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1. General Introduction  

 

1.1. Fusarium oxysporum 

Fungi of the genus Fusarium are important plant pathogens commonly found in soil, water 

and decaying organic matter (Naggie and Perfect, 2009). In addition, Fusaria can cause a 

broad spectrum of diseases in humans, ranging from superficial or localized infections in 

healthy hosts to lethal disseminated fusarioses in immunocompromised patients (Dignani 

and Anaissie, 2004). 

The soil-borne ascomycete Fusarium oxysporum is the causal agent of vascular wilt, a 

devastating disease affecting a large variety of economically important crops worldwide 

(Beckman, 1987b). Different isolates of F. oxysporum attack a wide range of economically 

important crops leading to Fusarium crown and root rot, damping-off and, most commonly, 

vascular wilts (Agrios, 2005a). Vascular wilt disease is a major limiting factor in the 

production of many agricultural crops, including tomato (Lycopersicon spp.), banana (Musa 

spp.), cabbage (Brassica spp.), onion (Allium spp.), cotton (Gossypium spp), flax (Linum spp.), 

muskmelon (Cucumis spp.), pea (Pisum spp.), watermelon (Citrullus spp.), carnation 

(Dianthus spp.), chrysanthemum (Chrysanthemum spp.), gladiolus (Gladiolus spp.) and tulip 

(Tulipa spp.) (Armstrong, 1981). The widespread distribution of the genus stems from its 

ability to grow on a wide range of substrates and on its efficient high persistence in the soil 

(Burgess, 1981). 

 

1.2. History and Taxonomy 

F. oxysporum is an ascomycete, although it lacks a known sexual cycle (Table 1). Based on 

the structures bearing conidiogenous hyphae, Fusarium spp. are classified under the subclass 

Hyphomycetidae within the Deuteromycetes. Morphological characterization of F. 

oxysporum is based on the shape of macroconidia, the structure of microconidiophores, and 

the formation and disposition of chlamydospores (Beckman, 1987a). The first description of 
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Fusarium was made by Link in 1809 (Figure 1). In 1940, Snyder and Hansen grouped all the 

species of the genus in nine taxa and reclassified the infrageneric group called elegans into a 

single species F. oxysporum, designating different formae speciales (f. spp.), based on their 

pathogenicity on different plant species (Snyder and Hansen, 1940; Snyder, 1940). To date, 

more than 150 f. spp. have been reported (Michielse and Rep, 2009b). Further subdivisions 

of formae speciales into physiological races are based on their capacity to cause disease on 

different host cultivars (Correll, 1991). The genetic basis of host specificity (formae speciales) 

and cultivar specificity (races) in F. oxysporum is currently the subject of intense studies 

(Takken and Rep, 2010). 

 

Table 1. Overview of biological features of F. oxysporum. 
Taxonomy Predominant 

cell-type 
Sexual 
cycle 

Mating-type 
system 

Spores Pathogenicit
y 

Other 

Phylum: 
Ascomycota 
Class: 
Sordariomyctes 
Order: 
Hypocreales 
Family: 
Nectriaceae 
Genus: 
Fusarium 
Species  
F. oxysporum 

Filamentous 
mycelium, 
microconidia 

Not 
ident. 

MAT1 gene 
identified 
and 
expressed in 
F. 
oxysporum. A 
mixed 
distribution 
of MAT1-1 
and MAT1-2 
alleles in 
Fusarium 
species 
complex 

Microconidia, 
macroconidia 
chlamydospores 

Fusarium wilt 
on plant 
crops,  
Emerging 
cause of 
fusariosis in 
humans 

Fusarium 
species 
complex 
are 
pathogenic 
especially 
to 
agriculture 
plants 

 
 

Due to shortcomings of morphological characters for defining species and subgeneric 

groupings of the genus Fusarium, research focus has shifted to molecular tools for 

identification and determination of evolutionary relationships. These molecular tools include 

ribosomal spacer sequencing, Restriction Fragment Length Polymorphism (RFLP) and 

Random Amplified Polymorphic DNA (RAPD) markers. Interestingly, molecular phylogenetic 

studies revealed substantial genetic diversity among isolates, supporting the current view 

that F. oxysporum represents a species complex. In 1998, a pioneering study established that 

different field isolates of a f. sp. have polyphyletic origins, suggesting that the capacity to 
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infect a given plant host has arisen multiple times during evolution (O'Donnell et al., 1998). 

The genome sequence of the tomato pathogenic isolate F. oxysporum f. sp. lycopersici was 

published in 2010 (Ma et al., 2010). Since then, eleven additional F. oxysporum strains have 

been sequenced. The availability of the complete genome sequences, as well as of molecular 

tools and well-established pathogenicity assays has allowed to address the genetic bases and 

evolutionary origins of pathogenicity and host range in F. oxysporum. 

 

First 
description First 

transformation

Identif ication of  first tomato 
gene conferring resistence to 

F. oxysporum

1958 1989 1998

First GFP-
fusion protein 

and gene 
disruption

2007

Identif ication of  new 
race overcaming the 

tomato plant 
resistence

Assemblies of  
two 

F.oxysporum
strains

20112001

Identif ication of  
lineage specif ic 

regions 

Importance of  MAPK 
Fmk1 in infection 

process

2003

Generation of  
mitotic linkage map

2010

Release of  
Fusarium 

comparative 
genomic website

Horizontal chromosome 
transfer between 

pathogenic and non-
pathogenic species

Invasive growth 
repression by 

ammonium

Genome 
annotation

 

Figure 1. Key milestones in the history of F. oxysporum research. 

 

1.3. Biology of F. oxysporum 

F. oxysporum changes its morphology and color depending on the environmental conditions. 

The culture conditions affect growth rate, shape, size and abundance of conidia as well as 

number of septa and pigmentation (Booth, 1971). In general, aerial mycelium appears first in 

a white color and then turns to a variety of colors, ranging from pink to dark purple, 

depending on the isolate and the environmental conditions. The species produces three 

types of asexual spores: microconidia, macroconidia and chlamydospores (Figure 2) (Agrios, 

1997). 

 

   

Figure 2. Types of Fusarium conidia. (A) Macroconidia. (B) Microconidia. (C) Chlamydospores. 
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Microconidia are single-cell dispersal structures that are abundantly produced under most 

conditions. Macroconidia contain three to five cells and are gradually pointed and curved 

toward the ends and are commonly found on the surface of dead plants killed by the 

pathogen. Chlamydospores are thick-walled cells generally developed through the 

modification of hyphal and conidial cells. Their formation is induced by aging or unfavorable 

environmental conditions such as low temperatures or carbon starvation. Chlamydospores 

represent the principal structure for long-time survival during unfavorable periods in the soil, 

and play an important role as primary inoculum for plant root infection Chlamydospore 

germination is stimulated when carbohydrates are released from decaying plant tissue or 

from roots (Couteaudier and Alabouvette, 1990; Kono et al., 1995; Nelson, 1981b; Schippers, 

1981b; Stevenson and Becker, 1972). The fungus can travel long distances within infected 

plants, soil or by wind in the form of microconidia. In short distances, F. oxysporum 

propagates mainly through water irrigation or contaminated equipment. Although it can 

infect fruit tissue and contaminate seeds, propagation rarely happens via the seed (Agrios, 

1997). 

 

1.4. Overview of the F. oxysporum genome 

The genome sequencing, assembly and annotation of F. oxysporum f. sp. lycopersici was 

performed by the Broad Institute as part of the Fusarium Comparative Sequencing Project 

and can now also be accessed though the EnsemblFungi website (www.fungi.ensembl.org). A 

striking feature of the genome is that 28% corresponds to repetitive sequences, including 

many retroelements and short interspersed elements (SINEs) as well as class II transposable 

elements (TEs) (Table 2).  

Table 2. Overview of the F. oxysporum genome data 
  

Genome size (Mb) 61.36 

Chromosomes 15 

GC content (%) 48.4 

Number of Genes 17708 

Non-coding RNAs (tRNAs) 308 

Introns unknown 
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Avg. gene size/ intergenic region 1,3 kb 

Transposons 
28% of the genome identified as repetitive sequence; 
Retroelements (copia-like and gypsy-like, LINEs (long interspersed 
nuclear elements) and SINEs (short interspersednuclear 
elements). DNA transposons (Tc1-mariner, hAT-like, Mutator-like, 
and MITEs) 

S.cerevisiae homologs Unknown 

Mitochondrial DNA (kb) 34.48 

References  (http://www.broadinstitute.org) 

(Takken and Rep, 2010) 

 
 

Comparison of the F. oxysporum genome with those of F. graminearum and F. verticillioides 

led to the discovery of four supernumerary chromosomes that are enriched for TEs and for 

genes putatively related to host–pathogen interactions (Ma et al., 2010). These so-called 

lineage-specific (LS) regions contain more than 95% of all DNA transposons. Only 20% of the 

predicted genes in the LS regions could be functionally classified on the basis of homology to 

known proteins. Many encode predicted secreted effectors, virulence factors, transcription 

factors and proteins involved in signal transduction but less house keeping proteins. Recent 

data suggest that LS regions of F. oxysporum strains with different host specificities may 

differ considerably in sequence. 

 

1.5. Plant infection cycle and development of vascular wilt by F. oxysporum  

F. oxysporum can survive for long time periods as a saprophyte on plant debris in the soil , 

either as mycelium or conidia, but most commonly as chlamydospores (Agrios, 1997). F. 

oxysporum spores in the soil germinate in response to signals from the plant host and 

differentiate infection hyphae, which adhere to the plant roots and penetrate them directly 

without the need for specialized infection structures (Figure 4). Root penetration appears to 

occur predominantly through natural openings at the intercellular junctions of cortical cells, 

or through wounds (Perez-Nadales and Di Pietro, 2011). Once inside the root, hyphae grow 

inter- and intracellular to invade the cortex and cross the endodermis, until they reach the 

xylem vessels (Figure 3 B). The fungus then uses the xylem as avenue to colonize the host 

(Figure 3 C).  
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Figure 3. Penetration and colonization of tomato roots by F. oxysporum. A. Germinated microconidia 
and penetration hyphae of wild-type strain 4287 attaching to the root surface 24 h after inoculation. 
B. and C. Infection hyphae of wild-type strain 4287 growing in the root cortex, 5 days after inoculation 
(B); and in a root xylem vessel, 7 days after inoculation (C). D. Chlamydospores of F. oxysporum wild-
type strain produced on dying plant tissue. From (Di Pietro et al., 2001).  

 
.  
Vascular wilt is most likely caused by a combination of pathogen activities and plant defense 

responses. The former include accumulation of fungal mycelium in the xylem vessels and 

phytotoxin production, while the latter include production of vascular gels, gums and 

tyloses, and vessel crushing by proliferation of adjacent parenchyma cells (Beckman, 1987a). 

Ultimately, wilt symptoms are caused by severe water stress mainly due to vessel occlusion. 

Disease symptoms include wilting, chlorosis, necrosis, premature leaf loss, browning of the 

vascular system and stunting, which eventually will lead to plant death (Michielse and Rep, 

2009b). Severely infected plants wilt and die, while plants affected to a lesser degree 

become stunted and lose productivity. Small oval-shaped microconida, falcate macroconidia 

and thick-walled chlamydospores (Figure 3 D) are formed on the dead plant tissue and in the 

A B 

C D 
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soil. F. oxysporum can survive in the soil for extended time periods, either as 

chlamydospores or by growing saprophytically on organic compounds until a new cycle of 

infection starts (Agrios, 2005b). 

 

Figure 4. Life cycle of F. oxysporum. (A) Germination in response to host signals and direct 
penetration of the root. (B) Invasion of the root cortex. (C) Colonisation of the xylem vessels. (D) 
Hyphae and conidia spread through the xylem. (E)  Fungal mycelium and plant-produced vascular gels 
plug the xylem vessels. (F) Wilting and death of the plant. (G) Formation of macro-microconidia and 
thick-walled chlamydospores on the dead plant tissue and in the soil (Perez-Nadales et al., submitted). 

 

1.6. Management of Fusarium vascular wilt 

The management of Fusarium wilt is achieved through resistant cultivars or chemical soil 

fumigation. However, the broad-spectrum biocides used to fumigate soil before planting, 

particularly methyl bromide, are environmentally damaging and are now banned in most 
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countries. The most environmentally safe and most cost effective method of control is the 

use of resistant plant cultivars, when available (Fravel 2003). Resistant tomato and melon 

cultivars are highly successful in conferring resistance to certain races of F. oxysporum f.sp. 

lycopersici and F. oxysporum f.sp. melonis, respectively (Joobeur et al., 2004; Ori et al., 1997). 

In cases where there is no resistance against Fusarium wilt such as in banana, the disease can 

only be controlled by preventing the introduction of the pathogen through destruction of 

diseased plants. Under greenhouse and field conditions, studies on biological control of 

Fusariosis have been focused on the application of antagonistic bacteria or nonpathogenic 

strains of F. oxysporum. The mechanisms contributing to the biocontrol capacity of these 

biocontrol agents include competition for nutrients in the soil, affecting the rate of 

chlamydospore germination, competition for infection sites on the root or triggering of plant 

defense reactions and systemic resistance (Khan et al., 2006; Larena et al., 2002; Larkin and 

Fravel, 2002). 

 

1.7. Plant-pathogen interactions 

1.7.1. Virulence mechanisms 

Pathogenic fungi have developed efficient strategies to invade and grow within plant hosts. 

In contrast to bacteria and viruses, multicellular fungi are able to actively penetrate plant 

surfaces. For example, the pea pathogen F. solani f. sp. pisi secretes cutinases for enzymatic 

degradation of the cuticle, the first barrier encountered by aerial plant pathogens (Maiti and 

Kolattukudy, 1979). Penetration of F. oxysporum through the roots does not require 

cutinases but relies on the secretion of cell wall-degrading enzymes such as cellulases and 

pectinases (Di Pietro, 2009). Some phytopathogenic fungi secrete enzymes for detoxification 

of plant antifungal compounds. One such enzyme in F. oxysporum is tomatinase, which 

degrades the plant saponin α-tomatine (Pareja-Jaime et al., 2008; Roldan-Arjona et al., 

1999). F. oxysporum is able to use the degradation product of this hydrolysis to suppress 

induced plant defense responses by interfering with fundamental signal transduction 

processes (Bouarab et al., 2002). 
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1.7.2. Plant defence mechanisms 

Plants have evolved efficient mechanisms to protect themselves against pathogens. Two 

types of plant resistance responses can be distinguished: nonhost and host or race/cultivar 

specific. In both cases, the biochemical processes involved in pathogen resistance are similar 

(Somssich, 1998). Resistance in plants, characterized by the inability of the pathogen to grow 

and spread, often takes the form of a hypersensitive reaction (Agrios, 1997) characterized by 

cell death at the site of infection resulting in confining of the pathogen to necrotic lesions at 

the site of infection (Van Loon, 1997). Tissues surrounding necrotic lesions undergo localized 

acquired resistance (Baker et al., 1997; Fritig et al., 1998; Hammond-Kosack and Jones, 1996) 

which lead to nonspecific resistance throughout the plant, known as systemic acquired 

resistance, thus providing long-term protection against new infections by a broad range of 

pathogens (Fritig et al., 1998; Ryals et al., 1996; Sticher et al., 1997; Van Loon, 1997). The 

metabolic alterations in localized acquired resistance include cell wall reinforcement by 

deposition and crosslinking of polysaccharides, glycoproteins and insoluble phenolics; 

stimulation of secondary metabolic pathways, some of which yield small compounds with 

antibiotic activity (the phytoallexins); defense regulators such as salicylic acid, ethylene and 

lipid-derived metabolites; and accumulation of broad range of defense-related proteins and 

peptides (Fritig et al., 1998; Hahn, 1996). 

 
1.7.3. Plant-pathogen recognition 

Plant-pathogen interaction is a complex process with several stages and levels of recognition 

that determine success or failure of the infection process (Callow, 1987). Pathogen detection 

is the first step for activation of plant defence mechanisms. Plants respond to attacks by 

pathogens at two levels (Jones and Dangl, 2006). First, the plant is able to recognize 

molecules commonly produced by all microbes, called pathogen-associated molecular 

patterns (PAMPS), including polysaccharides and glycoproteins present in fungal cell walls, 

and mounts an innate immunity response. Successful pathogens have evolved mechanisms 

to overcome this first layer of defense, either by evading detection or by suppressing the 

immune response by the means of secreted effectors. In these cases, the plant becomes a 

host for a given pathogen species, establishing a compatible interaction. However, plants 
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have acquired a second level of defense based on the capacity to recognize specific virulence 

factors called effectors, and to mount a hypersensitive response (Jones and Dangl, 2006). 

The gene-for-gene hypothesis established by Flor (Flor, 1947; Flor, 1971) proposed that for 

every avirulence gene (avr) in the pathogen there is a corresponding host resistance gene (R) 

and that the loss or mutation of an avr gene should lead to a loss of resistance mediated by 

the corresponding R gene (Farman et al., 2002). This gene-for-gene model was recently 

shown for F. oxysporum f. sp. lycopersici-tomato interaction. In this f. sp. there are three 

known races, named in order of discovery race 1, 2 and 3 (Table 3). These are defined by 

their capacity to produce vascular wilt on tomato cultivars carrying different resistance 

genes. Genes I-1, I-2 and I-3 confer resistance against race 1, 2 and 3, respectively (Beckman, 

1987a). The tomato I-2 resistance gene as well as several avirulence genes from F. 

oxysporum have been cloned, providing molecular support for the gene-for-gene hypothesis 

in this pathogen-host interaction (Takken and Rep, 2010). One of these avirulence proteins is 

Six1 which is secreted during colonisation of the xylem and mediates recognition by 

resistance gene I-3. Strains defective in six1 are thus virulent on I-3 plants, while those 

expressing the gene are not. However, loss of Six1 comes at a cost for the pathogen, causing 

a global reduction of virulence (Rep et al., 2004). 

 

Table 3. Races and resistance genes described in the F. oxysporum f. sp. lycopersici – tomato 
interaction. From (Takken and Rep, 2010). 

Race Resistance genes in tomato cultivars 

 I-1 I-2 I-3 
Race 1 Avirulent Virulent /Avirulent Virulent /Avirulent 
Race 2 Virulent Avirulent Virulent /Avirulent 
Race 3 Virulent Virulent Avirulent 

 
 

1.7.4. Fungal genes required for pathogenicity on plants  

The number of pathogenic isolates resistant to fungicides is increasing and causes a need for 

the development of new active principles for agriculture and human health. However, a 

deeper understanding of the molecular mode of infection is required to develop novel 

strategies for disease control. The information provided by fungal genomes sequencing is 
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aiding the identification of new genes and proteins that could be useful for the design of 

targeted drugs (Isaacson, 2002). 

In F. oxysporum and in other fungal pathogens, two main strategies have been used to 

identify pathogenicity genes. The first is reverse genetics, involving targeted deletion of 

candidate genes whose products may be involved in known biological functions relevant for 

infection (Pietro et al., 2003). This strategy has been facilitated recently through the 

sequencing of the genome of F. oxysporum (Ma et al., 2010). A second strategy known as 

forward genetics involves generation of pathogenicity mutants by random insertional 

mutagenesis followed by identification of the affected genes in these mutants (Madrid et al., 

2003). Methods used for random insertional mutagenesis include the use of transposable 

elements (Li Destri Nicosia et al., 2001; Lopez-Berges et al., 2009), Agrobacterium 

tumefaciens (ATMT)-mediated transformation (de Groot et al., 1998; Michielse et al., 2009) 

and restriction enzyme mediated integration (REMI) mutagenesis (Imazaki et al., 2007; 

Namiki et al., 2001). Genes that have a significant effect on pathogenicity are often 

regulatory genes such as those encoding signalling components and transcription factors 

(Table 4). 

 
Table 4. F. oxysporum genes with an effect in pathogenicity. Adapted from (Michielse and Rep, 
2009b). 
Product/function Effect of gene inactivation/deletion Reference 

Transporter of several 

compounds 

Reduced virulence on tomato plants (Lopez-Berges et al., 

2012) 

GATA transcription factor, 

activator of nitrogen 

catabolism 

Reduced virulence on tomato plants (Lopez-Berges et al., 

2010) 

Argininosuccinate 

lyase 

Strongly reduced virulence, arginine 

auxotrophy 

(Namiki et al., 2001) 

Beauvericin-enniatin synthase Reduced virulence on tomato plants (Lopez-Berges et al., 

2012) 

Class II chitin 

synthase 

Reduced virulence (Martin-Urdiroz  

et al., 2008) 

Chaperone-like 

protein 

Reduced virulence (Martin-Urdiroz et al., 2008) 

Class V chitin 

synthase 

Strongly reduced virulence, 

hypersensitive to α-tomatine and H2O2 

(Madrid et al., 2003) 

Class VII chitin 

synthase 

Non-pathogenic, hypersensitive to Congo 

red and Calcofluor white 

(Martin-Urdiroz et al., 2008) 

Carboxy- cis, cismuconate Non-pathogenic, reduced growth on (Michielse et al., 2012) 
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cyclase phenolic compounds  

Chloride channel Reduced virulence, deficient in 

laccase activity, increased 

sensitivity to oxidative stress 

(Canero and Roncero, 2008) 

Transcription factor Non-pathogenic (Pareja-Jaime et al., 

unpublished results) 

Transcription factor Reduced virulence (Michielse et al., 2009a) 

Cell wall protein Reduced virulence (Michielse et al., 2009a) 

F-box protein Reduced virulence, impaired in root 

attachment and invasive growth 

(De Miguel & Hera, 

unpublished results) 

G-protein α-subunit Markedly reduced virulence, 

decreased conidiation 

(Jain et al., 2002) 

G-protein α-subunit Non-pathogenic, increased 

resistance to heat 

(Jain et al., 2005) 

G-protein β-subunit Markedly reduced virulence, 

decreased conidiation 

(Delgado-Jarana et al., 

2005 ; Jain et al., 2003) 
Histidin kinase Reduced virulence on tomato plants Rispail and Di Pietro, 2010) 
Mitogen-activated 

protein kinase 

Non-pathogenic, impaired in root 
attachment and invasive growth 

(Di Pietro et al., 2001) 

Transcription factor Markedly reduced virulence, 
reduced ability to use secondary 

nitrogen sources 

(Divon et al., 2006) 

Mitochondrial carrier Strongly reduced virulence, 

impaired in plant colonization 
(Inoue et al., 2002) 

Transcription factor Non-pathogenic, impaired in 
invasive growth, not in root 
attachment 

(Imazaki et al., 2007) 

Hypothetical protein Reduced virulence (Michielse et al., 2009a) 
Similar to chloride 
conductance 

regulatory protein 

Markedly reduced virulence (Kawabe et al., 2004) 

F-box protein Non-pathogenic, impaired in root 
colonization and penetration, impaired 
growth on various carbon sources 

(Duyvesteijn et al., 2005; 
Jonkers et al., 2009) 

Transcription factor Reduced virulence (RNAi silencing) (Ramos et al.,2007) 

 
β-1,3- 

Glucanosyltransferase 

Markedly reduced virulence, 
reduced growth on solid medium 

(Caracuel et al., 2005) 

bZIP transcription factor,  
regulator of iron homeostasis 

Reduced virulence on tomato plants and non 
virulence on immunodepressed mice 

(Lopez-Berges et al., 
2012) 

Regulator of secondary 
metabolites 

Reduced virulence on tomato plants (Lopez-Berges et al., 
2009) 

bZIP transcription factor, 
repressor of nitrogen 
katabolism 

Reduced virulence on plants (Lopez-Berges et al., 
2009) 

Transmembrane 
mucin-like protein 

Markedly reduced virulence, 
reduced growth on solid media, 
increased sensitivity to cell wall 
stress. 

(Pérez-Nadales and Di 

Pietro,2011) 

Transcription factor Increased virulence and 
transcription of acid-expressed 
genes 

(Caracuel et al., 2003) 
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Peroxin Reduced virulence, impaired in 
growth on fatty acids 

(Michielse et al., 2009a) 

Peroxin Reduced virulence, impaired in 
growth on fatty acids 

(Michielse et al., 2009a) 

Monomeric G protein Markedly reduced virulence, 
reduced growth on solid media 

(Martinez-Rocha et al., 

2008) 
Transcription factor Non-pathogenic, reduced 

conidiation 
(Michielse et al., 2009b) 

Tetraspan 
transmembrane 
protein 

Markedly reduced virulence, 
reduced growth on solid media, 
increased sensitivity to cell wall 
stress. 

(Pérez-Nadales PhD Thesis, 
2010) 

Small secreted 
protein 

Reduced virulence, effect more 
pronounced on 4- to 5-week-old 
plants 

(Rep et al., 2005) 

Protein kinase 
involved in carbon 
catabolite repression 

Markedly reduced virulence, 
reduced growth on complex 
carbon sources 

(Ospina-Giraldo et al., 

2003) 

Transcription factor Markedly reduced virulence, 
impaired in invasive growth 

(Asuncion Garcia-Sanchez et 
al., 2009; Rispail and Di 
Pietro, 2009) 

Regulator of G protein Reduced virulence on tomato plants Michielse et al., 2009 
Tomatinase enzyme Reduced virulence, reduced 

tomatinase activity, increased 
sensitivity to α-tomatine 

(Pareja-Jaime et al., 2008) 

Regulatory protein Reduced virulence, altered 
development and reduced 
secondary metabolism 

(López-Berges et al., 2013) 

Regulatory protein Reduced virulence, altered 
development and reduced 
secondary metabolism 

(Lopez-Berges et al., 

2009) 

 

1.8. The molecular and methodological toolbox for F. oxysporum 

F. oxysporum can be routinely transformed via enzymatic protoplastating (Di Pietro and 

Roncero, 1998). Gene replacement is performed through homologous recombination with 

exogenous DNA constructs generated by fusion PCR methodology (Szewczyk et al., 2006), 

typically using Phleomycin or Hygromycin B resistance cassettes, flanked by 1000 bp 

homology regions to the target site of insertion. To date, these methods have allowed the 

generation of F. oxysporum strains carrying reporter genes (GFP; ChFP), regulatable 

promoters and numerous gene deletion mutants. Forward genetic insertional mutagenesis 

screens with T-DNA or transposon tagging have also been applied in F. oxysporum, leading to 

the discovery of novel virulence factors (Lopez-Berges et al., 2009; Michielse et al., 2009). 
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Recently, a custom-made F. oxysporum microarray chip has been made by Agilent 

Technologies, allowing transcriptional profiling studies (Lopez-Berges et al., 2012). A great 

variety of laboratory assays have been developed to allow the study of invasive growth 

functions and plant pathogenicity in this species. 

 
Table 5. Overview of molecular and methodological tools available in F. oxysporum. 

  

Transformation  Protoplast & ATMT (Agrobacterium-mediated 
transformation) 

Minimal homology for gene deletion > 1000 bp  
Episomal elements self-replicative ARS  (active replicating system) plasmid 

pFNit-Lam-Tlam, linear 
Promoters 
[c] constitutive 
[r] regulatable 

[r] Thiamine repressed sti35 promoter  
[c] gpdA promoter 

Commonly used selection markers Hygromycin B, Phleomycin  
Reporter genes GFP; ChFP 
Fluorescent protein labels GFP; ChFP 
Cytochemical dyes  Calcofluor White, DAPI, FITC 
Arrays Custom made DNA microarray, Affymetrix. 
Pathogenicity models Plant models:Tomato plants, tomato fruits, apple 

fruits; Mammalian model: immunodepressed mice;. 
Invertebrate model: 
Galleria mellonella 

Strains F. oxysporum f. sp. lycopersici wild type 4287 (FGSC 
9935) 

 

The tomato root infection assay is performed by immersing the roots of two week-old 

seedlings in a microconidial suspension in distilled water, followed by planting in vermiculite 

and maintenance in a growth chamber at 28°C (Di Pietro and Roncero, 1998) (Figure 5A). 

More recently, severity of vascular wilt is plotted as percentage survival across time, by 

recording mortality each day for 30 to 45 days. This method allows statistical analysis of the 

samples: survival rates are estimated by the Kaplan-Meier method and compared among 

groups using the log-rank test (Lopez-Berges et al., 2012; Lopez-Berges et al., 2013). In planta 

quantification of fungal biomass is performed by extracting total genomic DNA from infected 

tomato roots and/or stems at 4, 7 or 10 days post-infection, followed by quantitative real-

time PCR analysis (Pareja-Jaime et al., 2010) of the Fusarium-specific six1 gene, and 

normalized to the tomato gadph gene. Quantitative evaluation of the rate of initial root 

penetration during the initial 12 to 24 h after inoculation is performed using scanning 
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electron microscopy (Perez-Nadales and Di Pietro, 2011). Finally, the ability of the fungal 

germlings to attach to the tomato roots is documented by incubating the tomato roots with 

fungal spores for prolongued times (24 hours) in potato dextrose broth diluted 1:50 with 

water and supplemented with 20 mM glutamic acid (Di Pietro et al., 2001; Prados Rosales 

and Di Pietro, 2008).  

 

 

Figure 5. F. oxysporum in vivo virulence assays. (A) Tomato plant root assay. Two week old tomato 
seedlings (cultivar Moneymaker) were inoculated with F. oxysporum strains by immersing the roots in 
a microconidial suspension for 30 min, planted in vermiculite and incubated in a growth chamber at 
28 °C. Evaluation is performed using a disease index for Fusarium vascular wilt going from 1= healthy 
plant to 5= dead plant. (1-5) (B) Larvae of the greater wax moth (Galleria mellonella) used to 
investigate virulence of F. oxysporum. Tipically, the infection is performed via micro-injection in the 
posterior pseudopod.progression of the fungal infection is associated with melanization of the larvae. 
(C, D) Invasive growth assay on living fruit tissue. Apple fruits (C) or tomato fruits (D) were inoculated 
with F. oxysporum strains and incubated in a humid chamber at 28°C for 3 days.  
 

 

Rapid invasive growth assays on tomato or apple fruit tissue (Figure 5E-F) are performed by 

injecting a microconidial suspension into tomato fruits or apple slices, and evaluating 

invasive growth and maceration of the surrounding fruit tissue  (Di Pietro et al., 2001). In the 

wild type strain, a dense mycelial growth is visible on the fruit surface 3 to 4 days post-

infection (Di Pietro et al., 2001). The in vitro cellophane penetration assay has been shown to 

A 

B 

C D 
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correlate significantly with in vivo pathogenicity on tomato plants. For this assay, a fungal 

colony is allowed to grow on a cellophane membrane placed on a solid agar medium plate. 

The cellophane with the fungal colony is removed at day 2-4 after inoculation and the ability 

of the fungus to reach the underlying medium is evaluated. (Prados Rosales and Di Pietro, 

2008). A mouse infection model has been established for the same F. oxysporum f. sp. 

lycopersici strain, making Fol 4287 the first fungal isolate to serve as a dual model for the 

study of fungal pathogenesis in plants and mammals (Ortoneda et al., 2004). Infection assays 

are performed with immunodepressed mice by injecting conidia into a lateral vein of the tail. 

Mortality of the animals is recorded each day for 15 d and survival rates are estimated as in 

the plant root infection assay. Fungal tissue burden in kidneys and lungs at 7 days post-

infection is also evaluated using standard plating methods (Lopez-Berges et al., 2012; Lopez-

Berges et al., 2013; Ortoneda et al., 2004). More recently, the greather wax moth Galleria 

mellonella has been used as a novel non-vertebrate infection model for studying virulence 

mechanisms of F. oxysporum on animal hosts (Navarro-Velasco et al., 2011) The model 

provides valuable data without the need to use mammals for in vivo testing. F. oxysporum is 

able to proliferate inside the hemocoel of G. mellonella larvae and to kill and colonize the 

insects. Most genes required for full virulence on immunodepressed mice also play a 

significant role in G. mellonella infection (Navarro-Velasco et al., 2011). 

 

1.9. Current research topics in Fusarium 

1.9.1. Lineage specific chromosomes 

Sequence characteristics of the genes present on the LS genome regions indicate a distinct 

evolutionary origin from the core genome, suggesting that they could have been acquired 

through horizontal transfer from another Fusarium species. This idea was experimentally 

supported by the finding that co-incubation of two strains of F. oxysporum can result in 

transfer of small LS chromosomes from a tomato pathogenic to a non-pathogenic strain, 

converting the latter in a pathogen. This led to the hypothesis that horizontal chromosome 
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transfer in F. oxysporum can generate new pathogenic lineages (Ma et al., 2010). The genetic 

and cellular mechanisms underlying these processes are currently subject to intensive study. 

 

1.9.2. Secreted effectors and gene-for-gene system  

In 2008, Houterman et al., reported the identification of a fungal avirulence factor, Avr1  that 

suppresses disease resistance conferred by two resistance genes I-2 and I-3 but that triggers 

disease resistance when the host plant, tomato, carries a matching R gene (I or I-1) 

(Houterman et al., 2008). Host specificity in different races and cultivars of F. oxysporum f. sp. 

lycopersici is determined by a set of secreted effector genes called “Secreted In the Xylem” 

(six) genes. Interestingly, all six genes are located on a single LS chromosome (chromosome 

14), also called the pathogenicity chromosome and are associated with chromosomal 

subregions enriched for DNA transposons (Ma et al., 2010). However, they are not 

functionally independent of the core genome, since their expression in planta requires the 

transcription factor Sge1, which is located on a core chromosome (Michielse and Rep, 2009a). 

 

1.9.3. F. oxysporum as a model for trans-kingdom pathogenesis 

Besides causing disease on plants, F. oxysporum is also an opportunistic pathogen of 

humans (Nucci and Anaissie, 2007). F. oxysporum causes invasive infections in 

immunosuppressed individuals, being the second most frequent species of the genus after F. 

solani, (Guarro and Gene, 1995; Nucci and Anaissie, 2007). Previous work established that a 

tomato pathogenic isolate of F. oxysporum f.sp. lycopersici can cause disseminated infection 

in immunocompromised mice (Ortoneda et al., 2004) and was the first fungal isolate shown 

to cause disease both in tomato (Solanum lycopersicum) plants and in immunodepressed 

mice. The ability to cause disease in both plants and mammals makes F. oxysporum a unique 

multihost pathogen for studying fungal infection across different host kingdoms (Ortoneda 

et al., 2004). Since then, a number of genes have been identified that are either required for 

pathogenicity on tomato but not on mice (Table x), including the Fusarium Fmk1 MAPK, the 

small G protein Rho1 and the glucanosyltransferase Gas1 (Caracuel et al., 2005; Di Pietro et 

al., 2001; Martinez-Rocha et al., 2008) or vice versa, such as the pH response factor PacC, 
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the light response factor White Collar-1 (Wc-1), or the secreted Fusarium Pathogenesis 

Related 1 (PR-1)–like protein Fpr1 (Caracuel et al., 2003; Prados-Rosales et al., 2012; Ruiz-

Roldan et al., 2008). Collectively, these results suggested that fungal pathogenicity on plants 

and animals may have fundamentally distinct evolutionary origins. However, most of the F. 

oxysporum genes required for infection of mice have orthologues associated with virulence 

in the two well-established animal model pathogens C. albicans and C. neoformans (Csank 

et al., 1998; Davidson et al., 2003; Davis et al., 2000) thus confirming that the opportunistic 

pathogen F. oxysporum behaves as a “true” human pathogen. Recently HapX, a transcription 

factor that governs iron homeostasis, was characterized as the first virulence determinant 

required for both plant and animal infection in the same fungal strain (Lopez-Berges et al., 

2012). ΔhapX mutants are significantly attenuated in their capacity to cause vascular wilt 

symptoms and mortality in tomato plants and were unable to efficiently colonize and kill 

immunodepressed mice (Lopez-Berges et al., 2012), confirming previous reports in the 

human pathogens C. neoformans, A. fumigatus, and C. albicans (Hsu et al., 2011; Jung et al., 

2010; Schrettl et al., 2010). Similarly, the velvet protein complex, a conserved regulator of 

fungal development and secondary metabolism, contributes to infection of plants and 

mammals, in part by promoting biosynthesis of the depsipeptide mycotoxin beauvericin 

(Lopez-Berges et al., 2013).  

Table 6. F. oxysporum genes studied both in plant and animal models. 
Mutant Phenotype in 

Plant 
Phenotype in 

Mouse 
Reference 

Δfgb1 Avirulent Virulent (Delgado-Jarana et al., 2005; Prados-Rosales et al., 2006) 
Δfmk1 Avirulent Virulent (Di Pietro et al., 2001; Ortoneda et al., 2004) 

Δfmk1/Δfgb1 Avirulent Avirulent (Delgado-Jarana et al., 2005; Prados-Rosales et al., 2006) 
ΔchsV Avirulent Virulent (Madrid et al., 2003; Ortoneda et al., 2004) 
ΔpacC Virulent Avirulent (Caracuel et al., 2003; Ortoneda et al., 2004) 
Δfpr1 Virulent Avirulent (Prados-Rosales et al., 2012) 
Δrho1 Avirulent Virulent (Martinez-Rocha et al., 2008) 
Δwc1 Virulent Avirulent (Ruíz-Roldán et al., 2008) 

ΔhapX Avirulent Avirulent (Lopez-Berges et al., 2013) 
ΔlaeA Avirulent Avirulent (Lopez-Berges et al., 2012) 
ΔveA Avirulent Avirulent (Lopez-Berges et al., 2012) 
Δabc3 Avirulent Virulent (Lopez-Berges et al., 2012) 
Δbeas Avirulent Avirulent (Lopez-Berges et al., 2012) 
Δgas1 Avirulent Virulent (Caracuel et al., 2005) 
ΔureG Reduced Reduced This work 
Δcar1 Reduced Reduced This work 
Δure1 Reduced Virulent This work 
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1.9.4. The role of MAPK signaling cascades in virulence 

The F. oxysporum MAPK (mitogen-activated protein kinase) Fmk1, an orthologue of the yeast 

Fus3/Kss1 MAPKs, was found to be essential for virulence on tomato plants (Di Pietro et al., 

2001). Infection-related processes such as invasive growth, vegetative hyphal fusion and root 

adhesion (Di Pietro et al., 2001; Prados Rosales and Di Pietro, 2008) absolutely require Fmk1 

and are negatively controlled by the nitrogen source ammonium (Lopez-Berges et al., 2010). 

Because this MAPK is widely conserved among fungi and determines pathogenicity in all 

plant pathogens studied so far (Rispail et al., 2009), a major effort has been directed towards 

elucidating the upstream and downstream components of this signalling cascade. The 

homeodomain transcription factor Ste12 was shown to function downstream of Fmk1 and to 

be required for invasive growth, the most critical of the Fmk1-regulated functions for plant 

infection (Rispail and Di Pietro, 2009). The mucin-like transmembrane protein Msb2 was 

recently characterized as an upstream component of the cascade (Perez-Nadales and Di 

Pietro, 2011). 

In addition to the Fmk1 pathway, orthologues of the S. cerevisiae high osmolarity Hog1 and 

cell integrity Mpk1 MAPK signalling cascades have also been identified in F. oxysporum and 

are currently under investigation. The Rho-type GTPase Rho1 functions upstream of Mpk1 

and was found to be essential for morphogenesis and pathogenicity (Martinez-Rocha et al., 

2008). Future studies will address how signalling through different MAPK cascades is 

orchestrated to control infectious growth in F. oxysporum. From the MPK1 pathway which is 

involved in cell wall integrity of S. cerevisiae, to date only the Rho-type GTPase Rho1 has 

been characterized in F. oxysporum. Rho-type GTPases regulate polarized cell growth 

through the reorganization of the actin cytoskeleton as well as through signalling pathways 

that control the expression of cell wall biosynthesis genes (Levin, 2005). In 2008 the rho1 

mutant of F. oxysporum revealed non-pathogenicity on tomato plants and a higher 

resistance to cell-wall degrading enzymes, probably due to higher chitin content (Martinez-

Rocha et al., 2008).  
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2. Material and Methods 

 

2.1. Material 

2.1.1. Strains and Plasmids 

F. oxysporum and S. cerevisiae strains, plasmids, plant cultivars and animal species used in 

this work are listed in the tables below. 

 
Table 1. Fusarium oxysporum f. sp. lycopersici strains used in this study. 

Strain Background Genotype             Reference 

4287 (FGSC 9935) wild type  J. Tello, University of Almeria, Spain 

Δfmk1 4287 fmk1::PHLEO (Di Pitro et al., 2001) 

Δmsb2 4287 msb2::HYG (Perez-Nadales and Di Pietro, 2011) 

ΔmeaB 4287 meaB::HYG (Lopez-Berges et al., 2010) 

ΔmeaB+ meaB ΔmeaB ΔmeaB:: HYG; meaB; 
PHLEO 

(Lopez-Berges et al., 2010) 

ΔmebB 4287 mepB::HYG B (Segorbe-Luke, unpublished) 

ΔmepB+ mepB ΔmebB ΔmebB:: HYG;mepB; PHLEO (Segorbe-Luke, unpublished) 

ΔareA 4287 areA::HYG (Lopez-Berges et al., 2010) 

Δsnf1 4287 snf1::HYG  

Δhxk1 4287 hxk1::HYG  

ΔFOXG_04361 4287 FOXG_04361::HYG this study 

ΔFOXG_08976 4287 FOXG_08976::HYG this study 

ΔFOXG_15235 4287 FOXG_15235::HYG this study 

ΔFOXG_00769 4287 FOXG_00769::HYG this study 

ΔFOXG_00769 

+FOXG_00769 

ΔFOXG_00769 ΔFOXG_00769::HYG; 

FOXG_00769; PHLEO 

this study 

ΔFOXG_09776 4287 FOXG_09776::HYG this study 

ΔFOXG_ 08666 4287 FOXG_ 08666::HYG this study 

ΔFOXG_10398 4287 FOXG_10398::HYG                      this study 

ΔFOXG_12838 4287 FOXG_12838::HYG this study 

ΔFOXG_13832 
(ΔureG) 

4287 ureG::HYG this study 

ΔureG+ ureG ΔureG ΔureG::HYG; ureG; 
PHLEO(1) 

this study 

ΔFOXG_01071 (Δure1) 4287 ure1::HYG this study 

ΔFOXG_12915 (Δcar1) 4287 car1::HYG this study 

(1) Hygromycine cassette replaced with phleomycin cassette 
 
Table 2. Sacchamomyces cerevisiae strains used in this study. 

Strain                       Genotype                            Reference 

Y2HGold Yeast Strain                        MATa                    Clontech, Cat. 630498 

Y187 Yeast Strain                        MATα                    Clontech, Cat. 630457 
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Table 3. Plant and fruit cultivars and animal species used in this study 

Species  Cultivar/Species                   Origin 

Tomat (Lycopersicon esculentum)  Seeds: Monika /Money maker  

Apple (Malus pumila)  Golden Delicious  

Geather wax moth (Galleria mellonella)  Animal center, s.c.p., 
Valencia (Spain) 

Mice (Mus musculus) BALB/c;  
Oncins France 

Harlan, United Kingdom 
Charles River, Criffa S.A 

 
Table 4. Plasmids used in this study 

Plasmid Origin/Features Reference 

pGEM®-T   Derived from plasmid pGEM®-5Zf(+), linearized with EcoRV and 
with a T added in both 3’ ends 

Promega 

pAN7-1 Derived from pUC18; A.nidulans gpdA promoter; 
phosphotransferase hygromicin B gene from Streptomyces spp. 
(hph); A. nidulans trpC terminator 

(Punt et al., 
1987) 

pAN8-1 Derived from pUC18; A.nidulans gpdA promoter; phleomycin 
resistance gene; A. nidulans trpC terminator 

(Mattern et 
al., 1988) 

msb2-pGemT 
  

msb2 locus (FOXG_09254.2, 5.9 Kb) from F. oxysporum 4287 strain, 
including endogenous promoter and terminator sequences, cloned 
into pGemT.   

Perez-Nadales 
and Di Pietro ., 
2011 

(1 )pGBKT-7  (DNA-
BD Vector)      

Express any protein as a GAL4 DNA-BD fusion, Kan
r  

for selection in 
E. coli and the TRP1 nutritional marker for selection in yeast  

Clontech 
Cat. No. 630489 

(2) pGADT7 -Rec 
( DNA-AD Vector) Amp

 r 
for selection in E. coli and LEU2 nutritional 

Express any protein as a GAL4 DNA-AD fusion, Amp
r
 for selection 

in E. coli and the LEU nutritional marker for selection in yeast   
Clontech,        
Cat. No. 630442 

p-GADT7-Lam  Express lamin C as GAL4 DNA-BD fusion (contol vector) Clontech 

pGBKT7-53   Express murine p53 as a GAL4 DNA-BD fusion (contol vector) Clontech 

pGADT7-T                  Gal4 AD fused with SV40 large T-antigen(contol vector) Clontech 

 
(1) Yeast Two-Hybrid DNA-BD plasmid pGBKT7 were used in this study for the 

expression of various proteins as a GAL4 DNA-BD fusion protein and was named 
according the name of the gene; e.g.: pGBKT7 gene name-BD . 

(2)  Yeast Two-Hybrid DNA-AD plasmid pGADT7-Rec were used in this study for the 
expression of various proteins as a GAL4 DNA-AD fusion protein including the cDNA 
llibrary of F. oxysporum. For single proteins this plasmid was named according the 
name of the gene; e.g.: pGADT7 gene name-AD. 

 
 

2.1.2. Synthetic oligonucleotides 

Oligonucleotides used in amplification and sequencing reactions were designed with the 

software Oligo (version 6.65; Molecular Biology Insights, Inc. USA), analyzing internal stability, 

duplex and hairpin formation and different physicochemical parameters (Tm, %G+C, %A+T) 

in each case. Oligonucleotides were synthesized by the company Eurofins Operon. 
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Oligonucleotides used in this work are listed in table 5. Underlined nucleotides do not belong 

to the original sequence and were introduced to generate M13 (Hyg/Phleo fusion –PCR) or 

Yeast plasmid (pGBKT7 and pGADT7) complementary sequences. 

 
Table 5. Oligonucleotides used in this study. Added restriction sites not present in the orginal DNA 
sequence are indicated in italics. Underlined nucleotides indicate plasmid homologue vector 
sequences used for homolog recombination during S. cerevisiae transformation or sequences 
complementary to M13 primers. All primers are designed with an annealing temperature of 64°C. 
Only exceptions are indicated. 

