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Universidad de Córdoba, Córdoba, Spain, 4 Departamento de Deporte e Informática, Facultad del Deporte, Universidad Pablo de Olavide, Sevilla, Spain

Abstract

Every other day feeding (EOD) and exercise induce changes in cell metabolism. The aim of the present work was to know if
both EOD and exercise produce similar effects on physical capacity, studying their physiological, biochemical and metabolic
effects on muscle. Male OF-1 mice were fed either ad libitum (AL) or under EOD. After 18 weeks under EOD, animals were
also trained by using a treadmill for another 6 weeks and then analyzed for physical activity. Both, EOD and endurance
exercise increased the resistance of animals to extenuating activity and improved motor coordination. Among the groups
that showed the highest performance, AL and EOD trained animals, ALT and EODT respectively, only the EODT group was
able to increase glucose and triglycerides levels in plasma after extenuating exercise. No high effects on mitochondrial
respiratory chain activities or protein levels neither on coenzyme Q levels were found in gastrocnemius muscle. However,
exercise and EOD did increase b-oxidation activity in this muscle accompanied by increased CD36 levels in animals fed
under EOD and by changes in shape and localization of mitochondria in muscle fibers. Furthermore, EOD and training
decreased muscle damage after strenuous exercise. EOD also reduced the levels of lipid peroxidation in muscle. Our results
indicate that EOD improves muscle performance and resistance by increasing lipid catabolism in muscle mitochondria at
the same time that prevents lipid peroxidation and muscle damage.
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Introduction

Every other day feeding (EOD) is a procedure that resembles

many of the effects of caloric restriction (CR). EOD increases life-

span, decrease cancer incidence and protects against age-

associated diseases and neurodegeneration or endogenous damage

of DNA [1–4]. EOD is considered to produce a mild CR inducing

around a 15% of reduction of the total ingestion of calories. On

the other hand, exercise increases energy expenditure and affect

morbidity and lifespan in a similar way than CR on morbidity and

lifespan [5,6]. Regular physical activity induces analogous cellular

and molecular changes in cardiovascular and nervous systems to

those observed in animals fed under CR conditions [4].

Furthermore, endurance exercise and CR delay the progression

of immunosenescence [7] and induce a general anti-inflammatory

effect preventing the age-dependent increase of plasmatic C-

reactive protein levels in rats [8].

The similar effects induced by CR and exercise suggest that

both interventions share some mechanisms that modify cell

physiology. Ex vivo experiments on rat gastrocnemius muscle

exposed to electrical stimulation have suggested synergy between

CR and aerobic exercise in muscle bioenergetics [9]. In humans,

the practice of aerobic exercise together with CR improves insulin

sensitivity and reduces plasmatic LDL levels [10] and also seems to

improve neurocognitive function [11]. However, in other cases,

CR and exercise induce contrary effects such as in the decrease of

diet-induced weight loss muscle mass in cases of intentional weight

loss in old individuals [12].

Both, CR and exercise modify significantly the bioenergetics of

muscle. Long-term CR delays the decline of the skeletal muscle

aerobic capacity that occurs during aging [13]. Endurance exercise

and CR promote changes in muscle fibers and mitochondrial

activity by increasing the activity of PPAR-d [14–16]. Interestingly,

during aging, the activity of complexes involved in aerobic energy

production decreases in muscle whereas both CR and exercise

maintain them [17]. It is known that CR induces changes in

mitochondrial biogenesis and activity through activation of SIRT-1

and PGC1a-dependent mechanisms [18]. Moreover, resveratrol, a

known polyphenol considered a mimetic of CR, also induces

changes in muscle mitochondrial activity and improves physical

performance in mice [19,20] and could be considered as an

ergogenic factor able to modify muscle physiology [21].

Most of the studies reported about dietary restriction and

exercise have been performed by comparing the effect of CR
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versus exercise [22,23]. There are few data available about the

effect combined effect of CR and exercise in metabolism and

muscle performance. Thus, the aim of this work is to study the

effect of the combination of endurance training and EOD on

physiological, molecular and metabolic aspects affecting muscle

activity. We hypothesize that some of the modifications induced by

EOD mimic the effect of aerobic exercise and improve physical

performance. It is possible that EOD and exercise could show

additive effects in some capacities. In fact, the results shown here

suggest that EOD by itself or together with moderate physical

activity positively affects muscle performance by increasing the

metabolism of lipids by b-oxidation of fatty acids, increasing fuel

mobilization during exercise and preventing oxidative stress and

also muscle damage.

Results

Effects of EOD and training on physical activity
The scope of our research includes the study of different

physical activities such as: spontaneous locomotion, grip strength,

startle response, motor coordination and resistance to strenuous

exercise in mice submitted EOD and/or endurance exercise. All

these parameters might be influenced by difference in mice’s

weight since they were fed in different conditions. However along

our experiment we did not find any difference in weight between

groups under either AL or EOD (Fig. 1A). Furthermore,

endurance exercise did not produce any significant modification

on the weight of animals. Determination of animal’s locomotion

by measuring the movement of each animal on an open field did

not show differences between the sedentary groups (Figs. 1B–C).

