
For R
eview

 O
nly

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART B: CYBERNETICS 1

Projection based ensemble learning

for ordinal regression
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Abstract—The classification of patterns into naturally ordered
labels is referred to as ordinal regression. This paper proposes
an ensemble methodology specifically adapted to this type of
problems, which is based on computing different classification
tasks through the formulation of different order hypotheses.
Every single model is trained in order to distinguish between
one given class (k) and all the remaining ones, but grouping
them in those classes with a rank lower than k, and those
with a rank higher than k. Therefore, it can be considered as
a reformulation of the well-known one-versus-all scheme. The
base algorithm for the ensemble could be any threshold (or
even probabilistic) method, such as the ones selected in this
paper: kernel discriminant analysis, support vector machines
and logistic regression (all reformulated to deal with ordinal
regression problems). The method is seen to be competitive when
compared with other state-of-the-art methodologies (both ordinal
and nominal), by using six measures and a total of fifteen ordinal
datasets. Furthermore, an additional set of experiments is used to
study the potential scalability and interpretability of the proposed
method when using logistic regression as base methodology for
the ensemble.

Index Terms—Ordinal regression, ensemble, discriminant anal-
ysis, support vector machines, threshold models, relabelling

I. INTRODUCTION

O
RDINAL regression can be defined as a relatively new

learning paradigm whose aim is to learn a prediction rule

for ordered categories. This problem, firstly arising in statistics

[2], is spreading rapidly and receiving a lot of attention from

the pattern recognition and machine learning communities [3],

[4] because it presents a wide range of applications in areas

where human evaluation plays an important role, for example:

psychology, medicine, information retrieval, etc. The main

difference compared to standard regression is in the target

variable, which is composed of finite and discrete category

labels, the distances between them being unknown. Concern-

ing classification, the variable to predict is not numerical or

nominal, but ordinal; thus these categories show an implicit

and natural order. An explanatory example of order among

categories could be the Likert scale, a well-known methodol-

ogy used for questionnaires, where the categories correspond

to the level of agreement or disagreement with a series of
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Spain, e-mail: {i82perom, pagutierrez, chervas}@uco.es.

This paper is a very significant extension of [1] with much additional
material, including a comprehensive review of some ordinal regression
methodologies, a more detailed description of the proposal with some changes,
and a wider experimental section, where the results for different benchmark
datasets and measures were analyzed. Besides, SVMs and logistic regression
techniques formulated for ordinal regression were also considered in this work,
both for ensemble construction and for comparison.

given statements. The scheme of a typical five-granularity

Likert scale could be: {Strongly disagree, Disagree, Neither

agree or disagree, Agree, Strongly Agree}, where the natural

order among categories can be appreciated. The major problem

within this kind of classification is that misclassification errors

should not be treated equally: misclassifying the Strongly

disagree class as Strongly agree should be more penalized

than misclassifying it as Disagree. Therefore, several issues

must be taken into account in order to exploit the presence of

this order among categories. Firstly, this implicit data structure

should be learnt by the classifier in order to minimize ordinal

classification errors and, secondly, several measures or metrics

should be developed in order to do so, given that simply being

accurate might not be enough for this kind of problems.

Several approaches to tackle ordinal regression have been

proposed in the domain of machine learning over the years,

since the first work dating back to 1980 [2]. The simplest

idea is to transform these ordinal scales into numeric values

and solve the problem as a standard regression one. Kramer

et al. investigated and proposed the use of a regression tree

learner in this sense [5]. However, as outlined before, there is

an important problem within these approaches: the fact that,

in general, there is no knowledge about the distances between

different classes. On the other hand, other works focused on

addressing the problem by simply performing multinomial

classification tasks (totally forgetting the order information)

or by considering cost-sensitive classification [6] based on

trivially imposed cost matrices. Some researchers approach

the problem by decomposing the original ordinal regression

task into a set of binary classification tasks [3], [7], or by

formulating the original problem as one of extended binary

classification [8], [9]. However, the most popular approach

is clearly the use of threshold models [4], [10]–[12]. These

methods are based on the idea that, in order to model ordinal

classification problems from a regression perspective, one can

assume that some underlying real-valued outcomes exist (also

known as latent variable), although they are unobservable.

Consequently, these methodologies estimate:

• A function f(x) that tries to predict the nature of those

underlying real-valued outcomes.

• A set of bias terms or thresholds b =
(b1, b2, . . . , bK−1) ∈ R

K−1 (where K is the number of

classes in the problem) to represent the intervals in the

range of f(x), where b1 ≤ b2 ≤ . . . ≤ bK−1.

Nowadays, the ensemble paradigm is one of the most

actively researched in pattern recognition and machine learn-

ing [13]. This methodology imitates human nature to seek

several opinions before making a crucial decision [14] and was
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proposed as an alternative to the conventional “standalone”

methods, which can be suboptimal. The main aspects ad-

dressed in ensemble literature are: development of methods for

reducing the dependence between classifiers, i.e. maximizing

diversity, and development of effective combination rules.

This paper contributes a novel and natural ensemble

methodology to tackle ordinal information which could be

used with any threshold model as base classifier. More specif-

ically, in this paper kernel discriminant analysis (KDA) [4],

[15] and support vector machines (SVM) [16], [17] were used

for a first set of experiments, since these can be considered

accurate and successful methods when adapted to ordinal

regression [18], [19]. Moreover, logistic regression (LR) [2],

[20] was considered for a set of large-scale datasets. The

main motivation is the development of an ordinal ensemble

algorithm which could benefit from the order information

of the data to improve the performance of other existing

techniques. As many classifiers as the number of classes are

trained, and each single model is computed to differentiate

each class from the remaining ones taking ordinal ranks

into account, i.e. separating each class from the previous

and following classes. The ensemble methodology proposed

is based on decomposing ordinal regression problems into

simpler classification tasks, where the order information is

explicitly included. For a K class ordinal regression problems,

2 binary classification problems and K−2 ordinal ones (each

composed of three classes) are derived, in such a way that the

main classification problem is simplified. This procedure can

be appreciated in Fig. 1 for a 5 classes example. The main

hypothesis is that the performance of any ordinal algorithm

could be improved by simplifying classification tasks and

formulating multiple order hypotheses which will be combined

in a final decision function. The proposal can be seen as

a reformulation of the one-versus-all idea to tackle ordinal

regression. A set of experiments is presented in this paper,

which tests and validates this methodology and other nominal

and ordinal ones, taking into account 15 datasets with different

characteristics. The results suggest that the proposal reaches

a competitive performance level and is able to extract better

quality classifiers from the order information in the class

labels. Finally, a different set of experiments over two large-

scale datasets is conducted to analyze the potential scalability

and interpretability of the proposed ensemble.

Some advantages and decisions related to the proposal are

now discussed. First of all, the choice of threshold models as

base classifiers is justified because of their inherent advantage

to lend themselves to probabilistic outputs, as these conditional

probabilities of class membership are useful for constructing

a more robust ensemble methodology. The proposal can be

applied to any threshold model (indeed to any algorithm

leading to probabilistic outputs), since the main idea is to

compute one model to differentiate each class from the rest

by taking ordinal ranks into account, and then extracting

final output probabilities from the outcomes of each model.

In addition, threshold methods depend to a great extent on

the bias or threshold computation, which may be a complex

handicap when dealing with kernel methods because of their

tendency to over-fit. Instead of using crisp values, this study

Fig. 1. Example showing different projections computed for the ensemble
when K = 5. Xi are the patterns associated to class i. The model trained
for separating class i-th from the remaining ones is denoted by wi and the
corresponding thresholds associated by bi1 and bi2. Cij is used for denoting
a synthetically constructed cluster of classes for decision maker i-th.

considers probability estimations to relax and alleviate the

misclassification error of multiple order hypotheses. On the

other hand, selecting the number of classifiers has always

been one of the most important and controversial issues in

the ensemble paradigm (this value is usually assigned to an

odd number in order to avoid draws), but in this case it is very

intuitive, as the number of classifiers would be preassigned to

the number of classes in the sample. Also, inducing diversity

in the classifiers is a crucial ingredient for developing robust

ensemble techniques. However, in this case diversity is implicit

in the technique, as each computed model will be composed

of different data labelling and pattern distributions. Finally, the

proposal could also be justified by the low number of ordinal

ensemble methods existing in the literature.