Gene/Name                                                            Sequence (5`- 3`) 

Msb2-CT_for ACACCACTTGATCTTTCATCATGCGACGATACAAGCGCAAGAAG 

Msb2-CT_rev AAAGGGGGATCACGAGCATCA 

Msb2-CT primer containing enzyme restriction sides to clone into the bait plasmid pGBKT7 

Msb2-F2 (EcoRI)              GAATTCCGACGATACAAGCGCAAGAAG  

Msb2-R1 (PstI)                 CTGCAGGTTCCATCCAAGAGAGTTCTC 

M13for CGCCAGGGTTTTCCCAGTCACGAC 

M13rev AGCGGATAACAATTTCACACAGGA 

PHL Agttgaccagtgccgttccg     

LEO Gccacgaagtgcacgcagtt 

Gene-knockout primer (corresponding gene names in chapter 3) 

UreG_Prom_for CCGGCTACCATCGACTCTCT 

UreG Prom_rev GGGTTTCTGTCTCCACCCACagcggataacaatttcacacagga 

UreG Term_for gtgactgggaaaaccctggcgTCGCCATCAGCTTGCACTGC 

UreGTerm_rev     GAGCCAGCTCCACCAAGTCA 

Car1_prom_F CCTACGTCAGTCCTTCATTCC 

Car1_prom_R GTCGTGACTGGGAAAACCCTGGCGCCCCATTTGTATTCGGAGGTC 

Car1_term_F TCCTGTGTGAAATTGTTATCCGCTGGCACATTCGGTACTGAGACA 

Car1_term_R CCAGTTAGAGCCATCGCAAAG 

4361 prom F    TCGAGGCGGAGGTTCGTACT 

4361 prom R    GTCGTGACTGGGAAAACCCTGGCGCGTGGAAGAAGCGGTGATGG   

4361 term F     TCCTGTGTGAAATTGTTATCCGCTTGTGGACTAGGGAGGGCCAA 

4361 term R    AACAGGCACCAAGGTCGTCG 

14173 prom F     GCTTCGTTACAGCCACCCAG 

14173 prom R     GTCGTGACTGGGAAAACCCTGGCGCCTATGAACTGCGCGACTTTG 

14173 term F      TCCTGTGTGAAATTGTTATCCGCTCATGCCACGAGCACGAGCTT 

14173 term R    CGGCATCCTCCTGATGAAGC 

08666 prom F    CCCCTATTGCGATGTCTTTGG 

08666 prom R    GTCGTGACTGGGAAAACCCTGGCGAAACGAATGGACAGTTGAGGGT 
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08666 term F     TCCTGTGTGAAATTGTTATCCGCTCCCTCAACCCATAGAAGCATC 

08666 term R     GCTGGTCGAGACCTCTCATC 

08976 prom F    CGCACGCACTGGGATGATTG 

08976 prom R    GTCGTGACTGGGAAAACCCTGGCGAGAGACTATCTCGCCGCACG 

08976 term F    TCCTGTGTGAAATTGTTATCCGCTGCGGTTGGGATTGTTGGGAG 

08976 term R    CGGCACAGTCGAAGAAGACG 

09776 prom F    GGGGACAGCCATACAAGCTC 

09776 prom R    GTCGTGACTGGGAAAACCCTGGCGTGACAAGAGGGTGATGTAGCG 

09776 term F     TCCTGTGTGAAATTGTTATCCGCTCAATCAAGATCTCAGGTGGCC 

09776 term R    GAATCTGATTGGCTGTTGGCC 

10398 prom F      CAGCGGACTTGGCAAGATTGA 

10398 prom R      GTCGTGACTGGGAAAACCCTGGCGTTCGGTGTTTTCACCGCACGA 

10398 term F       TCCTGTGTGAAATTGTTATCCGCTCTCGTCGAGTCGATATATGCC 

10398 term R      TGGTGTGGGTATTGTTGTGGC 

12838 prom F      TGGTGCCGTCGTCGTTCATG 

12838 prom R      GTCGTGACTGGGAAAACCCTGGCGGCTAGTAGGAGAGCGAAGTGA 

12838 term F       TCCTGTGTGAAATTGTTATCCGCTCAAAAGCTCAGGTTCTGACTAC 

12838 term R      AGCCCATCACGTTTTCTACTCT 

00231 prom F     TCAGCCATCTGAACAGAGTCAT 

00231 prom R     GTCGTGACTGGGAAAACCCTGGCGTGACGATAGAGCTGAGGTTAAG 

00231 term F     TCCTGTGTGAAATTGTTATCCGCTGTCACGCTCCACGAATTACAAA 

00231 term R    ATACAGTATCTTGCAGAGCACG 

15235 prom F     ACATGGTGCCGTAGATGATGG 

15235 prom R    GTCGTGACTGGGAAAACCCTGGCGTTCTTGTCGTGTAAGACGCCG 

15235 term F     TCCTGTGTGAAATTGTTATCCGCTGGCTACCCTAATCTATTTCTCTT 

15235 term R     CTGCCAAACACCATTGCAGCA 

Verification primer (ver) for diagnostic PCR of gene knockout mutants 

ureG_2.5_ pF  AGCAAGAGACGGAGAACGCAA 

Car1_prom_ver_F CCCATCCGAAACAATCGAGAG 

Car1_term_ver_R GCCATGCTTCGTAACTTCGTC 

Ure1_co_P_F AGTTCGCCCTTGTCACCTACA 

Ure1_co_T_R  ATGAACCTGGTCCTTCCTACG 

13832 prom_F_ver ATGGTGCAGGTGTTGCTGTTAA 

UreG_ver_rev   TGACCGTTGACCCTGAAGAG 

4361 prom F ver             GTAAACGGCGGGAAGTTTTTGA 

4361 term R ver ACAAGCTATCGAATACGGTACG 

14173 prom F ver TGGTATGCTGGATGGTGAAGG 
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14173 term R ver GAGGACATATCAAGTCTGACTG 

08666 prom F ver CAGCAGAACACAATGATGGTAAA 

08666 term R ver AAGCTACTACGGTGGACTTCTT 

08976 prom F ver TTCCGAGATGCCAAAGAATGGT 

08976 term R ver CAGCAGTAGAGGAACGTCAGT 

09776 prom F ver CATGAGAGAATCAAAGCGACCA 

09776 term R ver TAGATAGTGGCGAAGTGTTTGC 

10398 prom F ver ATGTCTATCACCGCTAACGGAA 

10398 term R ver GGCCATTTGGAACGTAGCCAT 

12838 prom F ver CCCTAACCAGCATGTAGTCAAA 

12838 termR ver TTACTGCACTATGACTACAGGC 

00231 prom F ver TGTCTTTCTGCGGGGCATCC 

00231 term R ver GGCAGTGTATCATGACTTCAAC 

15235 prom F ver ACCAATAACAATACCAGTGAAGG 

15235 term R ver CCGTTTGTTTTTGCATGTAGATG 

Real-time primer (InEx) 

Actin primer  act-2 GAGGGACCGCTCTCGTCGT 

Actin primer act-q6 GGAGATCCAGACTGCCGCTCAG 

GallFor AGATCGCTTTCATAGTCGCAATA 

Gallrev CTCTCTCCAACTTCTACCTACT 

Six1-1 ATAGCATGGTACTCCTTGGCG 

Six1-2 CCTGATGGTGACGGTTACGAA 

09795-for (fpr1) CCCAAGAAGAACCCTGCTCC 

09795-rev (fpr1) GAGTAGGGGTTGGAGCCGC 

10398 inEx_for  AGTCGTGACATGGACTCCTGT 

10398 inEx_rev  GGAGCAGGTCTTTTCGATCTC 

Primer for genes involved in urea cycle  (Real-time; InEx) 

13832 inEx_for  CCACTCGCATGAGATCCTTGA 

13832 inEx_rev  GGGTGAAGATGTCGTTCGTCA 

urease2: Ure2_InEx_F GGCCCATGGAAAGAAGCTCAA 

urease2: Ure2_InEx_R CCAACGGATGGAAGTCTGCTT 

putative urea transporter: Dur3_InEx_F ACTTGGGCTGCTACCCTTCTT 

putative urea transporter: Dur3_InEx_R GCGAAGATGAGGATGATGACG    

urease1:Ure01071 inEx_F ATATCGGAGTCAAAGAGGGCAT 

urease1:Ure01071 inEx_R GCAGACCCTCAGGAGAACTAT 

nitrate transporter: 00635_InEx_F GTGATCTGTATGGACCTCGAC 

nitrate transporter: 00635_InEx_R  GCAGACCAAGGGGACAATGAA 
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glutamine synthetase: 05182_InEx_F CGATGGCACTCCCAACAAGTA 

glutamine synthetase: 05182_InEx_R AAGAATCGTGAAACCCAAAGTTG 

argininosuccinate lyase: 01957_InEx_F  TTGGTTTCAGCGGAATCACTCT 

argininosuccinate lyase: 01957_InEx_F  CATAGTGGCGATAACCCCGTT 

Arginase: 12915_InEx_F CGGACATCAACACTCCTGAGA 

Arginase: 12915_InEx_R CACGCTCTCGCAGATGAAATC 

ornithine aminotransferase: 09346_InEx_F TTCTACAACGATGTCTTCCCCA 

ornithine aminotransferase: 09346_InEx_R TCGCAGATGAAAGCAGCAGTC 

ornithine decarboxylase: 07603_InEx_F TGTCCTCGACACCTACAATCAT 

ornithine decarboxylase: 07603_InEx_R ACAGACTTGACGTATCGGACAT 

nit1-For CGGCTACTGGGGTGAGAAGG 

nit1-Rev GGAACACTTCTCGGTCTGCG 

Yeast Two Hybrid primer 

Amplimer 5` CTATTCGATGATGAAGATACCCCACCAAACCC 

Amplimer 3` GTGAACTTGCGGGGTTTTTCAGTATCTACGAT 

BD insert For tcatcggaagagagtagt 

BD insert Rev   agagtcactttaaaatttgtat 

Primer tail for homologues recombination in pGADT7 plasmid 

AD tail for_primer GAGGCCAGTGAATTCCACCCAAGCAGTGGTATCAACGCAGAGTGG 

AD tail rev_primer   TCCCGTATCGATGCCCACCCTCTAGAGGCCGAGGCGGCCGACATG 

Primer for pGADT7 plasmid (always with AD tail for/rev) 

Msb2-CT_pGAD_For AD tail for+ CGACGATACAAGCGCAAGAAG 

Msb2-CT _pGAD_Rev AD tail rev+ TTCCATCCAAGAGAGTTCTC 

Sho1_pGAD7_for   AD tail for+ ATGGATCACTCAAGAATGTATGG 

Sho1_pGAD7_rev AD tail rev+ TCATAACAAGATGAGGTAGTTGC 

Cdc42_pGAD7_F   AD tail for+ ATGGCTGTTGTCGCAACTATTA 

Cdc42_pGAD7_R AD tail rev+ TTATAGGACAAGGCACTTGTGT 

00769_pGAD_for AD tail for+ ATGGTTGTCCATGACGGTCACGA 

00769_pGAD_rev AD tail rev+ GTAACATGACTACTTGGATTGCT 

04361_pGAD_for AD tail for+ ATGTCTCGGGACCGGCGTG 

04361_pGAD_rev AD tail rev+ TTAGTTTTCATGTAGCAGTCTGG 

14173_pGAD_for AD tail for+ ATGCCTCCAGGTAAGATTCTCTT 

14173_pGAD_rev AD tail rev+ TTACAGGCTATCCTCGAGTTCG 

08666_pGAD_for AD tail for+ ATGGTCGACCATGACATGTACG 

08666_pGAD_rev AD tail rev+ CTAGAAATCGGCTGCGTCAAAG 

09776_pGAD_for AD tail for+ ATGACCGTCTTTAACATCGACG 

09776_pGAD_rev AD tail rev+ TTAGTGCTTTCCATTCGGCTTC 
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10398_pGAD_for AD tail for+ ATGACGTACCCCCGTCCCGA 

10398_pGAD_rev AD tail rev+ TTATTTCACCCTGTTGTAGTAAGC 

12838_pGAD_for AD tail for+ ATGAATCGTCCCTATCGTCCC 

12838_pGAD_rev AD tail rev+ CTACCGAGCCCATGAGCCC 

00231_pGAD_for AD tail for+ ATGGCTGCCATGTTCAGCCAG 

00231_pGAD_rev AD tail rev+ CTAATCCTTCTTCAAGGGCAAGA 

15235_pGAD_for AD tail for+ ATGCCTCTACCGTCTCGGG 

15235_pGAD_rev AD tail rev+ CTAGTAAATGCCTGTAAAATCTAA 

13832_pGAD_for AD tail for+ ATGTCGCACTCTCACGACGGT 

13832_pGAD_rev AD tail rev+ TTACTCCAGCTGCTCCAGACC 

Primer for genes of the velvet complex 

veA_pGAD_For AD tail for+ ATGGCTACACCATCCTCGATTC    66º 

veA_pGAD_Rev AD tail rev+ CTACTCGTCATAATACCGGTTGA   66º 

velB_pGAD_For AD tail for+ ATGAATTCTGCCTATCACTCGC 

velB_pGAD_Rev AD tail rev+ TCAGTTCTGATCGTACATCTCTT 

velC_pGAD_For AD tail for+ ATGCCACATCCACACCCGAC 

velC_pGAD_Rev AD tail rev+ TCACTATCGCGCCGAACGG   62º 

laeA_pGAD_For AD tail for+ ATGGTTGTAATGCCTCCTCAAAA 

laeA_pGAD_Rev AD tail rev+ TTACTGTTGAGGTCCGGGCTT 

areA_pGAD_For AD tail for+ ATGAGCACATCTGTCTCAATCA   62º 

areA_pGAD_Rev AD tail rev+ TCACAGGCTCATCGTCAGCC 

Primer for pGBKT7 plasmid (plasmid tails are underlined) 

UreG _pGBKT7_For GCATATGGCCATGGAGGCCGAATTCATGTCGCACTCTCACGACGG 

UreG _ pGBKT7_Rev TGCGGCCGCTGCAGGTCGACGGATCCTTACTCCAGCTGCTCCAGACC 

10398 _pGBKT7_For GCATATGGCCATGGAGGCCGAATTCATGACGTACCCCCGTCCCGA 

10398_ pGBKT7_Rev TGCGGCCGCTGCAGGTCGACGGATCCTTATTTCACCCTGTTGTAGTAAGC 

veA_pGBKT7_For CATGGAGGCCGAATTCATGGCTACACCATCCTCGATTC   66º 

veA_ pGBKT7_Rev GCAGGTCGACGGATCCCTACTCGTCATAATACCGGTTGA   66º 

velB_ pGBKT7_For GCATATGGCCATGGAGGCCGAATTCATGAATTCTGCCTATCACTCGC 

velB_ pGBKT7_Rev TGCGGCCGCTGCAGGTCGACGGATCCTCAGTTCTGATCGTACATCTCTT 

velC_ pGBKT7_For GCATATGGCCATGGAGGCCGAATTCATGCCACATCCACACCCGAC 

velC_ pGBKT7_Rev TGCGGCCGCTGCAGGTCGACGGATCCTCACTATCGCGCCGAACGG   62º 

laeA_ pGBKT7_For GCATATGGCCATGGAGGCCGAATTCATGGTTGTAATGCCTCCTCAAAA 

laeA_ pGBKT7_Rev TGCGGCCGCTGCAGGTCGACGGATCCTTACTGTTGAGGTCCGGGCTT 

areA_ pGBKT7_For GCATATGGCCATGGAGGCCGAATTCATGAGCACATCTGTCTCAATCA62º 

areA_ pGBKT7_Rev TGCGGCCGCTGCAGGTCGACGGATCCTCACAGGCTCATCGTCAGCC 
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2.1.3. Media and culture conditions 

All media were prepared with Milli-Rho deionized water and sterilized either by autoclaving 

at 120 °C for 20 min or by filtration (0.22 μm pore size, Millipore). 

 

Table 6.  Media and buffer solutions used in this work 

Media and solutions Ingredients and preparation (1 l) 

Potato Dextrose Broth (PDB) Boil 200 g of peeled potatoes in 0.6 l of water for 60 min. Stir 
and add 20 g of glucose and deionized water up to 1 l. Sterilize 
by autoclaving 

Potato Dextrose Agar (PDA) 3.9% potato dextrose agar (w/v) (Scharlau Microbiology). For 
culturing F. oxysporum transformants add hygromycin B (55 
μg/ml) or phleomycin (5.5 μg/ml-1) after autoclaving.   

YPD /YPDA 
(Yeast extract Peptone Dextrose/Agar) 

Yeast extract (3g), peptone (10g) and glucose 
(20g). Add bactoagar (15 g) for solid medium. 

Puhalla’s minimal medium (MM)  
(Puhalla, 1968) 

MgSO4 x .7H2O (0.5g), KH2PO4 (1g); KCl (0.5g), NaNO3 (2g) and 
sucrose (30g). Add oxoid agar (20g) for solid medium. Urea was 
adding after autoclaving (final conc. 0, 05 M). 

Regeneration minimal medium MgSO4 x 7H2O (0.5g), KH2PO4 (1g), KCl (0.5g), NaNO3 (2g), 
glucose (20g), sucrose (200g) and oxoid agar (12.5 g/l for Petri 
dishes and 4 g/l for top agar). 

PBS (1x) 

 

8 g/l NaCl, 0,2 g/l KCl, 1, 44 g Na2HPO4, 0,24 g/l KH2PO4, adjust 

pH 7,4 add H2O until 1 l autoclave and store at room 

temperature 

1M Tris pH 7,4  

 

12, 11 g Tris in 80 ml H2O, add 7 ml HCl, adjust pH 7, 4 and add 

H2O until 100 ml 

Buffer TE 10 mM Tris, 1 mM EDTA,pH 7,8 

pH buffer for MM media (A) 0.1 M Citric acid  

(B) 0.1 M Sodium citrate  

For 50 ml MM media use 25 ml of following mix 

pH 3: (A) 46.5 ml + (B) 3.5 ml 

pH 4: (A) 33 ml + (B) 17 ml 

pH 5: (A) 20.5 ml + (B) 29.5 ml 

pH 6: (A) 9.5 ml + (B) 41.5 ml 

 
 

2.1.4. Escherichia coli growth conditions 

Escherichia coli strain XL1Blue were culturing in Luria-Bertoni medium (Sambrook et al., 

1989) and incubated at 37°C. For selection of recombinant E. coli cells either the antibiotics 

ampicillin (100 μg/ml) or kanamycin (15µg/ml) was added to the media after autoclaving. 

The screening of pGEM-T (Promega) plasmids was performed by ampicillin resistance and 

blue-white selection with X-gal and IPTG. Screening of recombinant E. coli containing Yeast-
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Two Hybrid plasmids pGBKT7 or pGADT7-Rec were performed by using kanamycin or 

ampicillin, respectively.  

 

2.1.5. S. cerevisiae media and culture condition 

S. cerevisiae culturing was followed appropriate as described in Matchmaker® Gold Yeast 

Two-Hybrid System User Manual (Clontech). In short, YPDA broth (Clontech) or SD 

(synthetically defined medium, Clontech) minimal media was used to grow S. cerevisiae at 

30°C. The media was prepared by dissolving pouch contents in ddH20 and autoclaved for 15 

min at 121˚C. Dropout supplements (Clontech) were used to select positive Yeast 

transformants. SD/–Trp dropout supplement was used to select for the bait (pGBKT7) and 

SD/–Leu dropout for the prey plasmid (pGADT7-Rec) transformed in the yeast strains Gold 

and Y187, respectively. SD– Leu/–Trp dropout supplement was used to select for diploid cells 

after yeast mating containing the bait and prey plasmids. To determine positive protein 

interaction in a Yeast-Two Hybrid assay X-a-Gal and Aureobasisin A (final concentration of 

200 ng/ml) was added to the SD– Leu/–Trp media (DDO/X/A) after autoclaving.  To increase 

the selection of strong protein interaction positive clones were confirmed on high stringency 

media SD– Leu/–Trp/-His/-Ade/+X/+Aur (QDO/X/A) media. For long time storage and stocks 

Freezing Medium were added to the yeast cells consists of 2x YPDA broth + 25% glycerol.  

 

2.1.6. F. oxysporum growth conditions 

F. oxysporum strains were cultured in rich (PDB and YPD) or nutrient limiting minimal media 

(MM), according to specific requirements and experimental designs. For microconidia 

production or extraction of DNA cultures were grown in liquid PDB at 28°C with orbital 

shaking at 170 rpm for 4- 5 days. For transformants which contain a antbiotic resistant 

cassette, appropriate antibiotics (hygromicin B at 55 μg/ml or phleomycin at 5.5 μg/ml) were 

added to the culture medium. For preparation of challenge inocula, microconidia were 

obtained by filtration through a nylon filter (Monodur; mesh size 10 μm) as described 

previously (Di Pietro and Roncero, 1998) and harvested by centrifugation /12000g for 15 

min). The conidia concentrations were adjusted with a hemocytometer to the wanted 
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density. For long-term storage microconidia from 4-5 day-old cultures were collected by 

filtration; resuspended in sterile deionized water with 30% glycerol (v/v) and stored - 80ºC. 

These suspensions were used for later inoculation to obtain fresh microconidia. 

 

2.2. Molecular methodology 

2.2.1. Restriction mapping and subcloning 

Restriction mapping, subcloning and plasmid DNA extraction from E. coli were carried out 

according to standard methods (Sambrook et al., 1989), and using the reagents according to 

the manufacturer´s instructions. E. coli competent cells were transformed with purified 

plasmids by the heat shock method described by (Hanahan, 1985). Restriction enzymes were 

provided by Roche (Barcelona, Spain). Ligations were carried out using T4 DNA ligase from 

Roche. DNA fragments were isolated from TAE electrophoresis gels using the QIAquick Gel 

extraction Kit (QIAGEN) following the manufacturer´s instructions or the “glass milk” 

extraction. For the latter DNA was cutting from a 1% of Low melting temperature agarose gel 

(NuSieveR GTGR Agarose/LONZA), transferred in a 2 ml Eppendorf centrifuge tube with 700 µl 

(3V) of NaI 6M buffer (1) and incubate 5 minutes at 55 °C. The tube was vortex during this 

incubation time until the agarose was completely dissolved. 15 µl of “glass milk” (2) solution 

was added and incubate for 10 minutes on ice with vortexing every 1minute. After 

centrifuging for 1 minute at full speed, the pellet was resuspended in 500 µl “new washing 

buffer” (3). The washing step was performed three times. After drying the pellet through an 

additional centrifuge step the pellet was resuspended in 20 µl ddH2O and incubated for 5 

minutes at 55 °C. The mix was centrifuged for 1 minute at full speed and the supernatant 

containing the DNA was transferred to a new Eppendorf centrifuge tube. 

(1)  NaI 6M buffer: dissolve 90 g NaI; 1, 52 g Na2SO3 in 100 ml H2O, sterile 

filtrate and store at 4 ªC. 

(2)  Glass milk: 100 mg/ml silice powder (Sigma S5631) in PBS 1x (0,8 g NaCl; 0, 

02 g KCl; 0,144 g Na2HPO4, adjust pH 7,4 add H2O until 100ml and autoclave) 
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wash with PBS (1x), let it sediment and resuspend in TE-Buffer (10 mM Tris, 

1mM EDTA, pH 7,8). 

(3)  New washing buffer: 20 mM Tris pH 7,4; 1mM EDTA; 100 mM NaCl (1 ml 1M 

Tris pH 7,4; 100 µl 0,5 M EDTA; 1 ml 5 M NaCl; 47,9 ml H2O until all is 

dissolved, then add 50 ml EtOH 100%), store at -20ºC 

 

2.2.2. Nucleic acid (gDNA/RNA) extraction from F. oxysporum 

During this work two different protocols to isolate genomic DNA from F. oxysporum were 

used. Genomic DNA was extracted from F. oxysporum mycelium using the CTAB method 

(Torres et al., 1993), to obtain a high concentration of clean DNA e.g for verification PCRs 

after single sporing of transformants or for Southern-blots. Briefly, approximately 100 mg of 

mycelium were ground to a fine powder in a mortar and pestle under liquid nitrogen and 

transferred to a 2 ml Eppendorf centrifuge tube with 1 ml of CTAB extraction buffer (1) and 

vortexed. 4 μl of β-mercaptoethanol (Merck) and 500 μl of a chloroform: octanol 24:1 (v/v) 

solution were added quickly, the mix was vortexed and incubated at 65ºC for 30 minutes. 

After incubating at room temperature for 15 minutes the tube was centrifuged for 5 minutes 

at 10000 g. The supernatant was then precipitated with 1 ml of 100% ice-cold ethanol and 

incubated at -20ºC for at least 10 minutes (optional over night), followed by centrifugation 

for 5 minutes at 7500 g and two consecutive washes with 1 ml 75 % ethanol. Finally, the 

pellet was resuspended in 50-100 μl of sterile deionised water with 4 μl de RNase (10 mg/ml) 

and incubated at 37°C for 30 minutes. 

(1)    CTAB extraction buffer: 12.1 g/l Trizma base; 7.44 g/l EDTA; 81.8 g/l NaCl y 20 g/l and 

20 g/l Cetyltrimethylammonium bromide. Heat to 60 °C to dissolve and adjust to pH 

8.0 with NaOH. Keep at 37 ºC to avoid precipitation. 

The second DNA extraction method used in this work was the “Glass Beads” gDNA method 

which allows isolating gDNA from F. oxysporum mycelium growing on solid media. This 

method was used for fast DNA extraction from putative mutants growing on PDA 

masterplate after transformation. This DNA was exclusively used for a diagnostic PCR 

screening. Briefly, with a sterile spatula approximate 0, 5 mm2 of mycel were cut from the 
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plate transferred to a 2 ml Eppendorf centrifuge tube containing 500 µl Lysis Buffer (1). The 

mycel were homogenized with the T 10 basic ULTRA-TURRAX (IKA®) or optional mycel can be 

grounded manually with glass beads (0, 5 mm) and a spatula. After centrifugation at 7500 g 

for 2 minutes the supernatant was transferred to a new 2 ml Eppendorf centrifuge tube 

containing 275 µl 7M Ammonium acetate (2) and incubated 5 minutes at 65°C. After 

incubating 5 minutes on ice, 500 µl chloroform was added, the mix was vortexed and 

centrifuged at 7500 g for 3 minutes. The supernatant was transferred to a new Eppendorf 

centrifuge tube containing 1 ml Isopropanol and the DNA was precipitated by a 5 min 

incubation step at room temperature followed by centrifugation for 5 minutes at 7500 g and 

two washes with 1 ml 70 % ethanol. After drying the pellet was resupended in 20 µl 

deionised water with 4 μl de RNase (10 mg/ml) and incubated at 37ºC for 30-60 minutes. 

(1)  Lysis Buffer : 100mM Tris pH 8.0; 50 mM EDTA; 1% SDS 

(2)  7 M Ammonium acetate (NH4C2H3O2): 27 g Ammonium acetate in 50 ml deionised 

water 

 

For RNA extraction, approximately 100 mg of frozen mycelium were ground to a fine powder 

in a mortar and pestle under liquid nitrogen and transferred to a pre-chilled 2 ml Eppendorf 

centrifuge tube with 1 ml (4 volumes) of TRIzol Isolation Reagent (Life TechnologiesTM), 

followed by vortexing and incubation for 5 minutes on ice. After centrifugation for at 12000 g 

for 10 minutes at 4ºC the supernatant was transferred to a new vial. 200 μl of chloroform 

per 1 ml of TRIzol were added and the mix was vortexed for 15 seconds at low vortex power. 

After incubated on ice for 3 minutes the centrifugation at 4ºC for 20 minutes at 12000 g 

results in the formation of three phases. The upper clear phase with high-quality RNA was 

remove and transferred to a new clean 1, 5 ml Eppendorf centrifuge tube pre-chilled with 

750 μl Isopropanol.  The tube was mixed by inversion followed by incubation on ice for 10 

minutes and centrifugation at 4°C for 20 minutes and 12000 g to precipitate RNA. The pellet 

was washed with 1 ml of 75% ethanol (v/v) and centrifuged at 4°C for 5 minutes and 7500 g. 

The pellet was air dried for 5-10 minutes and resuspended in 20-50 μl of RNase-free water.  
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2.2.3. Nucleic acid quantification 

DNA and RNA were quantified in a Nanodrop® ND-1000 spectrophotometer at 260nm and 

280 nm wavelengths, respectively. In addition, the quality of the DNA and RNA obtained was 

monitored by electrophoresis in a 0.7% and 1% agarose gel (w/v), respectively. 

 

2.2.4. DNA isolation form S. cerevisiae 

For PCR analysis a fast DNA extraction was performed. A yeast cell was picked with a 

toothpick and transferred into a 1, 5 ml Eppendorf centrifuge tube with 50 µl of NaOH (0, 02 

M). The tube was incubated for 20 minutes at room temperature during this time the tube 

was mixed several times. Then the Eppendorf centrifuge tube was cooked in a microwave for 

2 minutes at maximal strength. The mix was spin down at 7000 rpm. 5 µl of the supernatant 

was used as a template for a PCR reaction with Vfin: 50 µl.   

 

2.2.5. Plasmid isolation from S. cerevisiae cells 

Plasmid isolation from Yeast cells was performed using the plasmid isolation kit (Roche). 

Briefly, a 5 ml over night culture of S. cerevisiae was centrifuged at 3000 rpm for 5 minutes. 

After discarding the supernatant the cell pellet was resuspended in 250 µl suspension buffer 

1 (Roche) transferred to Eppendorf centrifuge tube and kept on ice. Add 2/3 volume glass 

beads (0, 5 mm) and shake 3x 20 seconds on a Mini BeadBeater-8 (BioSpec Products). 

Between these steps tubes were incubating on ice for 1 minute. After centrifugation at 

13.200 rpm for 5 minutes at 4°C the supernatant was transferred to a clean Eppendorf 

centrifuge tube. 250 µl lysis buffer 2 was added and the tube was inverted gently 5 times and 

incubate for 2 min on ice. 350 µl chilled binding buffer 3 was added, mixed by gently 

invertion (5 times) and incubated on ice for 5 minutes. After centrifugation at 13.000 rpm for 

10 minutes at 4°C the supernatant (700 µl) was apply to a column and centrifuged at 13.000 

rpm for 1 minute at 4°C. The flow though was discarded and the column was washed with 

700 µl washing buffer 5. After discarding washing buffer column was cleaned and dried by an 

additional centrifugation step for 1 minute. The plasmid was eluted by adding 30 µl elution 
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buffer 6 to the column and additional centrifugation as described before. 20 µl of the elution 

was used to transform competent E. coli cells.  

 

2.2.6. Southern blot analysis 

Southern analysis and probe labelling were carried out as described (Di Pietro and Roncero, 

1998) using the non-isotopic digoxigenin labelling kit (Roche Diagnostics SL, Barcelona, Spain). 

 

2.3. Amplification reactions 

2.3.1. Standard PCR 

PCR amplifications were performed in a termocycler using the thermostable DNA 

polymerase of the Roche Expand High Fidelity PCR System. Each reaction contained 300 nM 

primers, 2.5 mM de MgCl2, 0.8 mM dNTPs mix and 0.05 U/μl of polymerase. Genomic DNA 

was added at 20 ng/μl and plasmid DNA at 2 ng/μl. PCR cycling conditions were: an initial 

step of denaturation (5 min, 94ºC) followed by 35 cycles of 35 s at 94ºC, 30 s at the 

calculated primer annealing temperature and 35 s at 72ºC (or 68ºC for templates larger than 

3Kb), and a final extension step at 72ºC (or 68ºC) for 10 minutes. PCR for screening 

procedures were done with the Velocity DNA Polymerase (Bioline) following the 

manufacturer´s instructions. For PCR amplification of fragments higher than 7 Kb and/or with 

high GC, the more robust iProof High-Fidelity DNA Polymerase (BioRad) was used, following 

the manufacturer´s instructions. 

 

2.3.2. Colony PCR from S. cerevisiae and E. coli cells 

To determine the insert after Yeast or Bacterial transformation, with a sterile toothpick a 

small colony was picked and used directly for a PCR reaction or for more PCR reactions a 

bigger colony was picked and transfer into a PCR tube containing 10 µl of ddH2O. From this 

mix 5µl was used for a PCR with V fin 50µl. The PCR reaction was performed as described in 

section 2.3.1.  
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2.3.3. Reverse transcriptase PCR 

Prior complementary DNA (cDNA) synthesis, the RNA was treated with DNaseI (Fermentas). 

Therefore 1 μg of total RNA was mixed together with 1 µl DNAse and 1 µl of DNAse buffer 

(Fermentas) and ddH2O to Vfin: 10µl. After 30 minutes of incubation at 37°C, 1 µl EDTA (25 

mM) was added and incubate for 10 minutes at 65°C. For the following first strand cDNA was 

synthesized different protocols were used. Briefly, 1 µl oligodT primer (100 pmol) and 1 µl 

dNTPs (0.4 mM) were added and incubate 10 minutes at 65°C. Next, the tube was 

transferred to ice for 5 minutes. After a short spin 4 µl 1x First Strand Buffer (Invitrogen), 2 µl 

of 0, 1 M dithiothreitol (DTT) and 1 µl of 4 U/μl of RNAsas RNasin® Plus RNase Inhibitor 

(Promega) were added and incubated for 2 minutes at 37°C. Then, 1µl retrotransciptase (10 

U/μl) was added followed by a 50 minute incubation at 37ºC and a final 15 minute 

incubation at 70°C to inactivate the enzyme. 30 µl ddH2O were added to a Vfin 50 µl. 5 µl 

were used for a quantitative real-time PCR (qPCR) reaction. Optinal distinct qRT-PCR Kits 

were used. The “Transcriptor Universal cDNA Master” (Roche) or “Transcriptor First Strand 

cDNA Synthesis Kit” (Roche) following the instructions of the manufacturer.  

 

2.3.4. Real-time quantitative PCR 

Quantitative real-time PCR reactions (qPCR) were performed in an iCycler apparatus (BioRad, 

USA) using iQ SYBR Green Supermix (BioRad, USA), 400 ng cDNA template and 300 nM of 

each gene-specific primer in a final reaction volume of 15 μl. All primer pairs amplified 

products of 160 – 200 bp. The following PCR program was used for all reactions: an initial 

step of denaturation (5 min, 94°C) followed by 40 cycles of 30 s at 94°C, 30 s at 60°C, 30 s at 

72°C, and 20 s at 80°C for measurement of fluorescence emission. A melting curve program 

was run for which measurements were made at 0.5°C temperature increments every 5 s 

within a range of 55 – 95°C. 

Once Ct values were obtained (Ct=number of cycles required for the fluorescent signal to 

cross the threshold), comparison of multiple samples was performed using relative 

quantification by the 2-ΔΔCt method (Livak and Schmittgen, 2001; Pfaffl, 2001). For this, the 

wild type strain was chosen as the calibrator and the expression of the target gene in all 
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other strains was expressed as an increase or decrease relative to the calibrator. To 

determine the relative expression of a target gene in the test sample and calibrator sample, 

a reference gene (actin) was used as the normalizer. 

 

2.3.5. Fusion PCR 

Fusion PCR or overlap extension represents a new approach to genetic engineering (Ho et al., 

1989; Yang et al., 2004) and is schematically represented in Figure x. Complementary 

oligodeoxyribonucleotide (oligo) primers and the polymerase chain reaction are used to 

generate two DNA fragments with overlapping ends. In this PCR (PCRI) reaction a ~1, 5 kp 

fragment upstream (prom) of the target gene and a ~1, 5 kp fragment downstream (term) of 

the target gen is amplified. For the prom region the primer pair X_prom_F/X_term_R and for 

the term region the primer pair X_term_F/X_term_R were used, where X stands for the 

target gene (table x). The primer X_term_R and X_term_F contain a tail which is homologue 

to the hygromycin resistance cassette which was amplified in parallel using the M13F/M13R 

primer (A). These fragments are combined in a two subsequent 'fusion' reaction (Fusion PCRI, 

prom+hyg and term+hyg) in which the overlapping ends anneal, allowing the 3' overlap of 

each strand to serve as a primer for the 3' extension of the complementary strand (B). The 

resulting fusion product was used as a template for the next PCR reaction (Fusion PCRII). 

Primers were added to amplify the fusion product produced in the first fusion PCR (C). In this 

work, this technique was used for the generation of gene knockout constructs, where part of 

the ORF of the gene was replaced with the hygromycin resistance cassette. The fragments 

were either purified with the commercial GENECLEAN Turbo Nucleic Acid Purification kit or 

the “glass milk method” or precipitated before used for transformation. For PCR fusion of 

final fusion fragments larger than 5 Kb, the more robust iProof High-Fidelity DNA Polymerase 

(BioRad, Madrid, Spain) was used, following the manufacturer´s instructions. Gene knockout 

was performed by homologous recombination (E) after replacing the target gene with the 

two fusion PCR products (D). All primers used to make the construct and confirm positive 

knockout mutants are indicated in figure 1. 
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Figure 1. Schematic representation of the Fusion PCR technique used to generate split-maker for 
gene knockout in F. oxysporum via homologous recombination. Amplifiaction of the upstream (prom 
region) and downstream region (term region) of the target gene with primer which contain 
homolgoues tails to the Hygromycin resistance cassette. The PCR products obtained are used as 
templates for a PCR reaction with no oligos (PCR2), resulting in annealing of complementary template 
sequences and extension by the polymerase. The final reaction (PCR3) uses the PCR2 product as a 
template for amplification with the external primer and the primer set inside the Hyg cassette. 
Transformation with the two PCR fragments resulting in homologous recombination and 
reconstruction of the complete Hyg cassette inside the target gene locus.  
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2.3.6. Generation of a F. oxysporum cDNA library  

The cDNA for the library was generated by using the SMARTTM technology (MatchmarkerTM 

Library Construction& Screening Kits User Manual, Clontech) following the manufacturer´s 

instructions with some modeifications. Complete RNA were extracted (as described in 

section x) of F. oxysporum growing in liquid MM media. The first strand synthesis was 

performed using CDS III primer (hybridize to the 3`-end of poly A+RNAs) following the 

manufacture protocols for the SMARTTM technology but with 20 reactions (total volume 320 

µl first strand synthesis). From the first-strand cDNA 160 µl were used for the Long-Distance 

PCR with a total volume of 3200 µl aliquoted in 64 PCR tubes with Vfin: 50 µl. The Long-

Distance PCR was performed by using the Expant High Fidelity Polymerase (Roche) and 22 

PCR cycles where the number of thermal cycles used based on the amount of RNA used in 

the first-strand synthesis and fewer cycles are better to avoid nonspecific PCR products. The 

cDNA was precipitated to Vfin: 200 µl. After agarosegel confirmation Nanodrop measurement 

reveal a concentration of 4700 ng/µl cDNA. A total volume of 100 µl was loaded through 

CHROMA SPINTM TE-400 Columns to fractionate and select for cDNA > 200 pb and resulted in 

Vfin: 200 µl cDNA with a concentration of 260 ng/µl. This cDNA was diluted for test 

transformation before used for the yeast library construction.  

 

2.4. Protein methods 

2.4.1. Protein purification from F. oxysporum mycelia 

For analysis of cytosolic proteins in whole cell extracts 200 to 500 μl of ice-cold protein 

extraction buffer A or B (B for urease activity assay) dependent on the experimental 

procedure was added to approximately 100 mg of frozen mycelium and homogenized with 

the T 10 basic ULTRA-TURRAX (IKA®) followed by strong vortexing. After centrifuging at 4°C to 

pellet cell debris the supernantant was either quantified and used in subsequent 

experiments (B) or stored at -80°C (A). 

(A)    10% glycerol, 50 mM Tris-HCL pH7.5, 150 mM NaCl, 0.1 % SDS, 1% Triton, 5 mM 

EDTA, 1 mM PMSF and Protease inhibitor cocktail (Sigma, P8215). 
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(B)    40 mM Tris-HCl, 20 mM dithiothreitol [DTT], 4% Triton X-100, 1 mM EDTA, 2 mM 

phenylmethylsulfonyl fluoride [PMSF],  protease inhibitor cocktail (Sigma, P8215), pH 

9 

 

2.4.2. Protein purification from F. oxysporum culture supernatants 

For detection of the urease activity in culture supernatants, germlings from PDB were 

obtained as described in section x, washed twice in sterile water, transferred to liquid MM + 

50 mM urea and incubated at 28ºC at 170 rpm. Culture supernatants were harvested after 7 

h of incubation, sterile filtered (0.22 μm pore size) and dialyzed in pre-treated cellulose 

membranes ((A) Sigma) against various changes of distilled water for 24h at 4°C and 

lyophilized. Samples were resuspended in protein extraction buffer B (see above) and 

ammonia secretion was measured spectrophotometrically over time (see below). 

(A)   Cellulose membranes have to be pre-treated before using by boiling for 10 minutes 

in 2% sodium bicarbonate EDTA solution (B) followed by washing steps (rinse twice 

in H2O) and followed by a second boiling for 10 minutes in 1 mM EDTA, pH 8.2 (C). 

After cooling down cellulose membranes were stored in a fresh and sterile 1 mM 

EDTA solution pH 8.2 at 4°C 

(B)   20g Sodium bicarbonate; 2 ml EDTA, pH 8.2 in 1 l H2O 

(C)   800 µl EDTA, pH 8. 2  in 800 ml H2O 

 

2.4.3. Determination of protein concentration 

Protein concentration of cell extracts was determined photospectrometrically (959 nm) with 

the Bio-Rad protein assay reagent, using bovine serum albumin as standard and following 

the manufacturer´s instructions. 

 

2.4.4. Western blot analysis 

For western blot analysis, 100 µg of total protein was resuspended in protein loading buffer 

(1) and separated in 5 to 20% gradient SDSpolyacrylamide gels (Laemmli, 1970) at constant 

voltage, using Tris-HCl/glycine/SDS as running buffer (2). The gel was transferred to 
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nitrocellulose membranes (Bio-Rad) using the Mini Trans-blot® Cell (Bio-Rad) and a transfer 

buffer (3) at constant voltage (100 V at room temperature for 2 hours). For Western blot 

analysis, membranes were blocked using 5% non-fat skimmed milk for 1 h. p44/42 MAP 

kinases were detected using the Phospho Plus p42/p44 MAP Kinase (Thr202/Tyr204) 

Antibody kit (Cell Signaling Technology, Beverly, MA) according to the manufacturer´s 

instructions, except that ECL Plus immunoblotting reagent (GE Healthcare, Barcelona, Spain) 

was used for detection. Monoclonal α-actin antibody from Sigma (A3853) was used as a 

loading control. 

(1)  50 mM Tris-HCl, pH 6, 8; 8% glycerol (v/v); 1,6% SDS w/v; 4% β- mercaptoetanol 

(v/v); 0,1%  bromophenol blue 

(2)  50mM Tris-HCl, 400 mM glycine, 0.02%, SDS  

(3)  48mM Tris-HCl pH 7.5, 39 mM glycine, 0.0375% SDS, 20% methanol 

 

2.4.5. Protein interaction using small-scale Yeast Two -Hybrid  

To determine protein-protein interaction, the Y2H approach was used following the 

manufacturer´s instructions (MatchmarkerTM Gold Yeast Two-Hybrid System User Manual, 

Clontech). Briefly, the cDNA of the proteins of interest were raised for full-length of the 

sequences by amplification using gene specific primer containing a homologous tail to the 

bait vector, pGBKT7-BD or the prey vector, pGADT7-Rec-AD of the Match-Marker Gold Yeast-

Two Hybrid system (Clontech). The cDNA`s were inserted via homologous recombination 

during transformation into the pre-linearized bait and prey vectors into the yeast strains 

Gold and Y187, respectively. Positive transformants were obtained on selection media 

according the nutritional marker of the plasmid and transfomation efficiency was calculated.  

The correct in-frame cloning of the required gene in the bait and prey vectors was confirmed 

by sequence analysis before proceeding. Analysis of the interaction between target proteins 

were carried out by yeast mating in a small-scale format and preformed according to the 

manufacturer`s protocol with little modification. In brief, a 2-3 mm colony of each strain was 

picked and placed into one 1,5 ml Eppendorf centrifugation tube containing 500 µl 2x YPDA 

and mixed by vortexing. The mating of the positive and negative control strains provided by 



 

40 

 

the kit was performed always in parallel. The mating was performed by incubating on a 

shaker (200 rpm) at 30 °C over night (20-24h). From this mated culture 100 µl of several 

dilutions was spread on selection plates. On SD-Trp the survival of the bait and on SD-Leu the 

survival of the prey plasmid was calculated. The colonies on the mating media SD-Trp/-Leu 

(double-drop-out media without tryptophane and leucine) were used to calculate the mating 

efficiency. The positive protein interactions were obtained via blue colonies on DDO/X/A 

(without tryptophan, leucine, adenne, and histidine and with or without aureobasidine A and 

X-α-Gal) selective-media agar plates for screening of positive clones. Optional several 

dilutions were done with colonies from the mating media (SD-Trp/-Leu) and spotted on 

selection media to confirm or exclude protein interactions. 

 

2.5. Genetic transformations 

2.5.1. Competent cells S. cerevisiae 

Competent Yeast cells were prepared using the LiAc method as described in “MatchmarkerTM 

Library Construction & Screening Kit User Manual” (Clontech) with some changes. Briefly, 3 

ml YPDA was inoculated with one colony of S. cerevisiae growing on YPDA plates (fresh 

streaked from -80 stocks) and incubated at 30°C with shaking. After 8 h 50 µl of these pre-

culture was transferred into 50 ml YPDA (250 ml flask) and incubated on a shaker at 30°C 

over night (14-16h). When the OD600 reached 0, 15-0, 3 the cells were centrifuged for 5 

minutes at 700 g at room temperature. After discarding the supernatant the pellet was 

resuspended in 100 ml of YPDA media and incubated additional 3-5 h at 30°C with shaking 

until OD600 0,4- 0,5. (Important: not to overgrow the culture) After centrifugation for 5 

minutes at 700 g the supernatant was discarded and the cells were washed with 60 ml H2O. 

After, cells were resuspended in 3 ml of fresh prepared 1.1xTE/LiAc (1) solution split into two 

Eppendorf centrifuge tube and centrifuged 15 sec. at high speed. Supernatants were 

discarded and each pellet was resuspented in 600 µl of 1.1xTE/LiAc solution.   

(1)  Prepare always fresh: 1.1 ml of 10x TE with 1.1 ml of 1M LiAc (10x), add H2O until 10 

ml 
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2.5.2. Transformation of S. cerevisiae 

Transformation was performed as described in the “Yeastmaker TM Yeast Transformation 

System 2 User Manual” (Clontech) and using the competent S. cervisiae cells as described 

above. Briefly, for transformation in a “small scale” (in contrast to Libray scale) in a pre-

chilled tube were mixed 125 ng plasmid DNA (pre-linearized pGBKT7/pGADT7) together with 

166 ng cDNA (amplified with primer who added a tail for homologous recombination) and 5 

µl Yeastmaker Carrier DNA (denaturated by heating at 95°C-100°C for 5 minutes, cooled on 

ice and repeated again just before adding). 50 µl of the competent Yeast cells were added 

and mixed gently by pipetting before 500 µl of PEG/LiAc were added and mixed gently. The 

transformation mix was incubated at 30°C for 30 minutes and mixed by gently vortexing 

every 10 minutes. Then 20 µl of DMSO was added and incubated at 42°C for 15 minutes with 

gently mixing every 5 minutes. After the cells were centrifuged at high speed for 15 sec, the 

supernatant was removed and cells were resuspented in 1 ml YPD Plus media (optional 2x 

YPDA medium) and incubated 30-60 minutes at 30°C. After centrifugation the cells were 

resuspended in 1 ml of 0, 9% (w/v) NaCl solution (optional H2O). 100 µl of the transformation 

mix (diluted 1/10 and 1/100) was spread on the appropriate selection media and incubated 

upside down at 30°C until colonies appear after 3-5 days. For transformation with the 

pGBKT7 plasmid SD/-Trp and for the pGADT7 plasmid SD/-Leu were used. Transformation 

efficiency (TE) was calculated as described below (2). 

(1)  PEG/LiAc (always fresh prepared): mix 8 ml of 50% PEG 3350 with 1 ml of 10x TE 

Buffer and 1 ml of 1M LiAc (10x) 

(2)  TE= (cfu x suspension volume (ml) / volume plated (ml) x amound of DNA (µg)) x 

dilution factor 

 

2.5.3. Construction of the F. oxysporum cDNA library in S. cerevisiae 

After generation of the cDNA (SMARTTM technology) followed the manufacturer´s 

instructions (MatchmakerTM Library Contruction & Sceening Kits, User Manual, Clontech) and 

descriped in section x, the library construction was performed following the manufacturer´s 

instructions (Make Your Own “Mate and PlateTM” Library System User Manual, Clonetech) 
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with some aberrations. It is important to calculate the transformation efficiency to 

determine the number of independent clones in the cDNA library.  To cover a large part of 

the F. oxysporum expressed genes, the library should contain >1 million independent clones. 

The first “library scale” transformation did not reveal the minimum of independent clones to 

screen the complete genome of F. oxysorum. Therefore we tested different concentration of 

cDNA together with plasmid DNA for the optimal transformation efficiency to reveal the 

desired library titer which is necessary to have > 1 million independent clones in our library.  

This value depends on the transformation efficiency when constructing the library. Instead of 

a transformation in a “library scale” we made 24 transformation aliquots in a “small scale”. 

Transformation was performed using the total amount of 3 µg of pGADT7-Rec together with 

3984 ng cDNA aliquoted in (24 x (125 µg pGADT7-Rec, 166 ng cDNA, 5 µl Yeastmaker Carrier 

DNA, 50 µl competent Y187 Yeast cells, 500 µl PEG/LiAc, 20 µl DMSO))  1, 5 Eppendorf 

centrifugation tubes and  following the transformation protocol (see section x ). The 

transformation mix was resuspended in 1 ml 0, 9 % (w/v) NaCl, incubate for 90 minutes at 

30 °C with shaking and 100 µl ( 1:1 dilution with 0, 9 % (w/v) NaCl) were plated on SD-Leu 

plates (480 plates). The expected transformation efficiency after transformation with 3 µg 

pGADT7-Rec together with recommended 2-5 µg cDNA should reveal ≥ 1x106 transformants 

to have a library which contains >1 million independent clones. The transformation efficiency 

after transformation of 3 µg pGADT7-Rec and 3,984 µg cDNA revealed an efficiency of 1, 759 

x 106 cfu/µg and was determined by spreading several dilutions after transformation of the 

library on SD-Leu plates. The same dilutions were used to calculate the number of 7 million 

independent clones in the library. After 3 days, the colonies on the plates were harvest using 

2 ml freezing media per plate and pooled together in a flask, mixed well and 1ml aliquot 

were performed to store at -80 °C.  

The calculation revealed that one library aliquot had a cell density of 6, 25 x 109 cells/ml, 

therefore a volume of 50 µl (~3 x108 cells) of the yeast library aliquot was used for screening 

procedure with via yeast mating with a bait protein.   
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2.5.4. Screening against a cDNA library of F. oxysporum by Yeast Two-Hybrid 

The Y2H of msb2-CT-BD and msb2-ORF-BD (transformed into the Gold strain) against the 

cDNA library of F. oxysporum was performed following the manufacturer´s instructions 

(MatchmakerTM Gold Yeast Two-Hybrid System User Manual, Clontech). Before, different 

concentration of the bait protein and the library was tested by in a small scale and library 

scale for the best result of mating efficiency. The bait Gold (msb2-CT-BD and msb2-ORF-BD) 

was cultures until the OD600 reaches 0.8 (16-20h). After centrifugation (1000 g for 5 minutes) 

the pellet was resuspended to a cell density of 2 x108 cells/ ml. From this culture 5 ml (1x109 

cells) was used for yeast mating.  