However, training significantly decreased both free activity of

animals and peripheral exploration probably by a higher

habituation capacity of these animals.

To determine the effect of EOD and/or exercise on muscle

capacity we determined grip strength, startle assay, rotarod

coordination and strenuous exercise tests. Grip strength was used

to determine the improvement for the press force after the 6 weeks

of training. We found that exercise significantly improved press

force in four limbs (86.88612.17% of improvement in AL-

T+EODT animals, n = 32, vs. 66.05610.41% in AL+EOD

animals, n = 32, P = 0.002). Further, EOD also produced signif-

icant improvement in this test (82.77610.51% in EOD+EODT

animals, n = 32, vs. 69.93612.49% in AL+ALT animals, n = 32,

P = 0.019). When we compared the four groups, the higher and

more significant improvement was found in the EODT group

(Fig 1D) affecting both two and four limbs tests. Muscle potency,

determined by using the startle assay showed no differences

between groups (Fig. 1E). Motor coordination and resistance was

determined carrying out a specific test designed by using a

Rotarod. Animals were forced to resist onto an accelerating

Rotarod until 100 rpm, once reached this speed, the time each

animal remained on the device was quantified. Training increased

motor coordination being significantly higher in EODT animals in

comparison with sedentary EOD animals (P = 0.001), (Fig. 1F).

Finally, we carried out an extenuating endurance test. Eight

animals of each group ran until extenuation. Among all the

groups, EODT was the group that ran longer and covered more

distance (Fig. 1G). Among non-trained animals, EOD group

showed a significant higher resistance in comparison with AL

group (1167657 vs. 8406108 s, P = 0.015) and covered more

distance (603.7669.4 vs. 285.6647.6 m, P = 0.003). Remarkably,

EOD group showed almost the same capacity than trained groups

(Fig. 1G), indicating that EOD itself was able to increase muscle

resistance mimicking endurance exercise training.

EOD and training affect nutrients mobilization during
exercise

The two EOD groups were able to maintain or even increase (in

the case of EODT) glucose levels after extenuating exercise (Fig. 2).

A mean of 37% increase of glucose level was found in the EODT

group after extenuating exercise (P = 0.014). In contrast, plasma

glucose levels decreased in the ALT group after exercise although

showing similar performance in the extenuating test (Fig. 2A). In

the AL group, glucose levels did not changed but we have to

remark that the resistance of this group was considerably less than

in both EOD groups. In fact, when we analyzed the levels of

glucose of both EOD groups in comparison with AL groups, a

significant increase of glucose in plasma after extenuating exercise

was found (140.0611.8 mg/dl in AL+ALT animals, n = 32, vs.

185.4614.2 in EOD+EODT animals, n = 32) (P = 0.012).

In the case of lactate, levels of witness animals showed a

tendency to decrease in trained animals (Fig. 2B) and especially in

the EODT group. After exercise, all the groups, except EOD,

showed a significant increase in plasmatic lactate, even in the AL

group besides the poor performance.

In the case of lipids, levels of circulating triglycerides (TGs) in

witness animals were significantly lower in animals fed under EOD

conditions (86.763.4 mg/dl in EOD+EODT animals, n = 32) vs.

AL animals (125.366.7 mg/dl in AL+ALT animals, n = 32)

independently of training (P = 0.001). After extenuating exercise,

EOD and EODT groups were able to maintain or even increase

TGs levels while they decreased in AL group (Fig. 2C). As in the

case of glucose, the EODT group showed an increase of around

42.5% in circulating TGs after exercise. In the case of cholesterol,

training induced higher plasmatic levels before extenuating

exercise independently of nutrition (97.164.1 mg/dl in AL-

T+EODT animals, n = 32 vs. 80.065.2 mg/dl in AL+EOD

animals, n = 32, P = 0.02). After extenuating exercise, both AL

and ALT groups showed increases in plasmatic cholesterol while

EOD and EODT groups did not present any changes respecting

witness animals (Fig. 3D). This increase was significantly different

(P = 0.017) when all AL fed animals (AL+ALT: 111.066.0 mg/dl,

n = 32) were compared with all animals fed under EOD conditions

(EOD+EODT: 89.265.9 mg/dl, n = 32).

Finally, in the case of urea lower basal levels were found in

trained animals (ALT+EODT: 56.362.7 mg/dl, n = 32) respect-

ing to sedentary animals (AL+EOD: 73.265.7 mg/dl, n = 32)

(P = 0.011). The effect of exercise on initial levels of urea was

higher in EOD groups being significant between EOD and EODT

groups (P = 0.042). Extenuating exercise did not produce any

remarkable change in the levels of plasmatic urea except in the

case of EODT group (Fig. 3E). In the case of uric acid, no

significant differences of levels between groups were found

although we did find a tendency to increase after extenuating

exercise. Similar small modifications were also found in the levels

of albumin in plasma (data not shown).

EOD and training modify in different degree
mitochondrial muscle activities

A higher physical resistance can be explained by changes in

muscle metabolism. Thus, we proceeded to determine mitochon-

drial activities in gastrocnemius muscle (Fig. 3). In the case of

citrate synthase (CS) activity, a marker of mitochondrial mass, we

did not find any substantial differences in whole muscle

homogenates between mice groups in CS activity (Fig. 3A).

