

 
                                           2( ) 1 ( ( )/ ( ))r Var S E S                                  (10) 

 
This approach uses a measure based on a multiscale analysis that 

depends on the scale. In this research, lacunarity is calculated in an area of 
256 x 256 pixels located in the image centre (Fig. 2. 5). For each area, the 
lacunarity is calculated for box sizes ranging from r = 1 to r= 256 in 
multiples of 2.  

Figure 2. 5. Areas where lacunarity is calculated 
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4. Case Study: Multifractal Analysis Application to Two 
Neighbourhoods of the City of Cordoba (Spain) 

 
4.1. Study Areas Description 

 
Two neighbourhoods in the city of Cordoba, Spain, are studied. Area 1 

presents an irregular morphology as illustrated by Fig. 2. 6, which shows the 
corresponding axial map. This irregularity is a consequence of its unique 
history (i.e., Islamic heritage combined with centralised administrative 
influences). Today, this area exhibits typical Mudejar urban morphology, 
which is characterised by rectilinear main avenues and tortuous secondary 
streets. This neighbourhood reflects Roman, Arab and Christian settlements 
and is located in the city centre; it is the main business area for the 
community. Area 2 is a residential neighbourhood; it consists of houses that 
were built in the 1950’s and are based on a regular pattern (Fig. 2.6) that 
corresponds to modern planning and socio-economic requirements.  

 

Figure 2. 6. Axial maps of the study areas
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Area (km2) Average CV Skewness Kurtosis

AREA 1 1,009 146,06 0,604 1,766 0,371
AREA 2 0,343 267,849 0,615 0,768 0,628

Axial Lines Length Axial Lines

56
167,55

Number of lines Number of lines/km2

169
163,40

Table 2. 1. Features and statistical analysis of the different axial maps 

  
Table 2.1 shows the number of axial lines, density of axial lines per 

area and statistical parameters of the axial line length. These data are 
extracted from the axial maps that were generated for both areas. Although 
Area 1 has a slightly higher density of axial lines, it displays shorter axial 
lines than Area 2. Table 2.2 shows the statistical analysis of the block size 
for each study area. The average block size has been normalised over the 
surface of each zone to obtain a suitable comparison between the study 
areas. This table indicates that Area 1 has the highest number of blocks and 
highest coefficient of variation of block size. However, an opposite 
behaviour is detected for the coefficient of variation of Area 2 due to its 
regular morphology.   

 
Numbers of blocks Average (km2/km2) Maximun Minimun CV 

AREA 1 105 7,20E-03 2,70E-02 2,75E-04 0,78
AREA 2 69 7,80E-03 6,33E-03 9,55E-04 0,42

 
Table 2. 2. Blocks statistical analysis 

 
4.2. Multifractal Analysis Results 

 
The Sandbox method of axial-map analysis is applied using the 

algorithm proposed by Tél el al. (1989), Vicsek (1990) and Vicsek et al. 
(1990). To calculate the mass M(R) or number of network points in a circle 
of a given radius R, the algorithm begins with a circle of a maximum radius 
of 0.25 and a minimum radius of 0.0025 for all axial maps. The minimum 
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radius is chosen so that two pixels or two street network points must be 
inside the circle. 

 
D 0 D 1 D 2 R/L lower R/L upper R q=0

2

AREA 1 1,7654 1,7371 1,7168 -4,8 -2,2 0,9995
AREA 2 1,7575 1,7562 1,7543 -4,5 -2,5 0,9990

 
Table 2. 3. Multifractal parameters obtained from applying the Sandbox method 

 
Fig. 2.7 shows the scaling curves for [ 5,5]q  at 0.25 increments. 

This study is limited to this range of q values to avoid instability in the 
multifractal parameters, because higher and lower moment orders may 
magnify the influence of outliers in the measurements, as stated by Zeleke 
and Si (2005). These curves are fitted linearly to obtain the fractal dimension 
Dq. To obtain the best fit for R2, the linear regression is cut between a lower 
limit (R/L)lower and an upper limit (R/L)upper for q = 0 (Table 2.3).  