The paper is organized as follows: Section II shows a de-

scription of the methodologies used for the ensemble; Section

III formally presents the proposal of this work; Section IV de-

scribes the characteristics of the datasets and the experimental

study; Section V analyzes the results obtained; and finally,

Section VI outlines some conclusions and future work.

II. PREVIOUS NOTIONS

In this section, the terminology and notation that will be

used throughout the entire work is established. The goal

in classification is to assign an input vector x to one of

K discrete classes Ck, where k ∈ {1, . . . ,K}. Thus, a

formal framework for the ordinal regression problem could

be introduced by considering an input space X ∈ R
d, where

d is the data dimensionality. To do so, an outcome space

Y = {C1, C2, . . . , CK} is defined, where the labels are ordered

due to the data ranking structure (C1 ≺ C2 ≺ · · · ≺ CK , where

≺ denotes this order information). Let N be the number of

patterns in the sample and Nk the number of samples for the

k-th class. The objective in this kind of problem is to find

a prediction function f : X → Y by using an i.i.d. sample

D = {xi, yi}
N
i=1 ∈ X × Y .

The ensemble approach here proposed is applied to three

well-known techniques: KDA, SVM and LR. Since they have
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been reformulated to deal with ordinal regression problems a

brief explanation of these methods is included in this section.

A. Kernel discriminant learning

This learning paradigm (KDA) is one of the pioneer and

leading techniques in the machine learning area, since it dates

back to 1936 and has been widely used as much for supervised

dimensionality reduction as for classification [21]. KDA has

also been adapted to ordinal classification [4] by imposing a

constraint on the projection to be computed, so that it will

preserve and take advantage of the ordinal information from

different classes. The method is known as kernel discriminant

learning for ordinal regression (KDO) [4].

B. Support vector machines

The SVM paradigm [16], [22] is considered the most

common kernel learning method for statistical pattern recog-

nition. This study considers two of the most commonly used

approaches for solving multiclass problems with SVMs: the

one-vs-all formulation and the one-vs-one formulation.

Some works in the SVM literature have been focused on

the reformulation of this successful paradigm to tackle ordinal

regression problems [17], [23], [24]. All these approaches

share one common objective which is the definition of K − 1
discriminant hyperplanes represented by the vector w and

the scalars bias b1 ≤ . . . ≤ bK−1 in order to properly

separate training data into ordered classes by modeling ranks

as intervals on the real line.

The proposal of Herbrich [23] derived the well-known SVM

methodology for ordinal regression by making use of an

independent distribution model and inducing an ordering in

the space X that incurs the smallest number of inversions

on pairs (xi,xj) of objects, the probability of that incurred

inversion being given by a risk function for each pair of ranks.

The main disadvantage of this algorithm is that the problem is

formulated as a quadratic function directly depending on the

training number of patterns.

On the other hand, the work of Shashua and Levin [24]

introduced two different approaches: the former tries to max-

imize the margin between the closest neighboring classes by

applying the “fixed margin” policy and the latter allows for

different margins where the sum of margins is maximized.

The principal disadvantage of their proposal is that ordinal

inequalities on the thresholds, b1 ≤ b2 ≤ . . . ≤ bK−1, are not

included in the formulation and this omission may result in

disordered thresholds at the solution.

A third proposal of SVMs for ordinal regression is presented

in the work of Chu and Keerthi [17]. This study also shows

two different implementations for the idea. Both approaches

guarantee that the thresholds are properly ordered at the

optimal solution. The first one only takes into account adjacent

ranks for the determination of the thresholds, whereas in the

second one, the whole training sample considering all ranks is

used for the determination of each threshold, and samples in

all the categories are allowed to contribute errors for each

hyperplane. This second approach is called support vector

ordinal regression with implicit constraints (SVOI).

From another point of view, ordinal regression can be trans-

formed into several binary classification problems; one binary

classifier can be derived for each problem, and the output of

all classifiers can be combined to obtain a final decision. The

strategy is based on simply checking if the rank of a pattern is

greater than a given rank k, 1 ≤ k ≤ K − 1, which is indeed

a binary classification question which is answered by each

classifier. This approach is closely related to that proposed in

this paper and was first presented in the work of Frank & Hall

[3] with C4.5 classification trees as base classifiers. However,

SVMs have performed very competitively for binary problems,

and a similar proposal was then considered for SVMs in the

work of Waegeman & Boullart [7], but introducing specific

weights into the different patterns. These weights try to reflect

the fact that not all patterns in the “greater than k” class (for

the binary classifier k) are equally far from k in the ordinal

scale, and they should be treated differently when constructing

the classifier (even though they belong to the same class). Both

methods will be considered in the experimental section.

C. Logistic regression

In machine learning, LR [20] is a well-known methodology

based on a regression analysis for classification problems. This

method has been reformulated to deal with ordinal problems

giving rise to the proportional odds model (POM) [2]. This

model was the first threshold method applied to ordinal

regression problems and it is based on a linear projection

jointly trained with a set of thresholds by using a similar

technique to that considered for nominal LR. Let h denote

an arbitrary monotonic link function. The model:

h (P (y ≤ Cj |x)) = w�x− bj , j = 1, . . . ,K − 1, (1)

links the cumulative probabilities to a linear predictor and

imposes an stochastic ordering of the space X , where bj is the

threshold separating Cj and Cj+1 and w is a linear projection.

III. ENSEMBLE LEARNING FOR ORDINAL REGRESSION

(ELOR)

In the previous section, three well-known classification

methods have been presented: KDA, SVM and LR. These

methods share one common and general objective which

defines the optimization function: the maximization of the

distance between different classes. Therefore, they depend

greatly on the number of classes in the sample, hindering the

separation between them when this number is high. Because

of that, the proposed methodology tries to simplify the task of

classification, and thus the optimization process. The proposal

is intended to construct an ensemble which performs much

simpler classification tasks. In order to do so, different decision

models are computed, one for separating each class from

the remaining ones (avoiding the problem of a great number

of classes and aiming at a more balanced classification).

The main motivation for this work could be found in the

sentence of Albert Einstein, “Make everything as simple as

possible, but not simpler”, because the original classification

Page 13 of 23 Transactions on Cybernetics



For R
eview

 O
nly

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART B: CYBERNETICS 4

task is simplified, but without forgetting the ordinal ranking

information implicit in the data.

Various supervised and disjoint clusters (the term cluster

is used to refer to a group of classes) are computed and

classified taking into account the natural order of the classes,

i.e. a label manipulation procedure is conducted in order to

generate multiple hypotheses. In methods that manipulate the

target attribute, instead of inducing a single complex classifier,

several classifiers are induced with different and usually sim-

pler representations of the target attribute [14]. One example

of this is the one-versus-all methodology [25] (previously

introduced for SVMs), where a K class classification problem

is transformed into K binary classification ones. The one-

vs-all paradigm seeks the i-th decision function fi(x), i ∈
{1, . . . ,K} fulfilling that fi(x) > 0 when x belongs to class i,
and fi(x) < 0 when x belongs to one of the remaining classes.

Therefore, f is used as a membership function for choosing the

final prediction. The proposal described in this section can be

seen as a one-versus-all reformulation for ordinal regression.

In ordinal regression, one-vs-all approach would not com-

pute a fair classification, as the implicit order information

would be ignored. For example, for a 5-class problem, f4 will

try to distinguish between class 4 and classes {1, 2, 3, 5}. As

class 5 is supposed to be closer to class 4 than to classes

{1, 2, 3}, it might be difficult to separate it from class 4. The

proposal tries to separate one class from the previous and the

following ones, in such a way that the order among the classes

is taken into account (see Fig. 1).