Mitochondrial function was determined by quantification of

respiratory complexes activities. Training and EOD induced a

slight although not significant increase of complex I activity

EOD, Exercise and Muscle

PLoS ONE | www.plosone.org 2 November 2010 | Volume 5 | Issue 11 | e13900



(Fig. 3B). Complexes II and III activity of the EOD group

increased significantly respect to AL group (P = 0.014 and

P = 0.045 respectively). On the other hand, training slightly but

not significantly increased activity in AL fed animals (P = 0.148,

ALT vs. AL in complex II and P = 0.868 in complex III).

However, in EODT animals a decrease of activity vs. EOD

animals was found being significant in the case of complex II

(P = 0.017) but not in the case of complex III (P = 0.379) (Figs. 3C–

D). No changes were found in complex IV (Fig. 3E). In the case of

the activity of complex V (Fig. 3F) we found a non-significant

increase in EOD group when compared with AL group

(P = 0.183). Training induced a slight decreased of this activity

Figure 1. Physical performance analysis. A) Weight of animals at the end of the experiment (n = 16). B) Exploratory locomotion activity in broken
beans after 10 min. C) Time course of periphery exploration of animals (n = 16). D) Grip strength of upper limbs (left) and four limbs (right). E) Startle
response measured as area under curve. F) Rotarod lag time at 100 rpm. G) Time after exhaustion on treadmill (left), distance (middle) and maximum
speed reached (right). X axis in each figure indicates the groups AL or EOD. In figures A, B and E–G open bars indicate sedentary animals whereas
closed bars indicate trained animals in each group. * Significant differences vs. indicated group, p#0.05; ** Significant differences vs. indicated group,
p#0.005.
doi:10.1371/journal.pone.0013900.g001

EOD, Exercise and Muscle
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in AL fed animals (P = 0.402) being higher and significant in EOD

fed animals (P = 0.035). We also determined the coupled activity of

complexes I+III and II+III that depend on coenzyme Q (Q)

amount in mitochondrial membrane. No changes among groups

were found in both activities (Figs. 3G–H).

When we analyzed the amount of protein complexes of

mitochondria no significant changes among groups were found

in any of the four respiratory complexes and ATPase (Fig. 4).

Then, our results suggest that the small changes found in the

activity of mitochondrial complexes may be due to post-

translational changes. We also proceeded to quantify Q in whole

muscle homogenate. Q9 is the predominant form in mice being

around 10 times more abundant than Q10. No significant

differences among the different mice groups were found

Figure 2. Metabolites in plasma of animals. Levels of metabolites in plasma of witness animals are indicated in white and plasma levels of
animals just after strenuous exercises are indicated in black. A) Glucose, B) Lactate, C) Triglycerides, D) Cholesterol, E) Urea, F) Uric acid. * Significant
differences vs. indicated group, p#0.005.
doi:10.1371/journal.pone.0013900.g002

EOD, Exercise and Muscle
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Figure 3. Mitochondrial activities in whole muscle homogenate. Indicated activities were determined as nmol/min/mg protein. A) Citrate
synthase, B) Complex I (NADH:ubiquinone oxidoreductase), C) Complex II (succinate dehydrogenase), D) Complex III (ubiquinol:cytochrome c
oxidoreductase), E) Complex IV (cytochrome c oxidase), F) Complex V (ATP synthase), G) Complex I+III (NADH:cytochrome c oxidoreductase), H)
Complex II+III (succinate:cytochrome c oxidoreductase). * Significant differences vs. indicated group, p#0.05.
doi:10.1371/journal.pone.0013900.g003

EOD, Exercise and Muscle
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(Table 1). However, EOD animals showed a non-significant

increase of the amount of Q9 and total Q in comparison with AL

group similarly to the effect found with training. On the other

hand, Q10 increases in trained animals but not in dietary restricted

animals. This different effect affected the ratio between Q9 and

Q10 that increased in EOD groups whereas decreased in trained

animals.

We also analyzed the activity of b-oxidation in muscle (Fig. 5A).

Training significantly increased b-oxidation activity in gastrocne-

mius muscle (P = 0.050), whereas EOD only induced a non-

significant increase (P = 0.305). However, when combined, EOD

and exercise highly increased b-oxidation in comparison with the

levels found in the AL group (P = 0.027). Further, we determined

the level of the fatty acid translocase (CD36), a protein involved in

the incorporation of fatty acids from plasma to muscle and in

mitochondrial fatty acid oxidation. Surprisingly, EOD significantly

increased CD36 levels in comparison with AL animals (P = 0.0009)

whereas in EODT animals the levels of this protein decreased to

the levels of AL group (Fig. 5B).

Electron micrographs of gastrocnemius muscle were also

analyzed (Fig. 6A). Quantification of intermyofibrillar mitochon-

dria in muscle demonstrated that, in general, the surface occupied

by mitochondria did not show significant differences between the

four groups (Fig. 6B). However, when we determined the number

of mitochondrial structures per surface unit, we found that EOD

induced a significant increase being higher in the case of the

EODT group (Fig. 6C). Training increased the average area per

mitochondria in both, AL and EOD animals, whereas EOD

induced a clear decrease in this area (Fig. 6D). Differences in shape

were determined by measuring the roundness of mitochondria.