 
 

 

 

Figure 2. 7. Sandbox method scaling curves
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The sequences of mass exponent q  are detailed in Fig. 2.8 for each 

area. As shown, the q  curve for Area 1 exhibits multifractal behaviour, due 

to the different slopes for negative and positive moment orders. However, 

for Area 2, q  is almost a straight line, which confirms a quasi-fractal 

nature. In all cases, the generalised fractal dimension Dq is a decreasing 

function with 0 1 2D D D   , as verified in Table 2.3, which confirms the 

multifractal nature (Fig. 2.9). Dq shows a strong dependence on the values 
of q for Area 1. However, for Area 2, Dq tends to be constant, which 
denotes a much closer monofractal or simply fractal behaviour (D0 ≈ D1 ≈ 
D2) and a more uniform street distribution than in Area 1. This finding 
influences the shape and length of the multifractal spectra shown in Fig. 
2.10. Points that belong to the spectrum in Area 2 tend to be grouped 
compared with the dissemination of points exhibited in Area 1, which 
denotes the existence of a quasi-monofractal nature (one fractal dimension 
is sufficient to describe this zone). Table 2.3 illustrates that both areas have 
similar space-filling values D0. They almost have equivalent fractal 
dimensions although they display distinct morphologies. Area 2 (quasi-
fractal case) has a lower number of axial lines than Area 1 (multifractal case) 
because it fills the space in a more efficient way. 

 
To address two city areas with different morphologies and similar 

D0, lacunarity was calculated to distinguish texture patterns for the two 
fractal networks. Lacunarity curves are displayed in Fig. 2.11 and indicate a 
minimum value when the variance is 0 and a maximum value of one when 
the box size is 1. Lacunarity curves are straight and decrease almost linearly. 
This result corresponds to variability in the geometric distribution. Area 1, 
which exhibits a greater dispersion of its elements, presents the highest 
lacunarity value and, therefore, a heterogeneous street distribution in every 
box size. At the beginning, the curve of Area 2 is straight for low box-size 
values, which indicates heterogeneous lacunarity values. However, for a box 
size equal to 32x32, the lacunarity is more homogeneous. Lacunarity can be 
related to factors that influence urban morphology (e.g., block size). Area 1 
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shows the highest coefficient of variation of block size (Table 2.2) and the 
highest lacunarity values. Opposite results were found for Area 2.  

 
  
 

Figure 2. 8. The mass exponent
functions of each area evaluated at
0.25 increments in q values 

Figure 2. 9. The generalised
dimension spectra. Vertical bars
represent the standard error of the
computed multifractal average
parameters 
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Figure 2. 10. Multifractal spectra

Figure 2. 11. Lacunarity curves for each area
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4.3. Discussion 
 

Previous works have considered city morphology to be fractal (Batty & 
Longley, 1994; Batty, 2008; Benguigui et al., 2000; De Keersmaecker et al., 
2003; Feng & Chen, 2010; Frankhauser, 1998). The capacity dimension D0 
of urban form can be observed as a ratio of filling a city space (Chen & Lin, 
2009), which provides a new approach for performing urban spatial 
analysis. Dimension D0 is connected to the frequent measurements of a city 
shape and vice versa, within a certain range of spatial scales (Chen, 2011). 

 
Based on the results of this research, the prior notion that the 

morphology of a city can only be considered as fractal in nature is valid for 

city zones with regular morphology, such as Area 2 in which D0 ≈ D1 ≈ D2. 

In this case, the fractal dimensions have corresponding values (as a 
monofractal case), as illustrated in Table 2.3. However, when a city structure 
exhibits more complexity (Area 1), a multifractal nature emerges with 
different fractal dimensions, such as D0 > D1 > D2, that provide more 
information about the street network distribution.   

 
Table 2.3 shows that dimension D0 has similar values for both study 

areas, which implies similar space fillings. However, their morphologies are 
different because they can be derived from fractal dimensions D1 and D2. 
According to Davis et al. (1994), D1 provides a measure of the degree of 
heterogeneity in the spatial distribution of a variable. In addition, the 
information dimension characterises the distribution and intensities of 
singularities (high values of street network density) with respect to the 
mean. If D1 is lower, the distribution of singularities in the street network 
density will be sparse. To the contrary, if D1 increases, these singularities will 
have lower values that exhibit a more uniform distribution. 

 
This finding is in agreement with the D1 values listed in Table 2.3 for 

Areas 1 and 2. Area 1 yielded a lower D1 because it has more blocks with 
several sizes and irregular shapes (Fig. 2.6a) than Area 2, which has a smaller 



Chapter 2 

~ 66 ~ 

 

number of blocks that are similar in size and resemble rectangles (Fig. 2.6b). 
This finding is consistent with the CV values shown in Table 2 (CVArea 1 
> CVArea 2). When D0 = D1, a monofractal case exists. This description 
might be valid for Area 2; however, it is not valid for Area 1 (D0 > D1), 
which exhibits a multifractal nature. 