After mating the library titer was recalculate to confirm it remains > 1x 107cfu/ml. The 

number of screened clones was calculated by counting the colonies from the SD-Leu/-Trp 

plates. It is imperative that at least 1 million diploids are screened, since less will result in 

less chance of detection genuine interaction on Aureobasidin A plates (selection media: 

DDO/X/A). The number of screened clones: cfu/ml of diploids x resuspension volume (ml) = 

1,573 x 106. Next, the mating efficiency should be more that 2% to screen more than 1 

million calculated with the no. of cfu/ml of diploids  (1, 43 x 105 cells/ml) divided through the 

strain with the lower viability (limiting partner, here the prey library= 7, 4 x 105 cells /ml) 

multiplied by 100. The calculation revealed a mating efficiency of 19, 32% 

No. of cfu/ml on SD-Leu = viability of the prey plasmid (cDNA library): 7, 4 x 105 

No. of cfu/ml on SD-Trp: =viability of the bait (msb2-CT):2,744 x 108 

No. of cfu/ml on SD-Leu/ Trp= viability of diploids: 1, 43 x 105 

 

2.5.5. Generation of F. oxysporum protoplasts 

Protoplasts were obtained following the protocol described by (Powell and Kistler, 1990), 

with some modifications. Briefly, 5x108 microconidia were inoculated into 200 ml of PDB and 

incubated for 14 h at 28°C with 170 rpm. After, germlings were harvested by filtration with a 

monodur and washed first with 500 ml of dd H2O and after with 200 ml MgP solution (1). A 

sterile spatula was used to tranfer germlings from the monodur to a sterile 50 ml Falcon tube, 

containing 20 ml of MgP with 0.5% (w/v) Glucanex® (Novozymes) as the protoplasting 
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enzyme. The protoplasts were incubated in the enzyme solution for 45 minutes at 30°C with 

slow shaking (60 rpm), and protoplast accumulation was monitored under the microscope. 

When optimal number and quantity of protoplasts were achieved, the sample was filtered 

through a double layer of monodur nylon filters and washed with 400 ml of STC solution (2). 

The flow-through containing the protoplasts was collected in pre-chilled ice-cold 50 ml 

centrifuge tubes. Filtrates were centrifuged at 4°C and 1500 g for 15 minutes to collect 

protoplasts, which were carefully resuspended in 1 ml STC and counted. The protoplast 

suspension was adjusted to a final concentration of 2 x 107 protoplasts and stored as 100 μl 

aliquots in Eppendorf tubes to be used directly for transformation. For long-term storage at -

80°C, 10% of PEG (3) (v/v) and 1% DMSO (Merck) (v/v) were added. 

(1)  MgP solution: 1.2 MgSO4; 10 mM Na2HPO4, pH 5.8-6.0 adjusted with 

orthophosphoric acid . 

(2)  STC solution: 0.8 M sorbitol; 50 mM CaCl2 y 50 mM Tris-HCl, pH 7.5. 

(3)   PEG solution: 60% polyethylene glycol MW 4000 (p/v) in 0.6 M MOPS. 

 

2.5.6. Transformation of F. oxysporum 

Transformation was performed as described (Malardier et al., 1989), with slight 

modifications. 2-3 μg of transforming DNA were mixed with 10 μl of 0.1 M aurintricarboxylic 

acid (ATA), a potent inhibitor of nucleases, in a final volume of 60 μl with TEC solution (1). 

For cotransformation experiments, 1, 5 μg of the DNA construct conferring antibiotic 

resistance was added. For the negative transformation control 50 µl of TEC was mixed with 

10 µl of ATA in an additional tube and treated like the transformation mix in the following 

procedure. The 2 mixes were incubated on ice for 20 minutes in parallel with 2 tubes of 100 

μl protoplasts (2x 107) generated as described above. Next, protoplasts and DNA solutions 

were carefully mixed and incubated a further 20 minutes on ice. Then, 160 μl of PEG solution 

were added and mixed carefully, followed by 15 minute incubation at room temperature 

before 1 ml of STC solution (described above) was added. The tube was centrifuged for 5 

minutes at 3000 rpm to pellet protoplasts, which were resuspended in 200 μl of STC. Next, 

50 μl aliquots were mixed with 3 ml of top agar (2) at 45°C and spread onto plates containing 
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25 ml of solid regeneration minimal medium (3). Four transformation controls were made. 

To calculate the protoplast regeneration 10 µl of the negative control mix was diluted 10-4 

and 10-5 with STC and spread on plates without antibiotic. A 10-5 dilution made with H2O 

leads to burst of the protoplasts and allows the determination of conidia which inhibits the 

transformation efficiency. The antibiotic control was performed by spreading the rest of the 

negative control (190 µl) on regenerations media containing the appropriate antibiotic. 

Plates were incubated at 28°C for 2 hours or 16 hours before addition of 3 ml of top agar 

containing 2 mg of hygromycin B or 160 μg of phleomycin, respectively. Incubation at 28°C 

was prolongued for 4-5 days until transformant colonies became were visible. Colonies were 

transferred to PDA plates with selective medium, and transformants were submitted to two 

consecutive rounds of single monoconidial purification on selective PDA plates. 

(1)  TEC solution: 10 mM Tris-HCl, pH 7.5; 1 mM EDTA and 40  mM CaCl2. 

(2)  Top agar: 0.4% agar (Oxoid) (w/v) in regeneration minimal medium. 

(3)  Regeneration minimal medium (1 l): 0.5g MgSO4 x 7H2O; 1g KH2PO4; 0,5g  KCl; 2 g 

NaNO3; 20 g glucose, 200g sucrose  and 12,5 g oxoid agar (12.5 g/l for Petri dishes 

and 4 g/l for top agar). 

 

2.5.7. Generation and confirmation of F. oxysporum knockout strains 

The F. oxysporum gene disruption constructs were generated by the fusion PCR technique. 

As described in section x.  A ~1500 bp upstream fragment and a ~1500 bp downstream 

fragment relative to the F. oxysporum gene open reading frame (ORF) were amplified from 

genomic DNA using PCR with primer pairs X_prom_for and X_prom_rev and X_term_for and 

X_term_rev, respectively, where the X stands for the individual gen name (Table 1).  The 

hygromycin B resistance gene, under the control of the A. nidulans gpdA promoter and trpC 

terminator (Punt et al., 1987) cloned into the pGEMT vector was amplified with the universal 

primers M13-For and M13-Rev. The three obtained PCR fragments were used for a final 

fusion PCR (Figure x). For targeted gene knockout, the F. oxysporum gene fusion constructs 

were used to transform protoplasts of F. oxysporum wild type strain 4287. Hygromycin-

resistant transformants were selected and purified by monoconidial isolation as described 
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above. Gene knockout was confirmed by diagnostic PCR analysis. Therefore different primer 

combinations were used. By using the primer pair X_promF_ver/X_termR_ver which binding 

by encompassed the entire knockout construct, should give a fragment in the wt and 

knockout situation. A successful gene knockout was confirmed by differentiation of the 

fragment size, where the knockout band was bigger when the gene was smaller than the 

hygromycin cassette. In the case of an ectopic integration of the knockout construct we 

obtained the two amplicons in the gel. Additional PCR`s were done to confirm the successful 

integration of the fusion PCR constructs. With the primer pair X_promF/HygG and 

X_termR/HygY, which should amplified only in transformants, were confirmed the 

integration of the promoter and terminator region, respectively. A negative control was 

performed by using the primer pair X_InEx_F/X_InEx_R which binds within the gene and 

gave an amplicon only in the genomic wt situation.  

 

2.5.8. Generation of gene complemented strains 

A PCR fragment encompassing the entire gene to complement the corresponding gene 

knockout was obtained by a PCR amplification from genomic DNA with primers X_prom_for 

and X_term_rev which was introduced into protoplasts of the knockout strain by 

cotransformation with the phleomycin resistance cassette amplified from plasmid pAN8-1 

(Punt et al., 2008) with the universal primers M13-For and M13-Rev. Phleomycin-resistant 

transformants were isolated as described before. The integration of the gene construct in 

the corresponding knockout mutant was confirmed by different diagnostic PCR`s.  The 

primer pair X_prom_F/InEx_R and X_term_R/InEx_F gave an amplicon when the 

complementation construct was integrated into the knockout genome. Optional the primer 

pair X_InEx_F/X_In_Ex_R was used which amplified a small fragment within the gene. 

Whereas the primer pair X_prom_F_ver/InEx_R and X_term_R_ver/InEx_F gave an amplicon 

only in these transformants where the construct was integrated into the gene locus by 

replacing the hygromycin cassette.  
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2.6. Phenotypical assays 

2.6.1. Vegetative growth assay 

For phenotypic analysis of colony growth, drops of water containing several microconidia 

concentration were spotted onto YPD or MM agar plates and plates were incubated at 28°C 

for 3 days. For cell wall stress assays 30 μg/ml Calcofluor white (Sigma) were added to 50 

mM MES (10, 66 g/l) -buffered SM agar, pH 6.5 (Ram and Klis, 2006). The pH indication 

Bromcresol purple (stock solution 5 ml/l) was added to MM media 0, 5% (v/v). Preparation of 

stock solutions from these compounds is summarized in Table 7. All experiments included 

three replicates and were performed at least three times with similar results. 

 
Table 7. Preparation of stock solutions for fungal and bacteria media. 

      Component/Company         Preparation                Storage 

Calcofluor white (CFW); Sigma  1% (w/v) with 0.5% (w/v) KOH and 83% 
glycerol (v/v), Stock: 10 mg/ml 

-20 C in the dark 

Urea (Merk, Cas:5 7-13-6) Sterile filtrated stock solution (0,5 M) Room temperature 

Arginine (Sigma) Sterile filtrate stock solution (0,5 M) 4°C 

Bromcresol Purple Stock (0,09g/10 ml) Room temperature 

Hygromycin Stock (50 mg/ml) -20 °C 

Phleomyin Stock (20 mg/ml) -20 °C 

Ampicillin Stock (50 mg/ml) -20 °C 

Kanamycin Stock (50 mg/ml) -20 °C 

 
 

2.6.2. Cellophane penetration 

For cellophane invasion assays (Prados-Rosales and Di Pietro, 2008) autoclaved cellophane 

sheets were placed on MM plates and the centre of each plate was inoculated with 5 μl of 2 

x 107 microconidia per ml. After 3 days at 28°C, the cellophane sheet with the fungal colony 

was removed carefully. The presence or absence of fungal mycelium on the underlying 

medium was recorded after incubation of the plates for an additional 24 h at 28°C. All 

experiments included three replicates and were performed three times with similar results. 

 

2.6.3. Culture condition for ammonia secretion and pH assays 

F. oxysporum (5x 108) microconidia were inoculated in 100 ml PDB and incubated for 14 h 

with shaking (170 rpm) at 28 °C. Germlings were washed with sterile ddH2O and shifted in 
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liquid 50 ml MM media (time point T=0) containing the different nitrogen or carbon sources 

and incubated on a shaker (170 rpm) at 28°C.  At different time points 600 µl aliquots were 

taken, centrifuged and the supernatant splited into two tubes. The pH was measured directly 

with a pH electrode for microsamples (<100 µl, 5028 Crison). The second tube was stored at -

80 to measure ammonia and/or glucose concentration.  

For ammonia measurement of the protein extracts against the supernatants, all samples 

were adjusted to the same volumes to calculate the ammonia concentration according to the 

initial culture volume of 50 ml. The ammonia assay was done in Multilabel Microplates with 

following volumes. 160 µl of the protein extract or supernatant (either directly after dialysis 

or after lyophylization and 10x concentrated) was added to 20 µl of 10x urease reaction 

buffer (1) and 20 µl of urea (0, 5 M) mixed well and incubated at 37 °C. 5 µl of the reaction 

mix was taken every 30 minutes, absorbance was measured and used to calculate ammonia 

production over time as describe below.  

(1)  Urease reaction buffer (1x): 10 mM potassium phosphate, 10 mM lithium 
chloride, 1 mM EDTA, pH 8.2 

 

2.7. Ammonia measurement  

Ammonia was determined with the Ammonia Assay Kit (Sigma) following the manufacture 

instruction with following modifications. The measurements were done in multi-well plates 

and absorbance at 340 nm was determined in a Multilabel Microplate Reader (Spectrafluor 

Plus, TECAN). 5 µl of the culture supernatants (diluted 1:25) was incubated with 100 µl of the 

Ammonia Assay Reagent for 5 minutes and absorbance were measured at 340 nm. After 

adding 10 µl of the enzyme L-Glutamate Dehydrogenase (1:10 diluted with 50 mM PO4 

buffer, pH 7, 4) the plate was incubated for 5 minutes and measured again. The absorbance 

was calculated with a standard curve (NH4NO3 in a concentration rage from 2, 5 mM- 0, 0625 

mM).  For the standards, absorbance at 340 nm was ploted (nm; y axis) vs. concentration of 

ammonia (mM; x axis) and the concentration of ammonia (mM) was calculated using the 

standard curve formula and multiplied by the dilution factor in sample preparation. 
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2.8. Glucose measurement  

Glucose concentrations were determined with the Glucose (GO) Assay Kit (Sigma) following 

the manufacture instruction with following modifications. The measurements were done in 

multi-well plates and absorbance at 540 nm was determined in a Multilabel Microplate 

Reader (Spectrafluor Plus, TECAN). Therefore, 40 µl of the culture supernatants (1: 500 

diluted) were mixed with 80 µl of fresh prepared Assay Reagent (A) and incubated 30 

minutes at 37°C. After 30 minutes the reaction was stopped by adding 80 µl of H2SO4 12N. 

The absorbance was calculated with a standard curve (80 mg- 10 mg) using the provided 

glucose standard.  For the standard absorbance at 540 nm (nm; y axis) was plotted vs. the 

concentration of glucose (mg, x axis) and the concentration of glucose (mg) was calculated 

using the standard curve formula and multiplied by the dilution factor in sample preparation.  

(A)  Glucose Oxidase/Peroxidase Reagent was prepared by adding 39, 2 ml of H2O. O-

Dianisidine Reagent was resuspended in 1 ml of H2O. The Assay Reagent was always 

prepared fresh as a 1: 50 dilution of o-Dianisidine Reagent and Glucose 

Oxidase/Peroxidase Reagent. 

 

2.9. Infection assays 

2.9.1. Fruit infection 

Invasive growth assays on apple slices (cultivar Golden Delicious) were carried out as 

described (Di Pietro et al., 2001; Sánchez López-Berges et al., 2009), using three replicates. 

Briefly, apple slides were inoculated with 5 μl of a freshly obtained microconida suspension 

(2 x 107 microconidia per ml) and incubated in a humid chamber for 3 days at 28°C. Invasive 

growth was documented either by scanning the apple slides or by measuring the diameter of 

the infected tissue area.  

 

2.9.2. Plant root infection 

Tomato root infection assays were performed in a growth chamber as described (Di Pietro 

and Roncero, 1998), using the susceptible cultivar Money Maker (Syngenta Seeds, Almeria, 
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Spain). Briefly, two week-old tomato seedlings were inoculated with F. oxysporum strains by 

immersing the roots in a microconidial suspension (2, 5 x 108/50 ml H2O) planted in 

vermiculite and maintained in a growth chamber. Ten days after inoculation, severity of 

disease symptoms was recorded with indices ranging from 1 (healthy plant) to 5 (dead plant) 

(Huertas-González et al., 1999). The dates of termination of plants were used to determine 

survival after challenge. Survival was calculated by the Kaplan-Meier method with the 

software GraphPad Prism 5. Ten plants were used for each treatment.  

 
2.9.3. Gene expression in infected roots 

For analysis of gene expression in F. oxysporum during infection of tomato plants, roots of 2 

week old plants of the susceptible cultivar Money Maker (Syngenta Seeds, Almeria, Spain) 

were immersed into microconidial suspensions of the different strains in sterile water (2.5 x 

106 ml-1) for 48 h at 28°C. Roots with adhering mycelium were collected, frozen in liquid 

nitrogen and processed as normal mycelium for RNA extraction.  

 

2.9.4. Galleria mellonella infection 

G. mellonella infection was performed as described in Navarro-Velasco et al. 2011. Briefly, G. 

mellonella larvae in the final larval stage were obtained from the company animal center, 

s.c.p., Valencia (Spain) maintained in glass bottles with sterile artificial diet in the dark and 

used within 2 days from the day of shipment. Larvae between 0.2 and 0.3 g in weight were 

employed in all assays. 15 randomly chosen larvae per treatment were used in each 

experiment. A Burkard Auto Microapplicator (0.1–10 ll; Burkard Manufacturing Co. Limited, 

Hertfordshire, UK) with a 1 ml syringe (Terumo Medical Corporation, Somerset, NJ) was used 

to inject 8 μl of microconidial suspension in (2x 107 microconidia/ml in 1x PBS) into the 

hemocoel of each larva through the last left proleg. Before injection, the area was cleaned 

using an alcohol swab. Larvae injected with 8 μl PBS served as controls. After injection, larvae 

were incubated in glass containers at 30 °C, and the number of dead larvae was scored daily. 

Larvae were considered dead when they showed melanisation (Figure 2C) and displayed no 

movement in response to touch. The Kaplan–Meier test was used to assess statistical 

significance of differences in survival among groups using Graph Pad Prism 5. Differences 

1 2 3 4 5 
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indicated with a P value of less than <0.05 were considered significant. Each experiment was 

performed at least three times with similar results.  

       

   

Figure 2. Inoculation with F. oxysporum wt microconidia leads to melanisation (B) and death (C) of G. 
mellonella larvae. 

 

2.9.5. In vivo gene expression in infected G. mellonella 

For determination of fungal gene expression, groups of 10 insects were injected with 2 x 104 

microconidia per larva and incubated at 30 °C as described above. Forty eight hours after 

infection, three randomly chosen larvae per group were sacrificed, homogenized individually 

in liquid nitrogen and RNA isolation was performed as described in X. F. oxysporum gene 

sequences for qRT-PCR were determined by BLAST search with the corresponding sequence 

from Rhizophagus intraradices (Fellbaum et al., 2011) against the BROAD Fusarium Database 

(http://www.broadinstitute.org/). Sequence data can be found in the Fusarium Genome 

Database under following accession numbers: nt: nitrate transporter (FOXG_ FOXG_00635); 

gs1: glutamine synthetase 1 (FOXG_05182); al: argininosuccinate lyase (FOXG_01957); car1: 

arginase (FOXG_12915); oat: ornithine aminotransferase (FOXG_09346); odc: ornithine 

decarboxylase (FOXG_07603); ureG: urease asseccory protein G (FOXG_13832); ure1: 

urease1 (FOXG_01071); nit1: nitrate reductase (FOXG_04181); ure2: urease2 (FOXG_ 

FOXG_17146); Dur3: urea transporter (FOXG_12291); MepB: ammonia permease 

(FOXG_00462) 

 

2.9.6. Mice infection 

All animal experimentation was done in accordance with UK Home Office regulations and 

was approved by both the UK Home Office and the University of Aberdeen ethical review 

committee. Female BALB/c mice (Harlan, UK; 6-8 weeks old) were maintained in groups of 

A healthy B ill C dead 
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up to 6 animals per cage. All mice were fed sterilized laboratory chow and water ad libitum. 

Each animal was individually marked and was weighed daily. Immunosuppression was 

performed by intraperitoneal injection of 150 mg cyclophosphamide (Sigma) per kg body 

weight, which was repeated every 3 days thereafter. For preparation of challenge inocula, 

microconidia were obtained by filtration as described previously (Di Pietro and Roncero, 

1998) harvested by centrifugation, washed, and resuspended in sterile physiological saline. 

The conidia concentration was adjusted with a hemocytometer to the desired density. The 

actual inoculum level was confirmed by plating serial dilutions on potato dextrose agar 

plates (PDA; Sigma) and incubating for 24 h at 28°C. Mice were infected by intravenous 

injection of 0.2 ml of a conidia suspension into a lateral tail vein. Mice were observed for up 

to 28 days post-challenge and were humanely terminated when they showed signs of severe 

illness and/or their body weight reduced by more than 20% of their initial body weight. 

Animals culled due to severe illness were recorded as having died on the following day.  Data 

was used to construct Kaplan-Meier survival curves, with differences determined by log rank 

statistics using GraphPad Prism 5.  

 

2.9.7. Tissue burden and histopathology 

When mice were culled the hearts, lungs, kidneys, spleens and livers were aseptically 

removed, and one half of each organ was weighed and homogenized in 0.5 ml sterile saline. 

Ten fold serial dilutions of this homogenate were spread onto PDA. Plates were incubated at 

28°C, colonies were counted after 48 h and CFU per gram for each organ were calculated. 

Fungal colony counts were converted to Log10 and data were analysed with the software 

GraphPad Prism 5. The remaining halves of the organs were embedded in Cryo-M-bed 

(Bright Instruments, UK) and flash frozen. Sections (8 μm) were stained with Periodic acid-

Schiff (PAS)-hematoxylin and examined by light microscopy. In addition, samples of spleen 

tissue from infected immunocompetent mice were homogenized, treated with KOH and 

stained with 25 μg ml-1 Calcofluor White (CFW) to visualize fungal structures.  
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2.10. F. oxysporum macrophage phagocytosis assay 

 

2.10.1. F. oxysporum staining using Fluorescein Isothiocyanate (FITC) 

To visualize F. oxysporum during phagocytosis assays, germlings were havested and stain 

with 0, 5 ml of fresh prepared FITC (Sigma, UK) in 1 mg/ml in 0.05 M carbonate-bicarbonate 

buffer (pH 9.6) for 20 min at room temperature in the dark. Unbound FITC was removed by 

washing F. oxysporum in 1 ml 1 x PBS. After centrifuging at 3,000 × g for 5 min the 

supernatant was removed and the pellet washed for three times in 1 ml 1 x PBS before the 

pellet was finally resuspended in 1 x DMEM medium (Lonza, Slough, UK).  

 

2.10.2. F. oxysporum culture preparation for microscopy imagine 

Murine J774.1 macrophages (2x 105m/ml) were cultured in 12 well cell culture plate (Cell 

star from Greiner bio-one) in DMEM media at 37°C with 5% CO2 over night. Macrophages 

were co-cultured with FITC-stained F. oxysporum germlings as follows. F. oxysporum (6x 105 

c/ml) microconidia were germinating for 8h in 1 ml DMEM media at 37 C with 5% CO2 in 

multi-well plates. The germlings were stained with FITC (as described above). The DMEM 

media from the pre-cultured macrophage cultures was removed and the fresh DMEM media 

containing the FITC stained F. oxysporum germlings were added at a 3:1 ratio for co-

incubating at 37°C with 5% CO2. After 2h; 4h; or 8h of co-incubation the cell cultures were 

fixed with 4% Paraformaldehyde (2). Therefore the DMEM media was removed; 1 ml of 

Paraformaldehyde was added and incubated for 5 minutes in the dark. After the 

Paraformaldehyde was removed the cell culture plate containing F. oxysporum and the 

macrophages was washed with PBS and stored in 1 ml PBS at 4°C in the dark until 

microscopy investigation. Before microscopying, the F. oxysporum germlings were stained 

with CFW (25 µg/ml) by adding 25 µl of Fluorescent Brightener 28 (1mg/ml) to the culture. 

Fungal cells stained with CFW obtain blue and are attached or ouside the macrophaes. CFW 

can not enter the macrophages and phagocytosed FITC labelled fungal germlings appeared 

green.  
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(2)  Dissolve 1.2g Paraformaldyde in 19 ml PBS and heat to 60 °C (add 10 µl of 5M 

NaOH until it is dissolve). Add 10 ml PBS and adjust pH 7.2 (approx. 5µl of 5M 

HCl). Vfin 30 ml. Sterile filtrate and store at 4°C until use. 

 

2.10.3. Preparation and culturing of the J774.1 mouse macrophage cell line 

J774.1 macrophages cell cultures were maintained in 75 cm2 tissue culture flasks in DMEM 

medium supplemented with 10% (v/v) fetal calf serum (FCS), 200 U/ml 

penicillin/streptomycin and 2 mM L-glutamine at 37 °C with 5% CO2. (The preparation of 

primary macrophages is described in detail in McPhillips et al., 2009; Erwig et al., 2006). 

J774.1 cells were scraped from the tissue culture flask and transfered to a 50 ml Falcon tube 

and centrifuged at 600 × g for 5 min to obtain a cell pellet. Supernatant was removed and 

the pellet was resuspended in 10 ml pre-warmed supplemented DMEM medium. Cells were 

counted using a haemocytometer.  

 

2.10.4. Macrophage cell preparation for live-cell imagine  

1 × 106 J774.1 macrophages were plated in 2 ml supplemented DMEM medium in a 35 mm 

glass-based Iwaki imaging dish (VWR, Leistershire, UK) and incubated overnight at 37 °C, 5% 

CO2. Prior imaging, replace supplemented DMEM medium with 2 ml pre-warmed 

supplemented CO2-independent medium (with 10% (v/v) fetal calf serum (FCS), 200 U/ml 

penicillin/streptomycin and 2 mM L-glutamine) containing 1 μM LysoTracker Red DND-99 

(Invitrogen, Paisley, UK) (Erwig et al., 2006). 

 

2.10.5. Phagocytosis assay using live cell video microscopy 

For live-cell imaging the DeltaVision Core microscopy (Applied Precision, Washington, USA) 

including point-revisiting and time-lapse features with an environmental control chamber 

was used for the long term experiment of the live cell video of the F. oxysporum macrophage 

phagocytosis assay. The microscope setup included an inverted stage and video microscopy 

was conducted at an environmental chamber heated to 37 °C and excitation/emission filters 

for the chosen stains (FITC and TRITC). The imaging dish was mounted on the microscope 
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stage and the focus was adjusted to find the J774.1 macrophages. The appearance was 

optimized for TRITC and DIC images by adjusting the percentage of transmitted light and 

exposure times.  

Phagocytosis assay with F. oxysporum was performed using a protocol previously described 

for C. albicans (Lewis et al., 2012a; Rudkin et al., 2013). F. oxysporum microconidia (6 x 105 

c/ml) were germinated for 8 h in DMEM media at 37 °C with 5% CO2, stained with FITC (as 

described above) and added at a 3:1 ratio to glass-based Iwaki imaging dish containing 

macrophages stained with LysoTracker Red (described above) in supplemented CO2-

independent medium. Video microscopy was performed at 37°C with a DeltaVision Core 

microscope (Applied Precision, Washingtom, USA) and images captured at 1 min intervals for 

6 h by an EMCCD camera. 

 

2.10.6. Analysis of live cell video microscopy movies 

Murine macrophages were selected from eleven movies and analysed individually at 1 min 

intervals throughout the 6 h phagocytosis assay. Measurements taken included F. oxysporum 

uptake, defined as the number of F. oxysporum germlings taken up by an individual 

phagocyte (n=190) over the 6h period. 

The rate of engulfment of F. oxysporum cells by macrophages (n=219) were determined by 

the time points at which a F. oxysporum cell was fully engulfed, defined as the time taken 

from establishment of cell-cell contact to complete ingestion of a F. oxysporum cell (Lewis et 

al., 2012a). A fungal cell was considered to have been fully ingested when the FITC 

fluorescent signal was diminished, indicating that the fungal cell was inside the macrophage. 

The percentage of macrophage killing s was defined as the percentage of macrophages (n= 

194) that had been killed by specific time points over a 6 h period. Counting was used to 

calculate the percentage of macrophages killed by F. oxysporum in relation to the defined 

number of phagocytosed germlings over a 6 h period.  Macrophage migratory responses to 

the presence of F. oxysporum were determined by tracking directional and distance 

components of movement between 1 minute intervals for the first 30 minutes of live video 

microscopy movies, as this represents a period of elevated migratory activity (Lewis et al., 
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2012a).  Volocity 6.3.0. software (PerkinElmer, Massachusetts, USA) was used to track and 

analyse 50 macrophages from 3 representative movies. 

 

2.11. Microscopic and binocular analysis  

 

Microscopic imagings of F. oxysporum were performed using the Zeiss Imager M2 from Axio 

Zeiss. For High-resolution three-dimensional and fluorescence imaging were performed by 

the stereomicroscopy (SteREO Lumar. V12, Zeiss). 

 For Fluorescent Microscopy of the F. oxysporum macrophage assays the Zeiss Axio Observer 

Z1 inverted microscope with motorised filter sets (DAPI, FITC) was used for imaging.  For live-

cell imaging the DeltaVision Core including point-revisiting and time-lapse features with an 

environmental control chamber was used for the long term experiment of the live cell video 

of the F. oxysporum macrophage phagocytosis assay.  

 

2.12. Bioinformatic analysis 

 

2.12.1. Sequence retrieval and Phylogenetic analysis 

The corresponding gene sequence of putative F. oxysporum Msb2 interactor proteins and of 

putative UreG homologoues for amino acid alignments (Software: BioEdit) with other 

organisms were identified by BLAST search in the Fusarium Comparative Database of the 

Broad Institute (http://www.broadinstitute.org) and the NCBI genome Database 

(http://www.ncbi.nlm.nih.gov/). The phylogenetic tree was perfomed using the online 

program Phylogeny (http://www.phylogeny.fr) with following modulation of Tree Rendering: 

TreeDyn; Tree style: Cladogram (ignore branch lengths); Display branch support values in %. 

 

 

 



 

57 

 

2.12.2. Software 

Data management and processing was performed using different software products listed in 

Table 8. 

Table 8. Software products used in this work. 
               Program     Application 

LaserGene (DNA-Star) Sequence editor 

 SeqBuilder           ORF and restriction sites analyzer 

Vector NTI ®(Invitrogen) Sequence edition, visualize maps, cloning strategy 

BioEdit Sequence alignment 

Oligo 6 Synthetic oligonucleotides design 

Phylml Phylogenetic trees computation 

AxioVision Edition and analysis of binocular and microscope Images 

Fujifilm Image Reader Obtaining, edition and analysis of chemiluminescence Images 

Kodak 1D Image Analysis Obtaining, edition and analysis of DNA and RNA gel 

Espson Scan Image scanning 

Bio-Rad iQ5 Obtaining and analysis of real time RT-PCR data 

Microsoft Office Word   Word processing 

 PowerPoint Image presentation and processing 

 Excel   Data processing 

EndNote Reference and bibliography editor 

Adobe Photoshop Elements Image processing 

Adope Illustrator Elements Image processing 

GraphPad Prism 5  Calculation of survival by the Kaplan-Meier method 

ImageJ                Image and Live cell video processing 

Carl Zeiss Vision (AxioVision 4.7)                Imaging and Image analysis 

Velocity Demo (PerkinElmer)                Live cell microscopy imaging and image analysis 
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Chapter 1 

 

Murine model for Fusarium oxysporum invasive fusariosis 
reveals organ-specific structures for dissemination and long-
term persistence 

 
Summary 

The soil-borne plant pathogen Fusarium oxysporum causes life-threatening invasive 

fusariosis in immunocompromised individuals. The mechanism of infection in mammalian 

hosts is largely unknown. In the present study we show that the symptoms of disseminated 

fusariosis caused by F. oxysporum in immunosuppressed mice are remarkably similar to 

those reported in humans. Distinct fungal structures were observed inside the host, 

depending on the infected organ. Invasive hyphae developed in the heart and kidney, 

causing massive colonization of the organs. By contrast, chlamydospore-like survival 

structures were found in lung, spleen and liver. Systemically infected mice also developed 

skin and eye infections, as well as thrombosis and necrosis in the tail. We further show that 

F. oxysporum can disseminate and persist in the organs of immunocompetent animals, and 

that these latent infections can lead to lethal systemic fusariosis if the host is later subjected 

to immunosuppressive treatment. 

 

The work of this chapter has been performed at the Institute of Medical Sciences, University 

of Aberdeen (UK), under the supervision of Professor Neil A.R. Gow and Dr. Donna 

MacCallum. 

 

The results of this chapter have been published: 

Schäfer K, Di Pietro A, Gow NA, Maccallum D. Murine Model for Fusarium oxysporum 
Invasive Fusariosis Reveals Organ-Specific Structures for Dissemination and Long-Term 
Persistence. PLoS One. 2014 Feb 27;9 (2)c:e89920. PMID: 24587124. 
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1. Introduction 

Fungi of the genus Fusarium are important plant pathogens commonly found in soil, water 

and decaying organic matter (Naggie and Perfect, 2009). In addition, Fusaria can cause a 

broad spectrum of diseases in humans, ranging from superficial or localized infections in 

healthy hosts to lethal disseminated fusarioses in immunocompromised patients (Dignani 

and Anaissie, 2004).  

Today, Fusarium is the second major cause of mould infections in immunocompromised 

patients after aspergillosis, and the incidence is increasing (Nucci and Anaissie, 2007). 

Fusarium species are among the most drug resistant fungal pathogens (Anaissie et al., 1991; 

Reuben et al., 1989; Rotowa et al., 1990) and thus associated with high morbidity and 

mortality rates (de Pauw and Meunier, 1999; Walsh et al., 1996). Rapid diagnosis is essential 

for successful antifungal therapy and survival of the patient. In many cases the entry sites of 

disseminated Fusarium infections remain unclear, but reported portals of entry include 

onychomycosis, the respiratory tract (particularly paranasal sinuses), the gastrointestinal 

tract, and the central venous lines.  

However, few model systems for evaluating virulence and pathogenesis of this group of fungi 

have been described. Here we developed a murine infection model and use it to 

demonstrate that the infection symptoms caused by disseminated Fusarium infection in 

immunosuppressed mice are remarkably similar to those reported in humans (Dignani and 

Anaissie, 2004; Nucci and Anaissie, 2002; Nucci and Anaissie, 2007). One of the most 

frequent symptoms of infection by Fusarium species is the development of skin lesions, 

which are most commonly found on the extremities. They are described as painful 

subcutaneous nodules that can result in thrombosis and tissue necrosis (Fan et al., 2010). 

Skin lesions are often the only source of diagnostic material, because blood cultures remain 

negative in many cases, in spite of blood dissemination (Nucci and Anaissie, 2006). Therefore, 

it is of interest to characterize the clinicopathological features of skin lesions and their role in 

Fusarium infection and to establish them in the diagnosis and management protocols of 

fusariosis. Previous studies suggest that Fusarium can cause skin lesions even in 

immunocompetent individuals, and that upon immunosuppression these foci can lead to the 
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development of invasive and disseminated fusariosis (Boutati and Anaissie, 1997). It has 

been recommended that patients to undertake severe immunosuppressive therapy should 

undergo a thorough skin evaluation before initiation of therapy (Nucci and Anaissie, 2002).  

Soil-borne Fusarium oxysporum is the causal agent of vascular wilt, a devastating disease 

affecting a large variety of economically important crops worldwide (Beckman, 1987c). F. 

oxysporum also causes invasive infections in immunosuppressed individuals, being the 

second most frequent species of the genus after Fusarium solani, (Guarro and Gene, 1995; 

Nucci and Anaissie, 2007). The incidence of invasive fungal infections leading to significant 

morbidity and mortality is rising because of the increase of the pool of immunocompromised 

patients caused by a dramatically increase number of solid organ transplants and the use of 

newer and more potent chemotherapeutic agents (Low and Rotstein, 2011). This is coupled 

with an increase in the number of reports of severe cases of invasive fusariosis often with 

lethal outcomes, due to the broad resistance to antifungal drugs (Boutati and Anaissie, 1997; 

Odds et al., 1998). F. oxysporum infections are often misdiagnosed as a result of the 

histopathological similarities with Aspergillus or non-Aspergillus hyalohyphomycoses (Boutati 

and Anaissie, 1997; Dignani and Anaissie, 2004; Nelson et al., 1994; Silveira and Husain, 

2007).  

Previous work established that a tomato pathogenic isolate of F. oxysporum f.sp. lycopersici 

can cause disseminated infection in immunocompromised mice (Ortoneda et al., 2004). The 

ability to cause disease in both plants and mammals makes F. oxysporum a unique multihost 

pathogen for studying fungal infection across different host kingdoms. To date several 

knockout mutants have been tested for virulence in immunosuppressed mice (Lopez-Berges 

et al., 2012; Lopez-Berges et al., 2013; Martinez-Rocha et al., 2008; Ortoneda et al., 2004; 

Prados-Rosales et al., 2012).  

In the present study we used the F. oxysporum-mouse model to investigate infectious 

growth of F. oxysporum in mammals. We found that F. oxysporum develops distinct invasive 

structures, including hyphae, microconidia and chlamydospores, depending on the infected 

organ. We further show that F. oxysporum can cause thrombosis and necrosis in the tails of 

immunosuppressed mice, which can serve as model to study fungal skin infection in 
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mammals. Finally we present strong evidence for dissemination of F. oxysporum in 

immunocompetent animals. Our results suggest that latent organ infections without 

macroscopic disease symptoms can initiate lethal systemic fusariosis, if the host is later 

subjected to immunosuppressive treatment. 

 

2. Results 

2.1. Effect of inoculum size and timing of immunosuppressive treatment on the 
severity of F. oxysporum systemic infection 

The effect of inoculum size on systemic infection by F. oxysporum in immunosuppressed 

mice was investigated. Intravenous inoculation with 2 x 107 microconidia led to rapid 

development of systemic infection, with all mice becoming severely ill within 24 h (Figure 1A). 

An inoculum of 2 x 106 microconidia also caused 100% mortality, however disease 

progression was significantly slower (p = 0.0016, with all mice dying within 5 days. Finally, 

inoculation with 106 microconidia caused a significant drop in mortality, with only two of the 

six infected mice succumbing to infection within the 20 d observation period (p = 0.0024). 

We next tested the effect of timing of immunosuppression on disease severity. When the 

immunosuppressive treatment was initiated 3 d prior to infection (day -3) and repeated 

every 3 days thereafter, all mice succumbed to infection (Figure 1A & B). By contrast, a delay 

in the start of the immunosuppression (day 0) led to a significant reduction in mortality (p = 

0.0009) (Figure 1B). Fungal burdens in the heart, lung and liver declined by 1-2 orders of 

magnitude over 18 days following inoculation, but remained at the same level in the kidneys 

and declined only slightly in the spleen (Figure 1C).  
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Figure 1. Effect of inoculum size and 
timing of immunosuppression on the 
severity of F. oxysporum systemic 
infection. (A) BALB/c mice (n=6) were 
inoculated intravenously with F. 
oxysporum microconidia. 
Immunosuppressive treatment (150 mg 
cyclophosphamide per kg body weight) 
was initiated three days prior to 
infection (day -3) and repeated every 3 
days thereafter. Survival was recorded 
for 20 days. An inoculum dose of 2 x 10

6
 

microconidia caused significantly lower 
mortality than 2 x 10

7
 microconidia (p = 0.0016); 10

6
 microconidia caused significant lower mortality 

than 2 x 10
6
 microconidia (p = 0.0024). (B) BALB/c mice (n=6) were inoculated with 2 x 10

7
 

microconidia, and immunosuppressive treatment was initiated either on day -3 or on day 0, and 
repeated every 3 days thereafter. Survival was recorded over 20 d. (C) Fungal burdens in mice 
immunosuppressed on day 0 and inoculated with 2 x 10

7
 microconidia. On each of the indicated days 

post-infection (dpi), one animal was sacrificed and organ homogenates quantified.    

 

2.2. F. oxysporum displays distinct invasion strategies in different organs of the host 

Variations in the fungal burdens observed (Figure 1C) prompted us to conduct a 

histopathological analysis of the invasive growth of F. oxysporum in mice subjected to 

immunosuppressive treatment on day 0, and every 3 days thereafter. PAS-hematoxylin-

staining of tissue sections revealed striking differences in fungal development between 

different organs. At 24 h post inoculation, a significant number of microconidia had 

germinated in the heart and kidney (Figure 2A & D), whereas only ungerminated 

microconidia were observed in lung, spleen and liver (data not shown). After 4 d post-

inoculation (dpi), branched fungal hyphae had developed in the heart and kidney (Figure 2B 
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& E), leading to the production of large mycelial colonies and the complete invasion of the 

infected tissue area at 16 dpi (Figure 2C & F). Invasive growth was particularly aggressive in 

the kidneys (Figure 3), where the fungal biomass was detectable macroscopically on the 

surface of the organ (Figure 3A & C). By contrast, invasive growth was not detected in the 

lung, spleen and liver. Instead, F. oxysporum developed chlamydospore-like structures, 

which were detected at 4 dpi and remained visible at 16 dpi (Figure 2G, H & I).  

 

20 μm
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Figure 2. Fusarium oxysporum displays distinct growth morphologies in different organs. PAS-
hematoxylin-staining of tissue sections from organs of immunosuppressed mice, on day 1 (A, D), 4 (B, 
E, G, H, I) or 14 (C, F) post-infection with 2 x 10

7
 microconidia: heart (A-C), kidney (D-F), lung (G), 

spleen (H), liver (I). Fungal structures are indicated by arrows. G, microconidial germlings; M, 
mycelium; C, chlamydospores. Scale bar = 50 µm.  
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Figure 3. Invasive growth of F. oxysporum in the kidney. (A) Fungal biomass on the surface of an 
aseptically removed kidney from an immunosuppressed mouse, obtained 20 d after infection with 1 x 
10

6
 microconidia. Visible fungal lesions are indicated by arrows. (B) Kidney cross section from an 

immunosuppressed mouse infected with 1 x 10
6
 microconidia and sampled at 20 dpi. Bright areas 

correspond to fungal biomass stained with the chitin-binding dye Calcofluor White (CFW). The white 
box indicates the area used for the tissue section shown in C. (C) PAS-hematoxylin staining of a tissue 
section. The area of invasive mycelial growth is surrounded by arrows. M, mycelium. Scale bars are 
indicated.  

 

2.3. F. oxysporum causes thrombosis and necrosis in tails and infections in eyes of 
immunosuppressed mice 

We noted that the immunosuppressed mice infected with F. oxysporum developed bulges 

and swellings which appeared at multiple sites along the tail, not restricted to the site of 

inoculation (Figure 4B). Some of these swellings subsequently turned into open lesions 

(Figure 4C & E). In addition, some mice displayed macroscopic symptoms of necrosis at the 

tail. The necrotic tissue was initially visible as a black region at the tip (Figure 4D & E) which 

spread upwards along the tail, in some cases leading to loss of the tip (Figure 4F). Calcofluor 

white (CFW) staining of tissue samples obtained from the open wounds revealed the 

presence of chlamydospores and hyphae of F. oxysporum (Figure 4 G & H). 

Another observation associated with the presence of F. oxysporum in the 

immunosuppressed mice was the development of infection symptoms around and within the 

eye (Figure 4I-M). The presence of fungal structures in the infected eye tissue was confirmed 

microscopically (Figure 4N).  

A C 
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Figure 4. F. oxysporum causes infection in 
the tails and eyes of immunosuppressed 
mice. (A) Tail of a non-infected 
immunosuppressed BALB/c mouse. (B-E) 
Tails of immunosuppressed BALB/c mice 
intravenously inoculated with 1 x 10

6
 

conidia at 10 d post-infection. Macroscopic 
symptoms are indicated by arrows: 
swellings (B,D), open lesions (C), necrosis 
(D,E), and loss of the tip (E). (F, G) CFW 
staining of tissue samples taken from the 
lesion shown in (C). Fungal structures are 
indicated by arrows. H, hyphae; C, 
chlamydospores. (H-L) Infection of the eye 
tissue in immunosuppressed mice infected 
with F. oxysporum. (H) Uninoculated mice; 
(I-K) mice inoculated with with 1 x 10

6
 

conidia at 10 dpi . (L) CFW staining of an eye 
removed from a immunosuppressed mice 
infected with F. oxysporum. H, hyphae. 
Scale bar = 50 µm (F, G); 1 mm (L).  

 

2.4. F. oxysporum disseminates and persists in immunocompetent mice 

Inoculation F. oxysporum typically leads to 70-100% mortality in immunosuppressed mice, 

whereas immunocompetent animals fail to display detectable signs of illness ((Ortoneda et 

al., 2004) and this work, data not shown). Thus, we investigated whether F. oxysporum was 

able to disseminate and persist in an immunocompetent host. Strikingly, fungal burdens at 4 

dpi in immunocompetent mice inoculated with 2 x 107 microconidia were similar or only 

slightly lower than in animals subjected to immunosuppressive treatment on day 0, and 

every 3 days thereafter (Figure 5A). F. oxysporum microconidia and germlings were observed 

in the heart, lung, kidney, spleen and liver of immunocompetent animals (Figure 5C-F). At 11 

dpi the fungal burdens in immunocompetent animals had declined by approximately two 

orders of magnitude in most of the organs, but remained relatively high (~105 CFU per g 

tissue) in the spleen (Fig 5B). Indeed, PAS-hematoxylin and CFW staining confirmed the 

presence of chlamydospores, as well as germinated and ungerminated microconidia in 

different organs of infected animals at 4 and 11 dpi (Figure 4G). 
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Figure 5. F. oxysporum disseminates and persists in immunocompetent mice. (A) Fungal burdens 
were determined at day 4 post-infection for groups of 3 BALB/c mice, either immunocompetent or 
immunosuppressed on day 0, and intravenously infected with 2 x 10

7
 microconidia. (B) Fungal burdens 

in infected immunocompetent mice sacrificed at 11 d post-infection. (C-F) PAS-hematoxylin-staining 
of tissue sections obtained from different organs of immunocompetent mice sacrificed at 4 d post-
infection. (C) heart, (D) lung, (E) kidney, (F) liver. (G) Spleen sample from an infected 
immunocompetent mice sacrificed at 11 d post-infection was homogenized, KOH-treated and stained 
with CFW to visualize fungal structures (indicated by arrows). G, microconidial germlings; C, 
chlamydospores. Scale bar = 50 µm.   

 

 

2.5. Persistence of F. oxysporum in the immunocompetent host can lead to subsequent 
systemic infection upon immunosuppressive treatment 

The presence of fungal propagules in the organs of immunocompetent mice even at >10 dpi 

suggests that F. oxysporum can develop resting structures such as chlamydospores, but also 

actively growing mycelium to persist within the immunocompetent host. Such a host might 

subsequently become susceptible to invasive fusariosis if the immune system is disrupted. 

When immunocompetent mice inoculated with F. oxysporum were subjected to 

immunosuppressive treatments starting at either 3 or 7 dpi and repeated every 3 days 

thereafter, one mouse in each group died at 16 and 15 dpi, respectively (Figure 6A). Fungal 

burden was determined in different organs from one of the killed mice, revealing high counts 
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of fungal propagules (Figure 5B). Tissue sections confirmed the presence of invasive mycelial 

growth in multiple organs, including heart, kidney spleen and liver, indicative of systemic 

fusariosis (Figure 5C-F). 
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Figure 6. Persistence of F. 
oxysporum in 
immunocompetent mice can 
lead to systemic infection and 
death upon subsequent 
immunosuppression. (A) 
BALB/c mice (n=6) were 
intravenously inoculated with 
2 x 10

7
 microconidia. 

Immunosuppressive treatment 
was initiated either on day 3 or 
7 post-infection and repeated 
every 3 days thereafter. 
Survival was recorded over 20 
d. Fungal burdens (B) and PAS-
hematoxylin-staining (C-F) of 
organ sections from a mouse 
inoculated with 2 x 10

7
 F. 

oxysporum microconidia and subjected to immunosuppressive treatment starting at 7 dpi. The mouse 
that died was culled at 16 dpi. Organs: heart (C), kidney (D), spleen (E), liver (F). M, mycelium; C, 
chlamydospores.  Scale bar = 50 µm.  
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3. Discussion 

Fungi of the genus Fusarium are common soil inhabitants and notorious plant pathogens, 

and have long been recognized as etiologic agents of focal infections of the skin, nails, and 

cornea of humans (Paul and Cecilia, 1994). Moreover, invasive Fusarium infections in 

immunosuppressed patients are associated with high mortality rates (de Pauw and Meunier, 

1999; Walsh et al., 1996). Rapid antifungal therapy, achieved by a prompt diagnosis, is 

essential for survival of these patients. A critical step is the identification of Fusarium, which 

is often made difficult by some histopathological similarities with Aspergillus. Infections 

caused by both Fusarium and Aspergillus are characterized by hyaline branching septate 

hyphae at acute angles, which invade the blood vessels causing thrombosis and tissue 

infarction (Patterson et al., 2009; Silveira and Husain, 2007). Therefore, a detailed 

characterization of the invasive behaviour of Fusarium within the host, including growth and 

development of fungal structures formed by the pathogen and associated with disease, is 

required and will have important consequences for the diagnosis and management of 

fusariosis. Here we used the mouse model to investigate Fusarium infection in mammals. 

The usefulness of the animal model is highlighted by the finding that the disease symptoms 

observed in mice are remarkably similar to those reported in human fusariosis (Dignani and 

Anaissie, 2004; Nucci and Anaissie, 2002; Nucci and Anaissie, 2007). 

 

3.1. Fusarium oxysporum displays distinct growth morphologies in different organs 

A key result of this study is that F. oxysporum displays distinct invasion strategies in different 

organs of mice. While the fungus initiated hyphal growth 24 h after inoculation in the kidney 

and the heart, no such growth was detected in the spleen, liver or lung. Instead, 

chlamydospore-like structures were formed in these organs. This novel finding represents an 

important advance in our understanding of Fusarium infections in mammals. 

Chlamydospores are thick-walled cells generally developed through the modification of 

hyphal and conidial cells. Their formation is induced by aging or unfavorable environmental 

conditions such as low temperatures or carbon starvation. Chlamydospores represent the 
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principal structure for long-time survival during unfavorable periods in the soil, and play an 

important role as primary inoculum for plant root infection (Couteaudier and Alabouvette, 

1990; Kono et al., 1995; Nelson, 1981a; Schippers, 1981a; Stevenson and Becker, 1972). Our 

findings highlight the importance of detailed histopathological analysis of infection 

structures, in addition to routine determination of fungal burden. For example, kidneys 

contained reduced fungal burdens compared to the spleen, but microscopic analysis 

revealed massive mycelial invasive growth in this organ, which in some instances was even 

visible macroscopically on the organ surface. Thus, although fungal burden is a useful 

parameter for assessing fungal dissemination in the host, it fails to provide detailed 

information on the impact of filamentous pathogens on the infected organs. It was reported 

previously that during F. solani or A. fumigatus infection, quantitative culture led to 

underestimation of absolute fungal burden as compared to non-culture-based methods such 

as quantitative PCR or determination of galactomannan levels by enzyme immunoassays 

(EIAs) (Gonzalez et al., 2013; Marr et al., 2004; Musher et al., 2004; Sheppard et al., 2006). In 

an inhalational rat model of invasive pulmonary aspergillosis (IPA), both real-time nucleic 

acid sequence-based amplification (NASBA) and qPCR showed a progressive increase of 

fungal biomass in lung tissue, whereas CFU counts were stable over time (Zhao et al., 2010).  