EOD significantly decreased this parameter indicating more

longitudinal mitochondria (Fig. 6E). These parameters confirmed

the observations of micrographs indicating that training induced

hypertrophy by increasing the size of mitochondria in muscle

fibers whereas EOD modified their shape and localization

increasing the amount of intermyofibrillar mitochondria and

modifying the shape of these mitochondria that appeared longer

and sinusoid around the myofibrils.

EOD prevents exercise-induced muscle damage
Accumulation of oxidative damage can be one of the causes of

muscle fatigue. For this reason we determined the levels of lipid

peroxidation in gastrocnemius muscle. No differences were found

between witness and extenuated animals probably by the short

time passed between extenuation and sacrifice. Analysis of the

lipid peroxidation in the whole population of each group indicated

that ALT animals showed the highest levels of MDA (Fig. 7). On

the other hand, both groups of EOD animals showed significant

lower levels of MDA indicating that EOD protected muscle

against lipid peroxidation in muscle independently of training.

Levels of muscle damage after extenuating exercise were also

determined by the presence of creatine kinase activity in plasma.

Besides the lower physical resistance, AL animals showed the

higher muscle damage of all groups (Fig. 7). On the other hand,

non-trained EOD animals showed similar levels of muscle damage

than trained animals (ALT and EODT) indicating a similar degree

of resistance of muscle to damage.

Discussion

Many studies about CR are based on a decrease of 40–50%

calories in the daily uptake of food. In our study we have used the

every-other day feeding model (EOD), which is considered to

produce only a mean of 15% deficit in the calorie input due to the

fact that animals eat more when they have access to food [24].

Although EOD did not produce a high caloric deficit, it has been

demonstrated that EOD mimics many of the beneficial aspects of

classical CR. However, the effect of this model on longevity is

currently under discussion [25] including higher longevity and

higher resistance to stress [1,4,26–29]. The advantage of the EOD

model in our study is that it did not affect the weight of animals

during the study and thus, weight, size and nutrients availability

were not factors that could influence the physical capacity or

muscle performance of the animals.

Edge exploration and elevated plus maze tests indicate that the

differences in physical activity were not due to a different degree of

anxiety between groups. However, an interesting finding was that,

with independence of the feeding procedure, trained animals

decreased their total activity in an open field after few minutes

probably indicating a higher capacity to recognize new environ-

ments. Our outcomes have also shown that EOD and aerobic

training increase motor coordination and resistance to exhausting

exercise. In the case of running on rolling carpet, EOD slightly

increased physical resistance in trained animals whereas it did

significantly increase resistance in the sedentary group when

Figure 4. Levels of proteins markers of each mitochondrial
complex. Proteins from whole homogenate were resolved by SDS-
PAGE electrophoresis and the presence of the markers for each
complex was determined by immunoblotting as indicated in Material
and Methods section. Blots were quantified by densitometry and
normalized vs. protein loading determined by membrane staining with
red Ponceau. Numbers indicate the mean (n = 5) in arbitrary units
normalized vs. AL group as 100. No significant differences were found
between groups.
doi:10.1371/journal.pone.0013900.g004

Table 1. Coenzyme Q levels in gastrocnemius muscle.

Q9 Q10 Q total Ratio Q9/Q10

AL 12456154 122619 13676171 10.860.7

ALT 12986121 139618 13846150 9.260.5

EOD 1352665 11665 1464669 11.860.5

EODT 12936123 127616 14206139 10.960.6

Data represent the average (pmol/mg protein from whole homogenate) 6 SE,
n = 16.
doi:10.1371/journal.pone.0013900.t001

EOD, Exercise and Muscle
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compared with the AL group. Interestingly, one of the

documented changes in rodents fed under CR is the increase of

non-forced physical activity when compared with AL fed animals

[30,31].

Another interesting issue was the effect of EOD on the capacity

of mobilization of nutrients such as sugars and fats. Our study

differs from others mainly in the fact that metabolite analysis of

blood was performed in animals that were not fasted overnight.

Our aim was to determine the physical capacity and associated

parameters, thus, we could not submit the animals to strenuous

exercise after fasting. Our data indicate that EOD improves the

capacity of mobilization of glucose and lipids maintaining the

levels of these metabolites during a strenuous exercise. These

results suggest that animals under EOD were more efficient in

mobilizing nutrients necessary for physical activity. In agreement

with our results, a study made on body builders has proved that

restriction in calories during a brief period of time (7 days)

increases the capacity to mobilize lipids during running [32].

Induction of mitochondrial biogenesis by CR or exercise has

been shown in different organisms and tissues [33–35]. We already

demonstrated that CR increases mitochondrial biogenesis and

modifies activity of mitochondria in liver and cell culture models

[36]. However, in the present model of CR we have not found

changes in mitochondrial mass determined by CS activity neither

notable changes in mitochondrial respiratory chain proteins. This

is not due to the EOD model of CR used in our project since, in

agreement with our results, no significant changes in CS activity

have been also reported in rats fed under classical CR [37].