 
Correlation dimension D2 describes the uniformity of the street 

network density among several selected zones (circles of radius R). D2 is 
related to the probability of finding pixels that belong to the street network 
within a given distance when beginning on a pixel that belongs to this 
object. D2 is confirmed to be higher for Area 2 (Table 2.3) and more 
uniform than Area 1, as shown by Fig. 2.6. As in the case of D1, this finding 
is a result of relevant differences in the number, size and shape of blocks 
that determine the analysed morphologies of the neighbourhood. Area 2 
can be considered quasi-fractal because D0 ≈ D2, whereas Area 1 has a 
multifractal nature (D0 > D2), as previously stated. 

 
According to these results, the Rényi dimension spectrum can be used 

to describe urban morphology instead of a single-valued fractal dimension. 
This situation is determined by different urban morphology generative 
processes (city growth according to several planning/socio-economic 
regulations) over time, which results in regular and irregular areas. 
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5. Conclusions 
 

With the goal of performing a multifractal analysis of urban 
morphology, street layouts are extracted using a Space Syntax algorithm for 
two urban neighbourhoods, thereby obtaining axial maps of each area to 
accurately represent their spatial configurations. The Sandbox multifractal 
method and lacunarity measurements are applied to describe street 
networks. Multifractal analysis is efficient for characterising the morphology 
of street networks with the advantage of parameters that are independent 
over a range of scales. According to the generalised dimension spectra 
obtained in this research, it is convenient to consider the existence of the 
multifractal nature of some urban zones, especially when addressing cities 
with frequent irregular morphology; these areas cannot be described by a 
single fractal dimension as previous research states. Instead, infinite fractal 
dimensions for these zones should be theoretically considered. In practice, 
capacity, information and correlation fractal dimensions are sufficient 
parameters for characterising irregular morphologies. 

 
This research is based on a case study of two neighbourhoods in the 

same city. Although the regular and irregular urban patterns studied here are 
frequently observed in other cities, the replication of this analysis would 
establish the generality of the conclusions reached in the case study of 
Cordoba. 

  
The differences found for the fractal dimensions obtained for the 

neighbourhoods in this research are influenced by urban patterns derived 
from planning regulations and diverse socio-economic situations, such as 
the spatial and temporal evolution of land values (i.e., Hu et al., 2012). Thus, 
with the objective of aiding urban planning and management, further 
analyses should be performed to relate specific fractal dimensions to 
different planning and socio-economic regimes. The study of relationships 
between fractal dimensions and market context is suggested because the city 
street network is determined by business principles in many cases. 
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Chapter 3  

 

 
“Un gran árbol transpira cada día cientos de 
litros de agua a la atmósfera. No hay troncos 

ni ramas en el bosque, sino canales 
disfrazados por donde corre el agua. 
Troncos líquidos, copas verdes, el sol 

arriba… ¿Cómo? ¿Qué no es un árbol? 
¿Y las flores? ¿Caballos, dice? 

¿Es una ensoñación? ¿Será fractal la materia 
de los sueños de Shakespeare?” 

 
Miguel Delibes de Castro (1947- )
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Chapter 3. Multifractal 

analysis applied to the study of 
the accuracy of DEM-based 
stream derivation. 

 

 
Abstract 
 

 A correct description of river network morphology is very important 
when it is used to study different features of a river’s morphology as well as 
phenomena related to it such as erosion, nitrogen retention or sediment 
pollution. Different algorithms have been developed to extract drainage 
networks directly from Digital Elevation Models. In this paper, the suitability 
of ArcHydro extension, developed for ArcGIS Desktop and based on the D8 
algorithm for generating river networks, has been studied by using multifractal 
analysis. This approach allows the determination of a suitable flow 
accumulation threshold value by considering the Rényi spectra. The river 
networks generated by ArcHydro were compared to those provided by 
photogrammetric restitution by taking into account the multifractal spectra 
showing differences in stream density with a low channel order. In this work, 
the use of multifractal analysis has been extended as a pattern recognition tool 
for completing human perception when images are visually checked. 
 
