

An intruder detection approach based on infrequent rating pattern mining

J.M. Luna, A. Ramírez, <u>J.R. Romero</u> and S. Ventura

Dept. of Computer Science and Numerical Analysis University of Cordoba, Spain

Computational Intelligence in Knowledge Discovery @ 10th Intl. Conference on ISDA

November 29 – December 1, 2010 Cairo, Egypt

ClinKD @ ISDA 2010. Cairo, Egypt. November 30, 2010

Contents

- Introduction
- The suspicious attacker detection process
 - Introducing the approach
 - Discovering infrequent rating patterns
 - Analyzing the rating patterns
 - Inferring the potential intruders
- Experimentation and results
 - Dataset and set-up
 - Executing the RARM algorithm
 - Simulating and injecting malicious profiles
 - > Pursuing the suspicious attackers
- Concluding remarks

Introduction

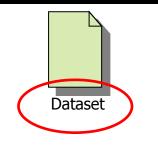
- Collaborative recommender systems (CRSs) have become a routine activity:
 - Predictions usually based on similarity between neighbours
 - A potential source of frauds and deception
 - Malicious parties want to promote/demote their items of interest
 - Injection of fake user profiles to distort recommendations
- Only one application domain of intrusion detection problem
- Datamining widely used to explore useful knowledge from larga datasets

Introduction

- Association Rule Mining (ARM)
 - A very well-known method for discovering interesting patterns and close relations between items

 $A \rightarrow C, A \cap C = \emptyset$

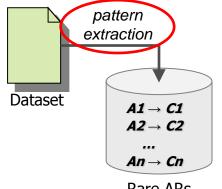
- Rare Association Rule Mining (RARM)
 - Searches for non-frequent, unusual or exceptional association rules by mining rare itemsets
 - Non-ordinary items could help to discover potential intruders throughout the dataset maintained by the rating system
- Exhaustive search of the rule space would be non-scalable and potentially endless (e.g. Apriori-Inverse, ARIMA, etc)



- A rating dataset contains uncorrupted user preferences per item
- Each item (e.g. movies) have a numerical rating
- In the example^(*), items are rating from 1 to 5

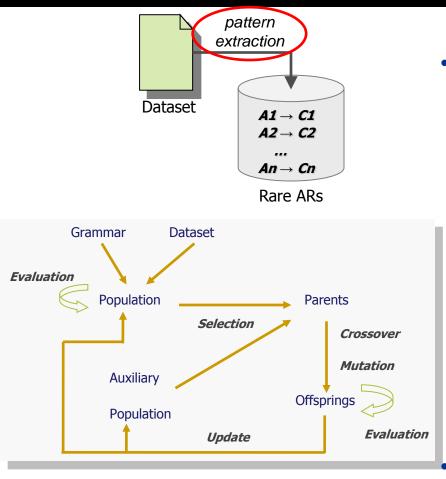
	Item1	Item2	Item3	Item4	Item5	Item6
User1	5	2	3	3		
User2	2		4		4	1
User3	3	1	3		1	2
User4	4	2	3	1		1
User5	3	3	2	1	3	1
User6		3		1	2	
User7	4	3		3	3	2
User8		5		1	5	1

(*) B. Mobasher *et al.* "Toward Trustworthy Recommender System: An Analysis of Attack Models and Algorithm Robustness" *ACM Trans. Internet Technology*, 7(4)-23, 2007.



 $G = (\Sigma_N, \Sigma_T, P, \text{Rule}) \text{ with:} \\ \Sigma_N = \{ \text{Rule, Antecedent, Consequent, Comparison, } \\ Comparator, Attribute Comparison \} \\ \Sigma_T = \{ \text{"AND", "<=", "<", ">=", ">", "name", "value" } \\ P = \{ \text{Rule} = \text{Antecedent, Consequent ;} \\ Antecedent = \text{Comparison | "AND", Comparison, Antecedent ;} \\ Consequent = \text{Comparison ;} \\ Comparison = \text{Comparator, Attribute Comparison ;} \\ Comparator = "<=" | "<" | ">=" | ">" ; \\ Attribute Comparison = "name", "value" ; \} \\$

- For the extraction of frequent ARs we proposed an evolutionary approach: G3PARM^(*)
 - High efficiency and low memory requirements
 - Different types of attributes
 - Based on a context-free grammar
 - Each individual is a derivation tree that represents a rule
- Extension of the G3PARM for RARM
 - Extraction of rare association rules
 - Post-processing step that simplifies rules with redundant attributes
- (*) J. M. Luna, J. R. Romero y S. Ventura. G3PARM: A Grammar Guided Genetic Programming Algorithm for Mining Association Rules. *IEEE World Congress on Computational Intelligence (WCCI 2010)* Barcelona, Spain, 2010