Further, it has been suggested that only two weeks of CR are able

to significantly decrease CS activity and other mitochondrial

activities in whole muscle homogenate of Sprague Dawley rats

[38]. Furthermore, 40% CR reduces CS activity in rat

Figure 5. Lipid catabolism in muscle. A) b-oxidation in whole muscle homogenate (pmol/min/mg protein). B) Levels of CD36 measured from
whole muscle homogenate. Left, CD36 levels measured by immunoblotting and respective Ponceau staining of proteins transferred to membrane.
Right, densitometry analysis of CD36 protein levels/protein loading. * Significant differences vs. indicated group, p#0.05.
doi:10.1371/journal.pone.0013900.g005

EOD, Exercise and Muscle
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Figure 6. Mitochondrial structures in gastrocnemius muscle. A) Electron micrographs of gastrocnemius muscle. Left (a,c,e,g), 65,200; right
(b,d,f,h), a higher detail of mitochondria in gastrocnemius muscle and nucleus of satellite cell, 68,900; a,b: ad libitum (AL) group, c,d: trained ad
libitum group (ALT), e,f: every-other day fed group (EOD), g,h: trained every-other day fed group (EODT); m: indicates the presence of mitochondria.
B) Mitochondrial area per field in muscle from each group (n = 10 per group). C) Number of mitochondrial structures per mm2 (n = 10 per group). D)
Average area per mitochondria (n.100). E) Roundness of mitochondria (n.100). Error bars indicate SE. * Indicates significant difference vs. indicated
group p#0.05.
doi:10.1371/journal.pone.0013900.g006

Figure 7. Levels of damage in muscle. A) Levels of the marker of oxidative damage MDA in whole muscle membranes. B) Plasma creatine kinase
activity as marker of muscle damage after strenuous activity. * Significant differences vs. indicated group, p#0.05; ** Significant differences vs.
indicated group, p#0.005.
doi:10.1371/journal.pone.0013900.g007

EOD, Exercise and Muscle
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gastrocnemius muscle [39]. CR also induces the decrease of the

activities of complexes I, III and IV especially in young mice [40].

The increase in mitochondrial content is considered a well-

established adaptation of muscle to exercise, and is mainly referred

as mitochondrial biogenesis. In our hands, neither EOD nor

exercise induced changes in the activity and amount of proteins

involved in respiratory chain. Similar results have been recently

shown in other models of CR and exercise where no changes in

porin, a mitochondrial mass indicator, have been reported [41]. In

agreement with our results, it has been reported that similar

protocols of endurance exercise does not produce changes in b-

oxidation in gastrocnemius muscle of mice [42] neither in other

activities of the respiratory chain in rat gastrocnemius muscle [43].

These discrepancies can be explained because in most cases

mitochondrial biogenesis in muscle is only suggested by the

increase of PGC1a mRNA levels. However, recently Civitarese

et al. [44], have described that the expression of genes encoding

proteins involved in muscle mitochondrial biogenesis is induced by

CR and CR plus exercise in healthy humans but at the same time

neither CS activity nor b-oxidation and activity of electron

transport chain are affected. Furthermore, no effects of CR on

mitochondrial activity have been reported in rats besides the

increase of the transcription of genes involved in energy

metabolism [37]. These results indicate that induction of

mitochondrial biogenesis factors are not necessarily accompanied

by significant changes in mitochondrial mass or activities. In our

experiments, EOD did induced small significant changes in the

activity of mitochondrial complexes II and III indicating that the

effect of EOD on mitochondrial activity may be due to

modifications of the activity of mitochondrial complexes but not

by changes in the amount of these complexes. We have previously

shown that CR improves the efficiency of mitochondria in cells

[36]. In agreement with this suggestion, other reports have

suggested that CR preserves the oxidative capacity of muscle by

protecting mitochondrial function rather than content [39]. Taken

together, small and fine modifications of mitochondrial activities,

rather than significant increases of mitochondrial mass, may be

enough to maintain a more equilibrated and effective mitochon-

drial activity in muscle and to enhance their efficiency.

Our results also indicate that both EOD and exercise increase

b-oxidation in muscle. Electron microscopy analysis of the

mitochondria in gastrocnemius muscle demonstrated that the size,

localization and morphology of mitochondria were different in

EOD animals. EOD and EODT animals showed more mito-

chondrial structures in the intermyofibrillar area and around the

myofibers. Intermyofibrillar location of mitochondria has been

associated with lipid droplets. Thus, these changes in the

mitochondria in an intermyofibrillar location in muscle suggest a

more efficient activity producing ATP near the sarcomera by using

lipid catabolism [45–47]. In agreement with our results, recent

works have suggested that changes in mitochondrial morphology

affect intracellular energy levels and also mitochondrial activity

[48,49]. Furthermore, the levels of the fatty acid translocase

(CD36) increased in EOD group indicating a higher capacity to

import lipids from plasma and also a higher mitochondrial fatty

acid metabolism [50,51]. Further, higher amounts of glycogen and

TGs have been also found in muscles of rats after EOD conditions

[52] indicating a higher capacity to use internal fuel sources during

exercise.