 

 

KEYWORDS: river networks; multifractal analysis; digital elevation model; 
pattern recognition; flow accumulation threshold value. 
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1. Introduction 
  
It is of great importance to know about a river’s morphology 

because this can be used to study its relationship to nitrogen retention 
(Alexander et al. 2000, Wagenschein & Rode 2007), erosion (Vital et al., 
1998, Prosser et al. 2001, Makaske et al. 2009) or rainfall (Ramos and Gracia 
2011), among other phenomena. Geographic Information Systems (GIS) 
are suitable tools for researching different river features, as well as their 
corresponding watersheds. Thus, GISs have been applied to find out the 
risk of erosion in catchments (Winterbottom et al. 2000, Nigel et al., 2010), 
river contamination by sediments (Terrado et al. 2006, Rhoades et al. 2008,  
Siber et al. 2009, Delgado et al. 2010) and the change in channel 
morphology of rivers (Porter & Massong 2004). River networks can be 
obtained directly by digitization from the interpretation of digital images or 
through a Digital Elevation Model (DEM) by using GIS tools. Different 
algorithms have been developed to extract basic topographic characteristics 
from DEMs related to hydrology, such as those calculated for river 
networks (Mark 1984, O’ Callaghan & Mark 1984) and catchment 
boundaries (Morris & Heerdegen 1988). The first approach to extracting 
river networks from a DEM was D8 algorithm, introduced by O’Callaghan 
and Mark (1984), using a neighbourhood of eight cells as possible flow 
directions. This algorithm is probably the most popular method for 
automated drainage recognition and catchment area determinations (Martz 
& Garbrecht, 1998). However, results of applying this method are 
sometimes non-realistic (Turcotte et al., 2001), due to the determination of 
the flow in only one of eight possible directions, the presence of flat areas 
and pits, and the lack of information on the locations of lakes. The multiple 
flow direction method, in which the drainage of a particular cell flows down 
slope to several adjacent cells of a lower elevation, was suggested (Freeman, 
1991) to overcome the limitations of D8. This approach does improve the 
D8 model in some aspects, but needs additional computational time to 
calculate a greater density of flow connections (Gallant & Wilson, 1996), 
and the flow from a pixel is dispersed to all the neighbouring pixels with 
lower elevation. Lea (1992) developed an algorithm that calculates the flow 
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direction through the aspect associated with each cell. The flow is routed as 
though it were a ball rolling on a plane released from the centre of each cell. 
A plane is fitted to the elevations of pixel corners, these corner elevations 
being estimated by averaging the elevations of adjoining pixel centre 
elevations. This algorithm has the advantage of specifying flow direction 
continuously and without dispersion. Costa-Cabral and Burges (1994) 
developed the DEMON (Digital Elevation Model Network) algorithm to 
try to improve the modelling proposed by Lea (1992). Grid elevation values 
are used as pixel corners, rather than block centred, and a plane surface is 
fitted for each pixel. They recognized flow as being two-dimensional, 
originating uniformly over the pixel area, rather than tracking flow paths 
from the centre point of each pixel. The plane flow methods (Lea, 1992; 
Costa-Cabral & Burges, 1994) are deterministic and resolve flow directions. 
However, they are susceptible to problems arising from the approximation 
involved in fitting a plane through four points (Tarboton, 1997). Tarboton 
(1997) used multiple flow directions to resolve the limitations of the D8 
algorithm, but the main problem of this method is the elimination of the 
unimodal link between the flow directions and the difficulty in calculating 
the catchment boundary due to the multiple flow direction from a cell.  

 