 

3.2. F. oxysporum causes infection in the tails and eyes of immunosuppressed mice. 

A frequent symptom associated with Fusarium infections is the development of superficial 

skin lesions, described as subcutaneous nodules that can result in thrombosis and tissue 

necrosis (Fan et al., 2010). In more than 60% of disseminated Fusarium infections skin 

biopsies of affected patients revealed necrosis of skin papules (Bodey et al., 2002) and 

microvessel thrombosis associated with fungal hyphae (Fan et al., 2010). Here we found that 

infection of immunosuppressed mice by F. oxysporum led to macroscopic symptoms in the 

tail, including necrosis of the skin, swellings and wounds and even loss of the tail tip. 

Microscopic analysis of the skin lesions confirmed that the nodules contained both 

chlamydospores and hyphae of F. oxysporum. CFW staining proved to be highly useful for 
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detection of progressive systemic fusariosis in the mouse system, and could therefore be 

used as a rapid diagnostic tool in immunocompromised patients. Because skin lesions often 

appear during early stages of Fusarium infection before the disease spreads to the trunk and 

the extremities, they are crucial for the diagnosis and management of fusariosis, allowing 

rapidly initiation of a specific treatment in order to prevent progression of skin lesions and 

further necrosis. 

F. oxysporum keratitis is one of the most important causes of corneal ulcers, ocular 

morbidity and visual loss in developing nations (Bharathi et al., 2003). It is also a common 

type of infection caused by F. solani in immunocompetent individuals worldwide (Foster, 

1992; Gugnani et al., 1976; Ishibashi, 1982; Jones et al., 1970; Liesegang and Forster, 1980; 

Polack et al., 1971). A previous study on disseminated F. solani infection via inoculation of 

microconidia in the lateral tail vein of immunocompetent mice reported disease symptoms 

both in intra-ocular structures and in neighbouring muscles (Mayayo et al., 1999) Here we 

provide evidence for the presence of fungal biomass around and within the eyes of 

immunosuppressed mice, associated with disseminated F. oxysporum infection. This result 

supports the view that fungal keratitis should be established as part of the diagnostic 

protocol for disseminated Fusarium infections in order to prevent a delay in diagnosis or 

inadequate treatment, which may lead to loss of the affected eye. Further, we observed that 

mice affected by disseminated F. oxysporum infection showed a “twister” phenotype 

indicating a possible infection of the brain. Supporting this idea, analysis of fungal burden in 

the brain of an animal displaying a twister phenotype showed the presence of fungal 

biomass (data not shown), suggesting that F. oxysporum is able to enter the mouse brain. 

 

3.3. Persistence of F. oxysporum in immunocompetent mice can lead to systemic infection 
and death upon subsequent immunosuppression  

 

Initiation of immunosuppressive treatment at day -3 led to death of all infected animals, 

while mortality was significantly lower when immunosuppression was started in parallel to 

infection. Thus, the immune status of the host has a major effect on the severity of infection 
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by F. oxysporum. Importantly, we show here for the first time that F. oxysporum can also 

disseminate and persist in immunocompetent individuals. Unexpectedly, fungal burdens in 

immunocompetent mice at 4 dpi were only slightly lower than in immunosuppressed 

animals, with microconidia and germlings observed in the heart, lung, kidney, spleen and 

liver of immunocompetent animals even after more than 10 dpi. The finding that F. 

oxysporum can persist in an immunocompetent mammalian host is highly relevant, because 

these fungal foci could lead to subsequent systemic infection upon immunosuppressive 

treatment. Indeed, one mouse in each group later succumbed to fungal infection. We 

conclude that invasive fusariosis in these animals was caused by chlamydospore-like 

structures which had persisted in the organs, suggesting that latent fungal survival structures 

have the potential to initiate invasive mycelial growth once the immune system is no longer 

effective.  
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Chapter 2 

 

Hyphal growth of phagocytosed Fusarium oxysporum causes 
cell lysis and death of macrophages 

 

Summary 

Fusarium oxysporum is an important plant pathogen and an opportunistic pathogen of 

humans. Here we investigated phagocytosis of F. oxysporum by murine macrophages using 

live cell video microscopy. J774.1 macrophages avidly migrated towards F. oxysporum 

germlings and were rapidly engulfed after cell-cell contact was established. F. oxysporum 

germlings continued hyphal growth after engulfment by macrophages, leading to escape and 

associated macrophage lysis. Macrophage killing depended on the number of fungal cells 

engulfed by the phagocytes. After engulfment F. oxysporum inhibits macrophages 

completing mitosis, resulting in large multinucleated daughter cells fused together by means 

of a F. oxysporum hypha. These results shed new light on the initial stages of Fusarium 

infection and the innate immune response of the mammalian host.  
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1. Introduction  

 

Fusarium species cause devastating diseases on a wide variety of economically important 

crops worldwide (Dean et al., 2012). In addition, Fusaria can cause a broad spectrum of 

diseases in humans, ranging from superficial or localized infections in immunocompetent 

hosts to lethal disseminated fusarioses in immunocompromised patients (Nucci and Anaissie, 

2007). Previous work established that a tomato pathogenic isolate of F. oxysporum can cause 

disseminated infection in immunosupressed mice (Ortoneda et al., 2004; Schäfer et al., 

2014). Multiple knockout mutants have been examined for virulence in the mouse model 

(Lopez-Berges et al., 2012; Lopez-Berges et al., 2013; Martinez-Rocha et al., 2008; Ortoneda 

et al., 2004; Prados-Rosales et al., 2012). However the early events of the infection process 

and host defence mechanisms are currently unknown. 

The mammalian immune response against the two major human fungal pathogens Candida 

albicans and Aspergillus fumigatus relies mainly on phagocytosis of the fungus by cells of the 

innate immune system (Gow, 2012; Mech et al., 2011). Phagocytic clearance of fungal 

pathogens can be classified into distinct stages (reviewed in (Brown, 2011)): recognition of 

pathogen-associated molecular pattern (PAMPs) and migration towards fungal cells; cell-cell 

contact and engulfment of fungal cells bound to the phagocyte cell membrane; phagosome 

maturation and processing of engulfed cells within the phagocyte; and killing of the 

phagocyte by the fungus. In C. albicans, phagocyte killing is associated with hyphal growth 

within the macrophage (Lewis et al., 2012a; McKenzie et al., 2010). The invasive properties 

of fungal hyphae promote the escape from  immune cells resulting in death of the 

phagocytes (Ghosh et al., 2009; Lorenz et al., 2004; McKenzie et al., 2010), whereas the yeast 

form promotes dissemination in the bloodstream (Kumamoto and Vinces, 2005). Murine 

macrophage phagocytosis displays strong preferences based on genus, species and 

morphology. For example, C. albicans yeast cells are engulfed preferentially over hyphal cells 

(Keppler-Ross et al., 2010; Lewis et al., 2012a). 

In this study we investigated phagocytosis of the filamentous fungus F. oxysporum by J774.1 

murine macrophages. Hyphae of this pathogen have been shown to penetrate mammalian 
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tissues and to cause invasive fusariosis in different organs of immunosupressed mice 

(Schäfer et al., 2014). Here we used live cell video microscopy coupled with image analysis 

tools to obtain detailed insights into all stages of the phagocytosis process, including 

migration, recognition, engulfment and phagocyte killing. This detailed step-by-step analysis 

has been reported previously only for C. albicans (Lewis et al., 2012a). We found that F. 

oxysporum germlings undergo rapid recognition and uptake by murine macrophages, once 

cell-cell contact is established. Fungal hyphae continue growth after phagocytosis, ultimately 

leading to their escape from the macrophages and to host cell lysis.  

 

2. Results 

 

2.1. F. oxysporum maintains hyphal growth after engulfment, resulting in lysis of 
phagocytes and fungal escape  

 

To investigate the interaction between F. oxysporum and macrophages, we established a 

macrophage phagocytosis assay using live-cell video microscopy, as previously described for 

C. albicans (Lewis et al., 2012a; Rudkin et al., 2013). We found that the murine macrophages 

efficiently take up F. oxysporum germlings (Figure 1A-D). Here we examined all stages of the 

phagocytosis assay consisting of migration, recognition, engulfment and fungal escape, 

followed by macrophage cell lysis (presented in snapshots Figure 2B-F).   
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Figure 1. Overview of the uptake of F. oxysporum by J774.1 murine macrophages. (A-D) Snapshots 
from live-cell microscopy experiments following the phagocytosis of live F. oxysporum germlings 
(green) by macrophages (red) at 0 min, 180 min, 240 min and 328 min. The F. oxysporum 
cell/phagocyte ratio was a 3:1. The majority of F. oxysporum germlings were engulfed rapidly by 
macrophages once cell-cell contact was established. (E) Numbers of F. oxysporum cells ingested by 
macrophages. Bars represent percentace of macrophages that engulfed a defined number of F. 
oxysporum cells at the end of the phagocytosis assay. Scale bar, 20 µm. 
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Figure 2. Engulfment of a F. oxysporum germling by a macrophage, followed by fungal outgrowth 
and macrophage lysis. (A-F) Snapshots taken from live cell video microscopy capturing the 
engulfment process. A macrophage (red) and a F. oxysporum germling (green) are shown prior to cell-
cell contact (A); at recognition (B); during cell-cell contact (C); during phagocytosis (D); after 
engulfment (E); and after outgrowth of F. oxysporum leading to macrophage cell lysis (F). Scale bar, 20 
µm.  

 

Efficient uptake of fungal cells requires migration of phagocytes towards the target (Lewis et 

al., 2012a). The migration kinetics of 50 macrophages was determined and the tracks plotted 

relative to their starting position (Figure 3) to indicate directionality and distance traveled 

assessed in 1 minute intervals. Track data were used to calculate mean track velocity which 

was 1.22 μm min-1 above including baseline random migration of macrophages 

(macrophages not subsequently engulfing fungi).  Previous studies have defined the baseline 

velocity of the same macrophage cell line as 1.8 μm min-1 in the absence of fungal particles 

(Lewis et al., 2012a), therefore excluding baseline values, thus he mean track velocity of 

macrophages in response to F. oxysporum is 3.1 μm min-1. Figure 4 A-R shows exemplary 

events of migration of a macrophage towards a F. oxysporum germling and its subsequent 

engulfment.  
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Figure 3. Magrophage migration towards F. oxysporum germlings. Tracking diagram shows a detailed 
dissection of macrophage migration dynamics illustrating the distances travelled, directionality and 
velocity of J774.1 macrophages cultured with F. oxysporum germlings. Tracks represent the 
movement of individual macrophages (n= 50) relative to their starting position and symbols indicate 
the location at 1 min intervals. 

 

Macrophage migration towards fungal particles is necessary to establish fungal cell contact,  

the rate of engulfment, defined as the time elapsed between the establishment of cell-cell 

contact and the complete uptake of the fungus (Lewis et al., 2012a). We used live cell video 

microscopy and subsequent image analysis of to generate a detailed minute-by-minute 

account of the engulfment process. F. oxysporum was rapidly phagocytosed by 

macrophages, once cell-cell contact was established, the average engulfment time for 

engulfment being 6.74 min (Figure 4S). The vast majority (93%, n=219) of F. oxysporum cells 

that became bound to a macrophage were taken up within the first 11 min. None of the 

germlings were internalized within less than 2 min or more than 25 min (Figure 4S).  
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Figure 4. Time of macrophage engulfment of live F. oxysporum germlings. (A-F) Snapshots of live-cell 
video microscopy showing 3 events (A-F; G-L; M-R) of various stages of F. oxysporum phygocytosis by 
murine macrophages during phagocytosis assay. (A, G, M) Macrophages (red) and F. oxysporum 
germlings (green) establishing cell-cell contact, (B-E; H-K and N-Q) initializing of fungal cell 
engulfment; (F; L and R) F. oxysporum inside the macrophages after engulfmet. The times in the 
Figures A-F; G-L and M-R showing the time (min) taken for J774.1 macrophages to ingest F. oxysporum 
cells following cell-cell contact. (S) Times taken for phagocytosis of F. oxysporum germlings by 
macrophages. The rate of engulfment was defined as the time taken from first cell-cell contact to 
complete ingestion of F. oxysporum cells by the phagocytes. Bars represent the percentace of uptake 
events. Scale bar, 20 µm. 
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The total number of F. oxysporum cells taken up by individual macrophages was recorded 

over a 6 h period. An uptake event was defined as the complete engulfment of one F. 

oxysporum germling by one macrophage cell following cell-cell contact. Most of the 

macrophages (80.5%, n=190) ingested more than one fungal cell (Figure 1E). Following 

engulfment, growth of hyphal filaments within the macrophage was observed. The 

membrane of the macrophage frequently failed to restrain hyphal expansion, resulting in 

rupture and lysis of the phagocyte. At this point, the fluorescence of the FITC labeled fungal 

germlings became visible again. Macrophage cell lysis was accompanied by rapid appearance 

of a bubble-like structure, followed by extensive hyphal growth of F. oxysporum and 

disappearance of the macrophage. After escaping from a macrophage fungal hyphae were 

recognized by other macrophages, which initiated engulfment until they were lysed 

themselves by the fungal hyphae.  

 

2.2. The rate of macrophage killing increases with the number of internalized F. oxysporum 
cells 

 

F. oxysporum initialized phagocyte lysis 3 h after engulfment (Figure 5A). Lysis increased over 

time, causing death of 71% of the macrophages after 6 h. We observed a linear increase in 

phagocyte killing in relation with the number of internalized fungal cells (Figure 5B). A very 

high fraction (93.4%) of the macrophages that took up 4 or more fungal germlings was killed 

within the 6 h of observation. By contrast, mortality was less than 50% among macrophages 

which took up 3 or less fungal cells (Figure 5B). Interestingly, a small fraction (13.8%) of the 

macrophages survived 6 h even after ingesting up to 9 fungal germlings, although almost all 

of them died before 8 h. Thus, the number of engulfed fungal cells plays a crucial role in 

killing of the macrophages.  
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Figure 5. F. oxysporum mediated J774.1 murine macrophages killing. (A) Percentage of macrophages 
killed by F. oxysporum germlings over a 6 h period. The viability was defined as the percentage of 
macrophages that had been killed by specific time points. (B) Percentage of macrophages killed by F. 
oxysporum in relation to the defined number of phagocyted germlings over a 6 h period.  

 

2.3. Macrophages with phagocytosed F. oxysporum germlings inhibit mitosis 

  

We used live cell video microscopy to follow the dynamics of macrophage mitosis. During the 

observation period, almost 10% of the macrophages with phagocytosed F. oxysporum 

germlings initiated mitosis (n=384). This is lower as in previous studies which showed  that 

30.8% of the same macrophage cell line underwent mitosis in the absence of fungal cells 

(Lewis et al., 2012b). Mitosis was successfully completed in 74% of the cases, as determined 

by the appearance of two separate daughter cells (Figure 6A-D). After completing mitosis, 

the daughter cells continued engulfment of fungal cells until they were lysed by the 

phagocytosed germlings. In the remaining 26% of the macrophages that had initiated mitosis, 

the two daughter cells remained together by means of a F. oxysporum hypha spanning both 

cells, and subsequently fused back into a single cell (Figure 6E-H).  
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Figure 6. Successful and failed mitosis of macrophages after engulfment of F. oxysporum. The 
macrophages (A and F) initiated mitosis with phagocytosed F. oxysporum germlings (B and F). This 
resulted either in successfully completed mitosis with the appearance of two separated daughter cells 
(C-D), or to failure of the macrophages to complete cell separation (F-H). In the latter case, the 
macrophages initiated mitosis (F) but instead of completely separating, the daughter cells remained 
fused together (G) by means of a F. oxysporum hypha spanning both cells (F and G). Then the two 
daughter cells fused back to a single cell (H). Scale bar, 20 µm. 
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3. Discussion 

 

A key aspect of virulence in filamentous fungal pathogens is the capacity for penetration and 

dissemination, which is a prerequisite for systemic infection. Macrophages are key 

components of the innate immune response in mammals and provide an important line of 

defense against fungal invaders by directly engulfing and destroying fungal cells (reviewed in 

(Brown, 2011)).  

Both, F. oxysporum and the air-borne fungus A. fumigates are opportunistic human 

pathogens characterized by filamentous hyphal growth. A. fumigates conidia are inhaled and 

exposed to the attack by alveolar macrophages (AMs), the major phagocytes present in lung 

alveoli along with polymorphonuclear neutrophiles (PMNs) (Brakhage, 2005; Latge, 1999; 

Sole et al., 2005; Wald et al., 1997). Aspergillus conidia that escape from AM can then 

germinate, but are attacked by PMNs which kill the hyphae through production of reactive 

oxygen species and degranulation (Braedel et al., 2004; Hube, 2004; Jahn et al., 2002; 

Kullberg et al., 1999; Latge, 2001; Netea et al., 1999; Newman et al., 2005). 

In contrast to Aspergillus, Fusarium enters the human body mostly through skin infections, 

before reaching the bloodstream (Nucci and Anaissie, 2002). Here we analyzed the 

interaction between F. oxysporum germlings and murine macrophages. To our knowledge, 

this is the first detailed analysis of the phagocytosis process in the important opportunistic 

pathogen Fusarium.  

 

3.1. F. oxysporum germlings hyphal growth after engulfment by macrophages leading to 
escape and associated macrophage lysis. 

 

Our results demonstrate that murine macrophages efficiently migrate towards, recognize, 

and internalize F. oxysporum germlings. The use of video microscopy allowed a detailed 

dissection of the engulfment process, revealing remarkable similarities with the results 

previously reported for C. albicans (Lewis et al., 2012a). However the migration velocity of 
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macrophages at 3.1 μm min-1 is faster compared to those values obtained previously for 

J774.1 macrophages responding to C. albicans strains, ranging from 2.2-2.7 μm min-1 (Lewis 

et al., 2012a).. The average engulfment time of F. oxysporum (6.74 min) was almost identical 

to that reported in C. albicans (6.7 min). Likewise, the fraction of fungal cells bound to a 

macrophage that were taken up after 15 min was also very similar (96% and 95% for F. 

oxysporum and C. albicans, respectively (Lewis et al., 2012a). We found that the number of 

engulfed fungal germlings crucial affects the survival of the macrophage. A very large 

fraction (93.4%) of the macrophages that internalized 4 or more germlings were killed by F. 

oxysporum whereas less than 50% of those were killed that engulfed less than 4 germlings. 

Since most of the macrophages (61.8%) ingested more than 3 germlings, a large fraction of 

these eventually got killed by the fungus.  

F. oxysporum hyphae that had escaped from the killed macrophage were subsequently 

engaged and engulfed, often by multiple macrophages (video S2). In spite of  multiple 

macrophages simultaneously trying to engulf ,  phagocytosis of  large hyphae was frequently 

frustrated, suggesting a limitation for successful phagocytosis with increasing hyphal length, 

similar to what has been reported for C. albicans (Lewis et al., 2012b). 

 

3.2. F. oxysporum inhibits macrophages completing mitosis 

Mitosis of tissue-derived macrophages plays an important role in macrophage proliferation. 

Inhibition of macrophage cell division was previously reported for the fungal pathogens 

Cryptococcus neoformans, Candida krusei and C. albicans (Garcia-Rodas et al., 2011; Lewis et 

al., 2012b; Luo et al., 2008). Here we found that in the presence of F. oxysporum, mitosis of 

macrophages was unsuccessful in approximately 25% of the cases. This proportion is similar, 

although somewhat lower than that reported in C. albicans (35,9%) (Lewis et al., 2012b). 

Strikingly, the percentage of macrophages underwent mitosis in presence of F. oxysporum 

(9.9%) was lower than previously reported for the same macrophages cell line in the absence 

of fungal particles (30.8 %) or cultured with C. albicans (29.5%) (Lewis et al., 2012b). It has 

been suggested that interference of the fungus with macrophage cell division may inhibit the 
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formation of new uninfected macrophages. On the other hand, however, successful mitosis 

of macrophages carrying fungal cells may also contribute to the spreading of the pathogen 

within the host (Lewis et al., 2012b).  

 

Although phagocytosis of F. oxysporum may be crucial to protect the host, the mechanisms 

and molecules involved in this process remain still unknown. Recognition and phagocytosis 

of C. albicans by macrophages is dependent on the glycosylation status and specific 

components of the fungal cell wall (McKenzie et al., 2010). Likewise, conidial germination in 

A. fumigatus is associated with an increase of β1,3-glucan in the outer cell wall. Because 

β1,3-glucans are targeted by the pattern-recognition receptor Dectin-1 which is expressed in 

macrophages, monocytes, neutrophils and a subset of T cells (Hohl et al., 2005; Taylor et al., 

2002), germ tubes are recognized more efficiently than ungerminated conidia (Luther et al., 

2007) leading to phagocytosis and synthesis of different proinflammatory cytokines (Gersuk 

et al., 2006). Currently, little is known about the cell wall components of F. oxysporum 

modulating recognition and uptake by macrophages, as well as the role of these surface 

molecules in the ability of the fungus to evade destruction by immune cells. Our results 

highlight the need for more detailed studies on the interaction between F. oxysporum and 

the mammalian immune system, which will lead to a better understanding of the early 

molecular events during Fusarium infection. (Alkan et al., 2008). 
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Chapter 3 

 

The signalling mucin Msb2 in Fusarium oxysporum: 
Identification of putative interaction partners by Yeast Two-
Hybrid assay  

 

Summary 

Fungal pathogenicity on plants requires a conserved mitogen-activated protein kinase 

(MAPK) cascade homologous to the yeast filamentous growth pathway. In the soilborne 

vascular wilt pathogen Fusarium oxysporum, the orthologous MAPK Fmk1 controls invasive 

growth and virulence on tomato plants. We recently found that full phosphorylation of Fmk1 

requires the transmembrane protein Msb2, a member of the family of signalling mucins that 

have emerged as novel virulence factors in fungal plant pathogens. F. oxysporum mutants 

lacking either msb2 or fmk1 share characteristic phenotypes related to invasive growth and 

virulence on tomato plants. Moreover, Δmsb2 mutants also show fmk1-independent 

phenotypes suggesting additional roles of Msb2 in distinct pathways. 

The exact signalling mechanism of fungal transmembrane mucins is currently unknown. Our 

aim is to find new Msb2 interaction partners with a role in the MAPK signalling cascade. A 

Yeast Two-Hybrid screen against a cDNA library from F. oxysporum yielded eleven candidates 

interacting with the Msb2 cytoplasmic tail. To test the role of these genes in MAPK signalling, 

a knockout approach was designed, followed by phenotypic analysis of the mutants.  
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1. Introduction 

1.1. The MAP kinase modules in F. oxysporum 

One of the most broadly conserved pathogenicity mechanisms in fungi involves a mitogen-

activated protein kinase (MAPK) cascade (Pathogenicity MAP Kinase PMK1 cascade) 

homologous to the Fus3/Kss1 mating/ filamentation cascade of S. cerevisiae (Qi and Elion, 

2005). In F. oxysporum the orthologous MAPK (Fusarium MAPK1) pathway became in focus 

of interest since 2001, when the MAPK Fmk1 which is part of a signal transduction pathway 

was shown to be essential for pathogenicity on tomato plants (Figure 1).  (Di Pietro et al., 

2001).  
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Figure 1. The Fmk1 MAPK signalling pathway is essential for virulence of F. oxysporum on tomato 
plants. (A) Schematic diagram of the Kss1-MAPK signalling cascade in S. cerevisiae (left) and the 
orthologous Fmk1 pathway in F. oxysporum (right); Figure adapted from the PhD thesis of E. Perez-
Nadales, 2010. (B) The MAPK Fmk1 is a pathogenicity factor of F. oxysporum on tomato plants (Figure 
taken from Di Pietro et al., 2001). 
 

Fmk1 is required for multiple virulence-related functions such as root attachment and 

penetration, secretion of pectinolytic enzymes, invasive growth on living plant tissue and 
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infection of tomato (Solanum lycopersicum) plants (Delgado-Jarana et al., 2005; Di Pietro et 

al., 2001). Fmk1 is dispensable for vegetative growth and conidiation in culture, suggesting 

that it plays specific role during the interaction of F. oxysporum with the plant host and is not 

required under conditions encountered by the fungus in culture (Di Pietro et al., 2001). Fmk1 

is also required for vegetative hyphal fusion, an ubiquitous process in filamentous fungi 

whose biological role remains poorly understood (Prados Rosales and Di Pietro, 2008).  

Invasive growth, the most critical of the Fmk1-regulated functions for plant infection, is 

mediated by the homeodomain transcription factor Ste12 (Rispail and Di Pietro, 2009). 

Δste12 and Δfmk1 mutants of F. oxysporum share phenotypes related to invasive growth but 

not other Fmk1-regulated functions such as pectinolytic activity, vegetative hyphal fusion or 

root adhesion. Yet, both Δste12 and Δfmk1 mutants have dramatically reduced virulence, 

suggesting that invasive growth is the main virulence function controlled by the Fmk1 MAPK 

in F. oxysporum, and that this control is exerted through the Ste12 transcription factor. 

 

1.2. The mucin like transmembrane protein Msb2 in F. oxysporum 

 

Msb2 is a highly glycosylated mucin-type membrane protein. The genome sequences of 

ascomycetes including plant and human pathogens contain putative Msb2 orthologs (Rispail 

et al., 2009) displaying a similar domain architectures as F. oxysporum Msb2 (Perez-Nadales 

and Di Pietro, 2011). While S. cerevisiae and Ashbya gossypii have two paralogs, Msb2 and 

Hkr1, other ascomycetes including F. oxysporum contain a single Msb2 orthologue.  

Msb2 acts upstream of the Fmk1 MAPK pathway and triggers a rapid and transient increase 

in Fmk1 phosphorylation levels by contact with a solid surface (Perez-Nadales and Di Pietro, 

2011). In addition, Msb2 contributes to maintenance of cell wall integrity (Figure 2B) through 

a distinct pathway (Perez-Nadales and Di Pietro, 2011). Msb2 promotes invasive growth and 

plant infection via the Fmk1 MAPK cascade. The Δmsb2 and Δfmk1 mutants share 

characteristic phenotypes such as defects in hyphal growth under poor nitrogen conditions, 

penetration of cellophane membranes, colonization of living fruit tissue, root penetration, 



 

88 

 

and virulence on tomato plants (Perez-Nadales and Di Pietro, 2011). Besides Fmk1 

phosphorylation, Msb2 also regulates the expression of two Fmk1-regulated genes, fpr1, 

which encodes a secreted PR-1-like protein, and chsV, which encodes a class V chitin 

synthase essential for plant infection (Madrid et al., 2003). 

 

 

 

 

 

 

 

 
 
 
 
Figure 2. Msb2 is an upstream component of the Fmk1 signalling pathway and contributes to hyphal 
growth under conditions of nutrient limitation and cell integrity stress. (A) Colony phenotype of the 
indicated strains grown on full nutrition medium(YPD) and on minimal medium(MM). (B) Colony 
growth on MM mediumsupplemented with 40 µg/ml Clacofluor White (CFW). Figure adapted from 
(Perez-Nadales and Di Pietro, 2011). 

 

In S. cerevisiae, Msb2 also functions as an osmosensor in combination with Sho1 (synthetic 

high osmolarity sensitive) (Tatebayashi et al., 2007), in the high osmolarity glycerol pathway 

(HOG) MAPK pathway which mediates responses to hyperosmotic shock (Hohmann et al., 

2007). However, F. oxysporum Δmsb2 mutants had no growth defect in the presence of 

osmotic or oxidative stress. Instead, they showed increased sensitivity to Congo Red (CG) 

and Calcoflour White (CFW) (Perez-Nadales and Di Pietro, 2011), two compounds affecting 

cell wall biosynthesis and composition (Roncero and Duran, 1985). It has been suggested 

that Msb2 and Fmk1 promote cell wall integrity of F. oxysporum through independent 

pathways, since the Δfmk1 Δmsb2 double mutant is more sensitive to CFW than the single 

mutants (Perez-Nadales and Di Pietro, 2011). 

Msb2 (FOXG_09254) in F. oxysporum encodes a protein of 1129 amino acids which includes 

the N- terminal signal sequence (20 amino acids); a large extracellular domain (amino acids 

21-991; including the mucin homolgy domain, MHD: amino acids 106 to 836 and a positive 
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regulatory domain, PRD: 176 amino acids) which is predicted to be highly glycosylated; a 

single transmembrane domain (TM; 22 amino acids); and a short cytoplasmic tail (CT; 95 

amino acids) (Perez-Nadales and Di Pietro, 2011). (Figure 3). 

 

                                                                                                             
Figure 3. The cytoplasmic tail (CT) of F. 
oxysporum Msb2 is highly conserved. 
(A) Schematic representation of the F. 
oxysporum Msb2 (ORF open reading 
frame: 1129 aa) protein. Shown are the 
N-terminal signal sequence (SS), the 
extracellular mucin homology domain 
(MHD) with imperfect repeats (RPT), 
the positive regulatory domain (PRD), 
the transmembrane domain (TM), and 
the cytoplasmic tail (CT).(B) Amino acid 
sequence alignment of C-terminal 
intracellular region (Msb-CT 
cytoplasmic tail) of putative Msb2 
orthologs of S. cerevisiae (Sc), C. 

albicans (Ca), A. gossypii (Ag), A fumigatus (Ag), F. graminearum (Fg), F. oxysporum (Fo), M oryzae 
(Mg) and N. crassa (Nc). Highly concserved residues are shaded in black; moderately conserved 
residues are shaded in gray. Figures are adapted from (Perez-Nadales and Di Pietro, 2011). 
 

Together with the transmembrane mucin Msb2, the plasma membrane tetraspan protein 

Sho1 serves as stress sensor in many fungal systems (Boisnard et al., 2008; Krantz et al., 

2006; Ma et al., 2008; Norice et al., 2007; Roman et al., 2009; Roman et al., 2005) and 

functions upstream of several MAPK cascades (Cullen, 2007; Seet and Pawson, 2004). In S. 

cerevisiae, Msb2 and Sho1 interact to regulate signalling cascades involved in osmotic stress 

response and pseudohyphal growth and are required for activation of filamentous growth 

and agar invasion in response to nutrient limitation (Chen and Thorner, 2007; Cullen et al., 

2004; Vadaie et al., 2008). Msb2 interacts with Cdc42, and it has been hypothesized that this 

complex provides sensory capacity in the filamentous growth pathway, transmitted via the 

PAK kinase Ste20 (Cullen et al., 2004). Nothing is known about the interaction between Msb2 

and other proteins in F. oxysporum (Perez-Nadales et al., unpublished).  

 

Transmembrane region
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Nc S A S A T D S T T V L GS V A N T T S A A I S A T D V A S S S A S A T D S T T A L GS V A N T T S A A I S A T D V A R S S A S A T D V A S S S A A S T D A S GS L T S A S A L P T V S S GV I S N T T S P D S S S S L QV L 521

Sc S S F A S S S T T E GS E T S S QG F S T S S V L V QM P S S I S S E F S P S Q T T T QMN S A S S S S QY T I S S T G I L S QV S D T S V S Y T T S S S - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 712

Ca S P D QS V V T P S A S A S P D V S T L P T GS E S G T S L V S GS E T S I D T N T V A S GS T V I P E S S N I P T QS P S QS V V S S D A A A S N V S T GS A T T D S L A GS E T GV Q P I S S S A T G T S E P V F S S E 723

Ag S L I S S A Y S S L S S I S S D N I S I S S T D S A GS S H L S H A L P T S S S V I I P I S S T P I P Q E L T M T GN S S L S T V R S G T E I S T I S T S - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 551

Af N S S P E A S P S P T P S P S GV L D P L T S A V T D L L P G - - - - - - - - - - - S A S S S A V T N GS S GA E T S - - - - - - - - - - A S T D L GQ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 431
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Fo Q T V S A A P S T E P E T T G P P E L I P - T S I L P D P - - - - - - T D I L P V P - - - T D V T S A V P E P S S P V T V S P V I P T T V S P P E QS E S GS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 589

Mg S T E D P V F D G I G T L I S S I V S S V S T V L Q P N G T A P - - - - - - - - - - - - V T T T P N T S V D V A T - - - - - - - - - - - - - T P V D I A S - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 322
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Sc - - - - - - - - - - - - - - - - - - - - - - - - - - - S V S QV S D T P V S Y T T S S S S V S QV S D T P V S Y T T S S S S V S QV S D T P V S Y T T S S S S V S QV S D T P V S Y T T S S S S V S QV S D T S V P S T S S 795

Ca Y N S S E G T T S L V V P T N S E L S S T V T GS S E T A A T A I N S E S V L T GS S D T A A T V T GS E S I L T GN T E T S A T A I A S E S T L T GS T T GA T D S A A T T I A S E S V L T G T S D A S A T V I P S E S A 833

Ag - - - - - - - - - - - - - - - - - - - - - - - - - - - A V T S V S S T K S E T T T S V P L S T S R S A N H S A V I T P S S S P L T I L P S S S S T T V V S T S E GH K I S S T F N GS I S S H T L A S H S T F S L T S S S V 634

Af - - - - - - - - - - - - - - - - - - - - - - - - - S T V P V S V P A V T P S A T S S S G L GG I L G P I L S S A GS T GV I P - - - - - - - - - - - - - - - - - - - - T A S T H T S S F V GV P T G L T S I L I P GGS S G 496

Fg - - - - - - - - - - - - - - - - - - - - - - - - - - - - P D L T S F V D P N T K L - - - - - I D P T E S P N V T L P D A T S GV G T E P A E T E L P V P T T E P V N G T E T Q P A N G T E T Q P A P T G E P E T T GA P E P 640

Fo - - - - - - - - - - - - - - - - - - - - - - - - - - - - P D L T S F L D P N T K F P Q T GS V G P T D A P N T T V P E V T S G I D V K - - - - - - P E P T S E P I N - - - - - - - - G T E T I P N V T G E P Q T T GA P E P 657

Mg - - - - - - - - - - - - - - - - - - - - - - - - - - T T A S D T L S P T T A V V S T T G - - - - - - - P V T S V Q T L P P V S T - - - - - - - - - - - - - - - - - - - P T A N G T V T S - - - P P V D S Q T T V L P T T T P 377

Nc - - - - - - - - - - - - - - - - - - - - - - - - - - A T A S E I I A T E D P L I T S S S S S G I L L A P T GV V N E T T S A S T N L I E S L A S N V A S L V GS I L I P T GN G T A T E P T A P V T T S D S V T I P S A T E 682

Sc R S S V S QV S D T P V P S T S S R S S V S Q T S S S L Q P T T T S S Q - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 831

Ca L T GS T T T P I A S E S V L T G T T S A D V S GA T T I GS E S I F T G T T E S T G T P L P T A S G T E S L D T T V A T G T S V S E QS GV E T A L S T Q P T T G T E A T V T S GV S QS E Q T G T S A V T GV T E S S E 943

Ag S MS S F V T S S S QV P E E V T P T P QS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 656

Af S E S P T S Y T Q I S P S V P T T A P - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 515

Fg T E D V T E A P T - - - V A P T A T GA A S E E P T GN - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 665

Fo T D V N T E E P T N I T Q T A V P T GD A T N E P S GN T T A P A T E P A T - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 695

Mg - - - - G L S S D T I V T S P GV T A N - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 393

Nc P Y A S GS GS GV I T P S A S L T T S Q P K P P MMS S G I V S I P I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 718

Sc - - - - - - - R F T I S T H GA L S E S S S V S QQA S E I T S S I N A T A S E Y H S I Q T T A A T QS T T L S F T D A N S S S A S A P L E V A T S T P T P S S K A S S L L L T P S T S S L S QV A T N T N V Q T S L T T E 934

Ca Q I QS GA T T P A T T T A S D A T A V T N A S E A S A E S QA T T T A A S E A T T GS QV T T A A S E A A T E S QA T T A A S E A A T E S QA T T A A S E A A T E S QA T T P A S E P A T GS QV T S E V T P A T V P S S 1053

Ag - - - - - - - - - - - - - - - - - T E T E Y P QS T R P S N T S T L Y S S S R E T Y P Y T T T L S Y I P S T T S A D K T S E E S Y S A P E V T T L A P L S D S T QS S QA S T T L S S QD S T T L T T S S T S T R P T TWG 749

Af - - - - - - - - - - - - - - - - - - - - - - - S V T S T A V I P GS S D T A I GS S I A V T GS T GV S S T L P T P T A D F S S S A I Q T L S T T E Q - - - T T P S P S T T P E T T T A A P T T T T T S T T Y P P E T T T - 598

Fg - - - - - - - - - - - - - - A T E P A T E P I D T A T D S V P T E L P A T Q T GD E T N G T A T E E P T S P A T GV E T E S A P V A T D I QQ T S A A V P T - - V S E V Q P T I Q P T S Q P P V E T E T Q P Q T Q P E P V P 759

Fo - - - - - - - - - - - - E P A T E P A T K P V D T A S GS V P T GS P A T E T D A E T N G T A T A E P T K P A T GV E T QS A P - A S E G E Q T S A V A P - - - - T D E Q P S V A P T S Q P P V E T E T K - - - - P E P E P 784

Mg - - - - - - - - - - - - - - - - - - - - - - - - - - S T QV P - T T V P T T I P T T Q P P V T E P T I T P T V L P P S - - - P N N T V P S N T T T Q L P - - P T QA P T L T Q L P T T T T S P A L T T P A T T P S V A P T S 471

Nc - - - - - - - - - - GN S T V S S T K A V E S G P T T T G I P GS S V P V I P GN S S I P V T S MS D T T V V L P P V T L I N S T T V A A N S S T I I P V I V T S A S A E S S V P V S S L E P V T T T QV L I P P P V P T T 818

Sc S T T V L E P S T T N S S S - - - - - - - - - - - - - - T F S L V T S S D N NWW I P T E L I T QA P E A A S T A S S T V G - - - - - - - G T Q T M T L P H A I A A - - A T QV P E P E GY T L - - I T I G F K K A L N Y E 1019

Ca V T A A D T A A T S I I T S P P A S A E P S S E V T A V A P S A A T T S S T K NW L P S S L V I A E T P S S N A S K S T E S I V QA S A T GA S T S G L P R A I T P - - E T T T T P G F D Y QV - - I T V G F K S A L N Y P 1159

Ag - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - K N A P S GNW L P T V I I T A T E Q E V V S T E S P QN T QS K P K P T A T P N I Q T L P QV I A A P D R V T P K K D Y T L - - I T I G F K K Q L N Y P 824

Af - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - T E N T D F V P S S I L V E P - - - T T T T Q L S T - - A E T A T G T N R P A Q L P GS I S P A N G L T S P - P P D S T L - - ~ I Q L G F N GK L R Y S 665

Fg T T L V P T A A E P V T S I R - - - - - - - - - - - - - - - - - P T A T L T N T N NW L P T T I M F E P - T S I P A A P T QA - - T E T S T S T G L P A N I P R V I L P - N D P N K P I P E GS R S I Q I G F L F P F N Y K 848

Fo T T L V P T A A V P V T S I R - - - - - - - - - - - - - - - - - P T A T L T N T N NW L P T T I V F E P - T S I P A A P S Q P - - T E T S T S T G L P A N I P R V I L P - N D P N K P I P E GS V P I Q L G F L F P F N Y K 873

Mg - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A T S S A N S N D DW L P T T I I V QA P L P S T T GS S T N - - A P S S A P T V L P S D L P K I I N P S D D I T E P L G P D MM E - - I QV A F K F A L N Y R 547

Nc T I N Y P P V T QY T P T - - - - - - - - - - - - - - - - - A T V S N M P P GY N S P T T I L V D Q P P P A Q T H T V S F - - V QQ T T A T A L P T D L P K A I A P - D D T T A P K P E D N V F - - I Q I G F N Y G F N Y P 906

Sc F V V S E P - K S S A Q I F GY L P E A L N T P F K N V F T - - - N I T V L Q I V P L QD D S L N - Y L V S V A E V Y F P T A E I E E L S N L I T N S S S A F Y T - - D GMG T A K S MA A MV D S S I P L T G L L H D S N 1122

Ca F V V E N S - I S S A Q I F QY L P R V L K Y P F N GD K S - L QN V S V R R L I P Y - T A S N I D Y T I T V A E V Y F P K D S V K A L GS F I T T P GS A I Y R - - N P D S V L QA L A S L I D S R I P L T G L V T D D Q 1264

Ag F I A MN P - F A N A Q I F D Y L P G I L N Y P F N F E Y A - - - D I S V I Q L V P L K A N S K D - Y I A T I A QV Y F P S E K V D E L A K L V V D T N S E L Y S - - S Y D A N MK V F A S L I D P Q L P L T G L A GK G F 927

Af F V A T T P - L S S S Q I F L Y I P QG L I Y A L E I L G - - - K D I A M F A I Q P Y D N S A S T GY I A T V A L A Y I P T D K V D T L R K L L R S P L S K L Y Q - - Q P N E S V K T L F S M I D P S I P L V V G E S GS S 769

Fg F L A R N T - V A A A Q L F K Y L P K G L A D A GG F S K - - - D R I L I E K I I P MD T QS QWGY I T A L A K I H Y P E N M L D S L QA D L M T P N S L L Y N - - N D L E I V R N L T S V I N N K I D I F G - - - - - N 947

Fo F L A R N T - V A A A Q L F K Y L P K G L A D A GG F S K - - - D R I L V S K I V P L D T QS QWGY I T A L A K I H Y P E N M I D S L QA D L I T P N S P L Y N - - N D L E I V R N L T S V I N T K I D I F G - - - - - D 972

Mg F I T N E N P N A GA Q I F E Y L P K S L K Y M E G L T E E QK K R L QV L R V V P L N T E QQ L GY V T S V A I A TW P K A F F P Q L R L D V K T P F S Q F Y QN T S N GM L A H N L T M L V N P A I D I L P GA T L D G 657

Nc F V A K N N - N A A A Q I F R L L P E A L A F A S S I E S - - - H R V R V T K L M P MN T V N T L GY W T T L A V V S Y P QA Y V E S L R L D V K I A S S P L Y N N P T P - - L V Y N L T MQ I N P A I D I I L GS T L I G 1010

Sc S N S GGS S D GS S S S N S N S GS S GS GS N S N S GV S S S S GN S Y QD A G T L E Y S S K S N S N V S T S S K S K K K I I G L V I GV V V GGC L Y I L F M I F A F K Y I I R R R I QS Q E I I K N P E I S - S I S 1231

Ca QV S GS S S D S N P S T N - S Y GS MD I V S - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - N T K V A D K GR I A G I T I GA A A GC G L Y M T L MV L L F R K F R K S N K A L - E L P I T D S E S N L G F 1342

Ag S S S GS T T QN K P H P D A D N S I GR S GA L GG P Y N P - - - - - - - - - - - - - - - - - - T N S K S A A V P MS K A K L T G I V V GS I C GV T L Y I A L M I V GV R Y F L L R S R GGV E L QD N H S F Y S S N S 1019

Af S GS G L Y S D S G I S GS GS S S D GN GS GS N S GN D A - - - - - - - - - - - - - - - - - - - D A GA S R S A S A R A S S V G I GV GV V C GA A A Y GA GM FWV A R R Y R K K R Q L - H R R S N - - - - - - S T M 853

Fg T D N GA S S D T GD S D D S G L GGN D G F GN S G E - - - - - - - - - - - - - - - - - - - - - - - - - GD K T A K QK A T T A G I A V GA V G L S V MY GA A M F L V A R R Y K R K K Q L GH R R A S S I GS S QR S S 1032

Fo S D T D N N T D N GN S D D GN S GN R D V F GN S G E - - - - - - - - - - - - - - - - - - - - - - - - - GD K S A K QK A T T A G I A V GA V G L S V MY GA A M F L V A R R Y K R K K Q L GH R R A S S I GS S QR S S 1057

Mg K P A G - - A GS G T GGN GS N G P N D V F N N D N N S - - - - - - - - - - - - - - - - - - - - - - - - T N QS A T QR G T V A G I A F GA V S L A A A Y GA A M F I V A R R Y K K K R QA - H R R S S S V A - - - T P S 737

Nc D GS GGD S GS N P S N A GN N GN A D P F T N N N N - - - - - - - - - - - - - - - - - - - - - - - - - GN Q T S QQR G T T A G I V GGA V A V A A A Y GA A M F V V A R R Y K R K K QA - H R R A S S L GG - - S P S 1092

Sc S S E F GG E K N Y N N E K R MS V Q E S I T QS MR I QN - - - - WMD D S Y Y GH G L T N N D S T P T - - - - - - - - R H N T S S S I P K I S R P I A S QN S L GWN E V - 1306

Ca S D E D S S M L E S S S G F S A I F S R I N H GGV L T GD P - - - - - - - - N GGGD D MMMMN N N N - - - - - - - - - - - N N L R P N N I S E P V QA S N S L GWY H -  1409

Ag GGS S D M I T S S E I P P T L Y D D K S L F V T A N N A R MMR A S V T P S MK V D NWMD Y N N S V N G L GD N N A T H S F V N GK I T K I S G P I A S E N S L GWD P - - 1105

Af E Q T S E GR GA GS L F A - - - - - - - - - - - - - - - - - - - - - - - - - A GGR L S R N S QN S R - - - - - - - - - - - - GS GR GQM I S A P V MA E N S L GWN - - - 901

Fg E MQY N GN GS P A L MGGA L MS R D F S N Y GA QG P - QG E QA P A R P GGR D S H GS GR S G - - - - - - - - - - MGN S A R T A F I S A P V A A E N S L GWN - - - 1106

Fo E MQY T GN GS P A L MGGA L MS R D F S A Y GA T - - - H A E QGQV R P GGR D S H GS GR S G - - - - - - - - - - MGN S A R T A Y I S A P V A A E N S L GWN - - - 1129

Mg E MR QS G - - S P A L MGGA L L S R D F T H Y GGV MG - - - - - - - - P A GGR E S H GS N GS GR - - - - - - - - S A GN S A R T A G I S A P V A Q E N S L GWN - - - 804

Nc D MQQMGGGS P A L MGGA L L S R D F T GY GGV A GGA A A A GA V A P GGR D S H GS GR S G - - - - - - - - - - MG L S S R T A Y I S A P V A A E N S L GWN - - - 1167

Lys-Arg

cluster C-terminus

C. albicans

N. crassa

S. cerevisiae

A. fumigatus
A. gossypii

M. grisea
F. oxysporum

F. graminearum

C. albicans

N. crassa

S. cerevisiae

A. fumigatus
A. gossypii

M. grisea
F. oxysporum

F. graminearum

Sc MQ F P F A C L L S T L V I S GS L A R A S P F D F I F GN G T QQA QS QS E S QGQV S F T N E A S QD S S T T S L V T A Y S QGV H S H QS A T I V S A T I S S L P S TWY D A S S T S Q T S V S Y A S Q E S D Y A V 110

Ca - - - - - - - - - - - - - M L A N V K L N L V T A L Y V L S Y V S V V N A Y QQ E N E I T P A D N I D K R A GA I GN F F R D F T N S I F GN D N S E V N Q P S T N GA T S T GH F F G P S I P S T S T H QQ T P G E T S N 97

Ag - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - MR V V T L A G L S V L L S A S P A L A D A Y A A A 26

Af - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - MR P A T L V A A L L S L GG L E L V A A 21

Fg - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - MH V K S F V L A L A L A S S S V V E 19

Fo - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - MH A K N F I V A L A L A S S S V V E 19

Mg - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1

Nc - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - MGW L V P G P L A K I L GR E K C G F V E 22

Sc N QN S WS A S T N Q L P S T S T T S Y Y A P T F S T S A D F A A S S V N A A S D V S T A S V P I D T S A N S I P F T T T S N I E T T T S A P L T S D T P L I S T S T MS A A D N V F S S A N P I S A S L T T T D S S E S F 220

Ca N V N T K S S S QN QS P S T S P T S T V A A A A A T - S S S P V A S T R P A S T S E QK QQ E E T T A R QS T S P A T T A T T S N T P P S P S T S K E T P T S N T A Q T S S A N N N QQS S N T A A P S T S V I Q P - S T 205

Ag A P P A D I V D Y GR H Q P MV R R S D N E T V QA S P T A L GV L P S L L A S I A N E I E S R L D P I N K K T T S S T T L S V A T N T K S S S S R S S A T GK L H GS S K S S E T A A S - - - - - - - - - - - - - - - - - 119

Af E N A Q E L K P R F I P K Q F K R H V V H G P D S S - A T T S S N - - - - T N I H L D K R A D V N P F I S Y F N S L L QN G P T A T S S A P L V S L P I I V S I D A S GV T H T I T P T - - - - - - - - - - - - - - - - - - 108

Fg A N R P R I Y Y P R QV K R E V V N N A A A A P A V P - E N QV - - - - - - V P D L E K R D P QN S F L D R L F S N N N D D K A S T GD K E S G I N F D P T I P L G L K R P G P S A S A P P A L V L Q P T T T S MA - - - - 118

Fo A N R P R MY I P R QV K R E V E N N - - - A P V A P - E N Q P - - - - - - A P V I E R R E P A D S F I K S L I D K N S R K QA S Q - - - E D GV N F D P T L P L G F K K S G P S A S A P - A L I I Q P T T S - - - - - - - 108