In agreement with previous results, levels of Q were also slightly

affected by EOD and exercise [53]. Very interestingly, EOD and

training seem to modify the ratio between Q9 and Q10 in a

different way. Exercise decreased the ratio whereas EOD

increased it. These changes probably respond to a more

bioenergetic function of Q9 whereas Q10 mainly plays an

antioxidant role in mice. CR decreases the levels of reactive

oxygen species (ROS) in cells [36] and increases Q-dependent

reductases activity protecting cell membranes against oxidative

damage [54,55]. On the other hand, depending on the intensity,

exercise increases free radical production and induces oxidative

stress [56,57]. Therefore, under CR conditions, the role of Q must

be displaced to benefit bioenergetics instead of antioxidant aspects

that are covered by the increase of cellular antioxidant capacity of

the cell and then, Q9/Q10 ratio increases [54,55]. On the other

hand, the increase of ROS induced by exercise will need more Q-

dependent antioxidant protection and then, the ratio decreases. It

seems that the equilibrium between Q levels and Q-dependent

activities must be important to maintain a balanced muscle activity

[58].

EOD protected muscle fibers against oxidative stress even in

animals that suffered endurance activity. This higher protection

may be related to lower muscle damage after extenuating activity

in non-trained EOD animals determined by the levels of creatine

kinase in plasma. Our results agree with several other reports that

suggest that EOD protects muscle against oxidative stress and even

avoids muscle loss during aging [59,60]. This protection is based

on lower ROS production by mitochondria probably by the

metabolic changes based on the catabolism of lipids [61], by more

balanced activity of mitochondria [36] and higher level of Q-

dependent antioxidant protection of membranes [55].

In summary, our work indicate that a nutritional stress induced

by the EOD model of CR together with a moderate increase of

energy expenditure through physical exercise produces metabolic

changes that increase the efficiency of mitochondrial activity in

muscle, reduces oxidative damage and improves physical perfor-

mance. Subtle modifications at the cellular and biochemical levels

in response to dietary stress seem to be the basis for a higher

mitochondrial efficiency. Taking into consideration that the

decline in physical activity during age is a common factor in

many species, the results shown here suggest that the combination

of the reduction of calorie intake and the practice of aerobic

exercise would also increase physical performance in humans and

then, improve their quality of life.

Materials and Methods

Animals
A cohort of 64 non-consanguineous swiss-OF1 male mice aged

6 weeks was used (Animal Services, University of Granada,

Granada, Spain). Animals were housed into enriched environ-

mental conditions in groups of 6 animals per polycarbonate cage

in a colony room under a 12 h light/dark cycle (8:00 AM–8:00

PM) under temperature (2263uC) and humidity controlled.

Animals were maintained accordingly to a protocol approved by

the Pablo de Olavide University Ethical Committee and following

the international rules for animal research.

Caloric restriction and endurance training
Animals were first randomly assigned to two initial groups: half

of the animals were fed ad libitum (AL) and the other half under CR

using the every-other-day feeding model (EOD) [1]. Water was

available ad libitum for all the groups. After four months under

these conditions, each group was randomly subdivided again in a

sedentary group and a trained group following a mild forced

aerobic exercise protocol. During the first two weeks, a training

protocol was performed by a routine increasing both speed and

time on a treadmill (Treadmill Columbus 1055M-E50, Cibertec

SA) until reaching 20 meters/min and 20 min. This protocol
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consisted in the 70–80% of average maximum speed reached in

the initial tests. After that, animals were trained at this speed for

20 min/5 days a week during the following 6 weeks similarly to

already published endurance exercise protocols [42]. The final

animals groups were as follows: AL, ad libitum and sedentary group;

ALT, ad libitum and trained group; EOD, caloric restricted and

sedentary group and EODT, caloric restricted and trained group.

Weight was determined every 15 days.

Physical and behavioral activity analysis
All physical activity analysis was carried out between 9–11 hours

in the morning and just after a feeding day for the EOD groups.

Spontaneous activity was determined by using an open field box

(26639 cm) (Cibertec S.A., Madrid, Spain) determined by the

number of broken light beams during a period of 10 min per

animal. Peripheral exploration was determined directly by eye in

sessions of 5 min as anxiety measure. Also, elevated plus maze test

was used to quantify anxiety levels during 5 min per animal. Press

force tests were performed by using a Grip Strength (Columbus,

Cibertec SA, Spain). For startle response, animals were placed

individually inside a startle chamber (Cibertec SA, Spain). The

startle response was determined by using a piezoelectric acceler-

ometer controlled by homemade software. Startle stimulus was

100 ms at 125 db and the response is indicated as the average from

20 to 30 recordings. Motor activity and coordination tests were

performed on Rotarod (Hugo Bassile, Italy). After an adaptation

period, a test was performed to combine coordination and resistance

by using Rotarod speed acceleration up to 100 rpm and

determining the maximum riding time of animals at this speed.