Several authors have developed software tools including some of 
these algorithms to calculate river networks from a DEM. Among others, 
these tools are: i) ArcHydro , an extension for the ArcGIS Desktop 
developed by the University of Texas (Maidment 2002) based on the 
maximum gradient method, D8 algorithm, proposed by O´ Callaghan et al. 
in 1984; ii) CUENCAS which extracts the drainage structure from a DEM 
using algorithms which is centred on a D8 algorithm (Mantilla & Gupta 
2005); iii) GRASS which is a toolset designed for the Hortonian analysis of 
drainage networks and uses a multiple flow direction algorithm for stream 
network extraction (Jasiewicz & Mezt 2011). Despite the drawbacks of the 
D8 algorithm explained before, it is used in this work to extract the drainage 
network from a DEM, because it is frequently applied in hydrological 
research. However, the suitable determination of the flow accumulation 
threshold value is a key point that remains open in this algorithm. In this 
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sense, it is appropriate to explore this issue by using approaches such as the 
multifractal analysis that has been applied to studying the morphology of 
river networks with successful results (Rinaldo et al. 1993, De Bartolo et al. 
2000, 2004, 2006). The multifractal analysis based on the Box-counting 
fixed-size methods has one main dedefct, i.e. an incorrect determination of 
the fractal dimensions for negative moment orders, due to the emphasis 
given to regions with few points not centred on them (e.g., De Bartolo et 
al., 2004, Gaudio et al., 2006). Some errors, due to the use of Legendre 
transforms (Veneziano et al., 1995), are associated with such problems, 
leading to a poor estimation of the multifractal spectrum (De Bartolo et al., 
2006).This snag can be minimized by using the Sandbox algorithm (Tél et 
al., 1989; Vicsek, 1990; Vicsek et al., 1990), that is also a fixed-size method. 
According to De Bartolo et al. (2004), the disadvantage of the presence of 
regions containing few data points has been overcome, and, therefore, the 
principal cause of the biased assessment of the generalized fractal 
dimensions for negative moment orders has been removed. This 
circumstance could be especially interesting when describing the 
morphology of river networks, where regions with a small number of 
streams are frequent. This approach has been applied to the study of the 
morphology of river networks to analyze different variables such as the 
influence of lithological and tectonic morphologies on river (Gaudio et al. 
2005, Dombrádi et al. 2007). 

 

This work explores the use of the Sandbox algorithm in the study of 
quality river network morphology generated by the extension ArcHydro 
tool, which applies the D8 algorithm, correcting the presence of pits and 
offering the possibility of including information on the locations of lakes. 
The rivers have been generated from a DEM and they have been compared 
to a river network proceeding from photogrammetric restitution provided 
by the Department of Agriculture, Fisheries and Environment, 
Government of Andalusia, 2005. The DEM, which has a 10 meters 
resolution, was provided by the Department for Public Works and 
Transport (Government of Andalusia). It was obtained in 2005 from aerial 
photographs (scale 1: 20.000). The study area (Fig.3. 1) corresponds to 
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territorial division map sheet numbers 92241, 92232, 92233, 92241, 92242 
and 92243 of Andalusia, whose area is 35,6 x 103 km2 per sheet. The study 
area is in the province of Cordoba (southern Spain, Andalusia) and it 
presents a moderate relief terrain, where the morphology of the drainage 
network generated by the models can be clearly seen.  

 

The paper is organized as follows: the Material and Methods section 
introduces the algorithms used by ArcHydro to extract the river networks 
and multifractal theory needed to describe river patterns. In the Results 
section, the findings are reported and discussed by comparing 
photogrammetric restitution rivers and ArcHydro rivers through 
multifractal analysis. The last section is devoted to conclusions. 

Figure 3. 1. Location of study area
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2. Material And Methods 
 

2.1. Hydrological Model in Geographic Information System: 
ArcHydro 

ArcHydro is an extension of water resource applications developed 
for ArcGIS Desktop by the University of Texas (Maidment 2002). Among 
other hydrological applications, this tool can be used for efficient watershed 
delineation and stream network generation. ArcHydro employs a DEM to 
identify the surface drainage pattern, which contains the terrain height in 
each cell or pixel. It is necessary to know the elevation data to obtain the 
water flow direction map as a previous step to procuring drainage networks. 

 
 

 

 
 First, to calculate the flow directions, ArcHydro permits the 

correction of inaccuracies and anomalies, including depressions known as 

Figure 3. 2. Scheme of D8 method
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sinks. These anomalies can prevent the water from flowing along the 
channels and becoming accumulated. Once these anomalies are corrected, 
ArcHydro assigns a flow direction to each pixel, which depends on the 
maximum slope of the cells around it. As shown in Fig. 3. 2, extracted from 
ArcHydro Tutorial, there are eight flow directions. Once the flow direction 
map is known, a flow accumulation map is calculated and the number of 
cells that pour into a given cell is attributed to each pixel. Finally, the river 
maps are defined with the length of each stream depending on the 
threshold value considered for flow accumulations. The default value 
displayed by ArcHydro for the river threshold represents 1% of the 
maximum flow accumulation, but any other threshold value can be selected 
(Maidment 2002). 