Furthermore, there exists another main issue apart from the

exploitation of ordinal ranks by simplifying the classification

task. It is well-known that the possible ways of combining the

outputs of different classifiers in an ensemble depends on what

information is obtained from individual members. When deal-

ing with classification algorithms, the most common output for

a learning procedure is the label predicted. However, in some

cases, there is other information directly extractable from the

classifier which may be helpful for improving classification

performance, such as predicted probabilities. Threshold meth-

ods present the problem of threshold computation which may

often be a complex but important issue, as final classification

entirely depends on those thresholds. In order to relax and

alleviate this kind of errors, probability estimations are carried

out by the proposed ensemble methodology.

Let us formally define the method. Given K different

classes and corresponding events (C1, C2, . . . , CK), K different

classification problems will be computed by relabelling the

data and training the learning algorithm with these relabelled

patterns. By doing this, K different models will be obtained:

• Two of the models (the first one, i = 1, and the last one,

i = K) will compute binary classifications, separating

class i from all the others. Standard KDA, SVM or LR

will be applied in these cases.

• The rest of them (i ∈ {2, . . . ,K − 1}) will be three

class classifiers, separating the corresponding class i-th
from previous ones (1, . . . , i − 1) and subsequent ones

(i + 1, . . . ,K). Any of the previously presented ordinal

algorithms could be used in order to maintain the ordinal

rank of the classes (in these cases, the KDO, SVOI and

POM algorithms will be used).

An ensemble set D will be defined consisting of a combination

of K different decision makers, D = {D1, . . . , DK}. Each

projection will be determined by the set of data to discriminate,

as can be seen in Fig. 1 for K = 5, where Xi is the set of

patterns belonging to class i-th.

The training set is defined as G = {G1, . . . ,GK}
for each member of the ensemble, where Gi =
{X(j|j<i), X(j|j=i), X(j|j>i)}. Note that, in the first and last

cases, one of the sets to discriminate will be the empty set,

as there are no lower and higher ranking classes, respectively.

Consequently, the cardinality of Gi will be |Gi| = 3, for

i ∈ {2, . . . ,K − 1}, and |Gi| = 2 for i = 1 and i = K.

Clusters grouping different classes will be defined for each

decision maker Di: Cij , 1 ≤ i ≤ K. The set of events to

classify is defined in the following way: {Ci1 = (C1 ∪ . . . ∪
Ci−1), Ci2 = Ci, Ci3 = (Ci+1 ∪ . . .∪ CK)}, taking into account

that, in the first and the last classification tasks, some of them

will be the empty set. These clusters result in different class

targets (according to their rank): S1 = {1, 2}, Si = {1, 2, 3},

(1 < i < K), and SK = {1, 2}.

Then, each decision maker (Di) is determined by the set

to discriminate (Gi), the labels Si, the computed optimal

model (which in this case will be the optimal projection

or hyperplane wi) and the set of thresholds for separating

the classes (bi). Note that the number of thresholds for the

classification corresponds to |Si|− 1.

Although KDA, SVM and LR have been selected as base

methods since they can be easily transformed to predict

probabilities, the ensemble could be used with any threshold

or probabilistic method. As when using threshold models it

is possible to estimate K sets of probability, the first hypoth-

esis is that the true values of P (Ci|x,D), i.e. the posterior

probability, are the ones most agreed upon by the ensemble.

Although many types of uncertainty exist, probabilistic

models fits surprisingly well in most pattern recognition prob-

lems [13]. Because of that, this paper tries to construct a

classifier by only taking estimated probabilistic information

into account. For each pattern and decision maker i, the

probability of belonging to class i will be calculated, along

with the probability of belonging to the previous classes and

the probability of belonging to the following ones. Then, a

methodology for joining all the probabilities is proposed. For

that, there are several issues to be addressed:

1) Distributing the probabilities within the cluster: when

the specific model for separating class i-th from the rest

is computed, three (or two) different supervised clusters

are formed, one for the classes whose class target is

less than i, one for class i and one for the classes

whose class target is greater than i. These projections

can be used to approximate the probability of belonging

to a specific cluster (by using equations (2) and (3)

of the next subsection), where one or more classes are

represented. This probability has to be distributed among

the different classes included in the cluster to obtain a

K-class probability distribution for each decision maker.

2) Combining the probabilities: as in any ensemble, a

way has to be selected to combine the decisions of all
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classifiers (average, product, majority voting, etc).

3) Weighting more prominent classes: after distributing the

probabilities, there are classes that are more prominent

(for example extreme classes, which appear isolated in

two of the projections, see Fig. 1). If a weighting method

is not applied, all the patterns will be more likely to be

classified in these classes.

A. Obtaining probability outputs

An important advantage of threshold methods [4], [10] over

other algorithms is that their outputs can be easily transformed

into conditional probabilities by analysing projected patterns

and the corresponding thresholds. This is due to the fact

that, in high-dimensional feature space, the histogram of each

class projected by the discriminant function can be closely

approximated by a given distribution. For example, given a

pattern x and a decision maker Di the probability that this

pattern has of belonging to cluster Cij can be estimated using:

• The probit function, which computes a normal cumulative

distribution:

P (Cij |x, Di) =
1

σ

√
2π

� x

−∞

e
−(t−µ)2

2σ2 dt, (2)

• or the logit function, which computes the standard logistic

sigmoid:

P (Cij |x, Di) =
1

1 + e−t
, (3)

where i ∈ {1, . . . ,K}, j = 1 or j ∈ {1, 2}, t =
wT

i x − bij is the projected pattern, wT
i is the i-th

transposed projection vector, bij is the corresponding bias

for cluster j, and the assumption of µ = 0 and σ = 1
is made. Conditional probabilities can be useful, for

instance, in applications where the output of a classifier

needs to be combined with other information, and it is

not only the class assignment that is interesting, but also

its probability. Additionally, these probabilities allow us

to combine the outputs of K classifiers.

In this work, the probit function has been used for estimat-

ing the probabilities in the case of the KDA methodologies,

since these methods assume an unimodal normal distribution

on the data. For LR methods, the logit function was used. On

the other hand, as there is no guideline about which method

should be used with nonparametric methods, such as SVMs,

the logit function has been considered, which has been proved

to show good results with this technique [26], [27].

B. Distributing the probabilities within the cluster

If the probability that a pattern belongs to a specific cluster

is determined by a decision maker Di, then when the cluster

Cij has only one class, the probability is directly defined but, if

there are multiple classes, this probability should be distributed

among the classes included in it (as can be seen in Fig. 2).

One first idea could be simply to ignore all the clusters with

more than one class and make use of the independent mem-

bership values of the i-th single class of each decision maker

(after applying the transformations proposed in the previous

subsection), in such a way that a vector of decision val-

ues V = {P (C1|x, D1), P (C2|x, D2), . . . , P (CK |x, DK)} =
{P (C11|x, D1), P (C22|x, D2), . . . , P (CK2|x, DK)} is com-

puted and the final prediction would be the index of the max-

imum value of it. Throughout this work, this methodology is

referred to as simple ensemble learning for ordinal regression

(SELOR) and has a significant disadvantage: the whole set of

probabilities is not being considered.

More complex responses can be obtained if clusters with

multiple classes are considered and the corresponding proba-

bility is distributed among these classes. One possible way of

distributing these probabilities is the following:

P (Ck|x, Di) = P (Cij |x, Di) · γik, ∀(Ck ∈ Cij), (4)

with k ∈ {1, . . . ,K}, j ∈ {1, 2, 3} or j = {1, 2}, and taking

into account that γik = 1 when |Cij | = 1.

Fig. 2. Example showing the different stages of the procedure. A combination
function F is used to combine the probability outputs and obtain all µk(x)
values.