In the case of extenuating activity, all groups of animals

performed a week of habituation before test. Half of the animals

from each group (n = 8) were exposed to extenuating physical

exercise on treadmill associated with electric stimuli, without

inclination and fastening speed by 5 meters/min every 5 min. We

established the end of the experiment at the moment the animal

stopped for more than 5 seconds under electric stimuli without

trying to move back to the treadmill. Animals were sacrificed by

cervical dislocation and dissection was performed just after the test

was finished. The rest of the animals of each group remained as

witnesses without running and were sacrificed at the same time

than the runners. These witness animals were considered as

controls of the plasmatic metabolic situation of animals before

exercise. To avoid any effect of nutrient uptake on extenuating

activity performance, all groups received food during the day

before the exercise test.

Analysis of plasmatic compounds
Blood was collected by cardiac puncture just after cervical

dislocation. Plasma was obtained by centrifugation in Vacuette Z

serum Sep. Clot activator tubes for 10 min at 30006g and stored

in small aliquots kept at 280uC until the determination of different

blood metabolites. Metabolites were analyzed by using commer-

cial kits for triglycerides (Randox TR210), cholesterol (Randox

CH201), urea (Randox UR457), uric acid (Randox UA233), L-

lactate (Randox, LC2389), glucose (Randox GL2623), total

protein (Randox TP245) and albumin (Randox, AB388). Creatine

kinase (CK) activity was analyzed by the CK-NAC (Randox,

CK113) test. In all cases, samples were always processed in parallel

with the respective quality controls provided by the supplier.

Muscle mitochondrial activities
Gastrocnemius muscles were dissected immediately after

sacrifice and frozen in liquid nitrogen. After thawing and clearing

from connective tissue, muscle was homogenized by using lysis

buffer (2 mM Tris-HCl, 20 mM Hepes, 1 mM EDTA, 70 mM

sucrose and 220 mM Mannitol) supplemented with 1 mM PMSF

and protease inhibitor cocktail 1:50 (Sigma) in a 1:9 volume-to-

weight ratio, followed by centrifugation for 10 min at 7006g to

eliminate debris and nuclei. Protein was determined by Stoschek-

modified Bradford’s method [62]. Activities are indicated as

nmol/min/mg protein.

Mitochondria chain complexes activities were measured in a

spectrophotometer (Thermo Spectronic Unicam UV 500). Com-

plex I was measured in 20 mM phosphate buffer pH 8.0 by kinetic

quantification of 0.2 mM NADH consumption at 340 nm for 2–

3 min at 30uC after adding 1 mM CoQ1 as electron acceptor

(e340: 6.81 mM21 cm21). Complex II was measured in 50 mM

phosphate buffer pH 7.0 by kinetic quantification of the reduction

of 0.1 mM diclorophenol-indophenol (DCPIP) at 600 nm for

2 min at 30uC after adding 32 mM succinic acid to the reaction

(e600: 19 mM21 cm21). Complex III was determined in 50 mM

phosphate buffer pH 7.5 by kinetic quantification of the reduction

of the cytochrome C (0.05 mM) at 550 nm for 2 min at 30uC after

adding decylubiquinol (0.05 mM) as electron supplier to the

reaction (e550: 21 mM21 cm21). Complex IV was measured in

10 mM phosphate buffer pH 7.0 by kinetic quantification of

oxidation of reduced cytochrome C as electron donor at 550 nm

for 2 min at 38uC using oxygen as electron acceptor (e550:

21 mM21 cm21). The combined activities of complex I+III and

II+III were determined in 50 mM phosphate buffer pH 7.5 by

determining the kinetics of the reduction of cytochrome C for

2 min at 30uC by adding NADH (0.1 mM) (complex I+III) or

succinic acid (3 mM) (complex II+III) as electrons donors (e550:

21 mM21 cm21). For each determination, specific inhibitors such

as rotenone (Complex I, 5 mM), actimycin A (Complex III, 1 mg/

ml), sodium azide (Complex IV, 1–2 mM) and ferric cyanide

(Complex IV, 1.5 mM), were used as previously indicated [63].

Complex V/ATPase activity was determined by the measure-

ment of its ATP phosphatase activity. Assay was performed in

Hepes-Mg pH 8.0 (50 mM) by adding NADH (0.2 mM),

phosphoenol pyruvate (2.5 mM), pyruvate kinase (10 mg/ml),

lactate dehydrogenase (5 mg/ml) and antimycin A (0.2 mg/ml).

After 2 min of incubation, ATP (25 mM) pH 7.0 was added (e340:

6.22 mM21 cm21). Inhibition with oligomycin (0.2 mg/ml) was

used to specifically determine mitochondrial ATPase activity.

Citrate synthase (CS) activity was determined in 75 mM Tris-

HCl buffer (pH 8.0) by quantification of ditio-bis-nitrobenzoate

(0.1 mM) reduction in the presence of Triton X-100 1%, acetyl

CoA (7 mg/ml) and oxalacetate (5 mM) at 412 nm for 2 min at

30uC (e412: 13.6 mM21 cm21).