Mg - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - MH N F S K L A V A F V A A A S F A S A E P E T K A K V E R P I I Y F P R H I K R Q F A N T T T - - - - - - - - - - - - - - - - - - - - - - 48

Nc R I GA GA R GR MK R K R L GH R D L A GA GD V D - GD L A G E L R S F G L F V K F T R Y D Y L L T T A L L A A S Y V A G E H V G P T K P K Y Y F P K H V K R QY A N A T I T S N D A P I S T I D T S S D A L S Q T T K 131

Sc D Q T S T A GA I P V QS S A D F S S S S E I L V QS S A D F S S P S S P T T T D I S L S A A P L Q T S E S S S F T T A S A A L P V S S T D V D GS S A S P V V S MS A A GQ I A S S S S T D N P T MS E T F S L T S T E V 330

Ca S E V H V QS QQ T S T T P N T P T S S P N T P T T S E A A P T T S A A P T T S E A P V T P S T S E V V P N T P T T S E A P N T P T T S E A P V T P S T S E V V P N T P T T S K A P N T P T T S - - - - - - - - - E A P A T 306

Ag - - - - - - - - - - - - - - - - - S D T A D S A S T S A P L T S S N T R S T E S T E S S A V T S S T A K K G T K T P T K G L S E S S S T K T I D S E T I K P L S E P T L S S GH S H S R K T L S - - - - - - - - I P T S Y L 204

Af - - - - - - - - - - - - - - - - - - - - - - - - - P T P S P S A E T S S D A T S GS T L E P S S - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A T D QS A P N N V P A T A - - - - - - - - - L S T A Q T 151

Fg I E E P E T T E P A E A T D A P I E T D T G I L L A P S G I V T S K T A V K S T Q P A K T S A A A P K E E T S A A P V E T E T - - - - V V E T E E P A V T T E A P K E E T K L A A T T A P A V K - - - - - - - - - E P E S V 215

Fo E A L P E T T E P A V S T D A P T E A D T G I L L A P S G I V T S K T A A Q P A E P A K T T A A A V K E P S T E A P K K E E T K P A A T S D V E A K P A T T E K P K E E T K P A A T T A P A A E - - - - - - - - - E P S S V 209

Mg - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - P A S E A S S S T S R P P P I P V P - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E T S S F S S S A S S S - - - - - - - - - S A Q E L 83

Nc R E T T S N D QS E S L S D I P F V K S T S S R F L T S S E P QS E S E S D T S R V T T V V I A S T V Y V S P S Q P T T A D L S T A G T A A P S A P A V D T D F V S S T D S T A GS S D S T S Q - - - - - - - - - G T T G L 232

Sc D GS D V S S T V S A L L S A P F L Q T S T S N S F S I V S P S V S F V P S QS S S D V A S S S T A N - - - - - - - - - - - - - - - - - - - - - V V S S S F S D I P P Q T S T S GS V V S V A QS A S A L A F QS S T E V Y 419

Ca P T T S E A P N T P T T S E A P V T P T T S E V V P T T S T QGD A V S T S S T S V T E Q T T L T S - - - - - - - - - - - - - - - - - - - - - S T Q L P P T T A S T T Q T S T P E A S D S P K P S S T S I E T P S T S T F E 395

Ag T N T E A K P T P S A E T S E E MS S T T D K - - - - - - - - - - - - - S K H K T K K E K H K S - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - T T T S G T D A I S S S E T D 254

Af S S P A K T D T S D N S Q - - - - - - - - - - - - - - - - - - - - - - T A P A S S P A T S S G - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - N T V S D T L S A V V S S V L GD 193

Fg N T P K E K P - V D S K T E E P A P V K T T - - - - - - - - - - - - - - E P K V E Q P A S T P - - - - - - - - - - - - - - - - - - - - - - - S K K T V I E T K T E S - - - - - - - - - - - - P V E T K P - - A V V S T T K K 273

Fo K T P E K K P V V E T K T E A P V P V E T V T E P A V V E T K T E K P V E S K T E K P S A T K G L L D P V E S I L T S V L P V A S D P K K E T K P P A I E T K T E E P A V E T T E K P K T E P E E T K P - - A A V P T T K E 317

Mg T A S R Q P T S I D E F F - - - - - - - - - - - - - - - - - - - - - - - - - - S T L S D A L T - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - T D S T P F S - - - - - - - - 111

Nc S S S A T D N S S T D L L G F P T G I S S GS - - - - - - - - - - - - - T T E S S L S D S T T G - - - - - - - - - - - - - - - - - - - - - - - - - - G T S S GA T S S P E S T P G T S L GS T T D S S T S S P V T A T D R V 303

Sc GA S A S S T MS S L L S T T S L QS T T L D S S S L A S S S A S S S D L T D Y GV S S T A S I P L L S A S E QA S T S S S F S V V S P S V S F V P S QS S S D V A S T S A P S V V S S S F S Y T S L QA GGS S M T N P S 529

Ca QD P T T T S S V G T P S S E Q P Q P T T T S E S A V T S N S P T Q E - - S T S L V E P T T S S L E S S N T P T P N P S T S E A Q P S T S A S QA P P D T T S S A P A P E L S S S N A D F S N S V L H S S E T T S L V N P T 503

Ag L S S T I T D G L S T L T T P T S D S MS Q L S A T S S I D S S L S GS Q I P S A T S S L S S T GK A T N S A I S A S L S S G T S S T S S GS H L P S GS P T D S S V S G I P T S G L T S S S A QS S GS G I P T S G L T S 364

Af P S S S T S T S P P V S S S A T D GS K A P E S - - - - - - - - - - - - - - - - S T T V S A A Q T S QA K T D P S D N S Q T T P A S S T P A T S S GN V V S D A L GG - - - - - - - - - - - - - V GG L V S S V L GN P S S 274

Fg G L L D P V E T L L S S L L P V P A E S K T T Q P K A V N T E T T K P K E - - E T Q P A P A E T Q P A P A E T Q P A P V E T E T V Q P A D T E T K S P S V E K P A P T T K E G L L D P V E T L L S S I L P V P A E T E T K D 381

Fo G L L D P V E S I V S S V V A D P A D S K T T E P K P V N T E T K K - - - - - - A E P A K T D S K - - - K E T Q P A P V E T E T A K P A E P E T T S P A A E K P A P T T K G - L L D P V E T L L S S V L A D P A D N K T K D 417

Mg QR P A T S GA GR S S A T GD V T P I I V P S S - - - - - - - - - - - - - - - - A S P P S T A V K P GS V S A L T T S QN S T S A A T S E S V T S P GS T S - - - - - - - - - - - - - - - - - - - - - - - - G P A G T P E 181

Nc D S S A S A S A S A S A S T S A S D N T I L P S S GA N V T S S F A S - - T T D A V S S S S S V T K T A S S S S P T T D S A S S S A S V T GS V T S P GS I A N T T S S A I S A S S S S S V V D I L S F L N P G F GGA S S 411

Sc S S T I V Y S S - - - - S T GS S E E S A A S T A S A T L S GS S S T Y MA GN L QS Q P P S T S S L L S E S QA T S T S A V L A S S S V S T T S P Y T T A GGA S T E A S S L I S S T S A E T S QV S Y S QS T T A L Q T 635

Ca D S Q I D S S S T T D A V S QA T T E P T S E N T P T A A S S V T A N D I N S A QS S A P T S N A D A E T A S S P V S E QS L A T GS Q T S L D T T A GA S S T A S E A T A E N L S T F G T D GS S D A S Q T I A E T T S N 613

Ag S S A QS S A S G I P T S G L T S S S A QS S GS G I P T S G L T S S S A QS S GS G I P T S G L T S S S A E S S S S G I P T S G L T S S S T QS S GS G I P T S S L S S S S T QS S GS G I P T S S L S S S S E S A V S G 474

Af S T I A V P - - - - - - - - T A T E A K S T GS S A T E S N D P S T N S T T P T GS S S P A A P V E T T P T P A A S S S G L L D T V A S D L S G I L P T A S S S L A S GA A T T D S S N A D G T V T H S T V V I P S S T GN 376

Fg P Q P D Q T QS E - - - - - P L P E E T G T P T K E P QR Q E S K P Q T D D Q T L P T V S P P S D E P T A A P G T A Q T S E GG L L D P V E T L L S S L L P V D P S D V K T T S P E E T A A P G I E P T S A A G E E T GS E 486

Fo P T P D Q T E S I - - - - - S Q P E E T G T P T K E P QR D N S K P Q T D GQ T L P T F S P P A D K T T A A P N A G E T S K D G I L D P V E T L L S S V L P N Q P - D V K T T S P E E S S A P - V D S Q P T S A A P N GS E 520

Mg S S S A S D - - - - - - - - - F T S A V A T S R A S T A T S N T G L I P E T T I L P T T A T S N T G L I P E T T I L P T T A S L S T A E S A V T P S I T S S - - - A S S S G I L I A P T GV V T P T S S S - - - - - - - - - 270

Nc S A S A T D S T T V L GS V A N T T S A A I S A T D V A S S S A S A T D S T T A L GS V A N T T S A A I S A T D V A R S S A S A T D V A S S S A A S T D A S GS L T S A S A L P T V S S GV I S N T T S P D S S S S L QV L 521

Sc S S F A S S S T T E GS E T S S QG F S T S S V L V QM P S S I S S E F S P S Q T T T QMN S A S S S S QY T I S S T G I L S QV S D T S V S Y T T S S S - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 712

Ca S P D QS V V T P S A S A S P D V S T L P T GS E S G T S L V S GS E T S I D T N T V A S GS T V I P E S S N I P T QS P S QS V V S S D A A A S N V S T GS A T T D S L A GS E T GV Q P I S S S A T G T S E P V F S S E 723

Ag S L I S S A Y S S L S S I S S D N I S I S S T D S A GS S H L S H A L P T S S S V I I P I S S T P I P Q E L T M T GN S S L S T V R S G T E I S T I S T S - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 551

Af N S S P E A S P S P T P S P S GV L D P L T S A V T D L L P G - - - - - - - - - - - S A S S S A V T N GS S GA E T S - - - - - - - - - - A S T D L GQ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 431

Fg Q T V S GA P V T N P E T T G L P E L I P - T S I L P E P T L P L D E T D L L P I P T D I T D V T S I L P E L S S P V T V S P A I P T T L A P - E E S Q T G L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 563

Fo Q T V S A A P S T E P E T T G P P E L I P - T S I L P D P - - - - - - T D I L P V P - - - T D V T S A V P E P S S P V T V S P V I P T T V S P P E QS E S GS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 589

Mg S T E D P V F D G I G T L I S S I V S S V S T V L Q P N G T A P - - - - - - - - - - - - V T T T P N T S V D V A T - - - - - - - - - - - - - T P V D I A S - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 322

Nc T P P T T T V E P I S T A N A T T V E T A S T V T A T D GS A S T GW L P P I I V L P S I R T S S T S A A D V A N S T A P A L V S G T GR A T N S T I G T - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 598

Sc - - - - - - - - - - - - - - - - - - - - - - - - - - - S V S QV S D T P V S Y T T S S S S V S QV S D T P V S Y T T S S S S V S QV S D T P V S Y T T S S S S V S QV S D T P V S Y T T S S S S V S QV S D T S V P S T S S 795

Ca Y N S S E G T T S L V V P T N S E L S S T V T GS S E T A A T A I N S E S V L T GS S D T A A T V T GS E S I L T GN T E T S A T A I A S E S T L T GS T T GA T D S A A T T I A S E S V L T G T S D A S A T V I P S E S A 833

Ag - - - - - - - - - - - - - - - - - - - - - - - - - - - A V T S V S S T K S E T T T S V P L S T S R S A N H S A V I T P S S S P L T I L P S S S S T T V V S T S E GH K I S S T F N GS I S S H T L A S H S T F S L T S S S V 634

Af - - - - - - - - - - - - - - - - - - - - - - - - - S T V P V S V P A V T P S A T S S S G L GG I L G P I L S S A GS T GV I P - - - - - - - - - - - - - - - - - - - - T A S T H T S S F V GV P T G L T S I L I P GGS S G 496

Fg - - - - - - - - - - - - - - - - - - - - - - - - - - - - P D L T S F V D P N T K L - - - - - I D P T E S P N V T L P D A T S GV G T E P A E T E L P V P T T E P V N G T E T Q P A N G T E T Q P A P T G E P E T T GA P E P 640

Fo - - - - - - - - - - - - - - - - - - - - - - - - - - - - P D L T S F L D P N T K F P Q T GS V G P T D A P N T T V P E V T S G I D V K - - - - - - P E P T S E P I N - - - - - - - - G T E T I P N V T G E P Q T T GA P E P 657

Mg - - - - - - - - - - - - - - - - - - - - - - - - - - T T A S D T L S P T T A V V S T T G - - - - - - - P V T S V Q T L P P V S T - - - - - - - - - - - - - - - - - - - P T A N G T V T S - - - P P V D S Q T T V L P T T T P 377

Nc - - - - - - - - - - - - - - - - - - - - - - - - - - A T A S E I I A T E D P L I T S S S S S G I L L A P T GV V N E T T S A S T N L I E S L A S N V A S L V GS I L I P T GN G T A T E P T A P V T T S D S V T I P S A T E 682

Sc R S S V S QV S D T P V P S T S S R S S V S Q T S S S L Q P T T T S S Q - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 831

Ca L T GS T T T P I A S E S V L T G T T S A D V S GA T T I GS E S I F T G T T E S T G T P L P T A S G T E S L D T T V A T G T S V S E QS GV E T A L S T Q P T T G T E A T V T S GV S QS E Q T G T S A V T GV T E S S E 943

Ag S MS S F V T S S S QV P E E V T P T P QS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 656

Af S E S P T S Y T Q I S P S V P T T A P - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 515

Fg T E D V T E A P T - - - V A P T A T GA A S E E P T GN - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 665

Fo T D V N T E E P T N I T Q T A V P T GD A T N E P S GN T T A P A T E P A T - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 695

Mg - - - - G L S S D T I V T S P GV T A N - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 393

Nc P Y A S GS GS GV I T P S A S L T T S Q P K P P MMS S G I V S I P I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 718

Sc - - - - - - - R F T I S T H GA L S E S S S V S QQA S E I T S S I N A T A S E Y H S I Q T T A A T QS T T L S F T D A N S S S A S A P L E V A T S T P T P S S K A S S L L L T P S T S S L S QV A T N T N V Q T S L T T E 934

Ca Q I QS GA T T P A T T T A S D A T A V T N A S E A S A E S QA T T T A A S E A T T GS QV T T A A S E A A T E S QA T T A A S E A A T E S QA T T A A S E A A T E S QA T T P A S E P A T GS QV T S E V T P A T V P S S 1053

Ag - - - - - - - - - - - - - - - - - T E T E Y P QS T R P S N T S T L Y S S S R E T Y P Y T T T L S Y I P S T T S A D K T S E E S Y S A P E V T T L A P L S D S T QS S QA S T T L S S QD S T T L T T S S T S T R P T TWG 749

Af - - - - - - - - - - - - - - - - - - - - - - - S V T S T A V I P GS S D T A I GS S I A V T GS T GV S S T L P T P T A D F S S S A I Q T L S T T E Q - - - T T P S P S T T P E T T T A A P T T T T T S T T Y P P E T T T - 598

Fg - - - - - - - - - - - - - - A T E P A T E P I D T A T D S V P T E L P A T Q T GD E T N G T A T E E P T S P A T GV E T E S A P V A T D I QQ T S A A V P T - - V S E V Q P T I Q P T S Q P P V E T E T Q P Q T Q P E P V P 759

Fo - - - - - - - - - - - - E P A T E P A T K P V D T A S GS V P T GS P A T E T D A E T N G T A T A E P T K P A T GV E T QS A P - A S E G E Q T S A V A P - - - - T D E Q P S V A P T S Q P P V E T E T K - - - - P E P E P 784

Mg - - - - - - - - - - - - - - - - - - - - - - - - - - S T QV P - T T V P T T I P T T Q P P V T E P T I T P T V L P P S - - - P N N T V P S N T T T Q L P - - P T QA P T L T Q L P T T T T S P A L T T P A T T P S V A P T S 471

Nc - - - - - - - - - - GN S T V S S T K A V E S G P T T T G I P GS S V P V I P GN S S I P V T S MS D T T V V L P P V T L I N S T T V A A N S S T I I P V I V T S A S A E S S V P V S S L E P V T T T QV L I P P P V P T T 818

Sc S T T V L E P S T T N S S S - - - - - - - - - - - - - - T F S L V T S S D N NWW I P T E L I T QA P E A A S T A S S T V G - - - - - - - G T Q T M T L P H A I A A - - A T QV P E P E GY T L - - I T I G F K K A L N Y E 1019

Ca V T A A D T A A T S I I T S P P A S A E P S S E V T A V A P S A A T T S S T K NW L P S S L V I A E T P S S N A S K S T E S I V QA S A T GA S T S G L P R A I T P - - E T T T T P G F D Y QV - - I T V G F K S A L N Y P 1159

Ag - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - K N A P S GNW L P T V I I T A T E Q E V V S T E S P QN T QS K P K P T A T P N I Q T L P QV I A A P D R V T P K K D Y T L - - I T I G F K K Q L N Y P 824

Af - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - T E N T D F V P S S I L V E P - - - T T T T Q L S T - - A E T A T G T N R P A Q L P GS I S P A N G L T S P - P P D S T L - - ~ I Q L G F N GK L R Y S 665

Fg T T L V P T A A E P V T S I R - - - - - - - - - - - - - - - - - P T A T L T N T N NW L P T T I M F E P - T S I P A A P T QA - - T E T S T S T G L P A N I P R V I L P - N D P N K P I P E GS R S I Q I G F L F P F N Y K 848

Fo T T L V P T A A V P V T S I R - - - - - - - - - - - - - - - - - P T A T L T N T N NW L P T T I V F E P - T S I P A A P S Q P - - T E T S T S T G L P A N I P R V I L P - N D P N K P I P E GS V P I Q L G F L F P F N Y K 873

Mg - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A T S S A N S N D DW L P T T I I V QA P L P S T T GS S T N - - A P S S A P T V L P S D L P K I I N P S D D I T E P L G P D MM E - - I QV A F K F A L N Y R 547

Nc T I N Y P P V T QY T P T - - - - - - - - - - - - - - - - - A T V S N M P P GY N S P T T I L V D Q P P P A Q T H T V S F - - V QQ T T A T A L P T D L P K A I A P - D D T T A P K P E D N V F - - I Q I G F N Y G F N Y P 906

Sc F V V S E P - K S S A Q I F GY L P E A L N T P F K N V F T - - - N I T V L Q I V P L QD D S L N - Y L V S V A E V Y F P T A E I E E L S N L I T N S S S A F Y T - - D GMG T A K S MA A MV D S S I P L T G L L H D S N 1122

Ca F V V E N S - I S S A Q I F QY L P R V L K Y P F N GD K S - L QN V S V R R L I P Y - T A S N I D Y T I T V A E V Y F P K D S V K A L GS F I T T P GS A I Y R - - N P D S V L QA L A S L I D S R I P L T G L V T D D Q 1264

Ag F I A MN P - F A N A Q I F D Y L P G I L N Y P F N F E Y A - - - D I S V I Q L V P L K A N S K D - Y I A T I A QV Y F P S E K V D E L A K L V V D T N S E L Y S - - S Y D A N MK V F A S L I D P Q L P L T G L A GK G F 927

Af F V A T T P - L S S S Q I F L Y I P QG L I Y A L E I L G - - - K D I A M F A I Q P Y D N S A S T GY I A T V A L A Y I P T D K V D T L R K L L R S P L S K L Y Q - - Q P N E S V K T L F S M I D P S I P L V V G E S GS S 769

Fg F L A R N T - V A A A Q L F K Y L P K G L A D A GG F S K - - - D R I L I E K I I P MD T QS QWGY I T A L A K I H Y P E N M L D S L QA D L M T P N S L L Y N - - N D L E I V R N L T S V I N N K I D I F G - - - - - N 947

Fo F L A R N T - V A A A Q L F K Y L P K G L A D A GG F S K - - - D R I L V S K I V P L D T QS QWGY I T A L A K I H Y P E N M I D S L QA D L I T P N S P L Y N - - N D L E I V R N L T S V I N T K I D I F G - - - - - D 972

Mg F I T N E N P N A GA Q I F E Y L P K S L K Y M E G L T E E QK K R L QV L R V V P L N T E QQ L GY V T S V A I A TW P K A F F P Q L R L D V K T P F S Q F Y QN T S N GM L A H N L T M L V N P A I D I L P GA T L D G 657

Nc F V A K N N - N A A A Q I F R L L P E A L A F A S S I E S - - - H R V R V T K L M P MN T V N T L GY W T T L A V V S Y P QA Y V E S L R L D V K I A S S P L Y N N P T P - - L V Y N L T MQ I N P A I D I I L GS T L I G 1010

Sc S N S GGS S D GS S S S N S N S GS S GS GS N S N S GV S S S S GN S Y QD A G T L E Y S S K S N S N V S T S S K S K K K I I G L V I GV V V GGC L Y I L F M I F A F K Y I I R R R I QS Q E I I K N P E I S - S I S 1231

Ca QV S GS S S D S N P S T N - S Y GS MD I V S - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - N T K V A D K GR I A G I T I GA A A GC G L Y M T L MV L L F R K F R K S N K A L - E L P I T D S E S N L G F 1342

Ag S S S GS T T QN K P H P D A D N S I GR S GA L GG P Y N P - - - - - - - - - - - - - - - - - - T N S K S A A V P MS K A K L T G I V V GS I C GV T L Y I A L M I V GV R Y F L L R S R GGV E L QD N H S F Y S S N S 1019

Af S GS G L Y S D S G I S GS GS S S D GN GS GS N S GN D A - - - - - - - - - - - - - - - - - - - D A GA S R S A S A R A S S V G I GV GV V C GA A A Y GA GM FWV A R R Y R K K R Q L - H R R S N - - - - - - S T M 853

Fg T D N GA S S D T GD S D D S G L GGN D G F GN S G E - - - - - - - - - - - - - - - - - - - - - - - - - GD K T A K QK A T T A G I A V GA V G L S V MY GA A M F L V A R R Y K R K K Q L GH R R A S S I GS S QR S S 1032

Fo S D T D N N T D N GN S D D GN S GN R D V F GN S G E - - - - - - - - - - - - - - - - - - - - - - - - - GD K S A K QK A T T A G I A V GA V G L S V MY GA A M F L V A R R Y K R K K Q L GH R R A S S I GS S QR S S 1057

Mg K P A G - - A GS G T GGN GS N G P N D V F N N D N N S - - - - - - - - - - - - - - - - - - - - - - - - T N QS A T QR G T V A G I A F GA V S L A A A Y GA A M F I V A R R Y K K K R QA - H R R S S S V A - - - T P S 737

Nc D GS GGD S GS N P S N A GN N GN A D P F T N N N N - - - - - - - - - - - - - - - - - - - - - - - - - GN Q T S QQR G T T A G I V GGA V A V A A A Y GA A M F V V A R R Y K R K K QA - H R R A S S L GG - - S P S 1092

Sc S S E F GG E K N Y N N E K R MS V Q E S I T QS MR I QN - - - - WMD D S Y Y GH G L T N N D S T P T - - - - - - - - R H N T S S S I P K I S R P I A S QN S L GWN E V - 1306

Ca S D E D S S M L E S S S G F S A I F S R I N H GGV L T GD P - - - - - - - - N GGGD D MMMMN N N N - - - - - - - - - - - N N L R P N N I S E P V QA S N S L GWY H -  1409

Ag GGS S D M I T S S E I P P T L Y D D K S L F V T A N N A R MMR A S V T P S MK V D NWMD Y N N S V N G L GD N N A T H S F V N GK I T K I S G P I A S E N S L GWD P - - 1105

Af E Q T S E GR GA GS L F A - - - - - - - - - - - - - - - - - - - - - - - - - A GGR L S R N S QN S R - - - - - - - - - - - - GS GR GQM I S A P V MA E N S L GWN - - - 901

Fg E MQY N GN GS P A L MGGA L MS R D F S N Y GA QG P - QG E QA P A R P GGR D S H GS GR S G - - - - - - - - - - MGN S A R T A F I S A P V A A E N S L GWN - - - 1106

Fo E MQY T GN GS P A L MGGA L MS R D F S A Y GA T - - - H A E QGQV R P GGR D S H GS GR S G - - - - - - - - - - MGN S A R T A Y I S A P V A A E N S L GWN - - - 1129

Mg E MR QS G - - S P A L MGGA L L S R D F T H Y GGV MG - - - - - - - - P A GGR E S H GS N GS GR - - - - - - - - S A GN S A R T A G I S A P V A Q E N S L GWN - - - 804

Nc D MQQMGGGS P A L MGGA L L S R D F T GY GGV A GGA A A A GA V A P GGR D S H GS GR S G - - - - - - - - - - MG L S S R T A Y I S A P V A A E N S L GWN - - - 1167

A 

B 

SS

O-glycosylation

N N NNNNN N

100 aa

MHD CTPRD

TM

RPT RPT 

SS

O-glycosylation

N N NNNNN N

100 aa

MHD CTPRD

TM

RPT RPT 

Af 

Sc 

Ca 
Ag 

Fg 
Fo 

Mg 

Nc 



 

90 

 

1.3. Aim of this work 

Msb2 has a dual function in F .oxysporum. First it is required for surface-induced 

phosphorylation of Fmk1 and promotes functions related to invasive growth and virulence 

upstream of Fmk1. Second Msb2 contributes to maintenance of cell integrity through a 

distinct pathway (Perez-Nadales and Di Pietro, 2011). This suggests that Msb2 interacts with 

unknown proteins to regulate distinct functions in F. oxysporum (Figure 4). 
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Figure 4. The transmembrane protein Msb2 has a dual function in F .oxysporum. First Msb2 is 
required for surface-induced phosphorylation of Fmk1 where it promotes functions related to invasive 
growth and virulence upstream of Fmk1 and second Msb2 contributes to maintenance of cell integrity 
through a distinct pathway (Perez-Nadales and Di Pietro, 2011). 

 

The aim of this study was to identify new interaction partners of Msb2 to elucidate its 

mechanism of signalling in F. oxysporum, using a Yeast Two-Hybrid (Y2H) screen with Msb2 

as a bait. 
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2. Results  

 

2.1. Construction of a cDNA library of F. oxysporum in a Y2H vector 

After generation of cDNA using the SMARTTM technology, library construction was performed 

following the manufacturer´s instructions (Make Your Own “Mate and PlateTM” Library 

System User Manual, Clontech, 2010) usinf RNA optained from minimal medium growth 

condition. Since the first “library scale” transformation did not generate the minimum of 1 

million independent clones required to screen the complete genome of F. oxysporum, we 

tested different concentration of cDNA together with plasmid DNA for optimal 

transformation efficiency, and calculated the library titer required to obtain > 1 million 

independent clones from our library. Instead of a single transformation on a “library scale”, 

we performed 24 transformations at a “small scale”. Dilution on SD-Leu and subsequent 

calculation (3 µg pGADT7-Rec and 3,984 µg cDNA) revealed a transformation efficiency of 

1.759 x 106 cfu/µg and 7 million independent clones in our library.  

 

2.2. Yeast Two-Hybrid with Msb2 against the F.oxysporum cDNA libraray 

The cytoplasmic tail of msb2 (msb2-CT=95 amino acids) was cloned in the bait plasmid 

pGBKT7 and transformed in the yeast strain “Gold”. Msb2-CT is expressed in yeast cells fused 

to the Gal4 DNA-binding domain (BD). We confirmed in-frame cloning of msb2-CT cDNA with 

the Gal4 DNA-binding domain (BD) in the bait plasmid and the absence of toxicity and of 

autoactivation in absence of a prey protein. The cDNA library of F. oxysporum described 

above was cloned in the plasmid pGADT7-Rec, transformed into the yeast strain Y187 and 

expressed as a fusion protein with the Gal4 transcriptional activation domain (AD). The Y2H 

screen was performed via yeast mating (Figure 1) before plating on selection 

medium(quadruple-drop-out (QDO) mediumwithout tryptophan, leucine, adenine and 

histindine). After mating of the bait Gold-pGBKT7-msb2-CT-BD against the cDNA library, the 
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number of screened clones was calculated, which should be at least 1 million of diploids to 

detect genuine interactions on the selection plates which can be only achieved by a mating 

efficiency of 2-5%.  

 

      

Figure 1. A typical yeast zygote during yeast mating showed a 3-lobed structure. The lobes represent 
the two haploid parental cells and the budding diploid cell. Some zygotes resemble a clover leaf (B 
and C), while others have a shape similar to a “Mickey Mouse” face (A and D). Scale bar= 5 µm.  

 

Viability colony counts after mating on the appropriate selection plates revealed a 

percentage of diploids (mating efficiency) of 19.32% and a number of screened clones of 

1,573 x 106. The screen revealed in the first screen 134 colonies which were re-plated on 

high stringency mediumafterwards (QDO mediumsupplemented with the drug aureobasidin 

A and 5-bromo-4-chloro-3-indolyl-α-D-galactopyranoside (X-α-Gal)) (Figure 2). In a second 

Y2H screen performed in parallel with the complete open reading frame of Msb2 (Msb2-

ORF-BD), no clones were obtained on the protein-protein-interaction selection plates. 

 

 
Figure 2. Y2H analysis with the cytoplasmic tail of 
Msb2 (Msb2-CT) against the cDNA library of F. 
oxysporum revealed 134 positive interactions. The 
cDNA of msb2-CT was cloned into the bait plasmid 
(pGBKT7) and transformed into the yeast strain Gold. 
The cDNA library of F. oxysporum was cloned into the 
plasmid pGADT7-Rec and transformed into the yeast 
strain Y187. Positive interactions were obtained after 
yeast mating and screening first on selection 
medium(SD-Leu/-Trp/X/A) followed by replating on a 
high stringency master plate (SD-Leu/-Trp/_Ade/-
His/+X-α-Gal/+Aureobasidin).   
 

A B C D 
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After re-plating the 134 candidates on high stringency selection plates, 35 clones which 

displayed a strong growth and deep blue color were selected for further analysis. The 

plasmids from the selected 35 clones were isolated, the cDNAs amplified by PCR with the 

primer pair (Amplimer 3`/Amplimer 5`), purified from an agarose gel and sequenced. A 

BLAST search of the complete genome database of F. oxysporum 

(http://www.broadinstitute.org/) with the corresponding nucleotide sequences identified 11 

different coding regions containing at least one of the positive clones (Table 1).   

 
Table 1. Sequencing of positive Y2H clones revealed 11 candidate proteins interacting with Msb2-
CT. The pGADT7-Rec plasmids from the positive clones were isolated and the inserts amplified and 
sequenced. A BLAST search against the F. oxysporum database identified 11 different genes. 

Number of 
clones 

Gene BLAST result (Broad Institute) BLAST result (NCBI) 

20 FOXG_13832 urease accessory protein ureG  

1 FOXG_04361 ubiquitin-conjugating enzyme  

4 part  of 
FOXG_00769 

2421676- 2421848 glycoside hydrolase family 63 

1 FOXG_14173 predicted protein Ident. 45% heterochromatin protein 
one Magnaporthe oryzae 

1 FOXG_08666 conserved hypothetical protein vacuolar carboxypeptidase Cps1 

1 FOXG_08976  Formamidase  

1 FOXG_09776 Acetyltransferase  

2 FOXG_10398   conserved hypothetical protein glycoside hydrolase family 2 sugar 
binding protein 

2 FOXG_12838 hypothetical protein similar to 
vesicle fusion factor NSFI 

 

1 FOXG_00231 20S proteasome subunit beta 6  

1 FOXG_15235  conserved hypothetical protein C6 transcription factor (Ctf1B) 

 
 

2.3. Mutational analysis of the candidate genes by systematic deletion 

To investigate the 11 candidate interaction partners of Msb2 obtained from the Y2H screen, 

targeted deletion of the corresponding genes in the F. oxysporum genome was performed 

and the mutants were examined for known Δmsb2 phenotypes. We failed to obtain deletion 

mutant of the genes FOXG_14173 and FOXG_00231 suggesting that these genes are 
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essential in F. oxysporum. The FOXG_00231 orthologue is reported as an essential gene in S. 

cerevisiae (www.yeastgenome.org).  

 

2.3.1. Growth assays 

It was reported previously that colonies of the Δmsb2 mutants displayed slower growth than 

those of the wt strain on solid minimal medium(MM) containing the non-preferred nitrogen 

source NO3, but not on nutrient-rich medium (YPDA) (Perez-Nadales and Di Pietro, 2011). 

Therefore the 9 different F. oxysporum deletion mutants were tested for colony growth on 

MM + NO3 and on YPDA (Figure 3) and compared with the wt and the Δfmk1 and Δmsb2 

mutant strains.  

 
 

 
Figure 3. Growth assay of the nine F. oxysporum mutants on MM medium containing NO3 as a 
nitrogen source. Colony phenotype of the indicated strains grown on yeast peptone dextrose agar 
(YPDA) or Minimal Medium(MM) plates. 10

5
 microconidia from each strain were spot-inoculated and 

scanned after 3 days of incubation at 28 °C. Scale bar= 1cm.  
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Figure 4. The analysis of the colony diameter growth showed differences in growth between Δmsb2 
and some of the indicated strains. To test the growing and germination ability of the mutants for 
further growth assays, same amount of microconidia of the indicated strains were spotted on YPDA or 
MM mediumand incubated in 28°C. Colony diameter of the indicated strains was measured after 3 
days. Bars represent standard errors calculated from 3 technical and 2 biological replicates. 

 
 

Colony diameter measurements showed significantly reduced growth on MM in the 

ΔFOXG_00769 deletion mutant, similar to Δmsb2 or Δfmk1 (Figure x). A different colony 

phenotype on YPDA media, but no effect on diameter was observed for mutants in genes 

FOXG_15235 and FOXG_00769, but not Δmsb2 or Δfmk1.  

 

2.3.2. Cellophane penetration 

The Δfmk1 mutant fails to penetrate cellophane membranes (Lopez-Berges et al., 2010; 

Prados Rosales and Di Pietro, 2008) whereas the Δmsb2 mutant displays reduced ability 

(Perez-Nadales and Di Pietro, 2011). We tested cellophane penetration ability of the gene 

deletion mutants on MM agar (Figure ). 
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Figure 5. Assay of deletion mutants for ability to penetrate cellophane membranes. 5μl of a 
microconidial suspension (10

7
 con/ml) were spot-inoculated on MM agar plates covered with a 

cellophane membrane. To determine the penetration of the membranes, the cellophane sheets with 
the fungal colony were removed after 4 days (before) and the plates were incubated for an additional 
day at 28 °C (after).  

 
 

After removing the cellophane membranes, the deletion mutants ΔFOXG_04361, 

ΔFOXG_08976, ΔFOXG_09776, ΔFOXG_13832, ΔFOXG_08666 and ΔFOXG_10398 had 

penetrated like the wt strain. However, reduced penetration was observed for the Δmsb2 

mutant as described (Perez-Nadales and Di Pietro, 2011) and for the mutants ΔFOXG_15235, 

ΔFOXG_00769 and ΔFOXG_12838. The Δfmk1 mutant failed to penetrate the cellophane as 

described previously (Lopez-Berges et al., 2010; Prados Rosales and Di Pietro, 2008). 

 
2.3.3. Cell wall stress 

In previous studies it was shown that the Δmsb2 mutant, but not the Δfmk1 mutant, is 

hypersensitive to cell wall targeting compounds (Perez-Nadales and Di Pietro, 2011). Figure 6 
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shows the colony growth of the wt and the different mutant strains. We confirmed that the 

Δmsb2 mutant, but not the Δfmk1 mutant is more sensitive to CFW. None of the tested 

deletion mutants showed reduced growth as the Δmsb2 mutant. However, ΔFOXG_00769 

showed a distinct colony phenotype on medium containing CFW.  

  

 
Figure 6.  None of the deletion mutants shows increased sensitivity to cell wall stress like Δmsb2. 
Dilutions of microconodia (2x10

4
; 2x10

3
; 2x10

2
) of the indicated strains were spotted on YPD-MES 

supplemented with 30 μg/ml Calcofluor White (CFW), incubated at 28°C for 3 days and scanned. 
Shown is one representative result from three biological replicates. 

 

2.3.4. fpr1 expression  

To investigate a possible role of the candidate proteins in the Fmk1 pathway we examined 

expression of fpr1. Fpr1 encodes a secreted protein with an SCP-PR-1-like domain that was 

shown to be transcriptionally regulated by the Fmk1 MAPK cascade (Prados-Rosales and Di 

Pietro, unpublished). Previous work has shown that Msb2 acts as an upstream component of 

Fmk1 (Perez-Nadales and Di Pietro, 2011) where the Δmsb2 mutant showed ten-fold lower 

fpr1 transcript level than the wild type and the Δfmk1Δmsb2 double mutant even a hundred-

fold lower level (PhD thesis, E. Perez-Nadales, 2010). In this work (Figure 7) we could confirm 

the lower expression of fpr1 in the Δfmk1 mutant and Δmsb2 mutant strains. A reduced 

expression in comparison to the wt expression was determined in the mutants with the 
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deletions of the genes FOXG_04361, FOXG_08976, FOXG_08666 and FOXG_09776. Slightly 

reduced was the fpr1-expression of the deletion mutants lacking the genes FOXG_00769, 

FOXG_12838 and FOXG_15235. No significant difference was detected in the mutants of the 

genes FOXG_13832 and FOXG_10398.   

 
 
Figure 7.  Reduced fpr1 mRNA abundance in some of the candidate mutant strains. cDNA derived 
from RNA isolated from invasive growth condition (15 h germination in PDB, transfer and incubation 
for 4h on solid MM+ NaNO3). Relative expression levels optained by quantitative real-time PCR 
represent mean values normalized to the actin gene expression levels and relative to the expression in 
the wild type strain. Bars represent standard errors calculated from 4 technical replicates. 

 
 

2.3.5. Phosphorylation of Fmk1 

Previous work has shown that that Msb2 is required for the transient phosphorylation of 

Fmk1 upon contact with solid surface (Perez-Nadales and Di Pietro, 2011). Recently, we 

found that the phosporylation of Fmk1 is pH dependent.  (Segorbe-Luke et al., unpublished). 

We confirmed with Western blot analysis using commercial α-phospho-p44/42 MAPK 

antibody a transient increase of Fmk1 phosphorylation levels in the wild type strain 30 min 

after changing the pH in the liquid PDB culture form pH 5 to pH 7 whereas Fmk1 was under-

phosphorylated in the Δmsb2 mutant (Figure 8). Fmk1 was under-phosphorylated in the 

deletion mutants lacking the genes FOXG_08976, FOXG_00769 and FOXG_15235 and was 

hyper-phosporylated in the mutants of the genes FOXG_04361, FOXG_12838 but no 

difference in fmk1 expression level was observed in the strains FOXG_08666, FOXG_13832, 

FOXG_09776 and FOXG_10398.    
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Figure 8. Determining phosphorylation levels of the MAPK Fmk1 by Western-blot. Increase in pH of 
the mediumproduces a transient increase in Fmk1 phosphorylation and Msb2 is required for full level 
of Fmk1 phosphorylation (Perez-Nadales and Di Pietro, 2011). Total protein extracts from the 
indicated strains (15h germination in PDB with pH 7, change for 20 min to pH 5, increase the pH for 30 
min to pH 7) were used for hybridisation with commercial anti-phospho-p44/42 MAPK antibody (α-P-
erk), or anti p44/p42 MAPK antibody (α-ERK). The loading control was detected using α- S. cerevisiae- 
actin monoclonal antibody. 

 
 
2.3.6. Tomato plant root infection assay 

Tomato plants inoculated with the wild type strain showed a continuous increase in wilt 

disease symptoms, and most of the plants were dead 34 days after infection (Figure ). Plants 

inoculated with the Δfmk1 mutant failed to develop any disease symptoms (Di Pietro et al., 

2001) and the deletion of Δmsb2, who controls Fmk1-regulated invasive growth functions 

and virulence of F. oxysporum on tomato plants, was significantly reduced in virulence 

(Perez-Nadales and Di Pietro, 2011). We tested the nine gene deletion mutants for virulence 

on tomato plants where the mortality rates of plants infected with the mutants lacking the 

genes FOXG_08666; FOXG_13832; FOXG_15235; FOXG_00769; FOXG_10398; FOXG_12838 

were significant reduced (p<0.05) than those plants infected with the wilt type or the 

deletion mutants lacking the genes FOXG_04361; FOXG_08976 or FOXG_09776 (Figure 9).  
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Figure 9. The nine deletion mutants showed dispersal in virulence on tomato plants. Groups of 10 
two week old tomato seedlings (cultivar Money Maker) were inoculated with F. oxysporum strains by 
immersing the roots in a suspension of 5 x 10

6
 freshly obtained microconidia ml 

-1
 of the indicated 

fungal strain for 30 min, planted in minipots containing vermiculite and incubated in a growth 
chamber at 28 °C. Evaluation was done using the disease index of Fusarium vascular wilt (1= healthy 
plant, 5= dead plant). Per cent of survival was recorded for 35 days. Mortality rates of plants infected 
with the mutants Δmsb2; as well those mutants lacking the genes FOXG_08666; FOXG_13832; 
FOXG_15235; FOXG_00769; FOXG_10398; FOXG_12838 were significant lower (P<0.05) than those of 
plants infected with the wilt type or the deletion mutants lacking the genes FOXG_04361;  
FOXG_08976 or FOXG_09776.  

 

2.4. Yeast mating to verify protein-protein interaction from the Msb2-CT screen 

2.4.1. Verification of the putative Msb2 interaction candidate proteins  

The clones obtained by the Y2H screen as putative Msb2-CT interactors do not contain the 

complete ORF of the corresponding annotated gene. This is due to the cDNA library 

generation by using the SMARTTM technology (Clontech). The CDS III primer which were used 

to amplify the RNA hybridize to the 3`-end of poly A+RNAs and sequences close to the 5`end 
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of the transcript are therefore underrepresented. Table 2 shows the cDNA size (bp) of the 

pGADT7-Rec inserts in the Y2H clones and the size (bp) of the complete ORF`s obtained by a 

BLAST search of the Broad Institute Database (http://www.broadinstitute.org). To confirm 

the protein interaction of the candidate proteins and Msb2-CT, the cDNA of the complete 

ORF`s of the corresponding genes were cloned in the prey plasmid pGADT7-Rec, so that the 

entire protein is expressed as a fusion protein with GAL4 DNA-activation domain. Positive 

interactions were determined by yeast mating with the Gold strain expressing msb2-CT fused 

to the DNA-binding domain as it was used for the first screen against the cDNA library. The 

diploid cells were obtained on mating medium(SD-Leu/-Trp) and replated for positive 

interaction on high stringency selection medium(-Leu/-Trp/-His/-Ade/X-α-Gal/+Au).   

 
Table 2.  Verification Yeast Two- Hybrid (Y2H) assay with the complete ORF`s of the corresponding 
genes of the clones obtained as putative Msb2-CT interaction partner. The table shows the size of 
the cDNA (bp) obtained in the clones after the Y2H screen and the predicted size after BLAST search of 
the Broad institute database (http://www.broadinstitute.org). (+) indicates the unknown start or stop 
region of the indicated genes. The cDNA´s of the complete ORF´s of the candidate genes were 
amplified via PCR and cloned in the prey plasmid (pGADT7-Rec) to verify positive interaction by Y2H 
with Msb2-CT. 

Gene BLAST (Broad Institute) BLAST (NCBI) AD 
clone 
(bp) 

Complet
e ORF 
(bp) 

FOXG_13832 urease accessory protein ureG  525 810 

FOXG_04361 conserved hypothetical protein ubiquitin-conjugating enzyme 634 702 

FOXG_00769 2421676- 2421848 glycoside hydrolase family 63   

FOXG_14173 predicted protein  214 336 

FOXG_08666 conserved hypothetical protein vacuolar carboxypeptidase Cps1 522 2015 

FOXG_08976  formamidase  723 1233+ 

FOXG_09776 acetyltransferase  525 705 

FOXG_10398   conserved hypothetical protein glycoside hydrolase family 2 
sugar binding protein 

721 2247+ 
 

FOXG_12838 hypothetical protein similar to 
vesicle fusion factor NSFI 

 600 2319 

FOXG_00231 proteasome component C5  689+ 1064+ 

FOXG_15235  conserved hypothetical protein C6 transcription factor (Ctf1B) 558+ 2040+ 

 
 

The Y2H approach between Msb2-CT and the complete ORF`s of the candidate proteins 

(Table 2) confirmed two positive interactions. The Y2H using these two confirmed interactors 
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against the complete open reading frame of msb2 (msb2-ORF-BD) fail to detect any 

interaction. The negative results with confirmed msb2-CT interacting proteins, implies that 

the complete ORF of the transmembrane protein Msb2 can not be used in an Y2H assay. The 

corresponding genes interacting with Msb2 in the Y2H control are FOXG_10398 (glycoside 

hydrolase family 2) and FOXG_13832 (urease accessory protein ureG). The corresponding 

deletion mutants were chosen for further investigations. Because of the interesting 

phenotypes of the deletion mutant of the gene FOXG_00769, this mutant was included as 

well in the following phenotypic investigation.  

 

2.5. Phenotypical analysis of three candidates 

Before analysing further phenotypes, the ability of the mutant strains ΔFOXG_10398, 

ΔFOXG_13832 and ΔFOXG_00769 to germinate and growth in standard culture media, 

defined minimal (MM) mediumand two nutrient rich mediumPDB and YPG, were tested and 

compared to the wt and the mutant strains Δmsb2 and Δfmk1. Defined number of 

microconidia were inoculated in the liquid cultures to determine the mycel dry weight after 

15 h of incubation and revealed that none of the tested mutant strains showed a significant 

change in the ability to grow and germinate in any of the three F. oxysporum standard 

medium(Figure 10). However non of the mutant strains displayed aberrant growth in liquid 

cultures, ΔFOXG_00769  showed a slight increase of fungal biomass in YPG. 

 

Figure 10. The analysis of the 
mycel-dry weight showed no 
significant differences in growth 
and germination between the 
indicated strains. To test the 
growing and germination ability of 
the mutants for further growth 
assays, 6,25x10

7
 microconidia of the 

indicated strains were germinated 
and incubating for 24h either in 25 
ml of PDB, YPG or MM media. 
Germlings were harvest, vacuum 
dried and weight. Bars represent 

standard errors calculated from 3 technical replicates. 

     wt       Δfmk1        Δmsb2     ΔFOXG_   ΔFOXG_    ΔFOXG_ 

                   10398       13832         00769  

PDB MM YPG 
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2.5.1. Fpr1 expression  

To investigate a possible role of the candidate proteins in the Fmk1 pathway we examined 

expression of fpr1 as it was performed in section 2.3.4. The lower expression of fpr1 in the 

Δfmk1 mutant could be confirmed. No significant difference was detected in the mutants 

ΔFOXG_13832, ΔFOXG_10398 or ΔFOXG_00769.  

  
 
Figure 11. fpr1 mRNA abundance measurement by quantitative real-time PCR revealed no 
differences between the indicated strains.  cDNA derived from RNA isolated from invasive growth 
condition (15 h germination in PDB, transfer and incubation for 4h on solid MM+ NaNO3). Relative 
expression levels represent mean values normalized to the actin gene expression levels and relative to 
the expression in the wild type strain. Bars represent standard errors calculated from two biological 
and 4 technical replicates. 

 
 

2.5.2. Determination of candidate genes expression in  Δmsb2 and Δfmk1 mutant strains 

Quantitative real-time PCR was performed in the Δfmk1 and the Δmsb2 mutant strains to 

determine if the expressions of the three candidate genes are regulated by the Fmk1 

pathway via Fmk1 or Msb2 (Figure 12). Whereas no significant differences in gene expression 

levels were found in the Δfmk1 mutant comparing to the wt expression level, the expression 

of the candidate genes were significant reduced in the Δmsb2 mutant. However, expression 

of ΔFOXG_00769 which could not be confirmed in the Y2H assay was reduced in the Δmsb2 

mutant as well.  

 

 

 

 

   wt               Δfmk1            ΔFOXG_       ΔFOXG_         ΔFOXG_ 

             10398          13832            00769  

fpr1 
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Figure 12.  Reduced mRNA abundance of the three 
candidate genes in Δmsb2. mRNA abundance of the 
indicated genes was determined by quantitative real-time 
PCR. cDNA derived from RNA isolated from the indicated 
strains on invasive growth condition (15 h germination in 
PDB, transfer and incubation for 4h on solid MM+ 
NaNO3). Relative expression levels represent mean values 
normalized to the actin gene expression levels and 
relative to the expression in the wild type strain. Bars 
represent standard errors calculated from 4 technical 
replicates.  
 

 

2.6. Verification of Msb2 protein-protein interaction by switching the yeast plasmids and 
strains 

2.6.1. FOXG_10398 self-activates reporter gene expression  

A further Y2H control was performed to confirm the two putative Msb2 interaction proteins. 