This γik weighting parameter could be chosen in many

different ways:

1) Equally distributed probabilities: The probability of be-

longing to class Ck for a specific decision maker Di

(where k ∈ {1, . . . ,K}) is the probability of belonging

to the cluster Cij (taking into account that the patterns

Xk associated to Ck belongs to cluster Cij) divided by

the number of different class targets involved in the

cluster, in this case:

γik =
1

|Cij |
, ∀(Ck ∈ Cij).

For the sake of simplicity, this will be the method

considered for all the experiments in this paper.

2) Distribution according to the number of patterns in each

class: The probability of belonging to class Ck for a

decision maker Di would be the probability of belonging

to cluster Cij multiplied by the number of patterns in

class Ck with respect to the total involved in the cluster,
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then:

γik =

�N

n=1 I(yn = Ck)
�N

n=1 I(yn ∈ Cij)
, ∀(Ck ∈ Cij),

where I(·) is defined as the indicator function.

3) Distribution according to the inverse of the number of

patterns of each class: The probability of belonging to

class Ck for a decision maker Di would be, as before,

the probability of belonging to cluster Cij multiplied by

the inverse of the number of patterns in class Ck with

respect to the total involved in the cluster, thus:

γki = 1−
�N

n=1 I(yn = Ck)
�N

n=1 I(yn ∈ Cij)
, ∀(Ck ∈ Cij).

This alternative method could be considered for those

unbalanced datasets where there is a special interest in

classifying minority classes.

Note that the parameter γki is calculated taking into account

only training data.

C. Fusion of probabilities

After applying the method in the above subsection, a

matrix P = {P1, . . . ,PK} of probabilities is obtained, where

Pi,j = pi,j = P (Cj |x, Di), satisfying that
�K

j=1 pi,j = 1.

Now, all the columns of this matrix are combined to obtain

a final decision vector. A “nontrainable” combiner [13] is

considered, i.e. no additional parameters will be tuned, so

the ensemble will be ready for classification as soon as

the base classifiers are trained. The membership for the j-

th class is calculated using the j-th column of the matrix:

µj(x) = F [p1,j(x), . . . , pK,j(x)], where F is defined as a

combination function. The most commonly used choices for

this function are the simple mean:

µj(x) =
1

K

K
�

i=1

pi,j(x), (5)

and the product:

µj(x) =
K
�

i=1

pi,j(x). (6)

A theoretical framework is offered for the average and

product combiners in [28] based on the Kullback-Leibler

divergence, which measures the distance between two proba-

bility distributions. These combiners are the two most studied

[29], but there is no guideline as to which one is better for a

specific problem. In general, the average might be less accurate

than the product for some problems, but it is more stable since

a small change in a probability makes a bigger impact on the

product than on the average.

D. Weighting more prominent classes

The distribution of probabilities considered in subsection

III-B makes some classes receive more attention: for example,

in Fig. 1, classes C1 and C5 appear isolated in the projections

more often than classes C2, C3 and C4, their computed prob-

ability being higher (a priori) than that of the other classes.

Therefore, a weighting method is used in such a way that:

P �(Ci|x,D) =
P (Ci|x,D)
�K

j=1 γij

. (7)

E. Further considerations

In order to clarify all the concepts in previous subsections,

a summary of the approach in this work is given in Fig. 3.

Pseudocode for the ordinal ensemble proposed

• Input: training inputs (xTr), training targets (tTr), test

inputs (xTs).

• Output: test predicted targets (tTs).

for i = 1 to K
1. Compute the clusters Gi from xTr and tTr,

where Gi = {X(j|j<i), X(j|j=i), X(j|j>i)}.

2. Train decision maker Di for Gi:

optimal projection wi and thresholds (bi)

using either the binary or ordinal algorithm.

3. Project test data.

4. Compute test probabilities of belonging

to each cluster.

5. Distribute clustered test probabilities among

the classes for obtaining P, equation (4).

end for

Apply the defined F function to the matrix P,

equations (5) or (6).

Weight each column of P by using γij values (P�),

equation (7).

Assign tTs choosing the index of maximum

value of each column in the decision vector P�.

Fig. 3. Different steps of the ensemble algorithm.

Concerning time complexity, the proposed ensemble will be

obviously more time consuming than the base classifier, since

it will compute K different models instead of one. However,

the models computed will be simpler than the original ones,

as the classification problem joins neighbor classes.

IV. EXPERIMENTS

Several benchmark datasets with different characteristics

have been tested in order to validate the methodology pro-

posed. Table I shows the characteristics of these datasets,

where the number of patterns, attributes, classes and the

class distribution (number of patterns per class) can be seen.

These publicly available real ordinal classification datasets

were extracted from benchmark repositories (UCI [30] and

mldata.org [31], [32]). Also, some of the ordinal regression

benchmark datasets (pyrim, machine, housing and abalone)

provided by Chu et. al [12] were considered since they are

widely used in the ordinal regression literature [4], [17].

These datasets do not originally represent ordinal classification

tasks but regression ones. To turn regression into ordinal

classification, the target variable is discretized into K different

bins (representing classes, in this case K was assigned to 5
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TABLE I
CHARACTERISTICS OF THE BENCHMARK DATASETS, ORDERED BY THE

NUMBER OF CLASSES

Dataset #Pat. #Attr. #Classes Class distribution

squash-stored (SS) 52 51 3 (23, 21, 8)
squash-unstored (SU) 52 52 3 (24, 24, 4)

tae (TA) 151 54 3 (49, 50, 52)
newthyroid (NT) 215 5 3 (30, 150, 35)

car (CA) 1728 21 4 (1210, 384, 69, 65)
eucalyptus (EU) 736 91 5 (180, 107, 130, 214, 105)

pyrimx5 (P5) 74 27 5 (15, 15, 15, 15, 14)
machinex5 (M5) 209 7 5 (42, 42, 42, 42, 41)
housingx5 (H5) 506 14 5 (101, 101, 101, 101, 101)
abalonex5 (A5) 4177 11 5 (836, 836, 835, 835, 835)

automobile (AU) 205 71 6 (3, 22, 67, 54, 32, 27)
pyrimx10 (P10) 74 27 10 (8, 8, 8, 8, 7, 7, 7, 7, 7, 7)

machinex10 (M10) 209 7 10 (21, 21, 21, 21, 21, 21, 21, 21, 21, 20)
housingx10 (H10) 506 14 10 (51, 51, 51, 51, 51, 51, 50, 50, 50, 50)

abalonex10 (A10) 4177 11 10
(418, 418, 418, 418, 418, . . .
. . . 418, 418, 417, 417, 417)

and 10), with equal frequency, as proposed in the previously

mentioned works [4], [12], [17].

A. Methods compared

For an extensive analysis, several methods are compared.

The proposed methodologies are applied using both SVM

and KDA (and their adaptation to ordinal regression) as base

methods. From now on, the methodologies are named as:

• Ensemble learning for ordinal regression using product

combiner with SVM and KDA (EPS and EPK).

• Ensemble learning for ordinal regression using average

combiner with SVM and KDA (EAS and EAK).

• Simple ensemble learning for ordinal regression with

SVM and KDA (SS and SK).

These results have been compared with other state-of-the-art

ordinal and nominal methods, such as:

1) Ordinal methods:

• Kernel discriminant learning for ordinal regression

(KDO) [4] and support vector ordinal regression with

implicit constraints (SVOI) [17], methods used as base

classifiers in the ensemble proposals.

• Ordinal class classifier using the C4.5 as base classifier

(OCC) [3] and ordinal class classifier with specific ordinal

weights (OCCW) and SVM [7], both discussed in Section

II-B since they are closely related to the proposal.

• Extreme learning machine for ordinal regression (EL-

MOR) [33] because the Extreme Learning Machine

paradigm has demonstrated good scalability and gener-

alization performance with a faster learning speed when

compared to SVM [34].

• The POM algorithm [2] introduced in Section II-C.