 

 

3. Results 
 
This study explores the suitability of river networks simulated by 

ArcHydro from a DEM of 10 m in cell size. The multifractal Sandbox 
method was used to determine the Rényi spectra of the networks provided 
by ArcHydro and those calculated from photogrammetric restitution. By 
comparing these spectra, it was possible to yield the suitable flow 
accumulation threshold value for obtaining the most accurate ArcHydro 
results, as well as determining the resemblance between both kinds of 
networks. In order to compare both networks correctly, the data provided 
from photogrammetric restitution were previously processed due to the 
main rivers being represented by a double line describing their edges. This 
fact can produce wrong results when the river networks are compared, 
because river networks generated by ArcHydro are represented by a line. 
Therefore, the photogrammetric restitution main rivers were described by a 
central line calculated in ArcGIS. 

 
To apply the multifractal Sandbox method to obtain the Rényi spectra, 

the calculation of M(R), or number of network points in a circle of a given 
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normalized radius, R/L, the algorithm considers 0.25 and 0.0028, 
respectively, as the maximum and minimum radii. The minimum radius is 
chosen so that two pixels or two river network points must be inside the 
circle. 

 
Fig. 3. 3 shows the scaling curves for . These curves were fitted linearly 

to obtain the different values of Dq. In order to obtain the best fits, the 
linear regression was cut between the lower limit (R/L)lower and upper limit 
(R/L)upper for q = 0 shown in Table 3. 1. The goodness of the fits (R2) is 
listed in the same table. 

 
The Rényi spectra of  ArcHydro river networks for each area were 

obtained for eight flow accumulation threshold values and compared with 
the spectra found for the photogrammetric restitution rivers. Table 3. 1 
shows the root mean square error (RMSE) for each flow accumulation 
threshold value and, in bold, the selected values whose error is the lowest. 
The default value displayed by ArcHydro for the river threshold represents 
1% of the maximum flow accumulation, but the drainage networks 
generated have a lower channel order compared with those provided from 
photogrammetric restitution. Thereby, the suitable flow accumulation value 
has to be lower than 1% of the maximum flow accumulation. Therefore, 
the range of values selected to calculate the suitable flow accumulation 
threshold value for each area were 100 to 900, at 100 increments. On the 
other hand, it has been found that the root mean square error (RMSE) 
decreases until it reaches the lower values and then it increases, according to  

 
 

Threshold Value 200 300 400 500 600 700 800 900
92231 0,0636 0,0386 0,0171 0,0072 0,0094 0,0172 0,0172 0,0290
92232 0,0202 0,0047 0,0066 0,0359 0,0565 0,0576 0,0690 0,0810
92233 0,0764 0,0529 0,0345 0,0290 0,0131 0,0172 0,0207 0,0227
92241 0,0682 0,0521 0,0369 0,0337 0,0131 0,0099 0,0094 0,0098
92242 0,0294 0,0245 0,0189 0,0161 0,0193 0,0340 0,0357 0,0520
92243 0,0516 0,0331 0,0238 0,0154 0,0073 0,0123 0,0158 0,0184

Root Mean Square Error

Table 3. 1. Flow accumulation threshold value selected.
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Figure 3. 3. Scales curves
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Table 3. 2. Therefore, these lower RMSEs determine the appropiate range 
for flow accumulation threshold values. However, in order to calculate the 
stream networks with ArcHydro and compare them with photogrammetric 
restitution data, the flow accumulation threshold value corresponding to the 
lowest RMSE has been considered. Fig. 3. 4 shows the Rényi spectra for 
both kinds of river network maps (Fig. 3. 5). In the case of ArcHydro rivers, 
these spectra have been calculated with the appropriate threshold value 
previously determined.  

 
The generalized fractal dimension or Rényi spectrum, Dq, is a 

decreasing function (Fig. 3. 4), with D0>D1>D2, as can be verified in Table 
3. 1, showing a strong dependence of Dq on values of q. This circumstance 
confirms the multifractal nature of all the drainage areas considered here. 
Areas 92231, 92232 and 92243 have similar scaling properties for the rivers 
generated by ArcHydro and photogrammetric restitution due to the 
overlapping of their curves. On the other hand, in area 92233 the spectra 
almost overlap in the left part of the curve (negative q side), whereas in the 
right part they do not. In the case of areas 92241 and 92242, the curves 
overlap in the central sections while at their ends they are slightly displaced 
(positive q and negative q side).   