Therefore the plasmids and the yeast strains were switched. The cDNA of msb2 was cloned 

into the pGADT7-Rec plasmid and transformed into the yeast strain Y187 where it is 

expressed as a fusion protein with the GAL4 DNA-activation domain (AD) and the cDNA of 

the two candidates (FOXG_10398 and FOXG_13832) were cloned into the bait plasmid 

pGBKT7, transformed into the Gold yeast strain where they were expressed fused to the 

GAL4 DNA-binding domain (BD). The positive interaction were obtained after yeast mating 

and plating several dilution on yeast mating medium(-Leu/-Trp) and on selection 

medium(Q/+X-α-Gal/+Aur). In parallel the yeast mating with the distribution of the first Y2H 

screen was plotted as a confirmation. Negative controls were served either by the empty 

bait plasmid pGBKT7 or the prey plasmid containing the PCR fragment SV-40 Large T as an 

insert which encodes SV largeT-antigene (Clontech).  The positive control was provided by 

the pGBKT7-53 encoding for a fusion between the GAL4 DNA-BD and murine p53 which 

interacts in the Y2H assay with SV40 largeT-antigen (Clontech).  The Y2H confirmed the 

protein interaction between Msb2 and FOXG_10398 when cloned either in the bait or prey 

plasmid (Figure x), however expression of the reporter genes were self activated in diploid 
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cells when FOXG_10398 was expressed as a fusion protein with the DNA-binding domain 

(bait plasmid pGBKT7 transformed into the Gold strain) in presence of the fusion protein of 

the negative control SV40 Large T (Figure 13).  

 

                    
    

                                  
Figure 13 . The gene FOXG_10398 self activates the transcrition of the reptorter genes when fused 
to the DNA binding domain (pGBKT7 bait plasmid). FOXG_10398 was identified in a Y2H screen using 
the cytoplasmic tail (CT) of Msb2 as a bait against a cDNA library of F. oxysporum. The ORFs of msb2 
CT and FOXG_10398 cDNA were either cloned into the plasmids pGBKT7 (expressed as a fusion 
protein with the Gal4 DNA-binding domain) and pGADT7 (expressed as a fusion protein with the Gal4 
activation domain) and transformed in the yeast strains Gold or Y178, respectively. Drop test shows, 
that FOXG_10398 expressed the reporter gene expression when when its fused to AD-domain as well 
to the BD-domain in the presence of the apropriate Msb2-CT fusion protein.  But FOXG_10398 is self-
activating when fused to the DNA binding domain and activates the transcrition of the repoter genes 
in presence of the negative controle fusion protein SV40 Large T-AD . Protein interaction in the dipoid 
cells after yeast mating were determined via drop test of different dilutions spotted on mating control 
medium(SD–Leu/-Trp) and selection medium(SD-Leu/-Trp/-Ade/-His/+ X-α-Gal/+Aureobasisin).  
 
 

 

2.6.2. The cytoplasmic tail of Msb2 interacts with UreG in a Yeast Two-Hybrid assay 

The same controlles were performed to confirm the protein interaction btween Msb2 and 

FOXG_13832. First the entire cooresponding cDNA sequence was cloned either in the bait 
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plasmid (pGBKT7) and transformed in the Gold strain and as well in the pGADT7-Rec plasmid 

which was transformed into the Y187 strain. Our results show that FOXG_13832 leading 

reporter gene expression when when fused to AD-domain as well when fused to the BD-

domain only in the presence of the apropriate Msb2-CT fusion protein, but not in presence 

of the negative bait controle pGBKT7-BD-empty or prey controle pGADT7- SV40 Large T-AD. 

Through switching the plasmids and the yeast strains we confirmed the positive protein 

interaction between Msb2-CT and the protein of the gene FOXG_13832 in the Y2H assay 

(Figure 14).  

 

 

                           
Figure 14 . The Msb2-CT interacts with FOXG_13832 in a Yeast Two-Hybrid (Y2H) assay. FOXG_13832 
was identified in a Y2H screen using the cytoplasmic tail (CT) of Msb2 as a bait against a cDNA library 
of F. oxysporum. The ORFs of msb2 CT and FOXG_13832 cDNA were either cloned into the plasmids 
pGBKT7 (expressed as a fusion protein with the Gal4 DNA-binding domain) and pGADT7 (expressed as 
a fusion protein with the Gal4 activation domain) and transformed in the yeast strains Gold or Y178, 
respectively. Drop test shows, reporter gene expression when FOXG_13832 is fused to AD-domain as 
well when fused to the BD-domain only in the presence of the apropriate Msb2-CT fusion protein but 
not in presence of the negative bait controle pGBKT7-BD-empty or prey controle pGADT7- SV40 Large 
T-AD. Protein interaction in the dipoid cells after yeast mating were determined via drop test of 
different dilutions spotted on mating control medium(SD–Leu/-Trp) and selection medium(SD-Leu/-
Trp/-Ade/-His/+ X-α-Gal/+Aureobasisin).  
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2.7. ΔFOXG_00769 phenotypes were not reproducible 

To confirm the ΔFOXG_00769 phenotypes, growth assays and virulence related assays were 

performed with two independent ΔFOXG_00769 deletion mutants (ΔFOXG_00769#2; 

ΔFOXG_00769#10) and two complemented ΔFOXG_00769+ FOXG_00769 strains 

(ΔFOXG_00769+ FOXG_00769#1; ΔFOXG_00769+ FOXG_00769#6).  

 

2.7.1. Vegetative and invasive hyphal growth phenotypes are not reproducible 

Vegetative growth on MM and YPDA and cellophane penetration assay displayed the 

aberrant growth and impaired cellophane penetration of the mutant ΔFOXG_00769#2. This 

phenotype could not be confirmed by the independent ΔFOXG_00769#10 mutant. In 

addition these phenotypes were still present in two complemented strains (Figure 16).  

The same observations were made concerning the ability of invasive growth on living plant 

tissue. Only the ΔFOXG_00769#2 but not the ΔFOXG_00769#10 mutant strain showed 

reduced invasive growth on apple slides in comparison to the wt just as well two 

independent complemented strains didn’t restore this phenotype (Figure 15). Our results 

suggesting that the recorded phenotypes we observed where not caused by the deletion of 

the gene FOXG_00769.   

 
Figure 15.  Reduced invasive growth on living fruit tissue of ΔFOXG_00769 is not reproducible and is 
not restored after gene complementation. Apple fruits were inoculated with 5μl of 10

7
 con/ml (5x 

10
4
) microconidia of the indicated strains and incubated in a humid chamber at 28°C for 3 days. 

Experiments were designed with 4 replicas. Data shown are from one representative experiment. 

 
 

 

 

 

Δ00769+         Δ00769+ 
    wt                 Δfmk1             Δmsb2           Δ00769#2      Δ00769#10      Δ00769#1      Δ00769#6 
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Figure 16. Different phenotypes on YPDA and MM medium(A) and invasive Cellophane penetration 
(B) are not reproducible by using independent FOXG_00769 deletions. (A) 5μl of a microconidia 
suspension (10

7
 con/ml) was spot-inoculated on MM or YPDA agar plates and incubated 3 days at 

28°C. (B) 5μl of a microconidia suspension (10
7
 con/ml) was spot-inoculated on MM agar plates 

covered with a cellophane membrane. To determine the penetration of the cellophane membranes 
the cellophane sheets with the fungal colony were removed after 4 days (before) and the plates were 
incubated for an additional day at 28 °C (after).   

 
 
2.7.2. Sothern-blot analysis of ΔFOXG_00769 and gene complementation  

The distinct phenotypes of the deletion mutants and their complemented strains prompted 

us to perform a southern-blot analysis.  The results confirmed a successful gene deletion of 

the two mutants FOXG_00769#2 and FOXG_00769#10. Further it confirmed the genetically 

integration of the FOXG_00769 gene in the two complemented strains ΔFOXG_00769+ 

FOXG_00769#1 and ΔFOXG_00769+ FOXG_00769#6. These results clearly confirmed that the 

observed phenotypes of the mutant strain FOXG_00769#2 is not causes by the deletion of 

the gene FOXG_00769.  
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Figure 17: Southern-Blot 
hybridisation analysis 
confirmed two genetically 
successful deletions of the 
gene FOXG_00769 and two 
complemented strains. 
Genomic maps of the gen locus 
of FOXG_00769 in the wild 
type (A) and after introducing 
of the gene replacement 
construct (B). The position of 
the primers used for 
generation of the split-marker 
construct as well for PCR 

analysis of the transformants and complemented strains are indicated. Genomic DNA was digested 
with HindIII and hybridized with a probe consist of the terminator region which is indicated as an 
arrow. (C) Southern-blot analysis showing the wild type strain 4287 and two successful deletion 
mutants of the gene FOXG_00769 (#2 and #10), ectopic integration (ect1 and ect2) and two successful 
complemented strains (#1 and #6) and a multiple integration of the FOXG_00769 gene (#3). Molecular 
sizes of the hybridizing fragments are: wt:  2010 bp and 2846 bp; ΔFOXG_00769 deletion: 2010 bp and 
4745 bp.  
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2.8. Yeast Two-Hybrid approach to verify certain protein-protein interaction  

2.8.1. Examination of protein-protein interaction of Msb2 with Sho1 and Cdc42 

In S. cerevisiae, Msb2 has been shown to interact with the transmembrane protein Sho1 

(Cullen et al., 2004). Further they demonstrate that Msb2 interacts with Cdc42 to provide a 

role in the Kss1 filamentous growth pathway. To investigate a possible interaction in F. 

oxysporum the Y2H approach was performed by using the Gold strain expressing either the 

Msb2 cytoplasmic tail as a Msb2-CT GAL4 DNA-BD fusion protein or the complete open 

reading frame of msb2 Msb2-ORF GAL4 DNA-BD. After yeast mating with the Y178 strain 

expressing the fusion protein Sho1-GAL4 DNA-AD or Cdc42-Gal4 DNA-AD diploid cells were 

confirmed on mating medium(SD-Leu/-Trp, Figure 18 A). No growth could be detected by re-

streaking these colonies on protein interaction selection medium (Q/+X-α-Gal/+Aur, Figure 

18 B) which confirmed that neither Msb2-CT nor Msb2-ORF is interacting with Sho1 or with 

Cdc42 in our Y2H assay.  

 
 

                                     
Figure 18. Msb2 (CT or ORF) is not interacting with Sho1 or Cdc42 in a Y2H assay. The cDNA of the 
transmembrane protein Sho1 and the small G protein Cdc42 were cloned in the prey plasmid pGADT7-
Rec and transformed into the Y187 strain (expressed as a fusion protein with the Gal4 activation 
domain). Interaction were tested via yeast mating with the cDNA of the complete open reading frame 
of msb2 (msb2-ORF) and the cytoplasmic tail (msb2-CT) cloned into the plasmid pGBKT7 (expressed as 
a fusion protein with the Gal4 DNA-binding domain). Protein interaction in the dipoid cells after yeast 
mating were determined on mating control medium (A: SD–Leu/-Trp) and selection medium (B: SD-
Leu/-Trp/-Ade/-His/+ X-α-Gal/+Aureobasisin).  
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2.8.2. Examination of protein interaction with proteins from the velvet complex and AreA 

Previous studies have demontrate that the heterotrimeric velvet complex co-ordinates 

fungal development and biosynthesis of secondary metabolites by modulating chromatin 

accessibility and gene expression (Bayram et al., 2008; Reyes-Dominguez et al., 2010). The 

member who belongs to the velvet protein family includes VeA, VelB, VelC and VosA. It was 

shown that in the absence of light, VeA and VelB interact and enter the nucleus (Bayram et 

al., 2008), where they assemble with the non-velvet protein LaeA, a global regulator of 

secondary metabolism (Bok and Keller, 2004; Bok et al., 2006). F. oyxsporum members of the 

velvet protein complex govern hyphal growth and conidiation, as well as virulence on tomato 

plants and immunodepressed mice (Lopez-Berges et al., 2013). By means of the Y2H 

approach we investigate protein interaction between members of the velvet complex in F. 

oxysporum (Figure 19). We show that in the Y2H the VeA protein can interact with both 

proteins VelB and VelC. We also detect a self-interaction VelB-VelB which was recently 

described in A. nidulans (Sarikaya Bayram et al., 2010). Further we detect the interaction 

between VelB and VelC and LaeA with VeA.  

Controls were provided by using the SV40 largeT-antigen- GAL4 DNA-AD together with Gold-

pGBKT7-53 GAL4 DNA-BD (positive control) or with Gold-pGBKT7-Lam GAL4 DNA-BD 

(negative control). A self activation of any of the tested proteins when expressed together 

either with the empty bait plasmid pGBKT7 or the prey plasmid containing the PCR fragment 

SV-40 Large T was not observed and all positive interaction were confirmed as well when 

plasmids and yeast strains were switched (data not shown).  
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Figure 19. Member of the velvet 
protein complex interacting with 
each other in a Yeast Two-Hybrid 
(Y2H) assay. The ORFs of veA, velB, 
velC and laeA cDNA were either 
cloned into the plasmids pGBKT7 
(expressed as a fusion protein with 
the GAL4 DNA-binding domain) and 
pGADT7-Rec (expressed as a fusion 
protein with the GAL4 activation 
domain) and transformed in the 
yeast strains Gold or Y178, 
respectively. Drop test shows a 
postitive protein interaction 
between VeA:VelB; VeA:VelC, 
VeA:LaeA; VelB:VelBVelC:VelB. 
None of the tested proteins 
showed a self activation in 
presence of the negative bait 
controle pGBKT7-BD-empty or prey 
controle pGADT7- SV40 Large T-AD 
(data not shown). Protein 
interaction in dipoid cells after 
yeast mating were determined via 
drop test of different dilutions 

spotted on mating control medium(SD–Leu/-Trp) and selection medium(SD-Leu/-Trp/-Ade/-His/+ X-α-
Gal/+Aureobasisin).  
 

 

In fungal organisms the nitrogen metabolite repression (NMR) mechanism ensures that 

genes required for the utilization of alternative nitrogen sources are only transcribed in the 

absence of preferred sources such as ammonium or glutamine. This depends on the wide 

domain nitrogen response regulator AreA/Nit2 (Arst and Cove, 1973; Marzluf, 1997). AreA 

belongs to the GATA factors, a class of transcriptional regulators present in fungi, metazoans 

and plants featuring a highly conserved DNA-binding motif comprising a Cys(4) zinc finger 

(Kudla et al., 1990; Scazzocchio, 2000). In F. oxysporum, AreA is also required for de-

repression of NMR genes and a ΔareA mutant was shown to be deficient in nitrate-triggered 

upregulation of the nit1 (nitrate reductase), nii1 (nitrite reductase) and mepB (ammonium 

permease) genes (Lopez-Berges et al., 2010). Recently it was shown that velvet proteins and 

AreA function in parallel by promoting chromatin accessibility and transcription of nitrate 

metabolism genes, as well as secondary metabolite gene clusters encoding the ferricrocin 
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and BEA (Lopez-Berges et al., 2013). We therefore tested protein interaction between AreA 

and members of the velvet protein complex. However yeast two-hybrid experiments 

revealed a self-activation of AreA when fused to the DNA-binding domain, we were unable 

to confirm any interaction between AreA and members of the velvet complex proteins 

(Figure 20), suggesting that AreA and velvet have common, but physically separate functions 

in the regulation of chromatin structure and transcriptional activity of the ferricrocin and 

BEA gene clusters (Lopez-Berges et al., 2013). 

 
 

Figure 20 . AreA is not 
interacting physically with 
members of the velvet protein 
complex in a Y2H assay. The 
ORFs of areA and veA, velB, 
velC and laeA cDNA were either 
cloned into the plasmids 
pGBKT7 (expressed as a fusion 
protein with the GAL4 DNA-
binding domain) and pGADT7-
Rec (expressed as a fusion 
protein with the GAL4 
activation domain) and 
transformed in the yeast strains 
Gold or Y178, respectively. 
Drop test shows no protein 
interaction between AreA with 
any member of the velvet 
protein complex. AreA showed 
a self activation when cloned 
into the bait plasmid (DNA-BD 
plasmid) in presence of the 
negative prey controle 
pGADT7- SV40 Large T-AD. 
Protein interaction in the dipoid 
cells after yeast mating were 
determined via drop test of 

different dilutions spotted on mating control medium(SD–Leu/-Trp) and selection medium(SD-Leu/-
Trp/-Ade/-His/+ X-α-Gal/+Aureobasisin).  
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3. Discussion 

3.1. The Y2H assay confirmed the interaction between FOXG_13832 and the cytoplasmic 
tail of Msb2 

In the present work we performed the Y2H approach to confirm known and to find new 

protein interactions in F. oxysporum. Msb2 is an integral-membrane protein containing a 

presumptive and highly conserved cytoplasmic domain (Perez-Nadales and Di Pietro, 2011) 

therefore the Y2H library screen as well as direct two-hybrid analysis was performed using its 

cytoplasmic tail (Msb2-CT). In line with our hypothesis that the cytoplasmic domain provides 

an important part of interaction with certain intracellular proteins are previous reports from 

S. cerevisiae demonstrating that the cytoplasmic tail physically interacts with Cdc42 a 

component of the filamentous growth pathway or with Mig1 (see Discussion section x) a co-

regulator of the filamentous growth pathway in response to glucose limitation (Cullen et al., 

2004; Karunanithi and Cullen, 2012). 

However we included the complete open reading frame of Msb2-ORF in our library screen 

and as well afterwards with confirmed protein interactors, detection of any protein 

interaction remain unsuccessful.  Additionally, non growth after re-plating diploid cells on 

high stringency mediumsuggest that the Msb2-ORF is due to the transmembrane domain 

next to impossible to use for our purpose.  

After the Y2H library screen, sequencing of the chosen 35 candidates out of 134 clones 

revealed eleven different candidate proteins interacting with the cytoplasmic tail of Msb2. 

As a first step to confirm the protein interaction we decided to perform deletion mutants of 

the corresponding genes to screen for known Δmsb2 and/or Δfmk1 phenotypes. But 

phenotypical investigation of the mutant strains displayed a bride distribution between the 

mutant strains as well as in comparison to Δmsb2 and/or Δfmk1.  

For example, a different colony growth phenotype on YPDA media, but not in diameter 

measurements, was observed of the mutant strains lacking the genes FOXG_15235 and 

FOXG_00769 but not with Δmsb2 or Δfmk1. In contrast a known phenotype of Δmsb2 and 
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Δfmk1, the impaired/non ability of cellophane penetration was observed with the mutants 

ΔFOXG_15235, ΔFOXG_00769 and ΔFOXG_12838.  

A role in the Fmk1 pathway should be determined by fpr1 expression which is 

transcriptionally regulated by the Fmk1 MAPK cascade (Prados-Rosales and Di Pietro, 

unpublished). However a reduced fpr1 expression was achieved in the ΔFOXG_04361, 

ΔFOXG_08976, ΔFOXG_08666 and ΔFOXG_09776 mutants. Fmk1 was under-phosphorylated 

in the deletion mutants lacking the genes FOXG_08976, FOXG_00769 and FOXG_15235 and 

was hyper-phosporylated in the mutants of the genes FOXG_04361, FOXG_12838. 

Similar dispersal was obtained with the mortality rates of plants infected with the mutants, 

showing reduced virulence of ΔFOXG_08666; ΔFOXG_13832; ΔFOXG_15235; ΔFOXG_00769; 

ΔFOXG_10398; ΔFOXG_12838 than those plants infected with the wilt type or the deletion 

mutants lacking the genes FOXG_04361; FOXG_08976 or FOXG_09776. Importantly, none of 

the mutants displayed impaired growth on CFW, implying not be involved in the cell wall 

integrity pathway. Although the ΔFOXG_00769 mutant showed a different colony phenotype 

on mediumcontaining CFW we further confirmed that this phenotype might not be caused 

by the deletion of this gene. We suggest that this strain might go through unknown defects 

during the transformation process. 

Therefore we next confirmed the interaction of the putative candidates and Msb2-CT by 

performing the Y2H by cloning the complete ORF`s of the candidates. The cDNA library was 

generated (using the SMARTTM technology; Clontech) with  primer which amplify the RNA by 

hybridizing at the 3`-end of poly A+RNAs therefore sequences close to the 5`end of the 

transcript are underrepresented. Unexpected, only two of the previous eleven interactions 

could be confirmed as an protein interactor of Msb2-CT. We suggest that a shorter version of 

some proteins may result in a different protein folding which may cause interactions 

however resulting in false positive. Switching of the plasmids and the corresponding yeast 

strains, an additional Y2H control, clearly confirmed the interaction of Msb2-CT with the 

encoding protein of the gene FOXG_13832. This gene is encoding for a urease accessory 

protein UreG. The function and role of this protein in F. oxysporum will be discussed in full 

length in the following sections. 
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3.2. Msb2 does not interact with Sho1 or Cdc42 in a Y2H assay 

It has been reported that Msb2 physically interacts with certain proteins (Cullen et al., 2004; 

Karunanithi and Cullen, 2012). One of this interaction in S. cerevisiae was confirmed by co-

immunoprecipitation determined a physical interaction with Sho1, however this physical 

interaction has been shown not be located at the cytoplasmic domain of Msb2 (Cullen et al., 

2004). In S. cerevisiae Msb2 and Sho1 interacting to regulate signalling cascades involved in 

osmotic stress response and pseudohyphal growth and are required for activation of the 

MAPK Kss1 to regulate filamentous growth and agar invasion in response to nutrient 

limitation (Chen and Thorner, 2007; Cullen et al., 2004; Vadaie et al., 2008). Additionally, 

Msb2 in yeast interact with Cdc42, and it has been hypothesized that this complex provide 

sensory capacity in the filamentous growth pathway transmitted via the PAK kinase Ste20 

(Cullen et al., 2004). 

In Ustilago maydis attempts to visualize an interaction between Sho1 and Msb2 relying on 

epitope-tagged proteins and co-immunoprecipitation were unsuccessful and it has been 

suggested that interactions were only transient and may be restricted to appressoria (Lanver 

et al., 2010). Interestingly a Y2H approach revealed a physical interaction between Sho1 and 

Kpp6, the Kss1 orthologue in U. maydis (Mendoza-Mendoza et al., 2009). 

Our Y2H screen using Msb2-CT as a bait against a cDNA library of F. oxysporum did not reveal 

any of the previously reported proteins, Sho1 or Cdc42. And the additional attempt to 

confirm the physical interaction by using direct protein-protein interaction approach was 

unsuccessful. This might be reasonable, since the MSb2-Sho1 interaction in yeast was 

determined by co-immunoprecipitation and has been shown not to be located at the 

cytoplasmic domain of Msb2. Although we can not exclude for both, Sho1 and Cdc42 that a 

putative interaction in vivo needs certain co-factors or stimuli or are only transient and may 

be restricted to certain environmental condition or development structure.  
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3.3. Members of the F. oxysporum velvet protein complex physical interact with each other 

To determine the role of member belonging to the velvet protein family including VeA, VelB, 

VelC and VosA (Bayram et al., 2008) and the non-velvet protein LaeA, a global regulator of 

secondary metabolism (Bok and Keller, 2004; Bok et al., 2006) the yeast two-hybrid (Y2H) 

assay was used. Additionally we included the GATA factors AreA, a transcriptional nitrogen 

response regulator in F. oxysporum (Lopez-Berges et al., 2010). We systematically studied 

pairwise interaction where a single “bait” test protein was individually assayed in a Y2H 

system against a “prey” test protein (Fields and Song, 1989; Yu et al., 2004). An interaction 

was measured as a function of growth on selective mediumand confirmed by growth and 

color development on high-stringency selective media. However expressing areA as a DNA-

BD fusion protein resulted in self-activation of the reporter gene expression, we could 

confirm interaction between members of the velvet protein complex. This results together 

with previous reports (Bayram and Braus, 2012) allowing a model for the role of members of 

the velvet complex in regulation of hyphal growth and development in F. oxysporum, where 

VeA forms a complex with VelB or VelC that have both overlapping functions in different 

development processes (Lopez-Berges et al., 2013). Further we confirmed the self-

interaction of VelB-VelB which was recently described in A. nidulans (Sarikaya Bayram et al., 

2010) as well as an interaction between VelB and VelC whose biological role is currently 

unknown. 
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Chapter 4 

 

Components of the urease complex govern virulence of 
Fusarium oxysporum on plant and animal hosts 

 

Summary 

In the soilborne pathogen Fusarium oxysporum, a mitogen-activated protein kinase (MAPK) 

cascade homologous to the yeast filamentous growth pathway controls invasive growth and 

virulence on tomato plants. Full phosphorylation of Fmk1 requires the transmembrane 

protein Msb2, a member of the family of signalling mucins that have emerged as novel 

virulence factors in fungal plant pathogens. A yeast two-hybrid screen for proteins 

interacting with the Msb2 cytoplasmic tail identified UreG, a component of the urease 

enzymatic complex. UreG belongs to a set of accessory proteins needed to activate Apo- 

urease, which converts urea to yield ammonia and carbon dioxide. The F. oxysporum 

genome contains two structural urease genes, ure1 and ure2. Mutants in ureG or ure1 

showed reduced growth on urea as the sole carbon and nitrogen source. Lack of urease 

activity in the mutants resulted in failure to secrete ammonia and to increase the 

extracellular pH; a mechanism strongly depends on the depletion of glucose. 

The ΔureG mutants caused significantly reduced mortality on tomato plants and on the 

animal model host Galleria mellonella as well in immunosupressed mice, while Δure1 

mutants only showed reduced virulence on tomato plants. Real-time qPCR analysis of key 

genes involved in nitrogen uptake and assimilation, as well as in the urea cycle, during 

infectious growth of F. oxysporum in G. melonella revealed increased transcript levels of 

arginase, which converts arginine to urea. The arginase knockout showed reduced virulence 

in plant and animal infection. Our results show that the urease accessory protein UreG plays 

an important role in pH modulation and fungal virulence on plant and animal hosts. 
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1. Introduction 

1.1. Urea 

Urea or carbamide (CO(NH2)2) is an organic compound consisting of two –NH2 groups joined 

by a carbonyl (C=O) functional group. It occurs in nature as a by-product of animal 

metabolism of nitrogenous compounds, being the main nitrogen-containing substance in the 

urine of mammals (Smith, 2009). On the other hand, it is the world`s most common form of 

nitrogen fertilizer (http://faostat.fao.org), with a sustained increase in its use during the last 

four decades (Glibert, 2006). Consequently, its enzymatic hydrolysis is a process of great 

agriculture importance.  

Urea was first discovered in human urine by Hillaire M. Rouelle in 1773. In 1798 it was 

recognized by Fourcroy and Vauquelin that ammonia in urine derives from the fermentation 

of urea and as a milestone in chemistry it became the first organic compound synthesized 

from inorganic materials (Wöhler, 1828). Urea is synthesized in many organisms as part of 

the urea cycle, either from the oxidation of amino acids or from ammonia. In the urea cycle, 

amino groups donated by ammonia and L-aspartate are converted to urea, with L-ornithine, 

citrulline, L-argininosuccinate, and L-arginine acting as intermediates. In animals, urea is 

produced in the liver, carried in the bloodstream to the kidneys and excreted in urine. Urea 

is highly soluble in water, practically non-toxic, neither acidic nor alkaline, and provides a 

vehicle for the body to transport and excrete excess nitrogen. The concentration of urea in 

the serum of healthy humans amounts to 1-10 mM (in blood of mice 1 to 3 mM (Mirbod-

Donovan et al., 2006) and its concentration in urine is around 0, 5 mM (Burne and Chen, 

2000; Collins and D'Orazio, 1993). Urea is able to pass across biological membranes and is 

evenly distributed in the subcutaneous adipose tissues, central nervous system (CNS), 

epithelial lining fluid, and blood serum (Ronne-Engstrom et al., 2001; Tyvold et al., 2007; 

Waring et al., 2008; Zielinski et al., 1999). 20-25% of all urea produced is estimated to remain 

in the intestinal tract. This renders urea readily available making the urinary and intestinal 

tracts to the most common site of ureolytic bacteria infections in human (Burne and Chen, 

2000; Collins and D'Orazio, 1993).  
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Bacteria, fungi and plants are able to utilize urea as a nitrogen source, incorporating it into 

the cell through specific transporters. The first protein related to the sodium symporter 

superfamiliy which compromises more than hundred membrane proteins was ScDur3 

described in S. cerevisiae. ScDur3 incorporates urea when the external concentration is 

below 0.25mM whereas at concentration above 0.5mM it enters the cell via facilitated 

diffusion (Cooper and Sumrada, 1975; Sumrada et al., 1976).  

Plants can assimilate nitrogen in form of urea though the roots and higher plants posses 

various urea transport systems, both passive and active, which allow internally and 

environmental urea assimilation (Witte, 2011). In contrast to the external applied urea, 

intern urea originates from the breakdown of arginine and from purines and ureides 

(Goldraij and Polacco, 1999; Zonia et al., 1995) and accumulates in source leaves of older 

plants and in germinating seeds (Zonia et al., 1995). Urea is synthesized inside mitochondria 

during arginine degradation via arginase in the ornithine or urea cycle (Polacco, 1993b) and 

then exported to cytoplasm and hydrolyzed by urease (for details see section 1.4.2. and 

1.12.1).  

1.2. Urease  

An un-catalyzed hydrolysis of urea has never been observed (Blakeley et al., 1982). In higher 

plants, some fungi and many prokaryotes, urea is hydrolyzed by urease which allows 

organisms to use externally and internally generated urea as a source of nitrogen (Mobley 

and Hausinger, 1989). In 1874 the first ureolytic microorganism Micrococcus ureae was 

isolated from urine by van Tieghem, and the first ureolytic enzyme was obtained in 1874 by 

Musculus from putrid urine. Miquel in 1890 proposed the name urease. 

Urease (urea amidohydrolase EC 3.5.1.5) enzymes are widespread among plants, bacteria, 

fungi, algae and invertebrates, but absent in mammals. The activity of urease is strongly 

dependent on pH. The enzyme is active in a pH range of 4.5 to 10.5, with the optimum 

activity at pH 7-8 (Krajewska, 2009). 

Both urea and urease represent landmark molecules in early scientific investigations. In 1926, 

the crystallization of urease from jack bean (Canavalia ensiformis) by James B. Sumner 



 

121 

 

(Sumner, 1926), showed for the first time that enzymes are proteins that can be crystallized 

and was awarded the Nobel prize in chemistry in 1946. Jack bean urease was also the first 

enzyme shown to contain nickel ions at the active side that are essential for enzymatic 

activity (Dixon et al., 1975).  

Prokaryotic ureases are generally encoded by three genes (Mulrooney and Hausinger, 2003). 

UreA, ureB and ureC encode the structural subunits of urease (α,β and γ, respectively), which 

associate in an αβγ stoichiometry to form the apo-enzyme (Jabri et al., 1995). By contrast, in 

plants and fungi the structural urease protein is encoded by a single gene that comprises 

homologues of the three bacterial subunit genes (Follmer, 2008; Jabri et al., 1995).  

Urease catalyzes the hydrolysis of urea to yield ammonia and carbamate (Mack and Villars, 

1923; (Blakeley et al., 1969a; Sumner and Kirk, 1931). The latter compound spontaneously 

decomposes to yield another molecule of ammonia and carbonic acid (Scheme 1). In solution, 

the released carbonic acid and the two molecules of ammonia are in equilibrium with their 

deprotonated and protonated forms, respectively. The net effect of these reactions is an 

increase in pH.  

 

H2N-CO-NH2 + H2O          H2N-COOH + NH3        H2CO3 + NH3 

 

 

H2CO     H+ + HCO3
- 

2NH3 + 2H2O    2NH4
+ + 2OH- 

Scheme 1. Urease reaction. Enzymatic hydrolysis of urea to carbamate catalysed by urease and 
subsequent non-enzymatic decay of carbamate. Two mol ammonia and one mol carbon dioxide are 
generated from urea by these reactions. 

 

Functionally, ureases belong to the superfamily of amidohydrolases and phosphotriesterases 

(Holm and Sander, 1997). All ureases studied so far required nickel as a cofactor for 

enzymatic activity (Carter et al., 2011). A common feature of these enzymes is the presence 

of metal centres at the active site, whose task is to activate the substrate and water for the 

reaction. Among dinuclear metallohydrolases in this superfamily, ureases are unique in that 

they possess nickel ions in the active site. During in vivo urease activation, accessory proteins 

urea carbamate Carbonic acid 

urease H2O 
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are absolutely required for GTP-hydrolysis-dependent incorporation of CO2 and nickel into 

the apo-urease (Soriano and Hausinger, 1999). 

Urease is generally assumed to be cytosolic because it does not contain an apparent 

subcellular targeting peptide, and several proteins required for urease activation appear to 

be cytosolic as well. However, evidence from studies on both plant and bacterial ureases 

suggest that the active enzyme may also be cell surface associated (Cambui et al., 2009; 

Dunn et al., 2001; Millanes et al., 2004). For Helicobacter pylori it was shown that the urease 

enzyme is released upon lysis of some bacterial cells and then associates with the surface of 

intact cells, where it can account for up to 30% of the total activity, (Krishnamurthy et al., 

1998), followed by absorption of the enzymatically active protein to intact, viable bacteria 

(Dunn and Phadnis, 1998). A similar process has been suggested during the parasitic cycle of 

Cryptococcus posadasii where urease has been immunolocalized to the spherule cytoplasm 

and vesicles and the large vacuole (Mirbod-Donovan et al., 2006). The parasitic cells 

(spherules) lyse, releasing active urease. Subsequently the enzyme associates with the 

surface of intact endospores and the spherule outer wall fraction, which is produced in 

abundance during in vitro growth of the parasitic phase (Hung et al., 2000; Hung et al., 2002). 

Recently, a partial cell wall and membrane localization of urease has been suggested in 

bromeliad species (Aguetoni Cambui et al., 2009). Interestingly, in certain lichens a 

polygalactosylated urease acts as cell wall-associated algal receptor for the recognition of 

adequate fungal partners by binding a fungal lectin that is related to arginase (Vivas et al., 

2010). 

Although originally believed to be absolutely urea-specific, ureases are now known to 

hydrolyze a number of substrates albeit at a much lower rate (Krajewska, 2009). These 

alternative substrates can be classified into two distinct groups, the urea analogues and the 

phosphoric acid amides and esters. Most of them are considered to act both as enzyme 

substrate and as inhibitors (see Section 1.9.).  
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1.3. Structure of urease 

All ureases form a basic trimeric structure. In most bacteria, each unit of the homotrimer is 

itself a heterotrimer of UreA, UreB and UreC subunits (Carter et al., 2009). Bacterial ureases 

are composed of three distinct subunits, one large (α, 60-76 kDa) and two small (β, 8-21 kDa 

and γ, 6-14 kDa), forming (αβγ) trimers, resulting in the enzyme molar mass between 190 

and 300 kDa (Benini et al., 1999; Jabri et al., 1995). By contrast, the urease of Helicobacter 

species are composed of two subunits, α (61-66 kDa) and β (26-31 kDa) (Clayton et al., 1990; 

Dunn et al., 1990; Evans et al., 1991; Ha et al., 2001; Hu and Mobley, 1990; Labigne et al., 

1991; Lee and Calhoun, 1997; Mobley et al., 1988).  

In contrast plant and fungal (eukaryotic) urease are made up of identical subunits and he 

UreA, UreB and UreC subunits of bacterial ureases are fused in a collinear fashion to make 

up a single polypeptide chain typically around 90 kDa. Eukaryotic ureases form trimers and 

two trimeric units can also associate to a hexameric structure (Balasubramanian and 

Ponnuraj, 2010; Polacco and Havir, 1979).  

Remarkably, though composed of different types of subunits, ureases from bacteria to plants 

and fungi exhibit high homology of amino acid sequences and structure (Balasubramanian 

and Ponnuraj, 2010; Follmer, 2008; Witte et al., 2005). Moreover, the active site in all known 

ureases are always located in the α subunit. Collectively, this suggests that all ureases are 

evolutionary variants of one ancestral enzyme (Krajewska, 2009; Navarathna et al., 2010).  

1.4. Occurrence and function of ureases 

Ureases are widespread in nature, are synthesized by numerous organisms and are also 

present in soils as a soil enzyme (see below). The substrate urea is readily available, arising 

mainly from urine excretion by animals, from the decomposition of N- compounds from 

dead organic matter (Wang et al., 2008), or from its application as a fertilizer. Thus ureases 

play a prominent role in the overall nitrogen metabolism in nature where their key function 

is to provide organisms nitrogen in the form of ammonia.   
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1.4.1. Soil urease and ammonia volatilization 

Of great importance in agriculture is the ureolytic activity of soils (Krogmeier et al., 1989; 

Mulvaney, 1981) which is derived maily from soil urease rather than from microorganisms 

(Mulvaney, 1981). The urease enzyme in residues of dead plant and microbial cells becomes 

extracellular and is highly stable thanks to the immobilization on clays and humic substances 

(Krajewska, 2009). The presence of this stable form of urease in soils allows urea to be used 

as an efficient nitrogen fertilizer. Due to its high nitrogen content, chemical stability and low 

cost in production, urea makes up over 50% of the total nitrogen fertilizer applied worldwide. 

The role of soil urease is to hydrolyse the urea to ammonia to make it available to plants. 

However, if the hydrolysis is too rapid it may result in unproductive loss of nitrogen by 

ammonia volatilization, while ammonia toxicity and alkalinity along with nitrite accumulation 

may induce damage to plants, thereby causing severe environmental and economic 

problems (Krogmeier et al., 1989; Mulvaney, 1981). Ammonia volatilization also causes 

problems in the management of livestock waste where the loss of nitrogen in the livestock 

slurry leads to a reduction in its value as fertilizer, and the source of pollution, ammonia, 

contributes to the adverse odour. Attempts have been made to recycle urine to use as flush 

water by suppressing urease activity to avoid ammonia emission (Ikematsu et al., 2007). In 

medical, agriculture and environmental settings where it is important to control the urease 

activity, the use of urease inhibitors has been proposed to avoid its negative effects 

(Krajewska, 2009).  

 

1.4.2. Urease in plants 

The first plant urease gene has been characterized from soybean (Glycine max). The soybean 

genome contains an embryo-specific urease encoded by the gene Eu1 (Meyer-Bothling et al., 

1987) and a ubiquitous urease encoded by Eu4 (Torisky et al., 1994). The residual urease 

activity in Eu1/Eu4 double mutants was explained by urease-producing bacteria living on the 

plant (Holland and Polacco, 1992). In contrast, potato (Solanum tuberosum), tomato 

(Lycopersicon esculentum) and other solanaceous species, as well as Arabidopsis thaliana 

possess only a single urease gene (Witte et al., 2005).  
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The urease enzyme plays an essential role in catalyzing urea assimilation after uptake into 

the plant cell (Wang and Köhler, 2008; (Kojima et al., 2006). Higher plants posses various 

urea transport systems, both passive and active, which allow them to optimize nitrogen 

assimilation depending on the form available in the environment or internally. Although 

plants can assimilate nitrogen in form of urea though the roots, uptake occurs mostly in the 

form of ammonia which generated from urea hydrolysis though soil ureases.  

Besides hydrolyzing the urea acquired from the environment, ureases allows plants to 

recycle nitrogen from urea originating from two metabolic processes: the arginase-catalyzed 

breakdown of arginine (Zonia et al., 1995) and the degradation of purines and ureides (Todd 

et al., 2006; Winkler et al., 1988). However plants have the capacity to degradation purine 

and ureides without generating urea intermediate, leaving arginine catabolism as the only 

confirmed source of urea (Witte, 2011).  

Because nitrogen availability is generally growth-limiting for plants (Bray, 1983), efficient 

recycling is likely to provide plants an ecological advantage. Urea is metabolized rapidly and 

does therefore not accumulate, however when constantly generated it may serve as a 

nitrogen source. Combined genetic and biochemical analyses revealed that urease enzyme 

activity is regulated by the global nitrogen regulatory system (Magasanik, 1988) acting 

through the nac (nitrogen assimilatory control) gene product (Bender et al., 1983, Macaluso 

et al., 1990). Under conditions of low nitrogen availability, urease activity is induced. 

Interestingly, it was suggested that besides their ureolytic enzyme activity, plant ureases may 

play a role in the plant defence system because urease exhibits insecticidial (Follmer et al., 

2004) and antifungal properties (Becker-Ritt et al., 2007; Menegassi et al., 2008).  

 
1.4.3. Metabolic sources and transport of urea in plants   

In plants, urea is especially important during germination and originates from the breakdown 

of arginine (Zonia et al., 1995) and from purines or ureides (Todd et al., 2006; Winkler et al., 

1988). Arginine is the most important single metabolite for nitrogen storage in plant seeds 

(Vanetten C.H, 1967) and its catabolism is central to the mobilization of nitrogen from tissues. 

The importance of urease for recycling arginine nitrogen during germination is highlighted by 

the fact that aged Arabidopsis seeds failed to germinate when urease was chemically 



 

126 

 

inhibited but could be rescued by an external nitrogen source (Zonia et al., 1995). First, 

mitochondrial arginase hydrolyses arginine to access the stored nitrogen in the guanidinium 

group, thereby generating ornithine and urea which are then converted by the mitochondrial 

ornithine metabolism to glutamate (Funck et al., 2008). Urea is exported to the cytosol by a 

passive transport, possibly through aquaporins (Soto et al., 2010) also called MIPs (major 

intrinsic proteins), which conduct selected low molecular solutes along a concentration 

gradient through a channel. In the cytosol urea is hydrolysed by urease, and the urea-derived 

ammonium is re-assimilated by cytosolic glutamine synthetase, using glutamate from 

ornithine catabolism as the substrate.  

Through these reactions, all the nitrogen from arginine is incorporated into glutamine, while 

urease is required to mobilize half of the nitrogen stored in arginine (Figure 2). This is the 

only firmly established role of urease in plant metabolism, apart from hydrolyzing root-

imported urea, and arginase is the only plant enzyme known to generate urea in vivo. In the 

second pathway, urea is produced by the catabolism of purines or ureides like allantoin and 

allantoate, which are used for example by leguminous species for long-distance translocation 

of nitrogen (Stebbins and Polacco, 1995). 

However, urea does not only originate from arginine or purine breakdown but can also be 

taken up from the environment via urea transporters (Kojima et al., 2006) Wang et al., 2008). 

Plants possess a high affinity urea transporter (DUR3) that is involved in uptake of 

environmental urea while also mediating internal urea transport. In A. thaliana DUR3 was 

identified by its similarity to the urea transporter of S. cerevisiae (ScDUR3) (Liu et al., 2003). 

The protein is localized at the plasma membrane of root epidermal cells especially in 

nitrogen starved plants, and the gene expression is induced by urea in the absence of other 

nitrogen sources (Kojima et al., 2007; Merigout et al., 2008). A role of Dur3 in internal urea 

transport is indicated by the expression of AtDUR3 near the root xylem and in the shoots 

(Kojima et al., 2007; Liu et al., 2003).  
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1.5. Urease enzyme activation mechanism  

1.5.1. Urease complex assembly and urease accessory proteins 

Biochemically, bacterial ureases are better characterized than those from any other 

organism. In all bacterial organisms studied so far, activation of the urease apo-enzyme by 

nickel binding in vivo requires four accessory proteins: UreD, UreE, UreF and UreG (Lee et al., 

1992; Mulrooney and Hausinger, 1990). In bacteria urease is generally a heterotrimer with a 

binuclear nickel (Ni2+) centre. For assembly of the functional ap-oenzyme complex the 

accessory proteins UreD, UreE, UreF and UreG are required. In addition, to mediate metal 

ion uptake from the environment, high-affinity nickel transporter (Nic1) are required. 

In the bacterium Klebsiella aerogenes, four urease accessory proteins (UreD, UreF, UreG and 

UreE) are required for urease activation involving the carboxylation of an active site lysine 

and the incorporation of two nickel ions per active site that are bridged by the carboxyl 

group of the modified lysine. The precise role of the urease accessory proteins in 

metallocentre assembly is not yet fully understood (Carter et al., 2009). Apo-urease 

(encoded by ureA, ureB and ureC on the urease operon of K. aerogenes) forms a complex 

with UreD, and the U–UreD (urease–UreD) complex can in turn bind UreF. The U–UreDF 

complex is competent to bind UreG, forming a stoichiometric U–UreDFG complex. This 

assembly occurs in the absence of nickel (Park and Hausinger, 1995). The nickel-binding 

protein UreE then joins the U–UreDFG complex and delivers the nickel (Soriano et al., 2000). 

After assembly of the U–UreDFGE complex, GTP hydrolysis by UreG is required for urease 

activation (Soriano and Hausinger, 1999) and the complex dissociates into its components, 

releasing active urease.  
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Figure 1.  A model of urease activation in plants. (A) Hypothetical model of plant urease activation 
involving the binding of the three urease accessory proteins (UreD, UreF and UreG) to apo-urease, 
covalent modification of an active site lysine by nitrogen carboxylation, and specific incorporation of 
two nickel ions per active site. (B) The accessory proteins dissociate from urease after activation. 
Activation may require GTP hydrolysis mediated by UreG. Figure taken from (Witte, 2011). 

 

In contrast to bacterial urease, plant and fungal ureases are homotrimers or homohexamers 

with nickel centres that requires only homologues of the three accessory proteins UreD, 

UreF and UreG for function (Mulrooney and Hausinger, 2003). In plants and fungi the UreG 

orthologue combines the functions of two of the bacterial accessory proteins (Fig. 1). The 

GPTase UreG contains the N-terminal histidine-containing region that is involved in nickel 

binding, apparently replacing the nickel-binding activity of the missing UreE homolog. All the 

three accessory proteins interact in a Yeast two hybrid (YTH) assay with the urease protein 

Ure1 and with each other and are essential for urease activity and growth on urea as a sole 

nitrogen source (Singh et al., 2013).  

 

1.5.2. The urease accessory protein UreG 

The accessory protein UreG belongs to the G3E family of P-loop GTPases (G3E family) (Leipe 

et al., 2002). Characterized members of the G3E family perform two roles in metallocenter 

assembly:  1) facilitating incorporation of the cofactor in an energy-dependent manner into 

the target protein`s catalytic site (insertase) and, 2) storage and delivery of a metal cofactor 

to a target metalloprotein (metallochaperone). G3E proteins have been found to function as 

A B 
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either metal-insertases or as a dual function metallochaperon/insertase (Haas et al., 2009). 

Structural studies of this protein family of GTPases have shown that they do not possess a 

rigid tertiary structure and belong to the class of intrinsically disordered proteins (IDP). UreG 

protein is the only naturally occurring enzyme showing an intrinsically disordered 

conformation, and the first documented case of intrinsically disordered enzymes displaying 

observable enzymatic activity while showing a largely disordered tertiary structure (Neyroz 

et al., 2006; Real-Guerra et al., 2012; Zambelli et al., 2012; Zambelli et al., 2007; Zambelli et 

al., 2005; Zambelli et al., 2009). In contrast to the ordered proteins with a relative stable 

three-dimensional structure which undergo cooperative first-order folding/unfolding 

transition between two distinct states, intrinsically disordered proteins exist as dynamic 

ensembles of conformers and typically undergo non-cooperative changes in their population 

(Uversky and Dunker, 2010). It has been proposed that disorder-to-order transition is a 

possible mechanism for UreG function in vivo and that the protein is activated by the 

interaction with other proteins partners (Zambelli et al., 2012). GTP hydrolysis is regulated at 

different levels in order to avoid unnecessary consumption of GTP. This regulation involves 

different effectors such as GTPase activating proteins (GAPs) and/or guanine nucteotide 

exchange proteins (GEPs). A possible GAP for UreG has been identified in UreF (Salomone-

Stagni et al., 2007). 

 Intrinsically disordered proteins often act as hubs for protein-protein interaction networks, 

binding several partners in regulatory processes (Dunker et al., 2005). UreG is able to bind 

different protein partner and cofactors and is part of an activation network where this 

enzyme acts as a local hub or scaffold protein that coordinates multiple protein-protein or 

protein-cofactor interactions, acting as a switch represented by GTP hydrolysis to drive the 

process of Ni2+ ion trafficking towards urease activation. It has been suggested that native 

disorder represents a general mechanism for cells to regulate enzymatic activity, allowing 

UreG to interact and to be regulated by different protein partners (Zambelli et al., 2012). 

The GTPase UreG is required for the assembly of the Ni2+-dependent active side of urease, 

(Mulrooney and Hausinger, 2003; Zambelli et al., 2011) and proposed to catalyze, in the 

presence of CO2, the formation of carboxyphosphate, a carbamylation agent for the metal-
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binding lysine in the urease active site (Soriano and Hausinger, 1999). All UreG proteins 

contain a P-loop motif typically found in nucleotide-binding proteins. Site-directed 

mutagenesis of the P-loop motif in bacterial ureG resulted in inactive urease in the presence 

of nickel. In these cells the DFG complex was formed but failed to bind to the nucleotide-

linked resin. All UreG proteins described so far were capable to bind GTP, although their 

GTPase activities were were very low or undetectable suggesting the requirement of co-

factors to achieve their full activity (Moncrief and Hausinger 1997; Zambelli et al. 2005, 2007, 

2009).  