2) Nominal methods:

• SVM classifier with one-vs-one methodology (SVM1)

[35], and one-vs-all formulation (SVMA) [35]. These

are the two main approaches for dealing with multiclass

problems when using binary classifiers. Both are closely

related to the proposal and it seems necessary to verify

if they yield similar performances.

• SVM classifier using a probabilistic reformulation of the

one-vs-all paradigm (SVMPA). In this case, the one-vs-

all approach is reformulated to estimate probabilities,

just like the proposal in this work. That is, after per-

forming each binary classification, the probabilities for

each hypothesis are calculated and later combined by

using a combination function (the product, as it has been

the one presenting the best results in this experimental

section). The purpose of this comparison is to check if

the possible improvement of the ELOR method compared

to the standard 1VsAll approach is due to the probabilistic

component of the proposal. Equally distributed probabil-

ities are considered and a weighting probability method

is not necessary, because all the classes receive the same

attention.

• AdaBoostM1 using C4.5 as base classifier (AdaB.). This

ensemble classifier is one of the most widely used in the

machine learning literature, given its proven performance.

KDO and the proposed ensemble variants were implemented

using Matlab, as well as the POM model available through the

mnrfit function. The authors of SVOI provide a publicly

available software1, which was considered both for the stan-

dalone version and the proposed ensemble version. The well-

know libsvm implementation2 was considered for all the

different versions of the SVM ensembles and for OCCW. The

Matlab code for ELM3 was adapted to implement ELMOR.

Finally, the Weka4 machine learning framework [36] provided

the implementations for OCC and AdaB.

B. Evaluated measures

Several measures can be considered for evaluating ordinal

classifiers. The most common ones in machine learning are

the mean absolute error (MAE) and the mean zero-one error

(MZE) [4], [17], [18], being MZE = 1 − Acc, where

Acc is the accuracy or correct classification rate. However,

as previously said, these measures are not the best option, for

example, when measuring performance in the presence of class

imbalances [37] and/or when the costs of different errors vary

markedly. Because of that, this work makes use of different

kind of measures to evaluate classifier performance.

The mean absolute error (MAE) is the average deviation in

absolute value of the predicted class from the true class [37]:

MAE = 1
N

�N

i=1 e(xi), where e(xi) = |r(yi)− r(y∗i )| is the

distance between the true and the predicted ranks (r(y) being

the rank for a given target y), and, then, MAE values range

from 0 to K − 1 (maximum deviation in number of ranks

between two labels).

The average mean absolute error (AMAE) is the mean of

the MAE across classes [37]: AMAE = 1
K

�K

k=1 MAEk =
1
K

�K

k=1
1
Nk

�Nk

i=1 e(xi), where AMAE values range from 0

to K − 1.

The maximum mean absolute error (MMAE) for all the

classes is the MAE value considering only the patterns from

1http://www.gatsby.ucl.ac.uk/∼chuwei/svor.htm
2http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
3http://www.ntu.edu.sg/home/egbhuang/
4http://www.cs.waikato.ac.nz/ml/weka/
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the class with the greatest distance between true labels and

predicted ones: MMAE = max {MAEk; k ∈ {1, . . . ,K}} ,
where MAEk is the MAE value considering only the patterns

from the k-th class and Nk is the number of pattern in

this class. MMAE values range from 0 to K − 1. This

measure was recently proposed [38] and its advantage is that

a low MMAE represents a low error for all independently

considered classes.

The Kendall’s τb is a statistic used to measure the as-

sociation between two measured quantities. Specifically, it

is a measure of rank correlation: τb =
�

c∗ijcij√�
c∗2
ij

�
c2
ij

, i ∈
{1, . . . , N}, j ∈ {1, . . . , N}, where c∗ij is +1 if y∗i is greater

than (in the ordinal scale) y∗j , 0 if y∗i and y∗j are the same, and

−1 if y∗i is lower than y∗j , and the same for cij . τb values range

from −1 (maximum disagreement between prediction and true

label), to 0 (no correlation between them) and to 1 (maximum

agreement). One important advantage of this correlation index

is that it makes no assumption about the scale of the ranks.

The weighted Kappa (Wk) is a modified version of

the Kappa statistic to allow different weights to differ-

ent levels of aggregation between two variables: Wk =
po(w)−pe(w)

1−pe(w)
, with po(w) =

1
n

�K

i=1

�K

j=1 wijnij , and pe(w) =
1
n2

�K

i=1

�K

j=1 wijni·n·j , where nij is the number of times

the patterns are predicted by the classifier to be in class j when

they really are in class i, ni· =
�K

j=1 nij and n·j =
�K

i=1 nij

for i, j ∈ {1, . . . ,K}. The weight wij = |i− j| quantifies the

degree of discrepancy between true (yi) and predicted (y∗j )

categories, and Wk range from −1 to 1.

In this sense, different character measures are used. Firstly,

the Acc measure, the most common for classification, reports,

in terms of a ratio, how well the classifier works without

making any distinction between the classes in the problem.

Secondly, the standard MAE measure, well-known for ordi-

nal regression problems, considers different misclassification

errors. Also, two novel measures are used in order to prove

whether the proposal achieves more balanced predictions when

the number of patterns is very different for each class. The

AMAE metric reports how well all the classes are classified

and the MMAE gives information about the worst classified

class. Finally, two different statistics are considered, in order to

measure the association between prediction and true labelling.

C. Evaluation and model selection

Regarding the experimental setup, a holdout stratified tech-

nique was applied to divide the datasets 30 times, using 75%
of the patterns for training and the remaining 25% for testing.

For the regression datasets provided by Chu et. al [12] (pyrim,

machine, housing and abalone), the number of random splits

was 20 and the number of training and test patterns are the

same as those presented in the corresponding works [12], [17].

The partitions were the same for all methods compared and

one model was obtained and evaluated (in the test set), for each

split. Finally, the results are taken as the mean and standard

deviation of the measures over the 30 test sets.

The parameters of each algorithm are chosen using a nested

validation with each of the training sets (k-fold method with

k = 5) and the cross-validation criteria is the MAE since it

can be considered the most common one in ordinal regression.

The kernel selected for all the algorithms is the Gaussian one,

K(x,y) = exp
�

−�x−y�2

σ
2

�

where σ is the standard deviation.

For every tested kernel method (KDA and SVM meth-

ods), the kernel width was selected within these values

{10−3, 10−2, . . . , 103}, as the cost parameter associated with

SVM methods. The parameter u for avoiding singular-

ity (for the methods based on KDA) was selected within

{10−4, 10−3, 10−2, 10−1}, and the C parameter for the KDO

was selected within the following ones {10−1, 100, 101}.

D. Results

This section presents three different types of experiments.

Firstly, a synthetic dataset is designed in order to show the

advantages of the proposal graphically when comparing it with

the one-vs-all standard formulation. Secondly, the results ob-

tained are compared for the 15 datasets previously presented,

with the 6 ensemble methodologies proposed and 10 state-of-

the-art algorithms, using a set of 6 different selected measures.

Finally, a different set of experiments with large-scale ordinal

datasets is performed to analyze the potential scalability and

interpretability of the proposed method.

−10 −5 0 5 10 15 20 25 30

−5

0

5

10

15

20

25

30

Fig. 4. Synthetic dataset and the optimal projection computed by linear
discriminant analysis for ordinal regression [4].

1) Graphical representation of the proposal: In this sub-

section, a new synthetic dataset has been designed in order to

show the main differences and advantages when comparing the

ordinal version of the algorithms and the one-vs-all standard

proposal. The graphical representation of the dataset can be

seen in Figures 4 and 5.

Figure 4 shows the ordinal projection computed and the

projected patterns for the dataset. Linear discriminant analysis

for ordinal regression has been used for this (without using the

kernel trick) to allow the representation of the results, due to

the fact that the kernel trick would classify the dataset structure

perfectly. Taking into account the final projection, it can be

observed that classes 2, 3 and 4 are not very well-classified

since they present some overlapping on the projection.