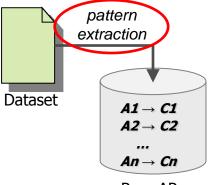
- It searches for the minimum support for each rule by maximizing the fitness function:
 - Support of the rule

$$supp(A \to C) = \frac{|\{A \cup C \subseteq T, T \in D\}|}{|D|}$$

A support threshold (minimum support)

$$fitness(A \to C) = \begin{cases} \frac{1}{Supp(A \to C) - Thr} & if Supp(A \to C) > Thr \\ 0 & otherwise \end{cases}$$

Confidence and support of the rule are used to update the auxiliary population

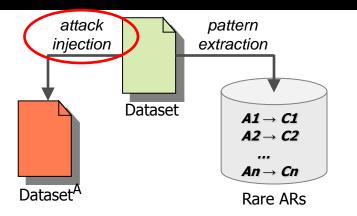


Rare ARs

Two rare rules are mined

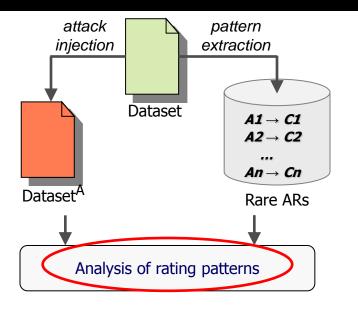
Item1 < 3	AND	Item2	>	3 →	Item6	\leq	4
Item3 \geq 4	AND	Item5	>	3 →	Item4	<	2

	Item1	Item2	Item3	Item4	Item5	Item6
User1	5	2	3	3		
User2	2		4		4	1
User3	3	1	3		1	2
User4	4	2	3	1		1
User5	3	3	2	1	3	1
User6		3		1	2	
User7	4	3		3	3	2
User8		5		1	5	1



With the elapse of time, some fraud profiles are injected in the dataset (three attacks on Item6)

-		Item1	Item2	Item3	Item4	Item5	Item6
-	User1	5	2	3	3		
-	User2	2		4		4	1
-	User3	3	1	3		1	2
-	User4	4	2	3	1		1
-	User5	3	3	2	1	3	1
	User6		3		1	2	
	User7	4	3		3	3	2
-	User8		5		1	5	1
\bigcap	Attacker1	5		3		2	5
	Attacker2	5	1	4		2	5
	Attacker3	5	2	2	2		5



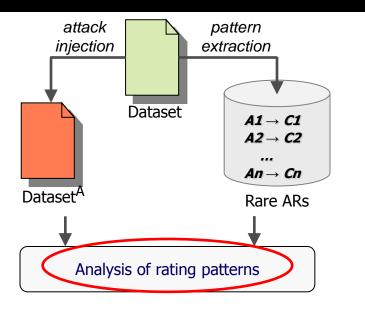
	Item1	Item2	Item3	Item4	Item5	Item6
<i>s</i> 0	0.16	0.14	0.20	0.66	0.33	1.00
s_1	0.10	0.10	0.25	0.57	0.25	0.66
$ \Delta s $	0.06	0.04	0.05	0.09	0.08	0.33
L_m	0.11	0.10	0.12	0.44	0.22	0.66
L_M	0.44	0.40	0.50	0.77	0.55	1.00
max()	0.28	0.26	0.30	0.22	0.33	0.33
P_{attack}	0.23	0.15	0.16	0.40	0.24	1.00

• For each rare rule mined:

- Calculate the relative support of each attribute in a rule in the *original dataset*
- Again, the relative support is computed using the *suspicious ratings*
- $|\Delta s| = |s_1 s_0|$ is obtained
- The probability that an item is attacked:

$$P_{attack} = \frac{|\Delta s|}{max(|s_0 - L_m|, |s_1 - L_M|)}$$

- L_m : relative support obtained by dividing the absolute support by the number of instances (in Dataset_A)
- L_{M} : relative support obtained if all the instances of the attack injection are satisfied by the attribute of the rule