 
Multifractal parameters of these spectra can be seen in Table 3. 2. 

According to Davis et al. (1994), the information dimension D1 provides a 
measure of the degree of heterogeneity in the spatial distribution of a 
variable. In addition, D1 characterizes the distribution and intensity of 
singularities with respect to the mean. If D1 is lesser, the distribution of 
singularities in the river network density will be sparse. On the contrary, if 
D1 becomes greater, these singularities will have lower values exhibiting a 
more uniform distribution. Table 3. 2 lists D1 values, and, as can be 
observed, river networks provide from photogrammetric restitution present 
higher D1 values showing a more homogeneous singularities distribution 
than river networks generated from ArcHydro. 
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D 0 D 1 D 2 W=D 0 -D 1 R/L lower R/L upper R
2 Net Points

 Photogrammetry Restitution 1,7609 1,7253 1,6983 0,0357 -3,5000 -1,5000 0,999521 8795

  ArcHydro 1,7572 1,7160 1,6899 0,0412 -3,2000 -1,3860 0,99957 7426

D 0 D 1 D 2 W=D 0 -D 1 R/L lower R/L upper R
2 Net Points

 Photogrammetry Restitution 1,8123 1,7845 1,7659 0,0278 -3,5000 -1,386 0,99959 10491

  ArcHydro 1,8123 1,7845 1,7659 0,0278 -3,5000 -1,386 0,9997 10491

D 0 D 1 D 2 W=D 0 -D 1 R/L lower R/L upper R
2 Net Points

 Photogrammetry Restitution 1,7501 1,7159 1,6868 0,0342 -3,5000 -1,3860 0,9997 12134

  ArcHydro 1,7446 1,7156 1,6944 0,0290 -3,4000 -1,3860 0,9995 8151

D 0 D 1 D 2 W=D 0 -D 1 R/L lower R/L upper R
2 Net Points

 Photogrammetry Restitution 1,7753 1,7389 1,7078 0,0364 -3,5000 -1,3860 0,9996 13009

  ArcHydro 1,7642 1,7313 1,7074 0,0329 -3,5000 -1,5000 0,9997 12198

D 0 D 1 D 2 W=D 0 -D 1 R/L lower R/L upper R
2 Net Points

 Photogrammetry Restitution 1,7925 1,7763 1,7656 0,0162 -3,6000 -1,3860 0,9997 12519

  ArcHydro 1,7903 1,7670 1,7523 0,0233 -3,3000 -1,3860 0,9996 8934

D 0 D 1 D 2 W=D 0 -D 1 R/L lower R/L upper R
2 Net Points

 Photogrammetry Restitution 1,8023 1,7526 1,7291 0,0496 -3,5000 -1,4000 0,9994 12778

  ArcHydro 1,7902 1,7654 1,7389 0,0248 -3,2000 -1,3860 0,9996 8535

Multifractal Parameters 92231

Multifractal Parameters 92232

Multifractal Parameters 92233

Multifractal Parameters 92241

Multifractal Parameters 92242

Multifractal Parameters 92243

Table 3. 2. Multifractal parameters for each study area. 
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Figure 3. 4. Rényi spectra 
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Figure 3. 5. River map generated with ArcHydro tool and photogrammetric restitution 
Photogrammetry Restitution Rivers ArcHydro Rivers

92231 92231

9223292232  
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Correlation dimension D2 describes the uniformity of the river network 
density among several selected zones (circles of radius R). It describes the 
probability of finding pixels belonging to the object within a given distance 
when starting on a pixel belonging to the object. In accordance to the D2 

values list in Table 3. 2 it can not to be obtained any information about the 
uniformity of the imagines distribution due to the values obtained for 
ArcHydro and photogrammetric restitution are similar.  

 
 D0 is the fractal dimension and it refers to the degree of filling space by 

river networks. It can be verified in Table 3. 2 that all drainage networks 
provided from photogrammetric restitution have a higher degree of filling 
space, meaning that these networks have a greater density of streams than 
those generated by ArcHydro. Therefore, ArcHydro provides fewer 
populated networks with a lower number of channel orders. 

 
 

4. Conclusions 
 

Factors such as DEM resolution, algorithm of stream derivation, 
cartographic smoothing of the cell-to-cell vector lines and the flow 
accumulation threshold value have an influence on the accuracy of drainage 
networks extracted from DEMs by ArcHydro and give wrong results when 
different features of the hydrological processes are analyzed. As a 
consequence, this work explores the appropriate selection of the flow 
accumulation threshold value by using multifractal analysis.  