On the other hand, Figure 5 shows various projections com-

puted and the patterns projected by the proposed procedure and

the one-vs-all paradigm (also using linear discriminant anal-

ysis). The computed projections for the first and last classes
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Fig. 5. Graphical representation of the different projections computed
for the synthetic dataset using linear discriminant analysis: a) Projections
computed by the one-vs-all formulation. b) Projections computed by the
ordinal ensemble methodology proposed.

are seen to be the same as in the previous case, since the

classification tasks are the same. But in this case, the projection

for the rest of the classes allows better separation since some

order among the classes is supposed. For example, w3 allows a

clearer separation for the classes than the computed w3 in the

one-vs-all formulation, where the classes {1, 2, 3} are mixed

in the projection. Each single class is seen to be well-classified

in at least one model, and also the classes are ordered in the

projection so that some information is implicit in the model.

2) Experimental results: The algorithms compared here

have been run and optimized under the same conditions and

using the same parameter cross-validation. First, the different

ensemble proposals and their base algorithms are compared,

and then the rest of the state-of-the-art methods are considered.

Table II shows the mean ranking for the proposals and the

base methodologies for all 15 datasets, taking into account

6 different measures, which may help the reader to evaluate

the value of the proposal. This table only considers the mean

ranking (over all the datasets) obtained for each method and

each metric. In this case (where 8 algorithms were compared),

a ranking of 1 is assigned to the best method for a given

dataset, and a ranking of 8 to the one which provides the worst

performance. In this table and all the following ones, the best

method is in bold face and the second one in italics. The mean

ranking considering all the metrics has also been included in

the table as a summary. In almost all cases, the ensemble

TABLE II
MEAN RANKINGS OF THE 15 DATASETS CONSIDERED FOR THE ENSEMBLE

METHODOLOGIES PROPOSED AND THE BASE ALGORITHMS USED.

Method

Measure KDO EPK EAK SK SVOI EPS EAS SS

Acc 6.73 3.87 4.80 5.77 3.87 2.07 3.50 5.40
MAE 6.27 4.70 4.60 6.67 3.30 2.67 2.60 5.20
AMAE 6.27 4.70 4.37 6.27 3.00 2.53 3.33 5.53
MMAE 5.27 4.83 3.70 5.67 3.53 3.40 4.00 5.60

τb 5.47 3.97 4.57 7.00 3.27 2.87 3.07 5.80
Wk 5.73 3.57 5.23 6.87 3.47 2.00 3.60 5.53

Average 5.96 4.27 4.54 6.37 3.41 2.59 3 .35 5.51

achieves better results than the initial algorithms. Specifically,

it can be seen that the best results or the second best results for

almost all the metrics tested are achieved by applying the EPS

proposal. The complete tables of results showing the means

and standard deviations for all benchmark datasets and metrics

are not included in this work for the sake of simplicity and

readability, but they can be found on a public webpage5.

To quantify whether a statistical difference exists among the

algorithms compared in Table II, a procedure is employed to

compare multiple classifiers in multiple datasets [39]. First of

all, a Friedman’s non-parametric test with a significance level

of α = 0.05 has been carried out to determine the statistical

significance of the differences in the mean ranking results for

each measure selected. The test rejected the null-hypothesis

that all algorithms perform similarly when α = 0.05 for

all the selected metrics, stating then that the differences in

mean rankings of Acc, MAE, AMAE, MMAE, Kendall’s

τb and Wk are statistically significant. Specifically, the confi-

dence interval for this number of datasets and algorithms is

C0 = (0, F(α=0.05) = 2.10), and the corresponding F-value

for each metric was 7.95 /∈ C0, 9.30 /∈ C0, 7.65 /∈ C0,

2.47 /∈ C0, 8.11 /∈ C0 and 10.22 /∈ C0 for Acc, MAE,

AMAE, MMAE, Kendall’s τb and Wk, respectively.

On the basis of this rejection, the Nemenyi post-hoc test

is used to compare all classifiers to one another. This test

considers that the performance of any two classifiers is deemed

significantly different if their mean ranks differ by at least

the critical difference (CD), which depends on the number

of datasets and methods. 5% significance confidence was

considered (α = 0.05) to obtain this CD and the results

can be observed in Figure 6, which shows CD diagrams as

proposed in [39]. Each method is represented as a point on a

ranking scale, corresponding to its mean ranking performance.

CD segments are included to measure the separation needed

between methods in order to assess statistical differences.

Red lines group algorithms for which statistically significant,

different mean ranking performance can not be assessed.

From the results of the statistical tests and from the tables,

several conclusions can be drawn: firstly, one could notice

by analysing mean rankings that the techniques based on

SVMs present a clearly better performance than the ones

based on KDA, and the ensemble procedure based on SVM

usually outperforms the results obtained by the ensemble

based on KDA, independently of the combiner or metric

5http://www.uco.es/grupos/ayrna/es/elor2013
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Fig. 6. Results and ranking of the Nemenyi statistical test for proposals and
base methods.

used. Secondly, no significant differences can be observed by

analysing different probability combiners, although the great

majority of the results show better performance using the

product combiner. Also, the methodology SELOR (SK and

SS) can not be considered to be a good approach since its

performance is worse than that of the base algorithms in

many cases. Thus, it has been shown that considering all

the probability information, performance can be significantly

improved. Last but not least, the ensemble procedure seems

to be a good approach to tackle ordinal regression since it

leads to an improvement in the results obtained by several

algorithms of the state-of-the-art (as the base classifiers used:

KDO and SVOI) taking different measures into account. This

can be easily seen by analysing the Nemenyi post-hoc figures.

To complete this section, a table similar to the previous one

but containing the mean rankings for the rest of the state-of-

the-art algorithms is shown in Table III. The EPS proposal is

also included in this table, since, as stated before, it could be

considered the proposal with the best performance. This table

shows that the EPS procedure seems to be competitive for all

measures (both ordinal and nominal), since it always obtains

the best mean ranking. The second best method is OCCW,

with the second position for all measures.

Table III shows that the EPS methodology is the best one in

performance for all 6 metrics, improving the performances of 4
different ordinal classifiers and 4 nominal ones, and achieving

a considerable balance between Acc, ordinal measures, those

appropriate for imbalanced datasets, and correlation ones.

In this case, the non-parametric Friedman’s test with a sig-

nificance level of α = 0.05 was also applied to the mean rank-

TABLE III
MEAN RANKINGS OF THE 15 DATASETS FOR THE SELECTED ENSEMBLE

METHODOLOGY AND OTHER STATE-OF-THE-ART METHODS.

Method

Measure EPS OCCW OCC ELMOR POM SVM1 SVMA SVMPA AdaB.

Acc 2.03 2 .60 6.67 5.20 6.23 3.50 5.40 7.43 5.93
MAE 1.63 3 .07 6.10 4.67 5.93 4.57 6.00 7.30 5.73
AMAE 1.67 3 .60 6.20 4.80 5.40 4.70 5.90 7.00 5.73
MMAE 1.67 4 .00 6.27 4.27 4.93 5.27 6.13 7.00 5.47

τb 1.60 2 .87 6.60 4.73 5.20 4.53 6.00 7.33 6.13
Wk 1.40 3 .07 6.73 5.27 5.27 4.27 5.73 7.33 5.93

Average 1.67 3 .20 6.43 4.82 5.49 4.47 5.86 7.23 5.82

ings for each measure. The test rejected the null-hypothesis

that all algorithms perform similarly when α = 0.05 for all

the selected metrics, stating then that the differences in the

mean ranking of Acc, MAE, AMAE, MMAE, Kendall’s

τb and Wk are statistically significant. Specifically, the confi-

dence interval for this number of datasets and algorithms is

C0 = (0, F(α=0.05) = 2.02), and the corresponding F-value

for each metric was 12.33 /∈ C0, 9.52 /∈ C0, 7.08 /∈ C0,

6.91 /∈ C0, 11.24 /∈ C0 and 11.63 /∈ C0 for Acc, MAE,

AMAE, MMAE, Kendall’s τb and Wk, respectively.