	Item1	Item2	Item3	Item4	Item5	Item6	•
P_{attack}	0.23	0.15	0.16	0.40	0.24	1.00	>

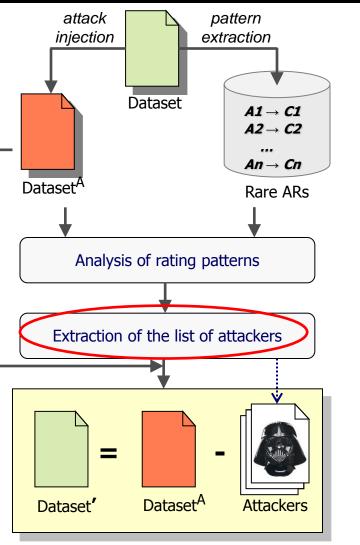
Item1	Item2	Item3	Item4	Item5	Item6
0.029	-0.010	0.000	0.005	0.005	0.300
					\checkmark

- *P_{attack}* indicates whether an item is being potentially attacked
 - If P_{attack} is greater than a threshold, a potential attack is considered
- The highest value does not always imply an attack
 - Item4 has a P_{attack} of 40%

An **influence measure** is required to analyze how effective the attack is.

$$Infl = \frac{\Delta s \Delta \bar{r}}{r_{max} - r_{min}}$$

∆r is the increment of the average score for an item before and after the potential attack



- A preliminary list of attackers can be experimentally built by analyzing *P_{attack}* and *Infl*
 - We need to study which *new* profiles satisfy the item (e.g. *Item6*)
- These profiles (Attackers) are removed from the dataset (Dataset_A)
- A new iteration would start with the elapse of time using Dataset'

Experimentation and Results

Experiment setup

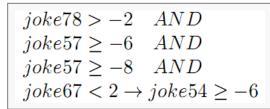
 As a dataset, we used the online Jester Online Joke Recommender System

- 4.1 million continuous ratings
- 100 jokes (i.e. items)
- 73,421 users (i.e. profiles)
- Ratings ε [-10, 10]

- The algorithm configuration
 - Five different executions with five different seeds (150 rules at most)

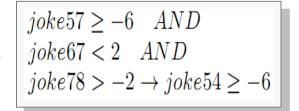
Parameter	Value
Population size	50 individuals
Number of generations	100
$P_{crossover}$	0.9
$P_{mutation}$	0.2
Maximum number of derivations (CFG)	24
Auxiliary population size	30 individuals
Confidence threshold	0.9
Minimum support threshold	0.0005
Maximum support threshold	0.125
r_{min}	-10
r_{max}	10

Experimentation and **Results**



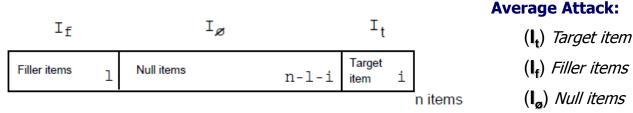
Example of rare rule extracted

Running the process



Same rule after normalization

• We simulated a push attack (promotion of items) based on average ratings



- Different attacks were injected:
 - 5 different I values (*fillers*): 20, 30, 40, 50, 60
 - 3 different items promoted with low ratings (joke58, joke74, joke79)
 - Each injection is about 10% the dataset size
 - $P_{attack} >= 0.8$ and $P_{attack} >= 0.5$ (too low, just for comparison)

Experimentation and **Results**

Pursuing the attackers

- When $P_{\text{attack}} = 0.5$:
 - New rules containing the target item are found
 - ... but more filler items could also be considered as injected
 - The influence measure reveals the real target item

		As an example:		
		> An item (I ^s) was marked as suspicious: $P_{attack} = 0.5$		
Attacked item	<i>l</i> = 20	> However, the target item (I ^t) obtained $P_{attack} = 0.2$	l = 50	<i>l</i> = 60
Joke58	0	After measuring the influence:	44	44
Joke74	0		37 39	37 39
Joke79	0	▶ Infl(I ^s) = -0.006	39	39
RBIDEEC	withiouid	Infl(I ^t) = 0.022 (the biggest value in the dataset)	_{ck} >= 0.	5

Concluding Remarks

- Concluding Remarks
 - An evolutionary proposal for the detection of malicious profile injections in user-based CRSs
 - > A variation of the G3PARM algorithm for RARM
 - Introduction of measures for the analysis of rating patterns
- Future Work
 - Validate with different types of attacks
 - Reaction in non-simulated environments

An intruder detection approach based on infrequent rating pattern mining

José-María Luna, Aurora Ramírez, José-Raúl Romero and Sebastián Ventura

Dept. of Computer Science and Numerical Analysis University of Córdoba, Spain

ClinKD @ ISDA 2010. Cairo, Egypt. November 30, 2010