Measurement of b-oxidation Activity
Palmitate oxidation was measured as an indicator of b-oxidation

[64]. Briefly, the reaction mixture contained 50 ml Tris/HCl,

pH 8.0, 40 mM NaCl, 2 mM KCl, 2 mM MgCl2, 1 mM DTT,

5 mM ATP, 0.2 mM L-carnitine, 0.2 mM NAD, 0.6 mM FAD,

0.12 mM CoA, 0.1 mCi [14C]palmitic acid, and 100 mg of whole

muscle homogenate in a final volume of 200 ml. The reaction was

initiated by adding substrate and incubated at 37uC for 60 min.

Reaction was terminated by adding 200 ml of 0.6 N perchloric

acid followed by centrifugation. The resulting supernatant was

extracted three times with 800 ml of N-hexane to remove any

remaining palmitate and radioactivity of the aqueous phase was

measured.

Coenzyme Q determination
One to 1.5 mg of protein of whole muscle homogenates were

resuspended in 500 ml of PBS 1x and incubated with SDS (1%
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final concentration) for 10 min followed by a vigorous shake with

vortex. Q was extracted with hexane as indicated [63]. Briefly, 2

volumes of ethanol:isopropyl alcohol (95:5) were added to SDS

solution and mixed with vortex for 1 minute. The organic phase

was recovered by the addition of 4 volumes of hexane, shaking for

1 min in vortex and centrifugation at 1,0006g for 5 min at 4uC.

The higher phase containing Q was recovered and extraction was

repeated. Hexane phase was dried by using a Rotavapor and

residue resuspended in 1 ml of ethanol HPLC grade. Ethanol was

dried again by using a Speed Vac and residue was kept at 220uC
until determination. After dissolving again in ethanol, Q levels

were determined by using a HPLC equipped with a Spherisorb C-

18 column at a flow of 1 ml/min and a UV/Vis Beckman detector

and an Electrochemical ESA Coulochem III. Q6 and decylubi-

quinone were used as internal controls. Q concentrations are

indicated as pmol/mg protein.

Western blotting
Whole muscle homogenate was obtained after disruption in lysis

buffer as above indicated by using a mechanical driven

homogenizer and further centrifugation at 7006g to remove

debris. Supernatant was mixed with two times concentrated

Laemmli Buffer (Santa Cruz Biotechnology, USA) and proteins

separated by SDS-PAGE. Proteins were transferred to Hybond

ECL nitrocelullose membranes (GE-Healthcare, USA) and

visualized by using the mouse monoclonal antibodies against the

39 kDa subunit of NADH:ubiquinone oxidoreductase (clone

20C11, complex I), 70 kDa subunit of Succinate:ubiquinone

oxidoreductase (clone 2E3, complex II), core 2 subunit Ubiqui-

nol:cytochrome c oxidoreductase (clone 13G12, complex III),

subunit Vb of the Cytochrome c oxidase (clone 16H12, Complex

IV) and a-subunit of ATP synthase (clone 7H10, complex V)

(Invitrogen-Molecular Probes, USA) at 1:1000 dilution and HRP-

labeled anti-mouse IgG at 1:1000. Blots were visualized by ECL

technique and quantified by using the Quantity One 1-D analysis

software (Biorad). Blots were digitalized and quantified by using

Quantity One software (Biorad). Protein expression levels were

corrected for whole protein loading determined by staining

membrane with Red Ponceau.

Measurement of Malondialdehyde levels (MDA)
MDA levels were measured according to the method of Gérard-

Monnier et al. with some modifications [65]. Briefly, the reaction

mixture contained 6.6 mM N-methyl-2-phenyl-indol (MPI),

0.015 mg/ml butylated hydroxytoluene and 5.55% HCl. The

assay was initiated by the addition of sample (1–1.5 mg) and

incubated at 45uC for 45 min. To determine the amount of MDA,

known concentrations of 1,1,3,3-tetra-ethoxypropane (malondial-

dehyde bis(diethyl-acetal) (0–20 nmol) were used.

Electron microscopy
Freshly isolated muscle samples were fixed with 2.5%

Glutaraldehyde in PBS and further with 1% Osmium Tetroxide,

dehydrated with acetone and embedded in araldite resin. Sections

(50 nm) were obtained by using an ultramicrotome (LKB 8800

Ultrotome III). After placing onto a cooper grid, slices were

stained for 5 min with uranyl acetate and lead citrate followed by

2 min incubation with lead citrate. Samples were visualized by

using a transmission electron microscope (Philips CM10). Ten

random images (65,200) were analyzed to measure the area

occupied by mitochondria, the number of mitochondrial struc-

tures per unit of area, the area per mitochondria (at least 10

mitochondria per image) and the roundness of each mitochondrial

structure by using the ImageJ software version 1.42i (National

Institutes of Health, United States).

Statistics
SigmaStat 3.5 program was used for the statistical analysis and

figures were performed by using SigmaPlot 10.0 program (Systat

Software Inc). All data are expressed as means 6 S.E. For all

experiments, 16 mice per group were analyzed. The information

obtained from each group was statistically processed pursuant to

the most suitable technique for each case. Student t-test or two

ways Analysis of Variance (ANOVA) followed by Post-Hoc

pairwise multiple comparison procedures (Bonferroni t-test) were

performed. The critical significance level a was = 0.050 and, then,

statistical significance was defined as P,0.05.
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