It is well-known that the Nemenyi approach comparing

all classifiers to one another in a post-hoc test is not as

sensitive as the approach comparing all classifiers to a given

classifier (known as a control method) [39]. The Holm test

performs this latter type of comparison, only considering the

comparison between the control method and all the alter-

natives, and sequentially testing the hypotheses ranked by

their significance. The ordered p-values will be denoted by

p1 ≤ p2 ≤ . . . ≤ pk−1, where k is the number of comparisons

made. This step-down procedure compares pi with a corrected

version of the level of significance α/(k − 1), starting with

the most significant p-value (p1). If pi is below the corrected

α, the null hypothesis is rejected and the next comparison is

performed. When a certain null hypothesis can not be rejected,

all the remaining ones are also retained. The results of this

test (corrected α values and p-values) for all the measures are

included in Table IV, where EPS is used as the control method.

This table shows that the EPS presents statistically sig-

nificant differences for α = 0.05 for almost all measures

with respect to almost all methods, except for SVM1 (when

using Acc) and OCCW (when using some of the metrics).

No statistically significant differences could be assessed when

comparing EPS to SVM1 for Acc, which is, in fact, a nominal

method not designed to deal with ordinal problems. Further-

more, it can be seen that the proposal presents significant

statistical differences for α = 0.05 and the MMAE metric

with respect to the OCCW methodology, which could be

considered the procedure most similar to the one designed

in this work, and that the differences for AMAE and Wk are

also significant for α = 0.10. In any case, it is important to

remember that the mean rankings are always the best for EPS.

From these results, several conclusions can be drawn: firstly,

as said before, it has been proven that an ordinal regression

point of view is needed when dealing with some given order

among categories, because, although a nominal algorithm may

perform well when taking into account, for example, the
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TABLE IV
RESULTS OF THE HOLM PROCEDURE USING EPS AS THE CONTROL

METHOD WHEN COMPARED TO OTHER STATE-OF-THE-ART METHODS:
CORRECTED α VALUES, COMPARED METHOD AND p-VALUES, ALL OF

THEM ORDERED BY THE NUMBER OF COMPARISON (i).

Acc MAE AMAE
i α

∗

0.05 α
∗

0.10 Method pi Method pi Method pi

1 0.0063 0.0125 SVMPA 0.0000• SVMPA 0.0000• SVMPA 0.0000•
2 0.0071 0.0143 OCC 0.0000• OCC 0.0000• OCC 0.0000•
3 0.0083 0.0167 POM 0.0000• SVMA 0.0000• SVMA 0.0000•
4 0.0100 0.0200 AdaB. 0.0001• POM 0.0000• AdaB. 0.0001•
5 0.0125 0.0250 SVMA 0.0008• AdaB. 0.0000• POM 0.0002•
6 0.0167 0.0333 ELMOR 0.0015• ELMOR 0.0024• ELMOR 0.0017•
7 0.0250 0.0500 SVM1 0.1425 SVM1 0.0034• SVM1 0.0024•
8 0.0500 0.1000 OCCW 0.5709 OCCW 0.1518 OCCW 0.0532◦

MMAE τb Wk

i α
∗

0.05 α
∗

0.10 Method pi Method pi Method pi

1 0.0063 0.0125 SVMPA 0.0000• SVMPA 0.0000• SVMPA 0.0000•
2 0.0071 0.0143 OCC 0.0000• OCC 0.0000• OCC 0.0000•
3 0.0083 0.0167 SVMA 0.0000• AdaB. 0.0000• AdaB. 0.0000•
4 0.0100 0.0200 AdaB. 0.0001• SVMA 0.0000• SVMA 0.0000•
5 0.0125 0.0250 SVM1 0.0003• POM 0.0003• POM 0.0001•
6 0.0167 0.0333 POM 0.0011• ELMOR 0.0017• ELMOR 0.0001•
7 0.0250 0.0500 ELMOR 0.0093• SVM1 0.0034• SVM1 0.0042•
8 0.0500 0.1000 OCCW 0.0196• OCCW 0.2053 OCCW 0.0956◦

•: Statistical difference with α = 0.05
◦: Statistical difference with α = 0.10

measure of accuracy, it may fail when taking into account

other ordinal measures. Secondly, as statistically significant

differences exist for all the metrics selected when taking

into account the different one-vs-all proposals (the nominal

proposal for reformulating the SVM paradigm and the pro-

posal in this work), ELOR seems to present clear advantages

over the one-vs-all nominal paradigm, when tackling ordinal

classification. Finally, it can be concluded that the combination

of single classifiers, aiming at a more accurate classification

decision at the expense of increased complexity, seems to be

a good idea in this case, since it improves the performance of

other state-of-the-art methodologies significantly.

3) Large-scale datasets and interpretability: Once the per-

formance of the proposed method has been extensively val-

idated making statistical comparisons to other state-of-the-

art methodologies for different measures and datasets, there

are some unanswered issues such as the scalability of the

algorithm or its possible interpretability, which is the main

aim of this subsection. However, these issues are more related

to the choice of the base algorithm for the ensemble because

it will obviously determine if the algorithm could be used

with large-scale datasets or for model interpretability purposes.

The complexity of the kernel methods previously used as

base methodologies for the ensemble depend directly on the

number of training patterns [4] and their interpretability is

difficult. Because of this reason, a simpler and more inter-

pretable method is used for the following experiments. This

method does not present parameters to optimize and it is also

designed for ordinal regression. It is a linear model, leading

generally to a lower performance (see Table III of this paper

or other studies in the ordinal classification literature [18],

[19]). However, it provides us with a probabilistic output, a

simpler model and a better interpretability. The method used

is the POM algorithm [2] which was used for comparison

purposes in the previous experimental subsection. Moreover,

standard binary LR is used for the binary decompositions.

This methodology, can be considered as interpretable in the

sense that it could give us clues about the importance of each

attribute for modelling the dependent variable.

For the experiments, two real ordinal datasets have been

used. First, the Happiness dataset was extracted from the

“European Social Survey”6 considering year 2010 and 26

countries. It represents the complex problem of predicting the

individual happiness by using certain characteristics, beliefs

and life circumstances in a Likert scale (examples of some

input variables are: the health of the person, if he or she has

anyone to discuss personal matters, whether he or she takes

part in social activities, etc). We selected 13 attributes and

considered 5 classes. The dataset was composed of 41472
instances (missing values were removed for simplicity). For

more information of this dataset see the webpage associated

to this paper5. Secondly, the SpanishFleet dataset was obtained

from the “Fleet Register On the Net” considering year 2012

and the whole Spanish fleet to predict the commitment to

sustainability of the Spanish vessels, using a categorization

of the overexploitation of the gears employed provided by the

Food and Agriculture Organization of the United Nations. This

dataset was composed of 10460 instances, 6 attributes and 10

classes. For more information of this dataset see [40].

Concerning the experiments on these datasets, the same

aforementioned experimental design was used (i.e., 30 random

repetitions of a stratified holdout, with 75% for training

and 25% for the test set). To analyze the scalability of the

algorithms, the complete time in seconds for executing each

algorithm is also included in the results (note that the same

machine architecture was used). The methods tested are: 1) the

POM algorithm (which was previously presented) 2) ordinal

class classifier using POM as base classifier (OCCP) and

3) ensemble learning for ordinal regression using product

combiner and the POM algorithm as base classifier (EPP).

We considered OCCP because it is a decomposition method

which can be said to follow the same philosophy of EPP but

using binary classifiers.

The results of these experiments can be seen in Table V.