The river networks studied in this research are of a multifractal 
nature and, consequently, Rényi spectra can be regarded as being an 
efficient tool for determining the above mentioned threshold value in order 
to obtain the required detail level. The suitability of ArcHydro river 
networks has been frequently determined by a visual comparison with those 
derived from cartographic products such as topographic maps. In this 
research, the multifractal analysis has been applied as a pattern recognition 
tool allowing a numerical verification of the resemblance between 
ArcHydro and photogrammetric restitution river networks. This analysis 
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takes advantage of having parameters that are independent over a range of 
scales. According to the multifractal spectra, the main difference between 
the networks considered here is the lesser stream density with a low channel 
order detected for ArcHydro results compared to photogrammetric 
restitution. However, according to the results obtained, the drainage 
networks simulated here by ArcHydro are fit to be considered as input data 
for performing different research and works. 
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Conclusions 

 
 

 
 
 

“I believe that scientific knowledge has fractal properties: 
that no matter how much we learn,  

whatever is left, however small it may seem. 
 is just as infinitely complex as the whole was to start with. 

That, I think, is the secret of the Universe.” 
 

Isaac Asimov (1920-1992)
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Conclusions 
 
General conclusions  

 
Multifractal nature of different kinds of anthropogenic and natural 

networks is studied along this thesis. The algorithm used in this 
research to study these networks is Sandbox fixed-size method, 
which overcomes some limitations of Box-Counting fixed-size 
method when networks are studied. It is explored the use of Sandbox 
approach to analyse variables in three dimensions and it is compared 
with Box-Counting method. The latter method produces higher 
standard error than Sandbox algorithm when multifractal spectrum is 
calculated, providing more accurate results and describing variables in 
a more efficient way.  

 
Multifractality is evident in the case of irregular networks 

morphologies, being needed a set of fractal dimensions to describe 
their complexity and, as consequence, the self-similarity are going to 
depend on the scale. On the other hand, it should be noted that the 
fractal nature, in the case of regular networks morphologies, is 
defined by a single fractal dimension.   

 
The Rényi or Generalized Dimension Spectrum is used in this 

work as the key to determine the fractal or multifractal nature of 
networks. When the different values for fractal dimensions Dq display 
a strong dependence for all analyzed moment orders or q values, the 
studied data exhibit a multifractal nature (case of irregular networks); 
the opposite case occurs in fractal nature wherein Dq values are the 
same for all analyzed moment orders values. 
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Multifractal analysis can be considered as a tool to check 
models validity: if a phenomenon exhibits a multifractal nature, 
this one has to be present in simulate results. 

Chapters conclusions 
 

The conclusions listed below are obtained through the 
different chapters of this thesis:  

i. The Sandbox algorithm improves the performances of 
multifractal analysis carried out with the Box-Counting 
procedure due to the reduction of undesired effects of 
anomalous contribution in regions containing few data 
points within the calculation of the generalized fractal 
dimension (Chapter 1).  

ii. The fractal dimension obtained with Sandbox method, 
when networks are studied in 3D, is lower (D0) than the 
geometric support of measure. This circumstance 
determines the influence of pore phase geometry on flows 
that cannot fill the 3D domain (Chapter 1). 

iii. The multifractal spectra estimated with Sandbox method 
indicate the influence of the porous media structure on 
simulated flows in a clearer way. As porosity increase, the 
method reveals more uniformity in the distribution of flow 
velocity values (Chapter 1). 

iv. Multifractal analysis reveals the existence of multifractal 
nature in some urban areas, especially when dealing with 
irregular urban pattern. Thereby, these areas cannot be 
described by a single fractal dimension as previous 
research states, being the parameters of Rényi spectra 
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enough to characterize irregular networks morphologies. 
(Chapter 2). 

v. Multifractal analysis shows to be an efficient pattern 
recognition tool, contrasting the differences between 
images. Multifractal analysis detects that ArcHydro tool 
generates lesser stream density with low channel order 
(Chapter 3). 

vi. Rényi spectrum can be regarded as an efficient tool for 
determining the flow accumulation threshold value when 
networks are generated from a Digital Terrain Model by 
ArcHydro tool (Chapter 3). 
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