A Cys-Pro-His motif highly conserved among all UreG proteins is involved in the metal-

binding property and was shown to participate in zinc binding in UreG from H. pylori and K. 

aerogenes (Zambelli et al. 2009; Boer et al. 2010). The formation of an UreG-UreE complex 

also involves binding of metal ions, as observed for the H. pylori (Bellucci et al. 2009) and K. 

aerogenes (Boer et al. 2010) proteins. UreG binds Ni2+ and Zn2+, but the stoichiometry varies 

among proteins. Bacillus pasteurii UreG, a dimer in solution, appears to bind 2 Zn2+ or 4 Ni2+ 

ions per dimer (Zambelli et al. 2005). H.pylori UreG, a monomer in solution, binds 0.5 Zn2+ or 

2 Ni2+ per monomer, where Zn2+ binding leads to protein dimerization (Zambelli et al. 2009).  

On the other hand, monomeric K. aerogenes UreG has been reported to bind one Ni2+ or Zn2+ 

per monomer, and neither metal ion is able to induce dimerization (Boer et al. 2010). In the 

plant Glycine max, UreG showed a different binding affinity for Ni2+ and Zn2+, presenting a 

very tight binding for site for Zn2+, but nor for Ni2+. This suggests that Zn2+may play a role in 

the plant urease assembly process, as suggested for bacteria (Real-Guerra et al., 2012). G. 

max encodes two structural genes for two different ureases (Meyer-Bothling and Polacco, 

1987; Torisky et al., 1994). Mutation of Eu3 encoding the urease accessory protein UreG 

orthologue from soybean, eliminated both urease activities (Freyermuth et al., 2000) and all 

further background activity proposed to be of bacterial origin (Meyer-Bothling et al., 1987). 

According to the genome sequence, soybean has two distinct genes for UreD, two for UreF 

and one for UreG.  

In plants, the accessory protein UreG carries out two roles: Ni2+ storage and nucleotide 

hydrolysis. Plant UreG presents a poly-histidine stretch in its N-terminal that could fulfil the 
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function of bacterial UreE in Ni2+ trafficking (Freyermuth et al., 2000; Witte et al., 2001). A 

similar dual role has also been proposed for HypB, accessory proteins of the [Ni,Fe]-

hydrogenase maturation system (Casalot and Rousset, 2001). Strikingly, comparing different 

accessory proteins from A. thaliana and K. aerogenes reveals that UreG is best conserved 

with an identity of 42.8% while UreD and UreF are only 21.8% and 19.4% identical, 

respectively (Witte et al., 2005). Null mutants of A. thaliana in UreD, UreF and UreG lack 

urease activity in vivo and were unable to grow on urea as the sole nitrogen source (Witte et 

al., 2005). GTPase activity of UreG is essential for metallocenter biosynthesis of urease 

(Mehta et al., 2003). In addition to the GTPase domain, UreG family members have a 

conserved, putative metal binding CXCC motif which is located in the Switch I region of the 

protein, suggesting that binding of CTP/GDP affects its conformation (Khil et al., 2004). 

In the human pathogenic fungus Cryptococcus neoformans the incorporation of nickel into 

urease depends on the presence of UreG. As described for plants, UreG accessory protein 

combines the function of the two bacterial accessory proteins. It is the homolog of GTPase 

UreG and also includes an additional N-terminal histidine-containing region to bind nickel, 

replacing the bacterial UreE homolog. Mutagenesis of the key histidine residues reduced or 

abolished the ability of UreG to bind nickel as well as urease activity  (Singh et al., 2013). 

 

1.5.3. Regulation and activation mechanism of ureases in different organisms 

In some some soil bacteria (Mobley and Hausinger, 1989) including Bacillus pasteurii 

(Morsdorf and Kaltwasser, 1989), Sporosarcina ureae (Kaltwasser et al., 1972) or the 

cyanobacterium Anabaena variabilis (Ge, 1990), urease is synthesized constitutively. 

However, ureases are mostly induced in response to environmental conditions by activation 

of transcription of the encoding genes through the global nitrogen control system. For 

example in the genus Klebsella, urease is not synthesized when cells are grown in presence 

of high quality nitrogen sources such as ammonia (Friedrich and Magasanik, 1977). In 

contrast, in presence of poor nitrogen sources such as arginine, proline or histidine, synthesis 

of urease is activated (Mulrooney et al., 1989). Nitrogen regulation of urease has been 

proposed to occur in a number of other ureolytic organisms. This control is dependent on 
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the nitrogen regulatory system (NTR) and ultimately the action of the positive regulator NAC 

(nitrogen assimilation control) at the level of urease transcription. In a second mode, urease 

expression in organisms such as Proteus miranilis is induced by the presence of the substrate 

urea (Rosenstein et al., 1980; Rosenstein et al., 1981). In organisms such the oral bacterium 

Streptococcus salivarius, where urease plays a role in protection from the acidic environment, 

the level of urease synthesis is regulated by pH (Sissons et al., 1992; Sissons et al., 1990). 

In the fungus C. neoformans the level of urease expression and enzyme activity is regulated 

by the available nitrogen source (Singh et al., 2013). Although ure1 transcript was also 

observed in cells grown in media supplemented with ammonium or proline as a sole 

nitrogen source, transcript levels were clearly more abundant in urea grown cells.  

All ureases studied so far required nickel as a cofactor for enzymatic activity (Carter et al., 

2011). Interestingly, no nickel-requiring metalloenzymes have been identified in vertebrates 

(Denkhaus and Salnikow, 2002; Mulrooney and Hausinger, 2003). In S. pombe where the 

urease is neither controlled by nitrogen repression nor by urea induction (Lubbers et al., 

1996), the high affinity nickel permease Nic1 acts as a plasma membrane nickel transporter. 

The corresponding S. pombe nic1 mutant was strongly impaired in Ni2+ uptake and contained 

only background activities of the nickel-dependent cytoplasmic enzyme urease. For S. pombe 

trace amounts of Ni2+ ion are sufficient for maximal urease activity and this activity was not 

stimulated by the addition of Ni2+ to the medium (Lubbers et al., 1996). Among a series of 

divalent transition metal cations tested (Cd2+, Co2+, Cu2+, Mn2+, and Zn2+), only Co2+ caused 

considerable inhibition of Nic1-mediated Ni2+ uptake in S. pombe (Lubbers et al., 1996). In 

the human pathogen C. neoformans the nickel transporter Nic1 is required for urease activity 

and a defect by a gene knockout could be overcome if excess exogenous nickel was added to 

the medium (Singh et al., 2013). In vivo studies with mutants of ure7 (ureG orthologue) or 

nic1 both displayed greatly attenuated virulence and CFU in the brain were comparable to 

the ure1 mutant strain (Cox et al., 2000).  

Plant ureases and arginases are housekeeping enzymes in many if not all plant species 

(Brownfield et al., 2008; Witte and Medina-Escobar, 2001). Nickel-deprived plants do not 

contain an active urease and urea accumulates from arginine turnover, especially in 
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senescing tissues (Gerendas J., 1997; Gerendas J., 1999b). In plants it has been suggested 

that the urease activity is regulated by the global nitrogen regulatory system (Magasanik, 

1988) acting through the NAC (nitrogen assimilatory control) gene product (Bender et al., 

1983, Macaluso et al., 1990); thus, under conditions of low nitrogen availability, urease 

activity is expressed. 

 

1.6. Urease assays 

A number of assays are available for quantitification of urease activity and analysis of its 

kinetic behavior. Ammonia released during the reaction can be detect with phenol-

hypocloride (Weatherburn, 1967), Nessler`s reagent (Sigma ammonia color reagent) or 

Bromocresol Purple to allow colometric determination of the activity. Alternative, ammonia 

released from urease action can be utilized by an NADH-dependent glutamate 

dehydrogenase so that the activity of the coupled system is easily monitored 

spectrophotometrically (Kaltwasser and Schlegel, 1966). In addition, ammonia ion-selective 

electrodes are available for monitoring ammonia release (Hamilton-Miller and Gargan, 1979; 

Katz, 1964; Montalvo, 1970). By using 14C urea, bicabonate released from the reaction can be 

trapped and monitored by scintillation counting (McDonald et al., 1972). 14CO2 released from 

this substrate and 13CO2 (assayed by mass spectrometry) released from 13C-urea have been 

used in breath tests to detect the presence of H. pylori urease in the human gastric mucosa 

(Bell et al., 1987; Graham et al., 1987). Since urease activity results in an increase of pH, 

several pH-dependent assay methods have been developed, including pH-sensitive dyes for 

use in spectrophotometric methods (Hamilton-Miller and Gargan, 1979; Ruiz-Herrera and 

Gonzalez, 1969), utilization of a pH stat (Blakeley et al., 1969b) and the analysis of changes 

by using a pH electrode (Bibby and Hukins, 1992). In addition several methods have been 

adapted to detect urease activity in native gels (Blattler et al., 1967; Fishbein, 1969; Martin 

de Llano et al., 1989; Shaik et al., 1980). Urease exhibits simple Michaelis-Menten-type 

kinetic behavior and in general, the Km values determined for urease in cell extracts closely 
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match those measured for highly purified samples. Thus purified enzyme is not required for 

determination of th the Km value. 

 

1.7. Role of urease in virulence 

1.7.1. Ureolytic bacterial infection 

1.7.1.1 Urease in peptic ulcer disease caused by Helicobacter pylori 

The primary ureolytic bacterium infecting the intestinal tract is Helicobacter pylori (Burne 

and Chen, 2000; Collins and D'Orazio, 1993; Dunn and Phadnis, 1998; McGee and Mobley, 

2000). Urease is critical for H. pylori colonization of the human gastric mucosa. In vitro, the 

bacterium is sensitive to the effect of low pH (Hazel, 1985) unless urea is present (Marshall, 

1988). Analysis of mutants has demonstrated that urease is required for mucosal 

colonization in the gnotobiotic piglet model (Eaton et al., 1991). This bacterium colonizes the 

mucosal lining of the stomach and increases the pH of the strongly acidic environment to 6-8, 

allowing it to grow and persist in the hostile condition. At the same time it causes damage in 

the host tissue, giving rise to gastritis and gastroduodental ulcers. Moreover, the highly toxic 

product monochloramine is derived from hydrogen peroxide resulting from the oxidative 

burst of the immune cells, which oxidizes chlorine ions that react with the ammonia 

liberated by H. pylori urease. This can induce mutagenic DNA damage which, in the case of 

chronic infection, is believed to contribute to the development of stomach cancer. The 

ammonium ion per se is not toxic; the damage results from the hydroxide ions generated by 

the equilibration of ammonia with water. Interestingly, H. pylori mutants lacking urease 

activity are phagocytosed more efficiently than the parental strain (Makristathis et al., 1998). 

Urease-containing H. pylori has been shown to activate monocytes (Mai et al., 1991), to 

cause the secretion of inflammatory cytokines (Craig et al., 1992) and to act as 

chemoattractant for leukocytes (Craig et al., 1992; Mai et al., 1992). Diagnosis of H. pylori 

infections in the upper intestinal tract is based on the urease reaction. Ingested 13C- or 14C-

labelled urea is converted by H. pylori present in the stomach into isotope-labelled carbon 

dioxide, which is absorbed into the blood and exhaled in the breath where is can be detect 
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by mass spectrometer or scintillation counter (Granstorm M., 2008). Because of the 

importance of this enzyme in peptic ulcer disease, urease inhibitors and urease vaccines are 

currently being developed for clinical use.  

 

1.7.1.2 Urease in urinary tract infection 

Urinary tract infection increases the pH of urine (up to ca. 9, 2), which is typically neutral or 

slightly acidic, causing a number of complications such as necrosis of the kidney tissue and 

acute pyelonephritis. A more frequent symptom is the precipitation of normally soluble ions 

in urine leading to the formation of urinary stones often implicated in catheter encrustation. 

The most common bacteria responsible for their formation are Proteus mirabilis and 

Ureaplasma urealyticum, as well as bacteria belonging to Pseudomonas, Klebsella and 

Staphylococcus spp. (Burne and Chen, 2000; Rosenstein and Hamilton-Miller, 1984). Urinary 

stones are mainly composed of struvite (MgNH4PO4x6H2O) and carbonate apatite 

(Ca10(PO4)6CO3) (Burne and Chen, 2000; Collins and D'Orazio, 1993; Rodman, 1999; 

Rosenstein and Hamilton-Miller, 1984). Ureolytic infection is estimated to contribute to 15-

20% of all urinary stones. Performed in a controlled manner, the precipitation can be utilized 

for the phosphorus- and nitrogen recovery in wastewater and urine treatment processes 

(Maurer et al., 2006). Because human urine contributes to ca. 80% of the total N and ca. 45% 

of the total P in municipal wastewater (Wilsenach et al., 2007), the biological recovery of the 

two dominant nutrients together as struvite presents a interesting alternative to their 

chemical removal in urine recycling. 

 

1.7.2. Role of urease in fungal pathogens 

Urease activity has been reported in several genera of medically important fungal pathogens 

of humans including C. neoformans, Coccidioides immitis, Histoplasma capsulatum, 

Sporothrix schenckii and species of Trichospora and Aspergillus. Urease activity is a major 

source of ammonia and an important virulence determinant for microbial pathogens (Bury-

Mone et al., 2004). However, compared to the wealth of information available on ureases in 

plants and bacteria, little is known about their function in fungi (Mirbod-Donovan et al., 
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2006). Among the medically important fungi, the urease enzyme and ammonia production 

have been associated with pathogenicity only in Cryptococccus and Coccidioides (Mirbod-

Donovan et al., 2006; Osterholzer et al., 2009) (Cox et al., 2000; Olszewski et al., 2004).  

 

1.7.2.1. Cryptococcus neoformans 

C. neoforman, an opportunistic fungal pathogen and the primary cause of fungal 

meningoencephalitis in humans, is responsible for up to a million infections and 

approximately 600,000 deaths per year (Park et al., 2009). Known virulence factors include a 

polysaccharide capsule, melanin and a variety of extracellular proteins such as proteases, 

phospholipases and urease. The rapid detection of urease activity is one means of early 

identification of C. neoformans from clinical specimens (Canteros et al., 1996; Zimmer and 

Roberts, 1979). Although urease activity has no effect in vitro assays on known cryprococcal 

virulence mechanisms such as growth at 37°C, capsule size, phenoloxidase activity and 

melanin production, urease-negative strains are rarely to penetrate the central nervous 

system (CNS) and to cause disease  (Cox et al., 2000). In a mouse model, urease activity is 

contributes to virulence of cryptococcosis. The primary role of urease is likely to convert urea 

into a usable nitrogen source in its ecological niche (Cox et al., 2000). Although urease was 

not required for virulence of C. neoformans when inoculation was performed directly into 

the brain of immunodepressed rabbit (Cox et al., 2000), it has been shown that urease 

enhances transmigration of C. neoformans into the mircrovasculature of the brain (Olszewski 

et al., 2004). Invasion of the mouse brain or transmigration into the blood-brain barrier (BBB) 

was severely impaired in urease-deficient Cryptococcus strains or in the presence of the 

urease inhibitor flurofamide (Shi et al., 2010). 

While the exact role of the urease in BBB invasion is not known, it has been suggested that 

hydrolysis of extracellular urea to toxic ammonia may cause endothelial cell damage that 

leads to an increase in permeability. In vivo studies with ureG or nic1 (nickel transporter) 

mutants revealed greatly attenuated virulence and a reduction of fungal CFU in the brain 

comparable to that in the ure1 mutant strain. These results demonstrate that urease activity 

and not the ure1 protein itself is responsible for the role in pathogenicity (Cox et al., 2000). It 
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has been suggested that urease inhibition could provide therapeutic opportunities to 

decrease the number of Cryptococcus transmigration into the brain resulting in lower CFU 

counts and an increase in patient survival (Shi et al., 2010).  

 

1.7.2.2. Coccidioides immitis/posadasii 

Coccidioides is a dimorphic fungal pathogen that causes human respiratory disease known as 

coccidioidomycosis or San Joaquin Valley fever. The genus includes two morphologically 

indistinguishable species, Coccidioides posadasii and Coccidioides immitis (Fisher et al., 2002). 

The first urease gene cloned from a human pathogen was that of C. immitis (Yu et al., 1997).  

Both C. immitis and C. posadasii initiate infection in the lungs, and urease serves to promote 

pulmonary colonisation through alkalization, local tissue damage and inhibition of the 

immune response (Mirbod-Donovan et al., 2006). Disruption of the single urease gene of C. 

posadasii resulted in a marked reduction in the pathogenicity of the organism in the lungs of 

BALB/c mice and in reduced extracellular ammonia production (Mirbod-Donovan et al., 

2006; Wise et al., 2013). Ammonia and enzymatically active urease released from parasitic 

cells of C. posadasii may thus contribute to host tissue damage and exacerbate the severity 

of coccidioidal lung infection (Mirbod-Donovan et al., 2006; Mirbod et al., 2002). Indeed, the 

pH at the site of infection was higher with the parental strain than with the urease knockout 

mutant (Mirbod-Donovan et al., 2006). Moreover, abscesses from BALB/c mice resulting 

from infection with the parental strain contained higher concentrations of urea than those 

produced by infection with the urease mutant strain (Mirbod-Donovan et al., 2006). 

Enzymatic urease present in the spherule exudate contributes to its alkalinity due to 

hydrolysis of extracellular urea. It was suggested that the high amount of urea detected at 

the site of infection is host derived, providing a substrate for intra-and extracellular urease 

resulting in localized high concentrations of NH4
+/NH3 (Mirbod-Donovan et al., 2006) causing 

a pH increase that could be damaging to the host tissue (Prusky et al., 2001). 
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1.8. Urease activity control and urease protein properties in immunity and plant defence 

No nickel-requiring metalloenzymes have been identified in vertebrates (Denkhaus and 

Salnikow, 2002; Mulrooney and Hausinger, 2003) and targeting nickel-requiring process or 

enzymes can be used as a method to detect the pathogen, especially when a nickel-

containing enzyme as the urease is a notable virulence factor. Urease inhibition by 

flurofamide in C. neoformans or by acetohydroxymic acid in C. immitis lead to improved 

survival of infected mice and reduction of fungal CFUs (Mirbod-Donovan et al., 2006; Shi et 

al., 2010). Nickel transporter mutants (Δnic1) showed no urease activity, and since the 

human blood contains only very low amounts (0.5 nM) of nickel, inhibition of Nic1 may prove 

to be an effective strategy in combating urease-producing pathogens such as Cryptococcus  

(Denkhaus and Salnikow, 2002; Ragsdale, 2009). 

Interestingly, recombinant urease from C. immitis was highly immunogenic in BALB/c mice (Li 

et al., 2001). The recombinant fungal protein and a mammalian plasmid vector containing 

the ure1 gene were used to vaccinate BALB/c mice, resulting in significant protection against 

coccidioidal infection (Li et al., 2001).  

Some ureases have antifungal properties. In soybean and other legumes, the highly active 

seed-specific ureases have no assimilatory role and may function in pathogen defence 

(Polacco, 1993a). Urease and urease-like proteins (canatoxin) exert a toxic effect on fungi 

and certain insects which is independent of the urease activity (Carlini, 2008; Follmer et al., 

2004). The major jackbean urease, the embryo-specific soybean seed urease or a 

recombinant H. pylori urease impaired hyphal growth and/or germination of several 

filamentous fungi, including F. oxysporum at sub-micromolar concentrations (Becker-Ritt et 

al., 2007). Interestingly, the antifungal property of the proteins was not affected by 

treatment with an irreversible urease inhibitor, indicating that urease represents a plant 

defence mechanism against phytopathogens which is independent of ammonia release from 

urea. The effect of urease-treatment on Penicillium herguei, a maize pathogen, and revealed 

an effect based on fungal cell wall damage (Becker-Ritt et al., 2007). 
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1.9. Urease enzyme inhibitors 

A promosing approach to control urea-related pathogenesis or excessive rates of ureolysis in 

soil is to use potent and highly specific urease inhibitors. These compounds are also of 

interest for providing insights into the molecular mechanism of urease action. A number of 

urease inhibitors have been reported (see review (Krajewska, 2009)). Acetohydroxamic acid, 

the most widely exploited inhibitor of the class of hydroxamic acids, is a slow-binding 

moderate strength inhibitor of ureases from plants (Blakeley et al., 1969a; Dixon et al., 

1980b; Kobashi et al., 1971; Odake et al., 1992), bacteria (Blanchard et al., 1988; Kenny, 

1983; Mobley et al., 1988; Odake et al., 1994; Pope et al., 1998), fungi (Creaser and Porter, 

1985) and in soil (Qui-Xiang, 1994). Because of its low toxicity, acetohydroxamic acid is the 

most frequently used urease inhibitor for medical therapies and in ureolytic bacterial-

induced pathological conditions (Andersen, 1975; Burne and Chen, 2000; Griffith et al., 1978; 

Rodman, 1999; Rosenstein and Hamilton-Miller, 1984).  

Beta-mercaptoethanol, a compound of the thiol-group of inhibitors, can bind the urease by 

displacing all four water/hydroxyide molecules in the active site, resulting in a penta-

coordination of the two nickel ions. Furthermore, amides and esters of phosphoric acid are 

known as slow-binding but very strong inhibitors. Their activity is based on 

diamidophosphate (DAP), a product of hydrolysis that replaces the cluster of four water 

molecules at the active site of the urease enzyme  (see review (Krajewska, 2009)). Due to 

their efficiency, a variety of derivates of both phosphoric and thiophosporic acids have been 

intensively studied for retarding urease hydrolysis in soils and against ureolytic bacteria 

infections  (see review (Krajewska, 2009)). Phosphate buffer has long been known to inhibit 

urease activity at neutral pH, based on the H2PO4
- ion (Dixon et al., 1980a; Todd and 

Hausinger, 1989). 

Boric acids represent rapidly-binding but weak urease inhibitors Moreover, heavy metal ions 

are worth to mention because of their importance in practical applications. Heavy metal ions 

inhibit both plant and bacterial ureases (Kenny, 1983) and have the following order of 

effectiveness: Hg2+≈Ag+> Cu2+>>Ni2+> Cd2+>Zn2+>Co2+>Fe2+>Pb2+>Mn2+ (Zaborska et al., 2004), 

with Hg2+, Ag2+ and Cu2+ nearly always listed as the strongest inhibitors (Kuswandi, 2003; 
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Toren and Burger, 1968; Zaborska et al., 2004)204). Urease inhibition by heavy metal ions is 

biologically important, since heavy metal pollution may reduce the level of urease activity in 

agricultural soils. On the other hand, urease inhibition-based sensing systems (Kuswandi, 

2003) are used for in situ and real-time determination of trace levels of these ions for 

environmental monitoring, food control and biomedical analysis  (see review (Krajewska, 

2009)).  

 

1.10. Urease-independent urea breakdown  

Fungi exhibit a dichotomy with regard to urea utilization. Whereas all higher fungi use the 

nickel-containing urease, the Hemiascomycetes (yeasts and yeast-like fungi) lack the 

structural urease, as well as the accessory proteins and the attendant nickel transporter 

(Navarathna et al., 2010). Hemiascomycetes use an alternative urease-independent pathway 

for metabolising urea by possessing the urea amidolyase (DUR1, 2; Degradation of Urea). For 

example, in S. cerevisiae or C. albicans, urea is metabolised by urea amidolyase, a biotin-

requiring enzyme consisting of domains with activities for both urea carboxylase and 

allophanate hydrolase to convert urea, ATP and bicarbonate to ammonia and carbon dioxide 

(Navarathna et al., 2010).   

Urea amidolyase breaks down urea into ammonia and carbon dioxide in a two-step process 

(Scheme 2), in contrast to urease (EC 3.5.1.5) which ferforms the reaction in a one-step 

process (Navarathna et al., 2010). Urea is first carboxylated to allophanate in an ATP-

dependent reaction by urea carboxylase and then allophanate is hydrolysed to ammonia and 

carbon dioxide by allophanate hydrolase (Altschul et al., 1997; Carter et al., 2009; Labadorf 

et al., 2010). Urea amidolyase is encoded by the DUR1,2 gene and was first characterised in 

the yeast Candida utilis now known as Pichia jadinii (Roon and Levenberg, 1972). This 

cytoplasmic enzyme (Roon et al., 1972) consists of a single polypeptide chain with regions for 

urea carboxylase (EC 6.3.4.6) and allophanate hydrolase (also known as amidase; EC 

3.5.1.45) activity. Originally, two adjacent genes (DUR1 and DUR2) were considered to 
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encode the two enzymes which were later renamed as a single gene, DUR1, 2 (Cooper et al., 

1980).   

 

(1) Urea carboxylase:   urea + ATP + HCO3
-                  allophanate + ADP + Pi 

(2) Allophanate hydrolase (amidase):  allophanate                 2NH3 + 2CO2 

(3) Urease: urea   2NH3 + CO2 

Scheme 2. (1,2) Enzymatic hydrolysis of urea in a two step-process by Dur1,2. First urea is 
carboxylated to allophanate (1), then allophanate is hydrolysed to ammonia and carbon dioxide (2). 
By contrast, urea hydrolysis is performed in one single step by the urease enzyme (3). 

 

Interestingly, all Sordariomycete species (including F. oxysporum) except for N. crassa have 

both the urease and the urea amidolyase system (Strope et al., 2011). 

 

1.11. Arginine 

The amino acid arginine (2-amino-5-guanidinovaleric acid) was first isolated from lupin 

seedlings in 1886 and soon identified as a component of animal proteins. It was with the 

discovery of the ornithine cycle (urea cycle) by Krebs and Henseleit in 1932 that the 

prominent role of arginine in physiology and metabolic pathways was recognized. In the late 

1930s and 1940s physiological and nutritional studies started a new era of arginine research. 

Arginine was found to be required for the synthesis of creatine, the precursor of creatinine, a 

clinical indicator of renal function (Reviewed in (Wu and Morris, 1998). Extensive studies in 

the 1950s to 1970s resulted in the initial classification of arginine as a dispensable (non-

essential) amino acid for healthy adult humans (Rose et al., 1954), but as an essential amino 

acid for young, growing mammals and for carnivores (Reviewed in (Wu and Morris, 1998). 

Key studies reported that arginine is the precursor for mammalian nitrite/nitrate synthesis 

(Hibbs et al., 1987) and that nitric oxide (NO) is the endothelium-derived relaxing factor 

(Ignarro et al., 1987; Palmer et al., 1987). In 1988, NO was identified as the biologically active 

intermediate of the arginine-nitrite­nitrate pathway in macrophages (Hibbs et al., 1988; 



 

142 

 

Marletta et al., 1988) and endothelial cells (Palmer et al., 1988)(Reviewed in (Wu and Morris, 

1998). 

 

1.12. Arginase 

The urea cycle enzyme arginase (L-arginine ureohydrolase, EC 3.5.3.1) hydrolyzes L-arginine 

to L-ornithine and urea (Kinne-Saffran and Kinne, 1999; Mendz and Hazell, 1996; Mendz et 

al., 1998). Arginases are highly conserved across the kingdom (Wu and Morris, 1998). 

Eukaryotic arginases usually have a high pH optimum (pH 9-11) and require manganese for 

optimum activity (Bach and Killip, 1961; Brown, 1966; Hirsch-Kolb et al., 1970; Jenkinson et 

al., 1996; Kuhn et al., 1995; Mohamed and Greenberg, 1945; Mora et al., 1965; Reczkowski 

and Ash, 1994). First discovered in 1904 by Kossel and Dakin in mammalian liver (Kossel A., 

1904), arginase is not only involved in the urea cycle, but also serves to modulate cellular 

immune response during infection since arginine functions as a substrate for both arginase 

and inducible nitrite oxide synthase (iNOS).  

Arginase is unique among the urea-cycle enzymes in vertebrates in that two distinct 

isoenzymes exist. Both catalyse the hydrolysis of L-arginine to urea and L-ornithine, but differ 

with regard to tissue distribution and subcellular localization. Arginase I is a cytosolic enzyme 

that is expressed in erythrocytes and in the liver. Arginase II is localized in the mitochondrial 

matrix and expressed in extrahepatic tissues like the small intestine, kidney, brain, 

monocytes and macrophages (Mori, 2007). Arginase II is synthesized as a pre-protein and 

imported to mitochondria where it is processed to the mature form (Cederbaum et al., 2004; 

Wu and Morris, 1998). 

 

1.12.1 Role of arginase in plants 

In plants, arginine catabolism by arginase occurs in the mitochondrial matrix and generates 

ornithine and urea. Mitochondrial ornithine metabolism then converts this compound to 

glutamate (Funck et al., 2008). On the other hand, urea is hydrolysed by urease in the cytosol 

(Soto et al., 2010) and the ammonium is re-assimilated by cytosolic glutamine synthetase 
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using glutamate from ornithine catabolism as a substrate. Through these reactions, all the 

nitrogen form arginine is incorporated into glutamine, whereby urease mobilizes half of the 

nitrogen stored in the arginine (Figure 2). 

 
 
 
Figure 2. Arginine catabolism. Arginine is 
hydrolysed in the mitochondria by arginase into 
urea and ornithine. Urea exits the mitochondria 
where it is hydrolysed by cytosolic urease, and the 
released ammonia is re-assimilated by cytosolic 
glutamine synthetase (GS1). Mitochondrial δ-
ornithine aminotransferase (δOAT) transfers the 
side chain amino group of ornithine to α-
ketoglutarate, generating one molecule of 
glutamate and pyrroline-5-carboxylate which is 
oxydized to a second molecule of glutamate by 
pyrroline-5-carboxylate dehydrogenase (P5CDH). 
Glutamate can be exported from the mitochondria 
and serve as substrate for the cytosolic GS1-
reaction. All four nitrogen atoms of arginine are 
thus incorporated into glutamine. Taken from 
(Witte, 2011). 

 

Arginine catabolism is central to the mobilization of nitrogen from source tissues where 

arginase is the only plant enzyme known to generate urea in vivo. In many plant seeds, 

arginine is the most important single metabolite for nitrogen storage (Vanetten C.H, 1967). 

Upon seed germination, arginase activity rises (Cao et al., 2010; Flores et al., 2008; Goldraij 

and Polacco, 1999) in order to degrade arginine in the mitochondria (Goldraij and Polacco, 

2000; Polacco, 1993a). High arginine concentrations also are found in underground storage 

organs of several plants (Reviewed in (Witte, 2011). The biosynthesis of arginine during 

seed/embryo development occurs in the plastids (Slocum, 2005). The importance of 

recycling arginine-derived nitrogen during germination is highlighted by the fact that aged 

Arabidopsis seeds failed to germinate when urease was chemically inhibited, but could be 

rescued by an external nitrogen source (Zonia et al., 1995). During senescence arginine is 

also subject to net degradation. In nickel-deprived plants which do not contain active urease, 
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urea accumulates from arginine turnover, especially in senescing tissues (Gerendas J., 1997; 

Gerendas J., 1999b)(Reviewed in (Witte, 2011). 

 

1.12.2. Role of arginase in mammalian immune response 

One of the enzymes competing with arginase for the substrate L-arginine is nitric oxide 

synthase (NOS).  There are three types of nitric oxide synthases, the endothelial NOS, the 

neuronal NOS and the inducible NOS (iNOS). The latter is highly induced by 

lipopolysaccharide (LPS), lipoteichoic acid (LTA), and Type 1 cytokines like interferon gamma 

(IFNc), tumour necrosis factor alpha (TNF-a), interleukin 1 (IL-1), and IL-2. Nitric oxide (NO) 

contributes to a wealth of physiological processes, some of which are relevant to infection 

(Bogdan, 2001; Wu and Morris, 1998). Up-regulation of iNOS and nitric oxide (NO) is a major 

part of innate immunity in murine macrophages where NO is an effective antimicrobial agent 

against intracellular pathogens (Chakravortty and Hensel, 2003; Nathan and Shiloh, 2000). 

On the other hand the conversion of arginine to ornithine and urea via the arginase pathway 

can support the growth of bacterial and parasitic pathogens, and the polyamines produced 

by the arginase pathway down-regulate proinflammatory cytokine release. The cytokine 

profile after an infection is a key regulator of both iNOS and arginase induction and thus 

often determines the disease outcome (Das et al., 2010; Munder et al., 1999).  

 

 

Figure 3. Simplified model of arginine substrate competition between arginase and iNOS. Only 
enzymes that directly use or produce arginine, ornithine, or citrulline are identified, and not all 
reactants and products are shown. DFMO, difluoromethyl ornithine; iNOS, inducible nitric oxide 
synthase; NO, nitric oxide; nor-NOHA, nor-N

ω
-hydroxy-l-arginine; OAT, ornithine aminotransferase; 

ODC, ornithine decarboxylase; PAMPs, pathogen-associated molecular patterns; Spd Syn, spermidine 
synthase; Spm Syn, spermine synthase (Taken from: Das et al., 2010). 
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1.12.3. Role of arginase in microbial infection 

The competition between iNOS and arginase for arginine can contribute to the outcome of 

microbial infections, when the availability of intracellular arginine is a rate-limiting factor in 

NO synthesis. Because arginase negatively regulates cellular NO production (Buga et al., 

1996; Sonoki et al., 1997) it counteracts the biological effects of NO (Chang et al., 2001; 

Gobert et al., 2000). Interestingly, the extracellular arginine concentration has been shown 

to play a more important role in regulating NO synthesis than intracellular arginine (McGee 

et al., 1999).  

 

1.12.4. Arginase in human fungal pathogens 

Modulation of mammalian arginase by pathogens represents an evasion strategy from the 

immune system. C. albicans, for example, employs such a strategy to escape from 

macrophages after being ingested. Inside the macrophages C. albicans arginine biosynthetic 

genes are rapidly unregulated and arginine is metabolized by arginase to ornithine and urea. 

The resulting urea is degraded to CO2 and NH3 by urea amidolyase (Dur1, 2). CO2 then 

activates adenyl cyclase and the cAMP-dependent protein kinase A pathway, triggering the 

yeast-to-hypha switch of C. albicans inside the macrophages and enabling its escape (Ghosh 

et al., 2009).  

In vitro, macrophages respond to C. posadasii infection by a three-fold increase in the 

expression of the arginase I gene. On the other hand, the fungal arginase gene is expressed 

constitutively during the parasitic growth in the presence of urea (Mirbod-Donovan et al., 

2006). The total arginase activity competes with iNOS in macrophages for the common 

substrate arginine, resulting in reduction of the level of nitrite oxide and an increase 

production of orithine and urea (Iniesta et al., 2002). Therefore it has been suggested that 

the high concentration of urea detected at the sites of coccidioidal infection is host derived. 

The urea available during infection provides a substrate for the urease from the pathogen, 

resulting in production and accumulation of ammonia and a pH increase (Mirbod-Donovan et 

al., 2006) that could damage the host tissue (Prusky et al., 2001).  

1.12.5. Arginase in the bacterial pathogen H. pylori 
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The bacterium H. pylori is characterized by its production of urease which is absolutely 

essential for intestinal colonization (Eaton et al., 1991; Eaton and Krakowka, 1994). However, 

the substrate urea must be provided abundantly for the urease to work efficiently.  

The bacterium directly stimulates murine macrophage NO production through the induction 

of iNOS expression, and macrophage-derived NO is a potent inhibitor of H. pylori growth  

(Gobert et al., 2001; Wilson et al., 1996). Upon infection with H. pylori mutants lacking the 

gene rocF encoding an arginase (McGee et al., 1999), a significant greater level of NO was 

released by macrophages, resulting in efficient killing of the ΔrocF mutants, suggesting that 

down-regulation of mammalian NO production by H. pylori arginase allows the pathogen to 

evade the host immune response (Gobert et al., 2001).  

Additional studies have shown that the production of NO by macrophages is stimulated by 

the bacterial virulence factor urease. A mutant strain of H. pylori lacking urease failed to 

induce iNOS mRNA expression and production of iNOS protein or of NO (Gobert et al., 

2002b). Since the concentration of urea in the stomach is very high (Kim et al., 1990; 

Schreiber et al., 2004), it has been suggested that the urea used as a substrate by H. pylori 

urease may derive from host arginase via direct release from the gastric epithelial cells, or 

may diffuse into the gastic juice from the blood-stream (Kim et al., 2011). Although H. pylori 

triggers the expression of murine gastric arginase II in the stomach (Gobert et al., 2002a), 

arginase II knockout mice were colonised to a similar extent by H pylori as wild-type mice, 

and even partial inhibition of host arginase I still permitted colonization of the ΔrocF mutant 

(Kim et al., 2011). In this case it is clear that the urea does not originate either from bacterial 

arginase or host arginase II. It has been suggested that urea may derive from the remaining 

host arginase I or from bacteria of the normal intestinal flora, or is produced by the 

alternative urea-generating enzyme agmatinase (Kim et al., 2011). 
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2. Results  

Previously, Yeast Two-Hybrid screening against a F. oxysporum cDNA library, using the bait 

Gold_pGBKT7-msb2-CT-BD identifed a posive interaction with the hypothetical protein 

FOXG_13832 (chapter 3). Examination of the complete genome database of F. oxysporum 

(http://www.broadinstitute.org/) revealed that FOXG_13832 encodes a putative urease G 

accessory protein. The gene has a size of 856 bp, contains one intron (nt 174- 219) and 

encodes a GTPase protein with a predicted size of 269 amino acids. Here we document the 

results of our investigations on the biological role of UreG in F. oxysporum. 

2.1. UreG is a conserved urease accessory protein 

A BLAST search with the amino acid sequence of the F. oxysporum ureG gene product 

FOXG_13832 against the complete genome database of NCBI 

(www.ncbi.nlm.nih.gov/pubmed) revealed high sequence identities with urease accessory 

proteins G from fungi, bacteria and plants (Table 1). No orthologue was found in the genome 

of S. cerevisiae (www.yeastgenome.org) known to lack urease and urease accessory proteins 

(Strope et al., 2011). While most analyzed organisms have only one UreG orthologue, two 

orthologues were found in Arabidopsis thaliana (Figure 2). The alignment shows the 

predicted GTP binding site at the P-loop motive (amino acid 58-65; GPVGSGKT: PROSITE 

accession number PDOC00017), the conserved NKDT motif which is involved in the guanine-

specific recognition  (guanine binding pocket, amino acid 263- 266), the motifs important for 

the conformational changes during GTP-binding the switch-I (DIFTRED) and switch-II 

(ESGGDNL) (Real-Guerra et al., 2012) and the putative region of nickel binding located at the 

histidine enrichted N-terminus (amino acid 2- 26). A histidine-enriched region was found in 

all eukaryotes but not in bacteria where an additional accessory protein named UreE is 

involved in nickel binding (Soriano et al., 2000). The ureG clone obtained from the YTH 

screen and containing the putative Msb2 interaction site encompasses the 3´-end of the of 

ureG gene (525 pb) corresponding to the C-terminus of the protein (amino acids 89-269) 

marked by a green box in Figure 1. 
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Figure 1.  Amino acid sequence alignment of F. oxysporum UreG with fungal, plant and bacteria 
UreG proteins. The alignment shows the predicted amino acid sequence of UreG orthologues from 
fungal, plant and bacterial organisms. Highly conserved residues are shaded in black, moderately 
conserved residues are shaded in grey. The histidine-enriched N-terminus and the putative P-loop 
motive (PROSITE accession number PDOC00017) are highlighted in red. The NKTD motif corresponding 
to the guanine binding pocket is indicated in blue. The purple brackets represent the switch-I 
(DIFTRED) and switch-II (ESGGDNL) motifs important for the conformational changes during GTP-
binding. The green box indicates the amino acids which correspond to the cDNA clone obtained from 
YTH analysis containing the putative interaction domain with Msb2. Fungi. Abbreviations and 
accession numbers: Fungi: F.o: F. oxysporum FOXG_13832; F.g: Fusarium graminearum FGSG_04402; 
F.v: F usarium verticillioides FVEG_11261; N.c: Neurospora crassa NCU01511; A.nid: Aspergillus 
nidulans ANID_00232; A.fum: Aspergillus fumigatus Afu2g12900; C.neo: Cryptococcus neoformans 
CNAG_00678; S.p: Schizosaccharomyces pombe SPCPB16A4; Bacteria: K.a: Klebsiella pneumoniae 
YP_001337096.1; Plants: A.th: Arabidopsis thaliana a: A. thaliana NP_180994.1. 
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Table 1. amino acid identities of F. oxysporum UreG (FOXG_13838) with fungal, plant and bacteria 
UreG proteins. Values represent identity score in % obtained after pair wise alignment assessed by a 
pair wise BLAST against the Broad Institute (http://www.broadinstitute.org) and NCBI 
(www.ncbi.nlm.nih.gov/pubmed) Database. Abbreviations as in Figure 1.  

F.g F.v N.c A.nid A.fum C.neo S.p K.a A.th 

92 100 88 79 77 70 72 56 66 

 
 

Figure 2.  Phylogenetic tree with 
fungal, plant and bacteria UreG 
proteins. Shown are putative 
orthologues of the UreG protein in 
the indicated species. Tree 
Rendering: TreeDyn; Tree style: 
Cladogram (ignore branch lengths); 
Display branch support values in %. 

(http://www.phylogeny.fr). 
Abbreviations and NCBI /Broad 
Institute gene numbers: F. 
oxysporum FOXG_13832; F. 
graminearum FGSG_04402; F. 
verticillioides FVEG_11261; N. crassa 
NCU01511; A. fumigatus 

Afu2g12900; A. nidulans ANID_00232; S. pombe SPCPB16A4; C. neoformans CNAG_00678; C. 
posadasii CPAG_06968; C. immitis CIRG_05025; a: A. thaliana NP_180994.1 and b: NP_001031481.1; K. 
pneumoniae MGH 78578, YP_001337096.1; E. coli E110019, ZP_03051646.1; H. pylori jhp_0063; P. 
mirabilis YP_002153363.  
 

2.2. Targeted deletion of ureG in F. oxysporum 

To investigate the biological role of UreG (FOXG_13832) in F. oxysporum, targeted gene 

deletion was performed as follows. A ΔureG allele was generated by replacing the open 

reading frame with the hygromycin resistance cassette (Figure 3A). The final deletion 

construct was obtained by fusion PCR and used to transform protoplasts of the F. oxysporum 

wild type (wt) strain. PCR analysis identified several transformants in which the 7 kb 

fragment corresponding to the knockout construct had been integrated in the homologous 

locus (Figure 3 B and C). Figure 3 C shows three several wt strains (1, 3, 4), one ectopic 

insertion (2) and three successful ureG knockout mutants which were named ΔureG#5, 

ΔureG#6, ΔureG#7. For complementation of the ΔureG mutation, a > 7 kb DNA fragment 

encompassing the complete ureG gene was amplified by PCR from wt genomic DNA and 
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introduced into the ΔureG#5 mutant by co-transformation with the phleomycin resistance 

marker. Phleomycin-resistant transformants where selected and screened for amplification 

of a PCR product obtained from the wild type strain but not from the ΔureG mutant. The 

results suggested that these strains named ΔureG+ureG had integrated an intact copy of the 

ureG gene into their genome locus (Figure 3D).  

 

ureG-prom ureG-termureG

ureG_term_R

ureG_
prom_F_ver

ureG_term_R_ver

ureG_inEx_R

Hygromycin resistance cassette ureG-termureG-prom

HygG

HygY

ureG_prom_
F

ureG_inEx_F

ureG_
2.5_pF

 
 
 

Figure 3. Targeted disruption of the F. oxysporum ureG 
gene.  (A) Physical maps of the ureG locus and the gene 
replacement construct obtained by fusion PCR. Relative 
positions of the primers used for generation of the gene 
disruption construct and PCR analysis of transformants 
and complemented strains are indicated. (B) Verification 
PCR: amplification of genomic DNA of the indicated strains 
using primer ureG_prom_F/ureG_term_R to differentiate 
the wild type PCR product of 4, 2 kb (transformants 1, 3, 4) 
from that of 7 kb corresponding to the ΔureG allele 
(deletion mutants 5, 6, 7) and from the ectopic integration 
events (transformant 2). (C) Verification PCR to control the 
successful integration of the fusion-PCR knockout 
constructs. Amplification of genomic DNA of the indicated 
strains using the primer pairs ureG_prom_F_ver/HygG 
(promoter region; ~3, 4 kb) and ureG_term_R_ver/HygY 
(terminator region; ~2, 5 kb). Presence of fragments 
indicates successful integration of the deletion construct 
at the ureG gene locus. (D) Verification PCR to control the 
successful gene complementation by integration of the 
entire ureG gene sequence, using primer pair 
ureG_prom_F/ureG_term_R. Presence of the single wild 

type PCR product (transformant 3) indicates the insertion of the entire ureG sequence in the ureG 
gene locus; the presence of additional fragments including the knockout fragment indicates multiple 

ureG_prom_F/  ureG_term_R

wt      1         2       3        4       5        6        7 

5 kb

wt 5        6      7        wt 5        6       7 

promotor terminator
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copy integration besides the gene locus (transformants 1, 2). Sizes of molecular markers are indicated 
to the left. 

 

2.3. ΔureG knockout mutants display normal growth on different media  

To test the role of UreG in vegetative hyphal growth and germination of F. oxysporum, 

colony diameter was measured on compelete (YPDA) or nutrient-limiting solid medium (MM) 

medium, and mycelial dry weight was determined from liquid cultures grown wither in PDB 

and YPG), or in nutrient-limiting liquid media (MM). For comparative purposes, the Δfmk1 

and Δmsb2 mutants were also included. No significant differences in hyphal growth and 

germination rates were observed between the ΔureG mutants and the wt strain on solid 

YPDA or MM media or in liquid PDB, YPG or MM (Figure  4). 
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Figure 4. Analysis of mycelial dry weight and colony diameter of ΔureG mutants and the indicated 
strains. (A) To measure growth, 6.25 x 10

7
 microconidia of the indicated strains were germinated for 

24 hours either in 25 ml PDB, YPG or MM. Mycelia were harvested, vacuum dried and weighed. (B) 
YPDA or MM agar plates were spot inoculated with 5 µl of a microconidia suspension (1x 10

7
 /ml) and 

incubated at 28°C. Colony diameter was measured after 3 days. Bars represent standard errors 
calculated from 3 biological replicates.  
 

2.4. The Δmsb2 mutant displays reduced ureG gene expression 

We next examined whether the mucin Msb2 regulates expression of ureG in F. oxysporum. 

Quantitative real-time PCR analysis revealed that ureG transcript levels were significantly 

reduced in the Δmsb2 mutant compared to those in the wild type and the Δfmk1 strain 

(Figure 5A). To investigate a possible regulatory role of UreG in the Fmk1 MAPK pathway, we 

examined expression of fpr1 encoding a secreted protein with an SCP-PR-1-like domain that 

         wt            Δfmk1        Δmsb2       ΔureG 

A B 

         wt             Δfmk1         Δmsb2       ΔureG 



 

152 

 

is transcriptionally regulated by the Fmk1 MAPK cascade. Previous work showed a five-fold 

reduction of fpr1 transcript levels in the Δfmk1 mutant compared to the wild type strain 

(Prados-Rosales et al., 2012). Since Msb2 acts as an upstream component of Fmk1, Δmsb2 

mutants had ten-fold reduced fpr1 transcript level whereas Δfmk1Δmsb2 double mutants 

had even hundred-fold lower levels (Perez-Nadales and Di Pietro, 2011). Here we also 

detected lower expression of fpr1 in the Δfmk1 and Δmsb2 mutants, but not in the ΔureG 

mutants (Figure 5B). Thus, UreG is probably not involved in transcriptional regulation of fpr1 

and thus does not act upstream of Fmk1.  
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Figure 5. Msb2 is involved in transcriptional regulation of ureG. Measurement of fpr1 and ureG 
mRNA abundance by quantitative real-time PCR. cDNA derived from RNA isolated from invasive 
growth conditions (15 h germination in PDB followed by transfer for 4h on solid MM+ NaNO3 
medium). (A) Significantly reduced ureG gene expression in the Δmsb2 mutant. (B) fpr1 expression is 
not significant altered in the ΔureG mutant. Relative expression levels represent mean values 
normalized to the actin gene expression levels and relative to the expression in the wild type strain. 
Bars represent standard errors calculated from two biological and 4 technical replicates. 

 

2.5. ΔureG knockout mutants can to utilize urea as a sole nitrogen source 

Three independent ΔureG mutants, but not Δmsb2, showed slightly reduced growth on MM 

medium when urea was the sole nitrogen and carbon source, suggesting that ΔureG mutants 

are still able to utilize urea (Figure 6). To investigate if the growth reduction was specific for 

urea, we also tested vegetative hyphal growth on MM media containing different nitrogen 

sources in comparison to the wt, Δfmk1 and Δmsb2 and ΔureG+ureG. No differences in 

             wt             Δfmk1           Δmsb2             

A B 

wt         Δfmk1      Δmsb2     ΔureG            

   ureG 
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growth of ΔureG were observed under the tested conditions (MM medium with 25 mM 

NaGlu, Gln, NaNO3, NH4NO3, ammonium tartrate (NH4)2C4H4O6, (NH4)2SO4, or 10 mM NaNO2 , 

Hypoxanthine or 5mM/25mM Thiourea; Supplementary Figure 1).  

 
Figure 6. ΔureG grows on urea as the sole nitrogen and carbon source. 2 μl microconidial suspension 
of the indicated strains was spotted on MM media containing 25 mM or 50 mM urea as a sole 
nitrogen and carbon source. Plates were incubated for three days at 28°C and scanned. Scale bar: 0.5 
cm. 

 

2.6. ΔureG does not contribute to in vitro invasive growth functions 

The components of the Fmk1 MAPK cascade, including Msb2, are required for in vitro 

virulence-related functions such as invasion of cellophane membranes (Prados-Rosales 2008, 

Pérez-Nadales and Di Pietro 2011), Since UreG was found to interact with Msb2 by Y2H, we 

tested its role of in virulence-related functions by systematically comparing the ΔureG 

mutant to known phenotypes of the Δmsb2 and Δfmk1 mutants. Our results confirmed the 

absence and the reduced cellophane penetration ability of Δfmk1 and Δmsb2, respectively 

(Perez-Nadales and Di Pietro, 2011), whereas three independent ΔureG mutants displayed a 

similar penetration capacity as the wt (Figure 7). The same result was observed when 

performing the cellophane penetration assay on MM media containing urea as sole nitrogen 

and carbon source (Figure 8). Interestingly, even though all tested strains showed an 

improved growth when glucose was added as a carbon source in addition to urea, the 

cellophane penetration capacity was reduced under these conditions.   
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Figure 7.  UreG is not required for 
cellophane penetration on MM media 
containing NaNO3 or NH4

+ 
as the nitrogen 

source. 5μl of a microconidia suspension 
(10

7
 con/ml) of the indicated strains were 

spot-inoculated on the indicated media 
covered with a cellophane membrane 
and incubated at 28°C. To determine 
penetration, the cellophane sheets with 
the fungal colony were removed after 4 
days (before) and the plates were 
incubated for an additional day (after). 
Scale bar, 1 cm. 
 