From these results, it can be seen that the proposed method

outperforms in all the metrics the base classifier and, in most of

the cases, the ordinal binary decomposition method (OCCP),

thus providing more robust results. Furthermore, although both

classification problems are complex because of the variable

to predict, the obtained results are very promising (e.g., in

MAE and AMAE). With regard to the execution time, the

computational complexity of the methodology is affordable,

even for large-scale problems. Furthermore, as it can be seen

in the experiments (comparing the time obtained in both

datasets), the time complexity of the algorithm depends to a

greater extent on the number of classes (because it determines

the number of decompositions to perform) rather than on the

number of samples.

Concerning interpretability, the decomposition proposed

provides us with additional information in the sense that one

model for differentiating each class from the previous and

following classes is computed. Therefore, instead of being pro-

6http://ess.nsd.uib.no/
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TABLE V
MEAN TEST VALUES FOR THE DIFFERENT METHODS CONSIDERED.

Happiness

Metrics POM OCCP EPP

Acc 60.78 ± 0.15 63 .44 ± 0 .26 63.73 ± 0.25
MAE 0.449 ± 0.002 0 .402 ± 0 .003 0.397 ± 0.003
AMAE 1.259 ± 0.011 1 .028 ± 0 .016 1.002 ± 0.014
MMAE 2.580 ± 0.051 1 .953 ± 0 .081 1.950 ± 0.075

τb 0.232 ± 0.007 0 .350 ± 0 .007 0.375 ± 0.006
Wk 0.088 ± 0.005 0 .256 ± 0 .006 0.293 ± 0.005
Time 23.41 ± 4.34 32 .49 ± 0 .50 49.00 ± 0.47

SpanishFleet

Metrics POM OCC(POM) EPP

Acc 83.33 ± 0.52 86.62 ± 0.39 85 .87 ± 0 .28
MAE 0.443 ± 0.012 0 .406 ± 0 .015 0.388 ± 0.010
AMAE 2 .104 ± 0 .048 2.200 ± 0.117 1.943 ± 0.062
MMAE 6.880 ± 0.116 5.996 ± 0.370 6 .594 ± 0 .151

τb 0 .611 ± 0 .013 0.602 ± 0.021 0.631 ± 0.017
Wk 0.620 ± 0.012 0 .665 ± 0 .013 0.678 ± 0.008
Time 44.21 ± 2.24 173 .52 ± 1 .33 225.18 ± 2.11

vided with a model for tackling the whole learning problem,

we obtain a model for discriminating each class and we could

analyze independently the variables most determining.

To better visualize the interpretability of the model, let

us analyze an example with the Happiness dataset. The best

model (in this case the one performing better in terms of

MAE for EPP) has been selected for the analysis. This model

can be seen in Table VI. Note that both D1 and D5 are

binary classifiers with a single threshold. The most important

variables for modelling the labelling are the ones with higher

|wi| value, for example, it can be seen that x4 (satisfaction

with present state of economy in country) presents a high

impact on the variable to predict and so do x10 (the subjective

health of the person). One should note that although the sign of

wi could also be used for an interpretability analysis, it could

depend on the variable coding (in the case of the subjective

health the variable is encoded from very good health to very

bad health, thus this variable is negatively correlated with the

label). Furthermore, it can be seen that variables important for

different models are not so determining for others (analyze the

case of x1, x2 or x13). Besides, as part of the model analysis,

it can be said that having someone to discuss personal matters

(x7) makes you happier (note that the “yes” have been encoded

as 0 and “no” as 1).

As a final remark, if we order the variables taking into

account their importance for each model (as said, the |wi|
value), it can be observed that some variables have almost no

influence for discriminating certain classes (see Table VII).

For example: being member of a group discriminated in your

country or not (x11) is an influential variable for determining

if you are extremely unhappy, but not for determining if

you are extremely happy (it is at the last position). On the

contrary, thinking that is important to help people and care

for others well-being (x13) is indeed a determining variable

for the happiest (it is at the first position).

V. CONCLUSIONS AND FUTURE WORK

The methodology here proposed is based on the com-

putation of different classification tasks, by performing a

relabelling process which takes ordinal data information into

TABLE VI
BEST SET OF MODELS Di, 1 ≤ i ≤ 5, OBTAINED BY THE PROPOSED

ORDINAL ENSEMBLE USING THE POM ALGORITHM AS BASE METHOD.
THE MEANING OF EACH VARIABLE CAN BE FOUND IN THE WEBSITE

ASSOCIATED TO THIS PAPER.

D1 D2 D3 D4 D5

w1 0.3172 0.1249 0.1065 0.0427 -0.1027

w2 0.0194 0.1485 0.1837 0.1829 0.1323

w3 0.2566 0.2196 0.1348 0.1175 0.0940

w4 1.0764 0.6465 0.5346 0.4028 0.1987

w5 0.1906 0.0614 0.0799 0.0551 -0.0239

w6 0.0873 0.2394 0.2218 0.1990 0.1711

w7 -0.2139 -0.1879 -0.2126 -0.2018 -0.0667

w8 -0.0257 0.0983 0.0774 0.0811 0.0954

w9 -0.0651 -0.1359 -0.1667 -0.1457 -0.0851

w10 -0.6461 -0.5314 -0.4974 -0.4229 -0.2605

w11 0.2036 0.1255 0.0849 0.0584 0.0083

w12 0.3355 0.2957 0.2535 0.1768 0.0819

w13 0.0358 -0.1183 -0.1664 -0.1968 -0.3089

b1 -6.6354 -6.0191 -3.4551 -0.9498 2.5098

b2 - -3.6051 -1.0537 2.8159 -

TABLE VII
RANKING OF VARIABLES FOR THE DIFFERENT MODELS.

D1 D2 D3 D4 D5

x4 x4 x4 x10 x13

x10 x10 x10 x4 x10

x12 x12 x12 x7 x4

x1 x6 x6 x6 x6

x3 x3 x7 x13 x2

x7 x7 x2 x2 x1

x11 x2 x9 x12 x8

x5 x9 x13 x9 x3

x6 x11 x3 x3 x9

x9 x1 x1 x8 x12

x13 x13 x11 x11 x7

x8 x8 x5 x5 x5

x2 x5 x8 x1 x11

account. The relabelled data is then used for training the

learning algorithm. In that sense, the proposal can be seen

as a reformulation of the one-versus-all idea to tackle ordinal

regression, as each single model is computed to differentiate

each class from the remaining ones taking ordinal ranks into

account. Threshold models are used as the base classifier

because they are able to include the order information of

these groups of classes and their natural projection capabilities

facilitate the computation of probability estimations. For the

prediction phase, two of the most widely studied combiners in

the ensemble literature were used, the product and the average.

The proposal has been tested with 15 benchmark datasets

and it has been found to be competitive when compared

to the base classifiers and to other state-of-the-art methods.

Statistical tests were applied to assess these conclusions.

Additionally, the superiority of the proposal for the one-vs-

all standard paradigm has been confirmed when dealing with

ordinal regression. Although multiclass imbalance problems

pose important difficulties for machine learning algorithms

[41], this approach seems to achieve not only good global

performance, but also good error rates for all classes indepen-

dently, given the good MMAE performance obtained.

Moreover, the proposal has been seen to be scalable (al-

though this is an issue related to the base methodology, it has

been seen to provide a reasonable time complexity compared

to the base method) and interpretable (in the sense that the
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most determining features for modelling each class can be

extracted because it is based on a decomposition strategy).

Unlike discriminant analysis (where a normal distribution

could be assumed), there is no guideline about the proba-

bility distribution to use when working with nonparametric

approaches, such as SVMs. In fact, several studies have been

performed in order to reformulate SVMs to allow probabilistic

outputs [26], [27] making use of a maximum-likelihood esti-

mator for adjusting the probability distribution to the projected

patterns. This idea might be used as well in this work in order

to compute fairer probabilities for the SVM methodologies.

Finally, the ensemble procedure could be tested with other

ordinal base classifiers, also based on support vector machines

or discriminant analysis such as those proposed in [8], [24].
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