 
 
 
 
 

 
 

 
 
 
Figure 8. UreG is not required for 
cellophane penetration on MM media 
containing urea (w/o glucose) or urea 
with glucose. 5μl of a microconidia 
suspension (10

7
 con/ml) of the indicated 

strains were spot-inoculated on the 
indicated media covered with a 
cellophane membrane and incubated at 
28°C. To determine penetration, the 
cellophane sheets with the fungal colony 
were removed after 4 days (before) and 
the plates were incubated for an 
additional day (after). Scale bar, 1 cm. 
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To investigate the biological role of UreG for urease activation we also generated F. 

oxysporum urease mutants. A BLAST search in the Fusarium Genome Database 

(www.ncbi.nlm.nih.gov/pubmed) revealed two structural urease genes in F. oxysporum 

FOXG_01071 and FOXG_17146, named Δure1 and Δure2, respectively. Ure1 revealed higher 

sequence identities with ureases from other fungi, bacteria and plants and we generated the 

F. oxysporum Δure1 gene knockout as performed for ΔureG mutant described in section 2.2.  

 

2.7. Urea is preferentially used as a nitrogen rather than a carbon source 

The cellophane penetration assay (described in section 2.6.) revealed a reduced penetration 

ability of F. oxysporum when glucose was supplemented to the medium in addition to urea. 

This result prompted us to investigate the role of glucose in medium alkalization by F. 

oxysporum. To this aim, we compared growth and medium alkalinization on MM with urea 

alone or in combination of different carbon and/or nitrogen sources. Colony growth of the 

wt strain increased when an additional carbon source (glucose) or both a carbon and a 

nitrogen source ((NH4)2SO4) was provided in addition to urea (Figure 9). Unexpectedly, a 

drastic growth reduction was observed when urea was provided together with (NH4)2SO4., a 

condition where urea provides the only putative source of carbon. The ΔureG mutant 

showed reduced growth on urea while the Δure1 mutant was much less impaired. However 

all strains showed growth reduction on low pH, the medium pH does not have a major effect 

on the growth between the tested strains.  
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Figure 9. Utilization of urea as a nitrogen or carbon source by F. oxysporum. 2 μl of microconidia 
suspensions (10

5
; 10

6
; 10

7
 conidia/ml) of the indicated strains were spotted on the indicated MM 

plates containing urea (50 mM) as a sole nitrogen and/or carbon source or on MM containing 
(NH4)2SO4 (25 mM) and/or glucose (3%). Plates were incubated for three days at 28°C. Scale bar, 1 cm.  

 

2.8. ΔureG and Δure1 mutants fail to secrete ammonia and alkalinize the medium when 
grown on urea  

We next tested the capacity of the different strains to hydrolyze urea, as indicated by the 

ability to secrete ammonia and to alkalinize the surrounding medium. On MM + urea (50 

mM) containing the pH indicator Bromocresol purple (BCP, 5',5"-dibromo-o-

cresolsulfophthalein), media alkalization was detected as a colour change from yellow to 

purple in the wt, the complemented ΔureG+ureG (Figure 10). In contrast, colonies of the 

ΔureG and the Δure1 mutants displayed a yellow colour indicative for an acidic pH (Figure 
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10). Strikingly, in highly buffered acidic urea medium only the Δfmk1 mutant showed a 

medium alkalization visible as a purple colour (Supplementary Figure 2).  

 

Figure 10. UreG and ure1 are required for medium alkalinization 
during growth on urea. Microconidia of the indicated strains were 
inoculated on minimal medium (MM) containing 50 mM urea as the 
sole nitrogen and carbon source and the pH indicator Bromocresol 
purple. Urease activity was determined indirectly through the 
alkalinization of the medium represented by a colour change of the 
pH indicator (yellow <5.2; purple >6.8). Plates were incubated for 3 
days at 28°C. Data shown are from one representative experiment. 
Experiments were performed three times with three technical 
repeats each, providing similar results. Scale bar: 1 cm. 
 

 

 

To investigate whether the ΔureG and Δure1 mutants fail to alkalinize the medium because 

of the lack of secreted ammonia, we measured both pH and ammonia concentration in liquid 

MM medium containing urea (50 mM) as a sole nitrogen and carbon source over time 

(Figure 11A and B). The pH of the wt culture increased from 5 to 9 within the first 24 hours 

and thereafter increased only slightly until 72 hours (Figure 11A). Similar results were 

obtained with the Δfmk1 and Δmsb2 mutant strains and ΔureG+ ureG. Ammonia 

concentration in the culture increased concomitantly with pH over time, although some 

differences in the absolute amounts were detected between the strains (Figure 11B). 

Strikingly, the mutants Δure1 and ΔureG failed to increase extracellular pH above 7 and 

ammonia concentration after 72 hours was dramatically reduced compared to the wild type. 

Interestingly, this phenotype was more drastic in the ΔureG than in the Δure1 mutant. We 

conclude that ureG and ure1 play a role in medium alkalisation caused by ammonia secretion 

in the presence of urea.  
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Figure 11. UreG and ure1 are required for 
urease activity, determined by an increase 
in extracellular pH and secretion of 
ammonia. 2x 10

8
 microconidia of the 

indicated strains were germinated for 14 h 
in 100 ml PDB, and the germlings were 
transferred to 50 ml liquid MM containing 
50 mM urea as the sole carbon and nitrogen 
source. Samples of the culture supernatant 
were taken at the indicated time points to 
measure pH (A) and concentration of 
ammonia (B). Mean values and standard 
errors were calculated from 3 biological 
repeats.  

 

 

 

 

 

 

 

 

 

 

Microscopic examination of the MM+ urea cultures revealed the presence of struvite crystals 

in the supernatant of the wt (Figure 12A), the ΔureG+ ureG (Figure 12C) and the Δmsb2 

mutant (data not shown). These structures started to appear after 72 h and were stable 

during the two weeks of the experiment. In contrast, the ΔureG and Δure1 mutant strains 

failed to produce the struvite crystals, and instead developed chlamydospore structures 

starting after 48 hours (Figure 12B and D). 
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Figure 12. Production of struvite crystals and chlamydospores in MM + urea medium. Samples were 
taken from a two week old culture of MM containing 50 mM urea as a sole carbon and nitrogen 
source. Cultures of the wt (A) and the ΔureG+ ureG complemented strain (C) as well as Δfmk1 and 
Δmsb2 (data not shown) contained crystals of struvite (magnesium ammonium 
phosphate/NH4MgPO4x 6H2O). The mutants ΔureG (B) and Δure1 (D) failed to produce crystals and 
developed thick-walled chlamydospores. Scale bar, 20 µm. 

 

2.9. Glucose inhibits secretion of ammonia and medium alkalinization 

We next examined the effect of glucose on urease-dependent media alkalization. When the 

wt strain was grown in urea containing liquid medium in the presence of 3% glucose, instead 

of a pH increase an initial decrease of the extracellular pH was observed (Figure 12A). This 

stage coincided with the absence of ammonia secretion into the medium (Figure 12B). After 

24 hours, the pH started to increase concurrently with secretion of ammonia into the 

medium. The same pattern was observed for the Δmsb2, Δfmk1 and ΔureG+ureG strains. By 

contrast, the ΔureG and Δure1 mutants only produced a slight increase in pH and failed to 

secrete ammonium (Figure 12B).  
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Figure 12. Glucose represses ammonia 
secretion and medium alkalization. 2 x 10

8
 

microconidia of the indicated strains were 
germinated for 14 h in 100 ml PDB and 
transferred to 50 ml liquid MM media 
containing 50 mM urea plus 3% glucose. 
Samples of the culture supernatant were 
taken at the indicated time points to 
measure pH (A) and concentration of 
ammonia (B). Mean values and standard 
errors were calculated from 3 biological 
repeats  
 
 
 
 
 
 
 
 

 

 

 

 
 
 

 

2.9.1. Ammonia secretion and medium alkalinization correlate with glucose depletion   

We next monitored the concentration of glucose in the medium over time and found that 

the time of ammonia secretion and the consequent pH increase coincided with the depletion 

of glucose in the medium (Figures 13A, B). Ammonia secretion and media alkalization 

initiated after 24 hours when the glucose reached a concentration below 3g/l. Interestingly, 

the ΔureG and Δure1 mutants consumed glucose at a similar rate as the wt, but failed to 

secrete ammonia upon glucose depletion (Figure 13C). All these effects were fully restored in 

the complemented strains (Supplementary Figure 3). Unexpectedly, however the Δfmk1 

mutant displayed the pH as the wt (Figure 13F), almost the double concentration of 

ammonia (47, 9 mM) compared to the wt (25, 5 mM) was secreted (Figure 13E). 
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Figure 13. Ammonia secretion and medium alkalinization are triggered by glucose depletion. 2 x 10

8
 

microconidia of the indicated strains were germinated for 14 h in 100 ml PDB and transferred to 50 ml 
liquid MM media containing 50 mM urea plus 3% glucose. Samples of the culture supernatant were 
taken at the indicated time points to measure pH (A,C,E), concentration of ammonia (B,D,F) or of 
glucose (A-F). Mean values and standard errors were calculated from 3 biological repeats.  
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2.9.2. Carbon catabolite repression of ammonia secretion is specific for glucose 

To investigate whether the repression of pH increase and ammonia secretion is specific for 

glucose, we tested a number of carbon sources. Galactose or glycerol failed to inhibit 

ammonium secretion and medium alkalinization in the wild type (Figure 14A, B). Thus, 

ammonium secretion is subject to carbon catabolite repression by glucose.  
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Figure 14. Carbon catabolite repression of ammonia

 
secretion is specific for glucose. 2 x 10

8
 

microconidia of the indicated strains were germinated for 14 h in 100 ml PDB and transferred to 50 ml 
liquid MM media containing 50 mM urea, or urea plus either 3% glucose, galactose or glycerol. 
Samples of the culture supernatant were taken at the indicated time points to measure pH (A), or 
concentration of ammonia (B). Mean values and standard errors were calculated from 3 biological 
repeats.  
 

 

2.9.3. Carbon catabolite repression of ammonia secretion also occurs on nitrogen sources 

other than urea 

When casaminoacids instead of urea were used as a nitrogen source, ammonia secretion and 

pH increase were also observed as previously found on urea (Figure 15A, B). Moreover, the 

presence of glucose in the medium prevented both ammonium secretion and medium 

alkalinization. This suggests that the effect of carbon catabolite repression on ammonium 

secretion is not limited to urea as a nitrogen source. 
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Figure 15. Carbon catabolite repression of ammonia secretion also occurs on nitrogen sources other 
than urea. 2 x 10

8
 microconidia of the indicated strains were germinated for 14 h in 100 ml PDB and 

transferred to 50 ml liquid MM media containing 1% casaminoacids, or casamoinoacids plus 3% 
glucose. Samples of the culture supernatant were taken at the indicated time points to measure pH 
(A), or concentration of ammonia (B). Mean values and standard errors were calculated from 3 
biological repeats.  
 

 

2.9.4. The ammonium permease MepB and the nitrogen metabolism transcriptional 

regulators MeaB and AreA are required for carbon catabolite repression of ammonium 

secretion  

In fungi, nitrogen metabolite repression (NMR) ensures that genes required for the 

utilization of alternative nitrogen sources are only transcribed in the absence of preferred 

sources such as ammonium or glutamine. NMR strictly depends on the nitrogen response 

GATA factor AreA/Nit2 (Arst and Cove, 1973; Marzluf, 1997). In F. oxysporum it was 

previously shown that AreA is required for de-repression of NMR genes (Lopez-Berges et al., 

2010). Moreover, ammonium was shown to inhibit virulence-related functions in F. 

oxysporum, and this repression requires the bZIP protein MeaB (Lopez-Berges et al., 2010). 

Recent data suggest that mepB, encoding an ammonium permease that is subject to NMR, 

requires MeaB and AreA for transcriptional de-repression (Segorbe et al. unpublished).  

We decided to examine the role of nitrogen metabolism regulation in urease-mediated 

ammonium secretion by testing the ability of different mutants to alkalinize the urea 

medium in present or absence of glucose. Strikingly, the inhibitory effect of glucose on 
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ammonium secretion and medium alkalinization was abolished in the ΔmepB, ΔmeaB, and 

ΔareA mutants (Figure 16). The timing of ammonium secretion on urea + glucose in the 

mutants was comparable to that on urea in the absence of glucose (Figure 16C). Importantly, 

glucose concentration in the medium decreased over time in the mutants similar to the wt 

strain, demonstrating that they are not affected in glucose uptake or utilization. All these 

effects were fully restored in the complemented strains (Supplementary Figure 4). 

Interestingly, the ΔareA mutant displayed reduced ammonia secretion when grown on urea 

alone, but not on urea + glucose (Figure 16C), most likely due to the role of AreA in 

utilization of urea as a nitrogen source, as shown recently (López-Berges et al. 2014). 

We also investigated the role of MepB in glucose repression of ammonium secretion on 

casaminoacids as the nitrogen source. Interestingly, in this condition glucose repression of 

ammonium secretion was still operating in the ΔmepB mutant (Figure 16D). We conclude 

that the role of MepB in carbon catabolite repression of ammonia secretion is specific for the 

nitrogen source urea.  
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Figure 16. MepB, MeaB and AreA are required for carbon catabolite repression of ammonium 
secretion. 2 x 10

8
 microconidia of the indicated strains were germinated for 14 h in 100 ml PDB and 

transferred to 50 ml liquid MM media containing either 50 mM urea, urea plus 3% glucose, 1% 
casaminoacids, or casamoinoacids plus 3% glucose. Samples of the culture supernatant were taken at 
the indicated time points to measure pH (A), or concentration of ammonia (B,C,D) or glucose (A,B,D). 
Mean values and standard errors were calculated from 3 biological repeats . 
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2.9.5. Urease dependent ammonium secretion and medium alkalization is partially 

controlled by the glucose sensing kinase Snf1 

Carbon catabolite repression involves sensing of available carbon sources, whereby the 

presence of the preferred carbon source glucose prevents the utilization of non-preferred 

carbon sources as well as the function of different catabolic routes (Johnston, 1999; Rolland 

et al., 2002; Zaman et al., 2008). In S. cerevisiae two main glucose-responsive signaling 

pathways have been identified: a glucose induction pathway involving the membrane 

receptors Snf3 and Rgt2 and the transcription factor Rgt1; and a glucose repression pathway, 

mediated by the transcriptional repressor Mig1, where the Mig1-inactivating protein kinase 

Snf1 (sucrose non-fermenting 1) is required for de-repression of glucose-repressed genes. 

(for a review see (Carlson, 1999; Forsberg and Ljungdahl, 2001; Rolland et al., 2002; 

Santangelo, 2006). Following its uptake, glucose is phosphorylated to glucose 6-phosphate 

by the hexokinase Hxk2 before entering carbon metabolism. High glucose levels lead to 

inactivation of Snf1 complex. Inactive Snf1 cannot phosphorylate Mig1, which thus remains 

in the nucleus under high glucose levels, exerting repression of transcription of several genes. 

At low glucose concentrations Snf1 becomes active and phosphorylates Mig1, triggering its 

translocation to the cytosol and release of glucose repression (Christensen et al., 2009). 

Previously it was shown that a F. oxysporum Δsnf1 mutant had reduced expression of genes 

encoding cell wall-degrading enzymes, grew poorly on certain carbon sources and showed a 

delay in the progression of wilt symptoms on plants (Ospina-Giraldo et al., 2003). Here we 

tested the F. oxysporum Δsnf1 and Δhxk1 (hexokinase 1; Gonzalez-Garcia et al., unpublished) 

mutants for glucose repression of ammonium secretion and environmental alkalization on 

urea medium (Figure 17). While the hexokinase mutant Δhxk1 was unaffected in this process, 

the Δsnf1 mutant showed a reduction in the delay of glucose repression. Ammonia secretion 

in this mutant started already after 12h, meaning that repression was alleviated at a glucose 

concentration of 50 mM, double of that in the wt strain (Figure 17B). In urea medium urease 

activity was increased in the Δhxk1 mutant and reduced in the Δsnf1 mutant (Figure 17C).
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Figure 17. 2 x 10

8
 microconidia of the indicated 

strains were germinated for 14 h in 100 ml PDB 
and transferred to 50 ml liquid MM media 
containing either 50 mM urea, or urea plus 3% 
glucose. Samples of the culture supernatant 
were taken at the indicated time points to 
measure pH (A), or concentration of ammonia 
and glucose (B,C). Mean values and standard 
errors were calculated from 3 biological repeats.  
 

 

2.10. ureG but not ure1 expression is up-regulated after glucose depletion  

We next determined transcript levels of key genes at different time points of growth of F. 

oxysporum in urea + glucose. To this aim, mycelium was harvested for RNA extraction after 

12, 24 and 48 hours of growth, representing the time points before, coinciding with, and 24 

hours after glucose depletion, with medium pH values of 3,8, 3,7 and 7,2, respectively 

(Figure 18A). Real time qPCR with specific primers revealed low constitutive transcript levels 

of the genes ure1 (urease) and car1 (arginase which converts arginine to urea and ornithine), 

and a slight up-regulation of mepB (ammonia permease) expression after 24 hours (Figure 

18B). No transcripts of the FOXG_12291 gene encoding the putative F. oxysporum 

orthologue of the urea transporter Dur3 of Aspergillus nidulans were detected under the 
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conditions tested. Interestingly, in contrast to ure1 whose expression did not change, the 

urease accessory protein gene ureG was highly up-regulated after 24 hours, coinciding with 

the time point of glucose depletion and the onset of ammonia secretion. Finally the 

transcript levels of msb2 increased steadily from 12 hours until 48 hours correlating with the 

decrease of glucose and accumulation of secreted ammonia in the medium (Figure 18B).  

 

Figure 18. Transcript levels of ureG bud 
not of ure1 are upregulated after 
depletion of glucose in urea medium.  (A) 
2 x 10

8
 microconidia of the wt strain were 

germinated for 14 h in 100 ml PDB and 
transferred to 50 ml liquid MM media 
containing either 50 mM urea, or urea 
plus 3% glucose (time 0). Culture medium 
samples were taken at the indicated time 
points to measure pH (A). Mean values 
and standard errors were calculated from 
3 biological repeats. (B)  Real-time qPCR 
of cDNA obtained from mycelia harvested 
at the time points indicated by arrows in 
(A). Gene abbreviations: ureG 
(FOXG_13832, urease accessory protein 
G), ure1 (FOXG_01071, urease1), car1 
(FOXG_12915, arginase), dur3 
(FOXG_12291, urea transporter), mepB 
(FOXG_00462, ammonia permease), msb2 
(FOXG_09254, mucin-like transmembrane 
protein). Relative expression levels 
represent mean values normalized to the 
actin gene expression levels. Mean values 
and standard errors were calculated from 
3 biological repeats. 

 

2.11. Lack of evidence for extracellular urease activity in F. oxysporum culture 
supernatants  

Since we did not detect expression of the putative urea transporter Dur3 during growth of F. 

oxysporum on urea + glucose (Figure 19B), we tested the hypothesis that, in the absence of 

urea uptake into the cell the urease enzyme might be exported to the supernatant or be 

membrane-associated. To test this idea, a construct where the C-terminus of the ure1 coding 
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region was fused to the Green Fluorescent Protein (GFP) was transformed into the wt 

background. Three independent tranformants that had integrated the ure1_GFP construct by 

homologous recombination at the ure1 locus were identified by PCR (data not shown). To 

test the functionality of the fusion protein, medium alkanization on urea was tested. All 

three tranformants failed to produce medium alkanization when growing on solid or liquid 

urea medium and no ammonia sectretion was deteced (data not shown). This phenotype 

resembled that of the Δure1 mutants, suggesting that the Ure1_GFP fusion protein is 

enzymatically inactive.  

In an alternative approach, we tested whether urease enzymatic activity could be detected 

in the culture supernatant of the wt strain. To this aim, urease activity was measured by 

determining ammonia production from urea by crude protein extracts of fungal mycelium 

and of the culture supernatant. In the presence of urea, the protein extracts of the wt and 

the ΔureG+ureG strains released 71,3 mM and 55,7 mM ammonia, respectively, after 60 

minutes suggesting the presence of urease enzymatic activity (Figure 19). However, no 

urease activity was detected in the ΔureG mutant or in the 10x concentrated supernatants of 

any of the strains. Even though we cannot exclude that extracellular urease might be 

membrane-associated, these results strongly suggest that the urease protein of F. oxysporum 

is exclusively intracellular and not secreted into the culture supernatant.  

 
Figure 19. Urease is not secreted in F. 
oxysporum.  2 x 10

8
 microconidia of the 

indicated strains were germinated for 14 h in 
100 ml PDB and transferred to 50 ml liquid 
MM media containing either 50 mM urea. 
Mycelia and culture supernatants were 
harvested after 7 h incubation and total 
protein was extracted from mycelia. 
Intracellular protein extracts were diluted to 
the same volume of the dialyzed culture 
supernatants or to the supernatants 
concentrated 10 x by lyophilisation. Urease 
enzymatic activity was determined by 
measuring the concentration of ammonia 
released from urea after 60 min. 
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2.12. UreG contributes to invasive growth of F. oxysporum on living apple tissue 

The apple slice infection assay assesses the ability of invasive growth on living fruit tissue. 

Previous work showed that Δfmk1 mutants are impaired in invasion and colonization of living 

fruit tissue (Di Pietro et al., 2001; Rispail and Di Pietro, 2009), while the Δmsb2 mutants had 

a reduced capacity (Perez-Nadales and Di Pietro, 2011). Three independent ΔureG mutants 

(ΔureG#5, ΔureG#6, and ΔureG#7) tested for invasive growth on apple slices showed a slight 

reduction in the diameter of the infected tissue area compared to the wt (Figure 20A,B).   

 

 
Figure 20. UreG contributes to invasive growth on living fruit tissue. (A) Apple fruits were point-
inoculated with 5 x 10

4
 microconidia of the indicated strains and incubated in a humid chamber at 

28°C for 3 days. Experiments were performed three times, each with two technical repeats. Data 
shown are from one representative experiment. (B) Ten apple slice infections per indicated strain 
were performed and diameters of the affected tissue area were measure on day 3 after inoculation. 
Bars represent standard errors calculated from ten technical replicates. Diameter values of the three 
ΔureG mutants are not significantly different to the wild type according to Mann-Whitney test 
(p<0.05). 

 

2.13.  UreG and Ure1 contribute to virulence of F. oxysporum on tomato plants 

The role of urease in fungal pathogenicity on plants has not been investigated. To determine 

the importance of UreG and Ure1 in virulence of F. oxysporum on tomato plants, roots were 

inoculated with the different mutants, using the wt and the Δfmk1 mutant as positive and 

negative control, respectively. Plants inoculated with the wt strain showed a continuous 

increase in wilt disease symptoms and all the plants were dead 34 days after inoculation 

(Figure 21). As decribed previously plants inoculated with the Δfmk1 mutant failed to display 
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any disease symptoms (Di Pietro et al., 2001). Moreover, we confirmed the reduced 

mortality caused by the Δmsb2 mutants as described previously (Perez-Nadales and Di 

Pietro, 2011). Two independent ΔureG (Figure 21A) and three independent Δure1 mutants 

(Figure 21B) showed a significantly reduced ability to kill tomato plants. Whereas the wt 

caused 100 % mortality after 34 days, the ΔureG mutants only caused mortalities between 

30 and 40% and the Δure1 mutants caused mortalities between 30 and 50%.  
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Figure 21. UreG and Ure1 are significant 
virulence factors of F. oxysporum on tomato 
plants. Two week-old tomato seedlings were 
inoculated with the indicated F. oxysporum 
strains by immersing the roots 30 min in a 
microconidial suspension, planted in vermiculite 
and incubated in a growth chamber at 28°C. 
Survival of the plants was recorded daily. Kaplan–
Meier plots of mortality rates of plants infected 
with the ΔureG and Δure1 mutants were 
significant lower (P< 0.05) than those infected 
with the wt mutant. (A) Log-rank (Mantel-Cox) 
Test: ΔureG#5 (P=0.1184), ΔureG#6 (p<0.0001). 
(B) Log-rank (Mantel-Cox) Test: Δure1#3 
(p=0.0045), Δure1#4 (p=0.0131), Δure1#7 
(p=0.0081). Ten plants were used per treatment. 
The experiment was performed three times with 
similar results. 
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2.14. UreG, but not Ure1 contributes to virulence of F. oxysporum on Galleria 

Urease has been reported as a virulence factor in two important human fungal pathogens, C. 

neoformans (Cox et al., 2000) and C. immitis (Cole, 1997). As described previously, F. 

oxysporum is able to infect, colonize and kill G. mellonella larvae (Navarro-Velasco et al., 

2011). After injection of wt microconidia we observed progressive melanization of the larvae, 

a typical symptome in infected animals, and a mortality rate of 100% after five days (Figure 

22A). The Δmsb2 mutant caused the same mortality rate as the wt, whereas two 

independent ΔureG mutants caused significantly reduced mortality, a phenotype that was 

completely restored in the complemented strain. Interestingly, three indepentent Δure1 

mutans showed no significant reduction in virulence and caused mortality rates similar to 

those of the wt (Figure 22B). 

 

0 2 4 6 8
0

20

40

60

80

100

PBS

wt

ureG#5

ureG#6

ureG+ureGmsb2

Days after Infection

S
u
rv

iv
a
l 
(%

)

        

0 2 4 6 8
0

20

40

60

80

100

PBS

wt

ure1#3

ure1#4

ure1#7

Days after Infection

S
u
rv

iv
a
l 
(%

)

 
 
Figure 22.  UreG but not Ure1 is required for virulence F. oxysporum in the Galleria infection model. 
Kaplan–Meier plots of G. mellonella survival after injection of 1.6 x 10

5
 microconidia of the indicated F. 

oxysporum strains in PBS into the hemocoel of the larvae and incubation at 30°C. (A) ΔureG#5 and 
ΔureG#6 but not Δmsb2 mutants caused significantly reduced mortality on G. mellonella (p< 0,0001) 
(B) Mortality caused by three independent Δure1 mutants was not significantly different from the wt. 
Experiments was performed three times with similar results. Graphs show mortality rates of one 
representative experiment with 15 larvae per treatment.  
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2.14.1. Urea biosynthesis genes are highly expressed in F. oxysporum during Galleria 

infection  

The reduced virulence of the ΔureG mutants in the invertebrate model G. mellonella 

prompted us to investigate expression of genes involved nitrogen source assimilation during 

F. oxysporum infection. Real time qPCR was performed on cDNA obtained from infected 

larvae inoculated either with microconidia of the wt or the ΔureG and Δure1 mutant strains. 

We analyzed fungal genes encoding key enzymes involved in nitrogen uptake and 

assimilation (Lopez-Berges et al. 2014), including the nitrate/nitrite transporter (nt), the 

nitrate reductase (nit1), the glutamine synthetase 1 (gs1) or the ammonia permease (mepB), 

as well as enzymes involved in arginine biosynthesis such as arginosuccinate lyase (al) or 

arginine catabolism such as arginase (car1), urease (ure1 and ure2), urease accessory protein 

G (ureG), ornithine aminotransferase (oat), ornithine decarboxylase (odc).  

Interestingly, genes encoding enzymes involved in the arginine and urea biosynthesis 

pathway were highly expressed during infection of Galleria, including glutamine synthetase 

and argininosuccinate lyase (Figure 23 A, B). The glutamine synthetase gene showed higher 

transcript levels in the wt than in the ΔureG and Δure1 mutants. The highest expression was 

obtained for the gene encoding arginase which converts arginine to urea (Kinne-Saffran and 

Kinne, 1999; Mendz and Hazell, 1996; Mendz et al., 1998).  The car1 gene was expressed at 

higher level in the wt and the Δure1 strain than in the ΔureG mutant. Interestingly, none of 

the two urease genes (ure1 and ure2) were expressed during Galleria infection, but ureG 

expression was detected in the wt and in the Δure1 mutant. No transcripts were detected for 

the nitrite, ammonia or urea transporter or the nitrate reductase genes.  
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Figure 23. Urea biosynthesis genes in F. oxysporum are highly expressed during Galleria infection. 
(A) G. mellonella larvae were inoculated by injection of 1.6 x 10

5
 microconidia of the indicated F. 

oxysporum strains into the hemocoel and incubated humid chamber at 30°C. Two days after 
inoculation, three larvae of each treatment were randomly chosen for RNA extraction. Real time qPCR 
representing mean values of the relative transcript levels normalized to the actin gene of F. 
oxysporum. Mean values and standard errors were calculated from 3 independent G. mellonella larvae. 
As a negative control qPCR was performed with all gene-specific primers using cDNA obtained from 
non-inoculated G. mellonella larvae, and no amplification was detected (data not shown). 
Abbreviations for genes: nt: nitrate/nitrite transporter (FOXG_ FOXG_00635); gs1: glutamine 
synthetase 1 (FOXG_05182); al: argininosuccinate lyase (FOXG_01957); car1: arginase (FOXG_12915); 
oat1: ornithine aminotransferase (FOXG_09346); odc: ornithine decarboxylase (FOXG_07603); ureG: 
urease asseccory protein G (FOXG_13832); ure1: urease1 (FOXG_01071); nit1: nitrate reductase 
(FOXG_04181); ure2: urease2 (FOXG_17146); dur3: urea transporter (FOXG_12291); mepB: ammonia 
permease (FOXG_00462). (B) Simplified model representing key proteins in nitrogen source 
assimilation tested by the qPCR analysis in (A). Enzymes involved in nitrogen source uptake and 
assimilation include the nitrate/nitrite transporter (NT), nitrate reductase (NIT1), the ammonia 
permease (mepB) and glutamine synthetase 1 (GS1); enzymes involved in arginine biosynthesis and 
catabolism, respectively, arginosuccinate lyase (AL) and arginase (CAR1); urease (URE1), ornithine 
aminotransferase (OAT) and ornithine decarboxylase (ODC). 
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2.15. UreG is a virulence factor of F. oxysporum on immunodepressed mice 

Previous work showed that genes important for infection in Galleria often also play a 

significant role in virulence in the mouse infection model (Navarro-Velasco et al., 2011; 

Ortoneda et al., 2004). Inoculation of immunodepressed mice with wt conidia caused a 

mortality of 70 % of the infected mice after ten days (Figure 24). By contrast, the ΔureG 

mutant caused significantly attenuated mortality, with only two of the ten infected mice 

succumbing to infection (p=0.019). Mortality was restored in the ΔureG+ureG complemented 

strain. Moreover, the Δure1 mutant also caused high mortality. Collectively, these results are 

very similar to those obtained in the Galleria infection model.  

 

Figure 24.  UreG is required for full 
virulence of F. oxysporum on 
immunodepressed mice. Oncins France 1 
male mice (n=10) were inoculated by tail 
vein injection with 2x10

6
 microconidia of 

the indicated strains. Immunosuppressive 
treatment (a single intraperitonal dose of 
150 mg cyclophosphamide per kg body 
weight and a single intravenous dose of 
150 mg 5-fluorouracil) was applied one 
day prior to infection. Survival was 
recorded for 10 days. The ΔureG mutant 
caused significantly less mortality 
(p=0.019) than the wt and the 
complemented strains. 
 

 

2.16. F. oxysporum arginase is required for utilization of arginine as a nitrogen source 

Arginase is the only enzyme known so far to convert arginine into urea (Witte, 2011). The 

high expression of the F. oxysporum arginase gene car1 during G. mellonella infection (Figure 

23) led us to further investigate the biological role of arginase. Three independent Δcar1 

mutants showed normal growth on complete medium (YPDA, Figure 25) and on MM 

containing urea as the sole nitrogen and carbon source (data not shown), but dramatically 

impaired growth on MM containing 5mM arginine as the sole nitrogen source in comparison 

to the wt, Δure1, ΔureG and the complemented Δcar1+car1 strain (Figure 25). This result 
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shows that F. oxysporum arginase is important for the utilization of arginine as a nitrogen 

source.  

 

Figure 25. F. oxysporum arginase Car1 is 
required for growth on arginine as a sole 
nitrogen source. 2 x 10

4
 microconidia of the 

indicated strains were spot-inoculated on 
complete medium (YPDA) or on MM 
containing 5 mM arginine as the sole 
nitrogen source. Plates were incubated for 
three days at 28°C. Scale bar, 1 cm.  
 

 

 

 

 

 

 

 

 

 

 

 

 

To determine the importance of Car1 in mobilization of intracellular arginine, we measured 

urease activity by performing the ammonia assay in liquid culture (Section 2.7.) using the 

Δcar1 mutant. This strain allows us to determine urease ammonia which is produced only by 

utilizing enviromental urea; by comparing (substating) it from the ammonia concentration 

produced by the wt, which can convert enviromental urea and urea derived from arginine 

degradation. Comparing the Δcar1 mutant with the wt strain, the concentration of ammonia 

in urea medium after 72h resulted in difference of almost 20 mM (wt:  52.5 mM;  Δcar1: 34.2 

mM). Therefore the Δcar1 mutant produces only 65.14% of the ammonia (by using 

extracellular urea) than measured with the wt strain.  
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Figure 26. 2x 10
8
 microconidia of the 

indicated strains were germinated for 14 
h in 100 ml PDB. The germlings were 
transferred to 50 ml liquid MM media 
containing (A) 50 mM urea or (B) 50 mM 
urea with 3% glucose. Supernatants were 
taken to) determine the release of 
ammonia during the indicated time 
period of 72 hours. Mean values and 
standard errors were calculated from 3 
biological repeats. 

 

 

 

 

 

 

 

 

2.17. Arginase is not required for invasive growth on living plant tissue 

Invasive growth of three independent Δcar1 mutans on apple slices was similar to that of the 

wt strain, suggesting that Car1 has no role in this process.  

 

Figure 27. Car1 does not contribute 
to invasive growth on living fruit 
tissue. Apple slices were point-
inoculated with 5x 10

4
 microconidia 

of the indicated strains and 
incubated in a humid chamber at 

28°C for 3 days. Experiments were performed three times, each with two technical repeats. Data 
shown are from one representative experiment.  
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2.18. Arginase contributes to virulence of F. oxysporum on tomato plants, Galleria and 
immunodepressed mice 

In previous studies, arginase produced by the fungal pathogens C. albicans and C. posadasii 

was suggested to play a role in modulation of the innate immunite response by murine 

macrophages (Das et al., 2010; Ghosh et al., 2009; Mirbod-Donovan et al., 2006). Based on 

our finding that the F. oxysporum car1 gene is highly expressed during G. mellonella infection 

(Figure 23), we set out to test the role of arginase during plant and animal infection. Arginase 

knockout mutants displayed significant reduced virulence on tomato plants (p = 0.0129; 

Figure 28A) and on G. mellonella (Δcar1#1 (p = 0.0043), Δcar1#3 (p = 0.0031), Δcar1#5 (p = 

0.0026); Figure 28B). Infection of immunodepressed mice showed a reduced virulence of the 

arginase mutant, however the drop in mortality was not statistical significant (p=0.3390; 

Figure 29).  

It is important to note, however G. mellonella showed significant degrees of correlation with 

the mouse model (Navarro-Velasco et al., 2011), cases of discrepancy imply also major 

differences including body temperature or the lack of an adaptive immune system (Kavanagh 

and Reeves, 2004), which might contribute to the severity of the outcome.      
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Figure 28.  Δcar1 mutants show attenuated virulence on tomato plants and in the Galleria infection 
model.  (A) Two week-old tomato seedlings were inoculated with the indicated F. oxysporum strains 
by immersing the roots in a microconidial suspension, planted in vermiculite and incubated in a 
growth chamber at 28°C. Survival of plants was recorded daily. Mortality rate of plants infected with 
the Δcar1#3 mutant was significant lower (p = 0.0129) than those of plants infected with the wt. (B) G. 
mellonella larvae were inoculated by injection of 1.6 x 10

6
 microconidia of the indicated F. oxysporum 

strains into the hemocoel and incubated at 30°C. Three independent arginase mutants Δcar1#1 (p = 
0.0043), Δcar1#3 (p = 0.0031), Δcar1#5 (p = 0.0026), caused significantly reduced mortality compared 
to the wt. Data shown are from one representative experiment with 15 larvae per treatment. 
Experiments were performed three times with similar results.  
 

 
 

Figure 29. Car1 is required for full virulence on 
immunodepressed mice. Oncins France 1 male 
mice (n=10) were inoculated by tail vein injection 
with 2x10

6
 microconidia of the indicated strains. 

Immunosuppressive treatment (a single 
intraperitonal dose of 150 mg cyclophosphamide 
per kg body weight and a single intravenous dose of 
150 mg 5-fluorouracil) was applied one day prior to 
infection. Survival was recorded for 10 days. The 
Δcar1 mutant caused a drop in mortality, however 
this value (p=0.3390) is not significantly different 
from the wt strain.  
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3. Discussion 

 

3.1. F. oxysporum FOXG_13832 encodes a conserved urease accessory protein G (UreG) 
essential for urease function  

 

The process of urease activation by incorporation of nickel into the active site is a prime 

example of chaperone-mediated metal transfer to an enzyme. The maturation of Ni-urease 

includes metallocenter biosynthesis which requires the suite of accessory proteins for the 

proper incorporation of the nickel cofactor into the catalytic site. Urease accessory protein 

UreG belongs to the G3E family of P-loop GTPases (G3E family) (Leipe et al., 2002). Members 

of the G3E family perform two major functions in metallocenter assembly: the insertase role, 

i.e. energy-dependent incorporation of the cofactor into the catalytic site of the target 

protein, and the metallochaperone role, i.e. delivery of a metal cofactor to a target 

metalloprotein (Haas et al., 2009). As in other fungi F. oxysporum lacks a structural 

homologue of the bacterial nickel divalent cation chaperone UreE. However, UreG contains 

an additional histidine stretch at the C-terminus that allows it to combine the functions of 

bacterial UreE and UreG proteins, similar to UreG proteins in plant systems. Likewise, the 

structural urease protein of F. oxysporum contains the α-, β-, and γ-subunits of the bacterial 

urease fused into a single protein, as described before for other eukaryotic ureases (Follmer, 

2008; Jabri et al., 1995). 

A similar double role has also been proposed for HypB accessory proteins of the (Ni,Fe)-

hydrogenase maturation system (Casalot and Rousset, 2001). Bacterial HypB proteins are 

important for activation of Ni-containing hydrogenases and are characterized by a conserved 

P-loop and the ability to bind nickel. In addition, some HypB proteins such as that from 

Rhizobium lehuminosarum also contain a His-rich stretch at the N-terminus (Rey et al., 1994). 

Both accessory proteins (UreG for urease and HypB for hydrogenase) belong to the G3E 

family of P-loop GTPases and are involved in the incorporation of the Ni cofactor to their 

enzyme (Leipe et al., 2002).  
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The deduced amino acid sequence of the F. oxysporum FOXG_13832 gene shows a high 

degree of identity with bacterial, fungal and plant UreG proteins. F. oxysporum UreG 

contains a predicted P-loop motif (PROSITE accession number PDOC00017) characteristic 

proteins that bind ATP or GTP (Saraste et al., 1990). This glycine-rich region, which typically 

forms a flexible loop between a β-strand and a α-helix, consists of the consensus amino acid 

sequence GPVGSGKT, and interacts with one of the phosphate groups of the nucleotide 

(Freyermuth et al., 2000). The presence of the P-loop suggests an energy requirement for 

urease activation by F. oxysporum UreG.   

 

The second role for UreG present as a poly-histidine stretch in its N-terminal was described 

to be involved in Ni2+ trafficking (Freyermuth et al., 2000; Witte, 2011). 

In the fungal pathogen C. neoformans the nickel chaperone function of the urease depends 

on the orthologue of UreG (Singh et al., 2013). A mutant lacking ureG lacks urease activity 

due to a failure of nickel incorporation into the enzyme. The nickel binding activity of UreG 

was localized to the conserved histidine-rich domain, as shown by the complete absence of 

urease activity in a strain carrying an UreG version lacking the histidine-rich residues (Singh 

et al., 2013).  

We found that the number of histidine residues at the N-terminal of UreG proteins varies in 

different organisms. In F. oxysporum UreG, 8 of the first 25 residues are histidines as in F. 

verticillioides and A. nidulans, compared to 7 in F. graminearum and none in the bacterium K. 

aerogans. By contrast, more histidine residues were found at the N-termini of UreG proteins 

of N. crassa (14), M. oryzae (9), A. fumigatus (9), C. neoformans (15), S. pombe (17) and A. 

thaliana (13). In G. max a very long His stretch (23 of the first 58 residues) has been reported 

(Real-Guerra et al., 2012), and UreG from Anabaena variabilis contains 29 histidines (Haas et 

al., 2009). A similar variation in the number of histinine residues involved in Ni2+ binding has 

been reported for COG0523 proteins, another member of the G3E family of P-loop GTPases 

(Haas et al., 2009). A comparison of the amino acid sequence of 887 COG0523 proteins from 

different kingdoms revealed that like UreG and HypB, COG0523 proteins can be present with 
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or without His-stretches, suggesting a patched distribution of insertase and 

metallochaperone activity among various members. Approximately 40% of the sequences 

analyzed contained a histidine-rich region, while the rest contained the minimal HxHxHxH 

motif, where x represents 0 - 4 residues (Haas et al., 2009).  

 

In conclusion, structural analysis of F. oxysporum UreG suggests that the protein 1) contains 

all the conserved amino acid residues and domain architecture found in UreG orthologues 

from other fungi and plants; 2) may be responsible for providing energy for the urease 

reaction based on the presence of the conserved P-loop motif described for ATP-or GTP- 

binding proteins; 3) may be involved in Ni2+ trafficking essential for urease function by virtue 

of possessing a His-enriched C-terminus. These characteristics indicate that UreG might be 

an essential factor for a functional urease system. The results obtained from analysis from 

ΔureG and Δure1 mutants further corroborate this idea and will be discussed in the following 

section. 

 

3.2. UreG and urease contribute to medium alkalinization via ammonia secretion  

 

Urease catalyzes the hydrolysis of urea to yield ammonia and carbamate. The latter then 

spontaneously hydrolyzes to form carbonic acid and a second molecule of ammonia. At 

physiological pH, the carbonic acid proton dissociates and the ammonia molecules 

equilibrate with water to become protonated, resulting in increase in pH (Mobley et al., 

1995). In our study we used several pH-dependent methods to measure urease activity, 

including a pH electrode (Bibby and Hukins, 1992) or colormetric assays using the pH 

indicator Bromocresol Purple. To detect urease activity, we adjust the ingredients of 

Christensen`s urea agar (Christensen, 1946) to the common MM used for F. oxysporum.  A 

similar approach was described for C. neoformans, where Christensen`s urea agar was 

adjusted to the common minimal medium used for this fungus (Choi et al., 2012). Using this 

method, we detected medium alkalinization with the F. oxysporum wt strain but not with the 
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ΔureG and Δure1 mutant strains, indicative for a lack of urease activity. We further noted 

that, during growth on urea, the wt strain released ammonia into the medium. Ammonia 

secretion occurred concomitantly with the pH increase, suggesting that ammonia ions are 

responsible for medium alkalinization. Indeed, mutations in the ure1 and ureG genes 

abolished both ammonium secretion and medium alkalinization. We therefore conclude that 

the extracellular alkalinization produced by F. oxysporum during growth in urea medium 

results from ammonia secretion and depends on a functional urease system.  

 

An important finding was provided by the upregulation of ureG accessory protein expression 

upon glucose depletion, coinciding with the onset of ammonia secretion. In stark contrast, 

the ure1 urease gene displayed a constantly low expression. This indicates that urease 

activity in F. oxysporum is not regulated at the level of urease gene expression, but might be 

controlled through expression and abundance of the accessory protein G. Similarly, in A. 

thaliana no transcriptional regulation by urea was observed for urease, arginase, ornithine 

carbamyl transferase, arginosuccinate synthetase, or arginosuccinate lyase. Interestingly, 

only the urease accessory protein UreG was upregulated in roots of urea-grown plants 

(Merigout et al., 2008). 

 

Although F. oxysporum Δure1 mutants are still able to grow on urea as the sole nitrogen 

source, they fail to alkalinize the medium indicative of a lack of urease activity. The same 

phenotype was observed when the accessory protein ureG was deleted, demonstrating that 

UreG is essential for a functional urease in F. oxysporum. In C. neoformans it has been shown 

that all accessory proteins are essential for urease activity, but in contrast to F. oxysporum 

the corresponding mutants failed to grow on medium containing urea as a sole nitrogen 

source (Singh et al., 2013). This implies there must be additional mechanisms in F. 

oxysporum for assimilation of urea via an urease-independent pathway (see discussion 

section 3.3.).   

When the human pathogen Coccoides immitis was grown in sugar-free, nitrogen-containing 

medium, it released ammonia during the saprobic phase resulting in a significant increase in 
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pH (Bumb, 1925). Similarly, C. posadasii grown in an acidic, sugar free medium released 

ammonium ions and ammonia which increased the pH of its extracellular environment. 

Parasitic phase cultures of this pathogen also respond to acidification of their external 

environment by secretion of NH4
+ and NH3 (Cole, 1997). 

 

The urease complex has been studied extensively in bacteria (Mobley et al., 1995) and plants 

(Torisky and Polacco, 1990; Witte et al., 2001; Witte and Medina-Escobar, 2001). 

Comparatively little is known about the role of urease in fungi. Schizosaccharomyces pombe 

was the first unicellular eukaryote for which the urease gene was reported as part of a 

complex involved in pH increase on urea medium (Tange and Niwa, 1997). The first urease 

gene cloned from a pathogenic fungus was that of C. immitis (Yu et al., 1997). 

 

One striking observation was the formation of crystalline structures during growth of F. 

oxysporum in urea medium. These crystals were detected in the wt but not in ΔureG and 

Δure1 mutant, were strictly correlated with medium alkalinization and appeared initially 

after 48 h with abundance increasing over time. In humans, microbial urease activity has 

been linked to urolithiasis (stone formation), and an estimated 15-20% of urinary stones are 

thought to be a consequence of a bacterial infection of the urinary tract leading to an 

increase in the pH of urine. The most common bacteria responsible for these infections are 

Proteus mirabilis or Ureaplasma  urealyticum, but other genera such as Pseudomonas, 

Klebsiella or Staphylococcus are also implicated (Burne and Chen, 2000; Rosenstein and 

Hamilton-Miller, 1984). High concentrations (0.5M) of ammonia in urine as a result of 

urease-mediated urea hydrolysis results in a pH increase and in precipitation of the normally 

soluble polyvalent ions present in urine, the two primary compounds formed being struvite 

(MgNH4PO4 x 6H2O) and apatite [Ca10(PO4)6 x CO3] (Mobley et al., 1995). Interestingly, mice 

infected with P. mirabilis tended to develop urolithiasis. While struvite stones were observed 

frequently in mice infected with the wt strain, but were never found in those infected with 

an urease mutant (Johnson et al., 1993; Jones et al., 1990). 
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Based on these previous results, we suggest that the crystal structures detected in the F. 

oxysporum cultures resulted from the precipitation of normally soluble polyvalent ions, as 

described for urolithiasis. Precipitation of the excess ammonium as struvite crystals could 

explain the constant ammonia concentration and stable pH detected in urea cultures after 

72h. To our knowledge this is the first evidence showing that a fungus can cause ammonia 

precipitation and the development of struvite structures in culture.   

We never observed the crystal structures in cultures of ΔureG or Δure1 mutants, which were 

unable to increase the medium pH on urea above 7. Strikingly, these two mutants developed 

high amounts of chlamydospores, thick-walled survival structures arising from hyphal or 

conidial cells. Chlamydospores in F. oxysporum are generally induced during aging or under 

unfavorable environmental conditions such as low temperatures or carbon starvation, and 

represent the main structures for long-time survival during long time periods in the soil 

(Couteaudier and Alabouvette, 1990; Kono et al., 1995; Nelson, 1981b; Schippers, 1981b; 

Stevenson and Becker, 1972). 

Taken together, these results demonstrate that: 1) F. oxysporum produces urease activity 

which leads to alkalinization of the extracellular medium in the presence of urea; 2) 

environmental alkalinization correlates with and is caused by ammonia secretion, 3)  urea 

medium alkalinization by the fungus leads to precipitation of normally soluble polyvalent 

ions and formation of struvite crystals; and 4) lack of a functional urease causes symptoms of 

nutrient starvation in F. oxysporum as detected by the development of chlamydospores.  

 

 

3.3. F. oxysporum can use urease-independent pathways for urea utilization and 
environmental alkalinization 

 

Somewhat unexpectedly, F. oxysporum Δure1 and ΔureG mutants displayed only partially 

impaired growth on urea as the sole nitrogen and carbon source: Thus, while these genes are 

important in urea utilization, there must be additional mechanisms in F. oxysporum for 
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assimilation of urea via an urease-independent pathway. It is known that the 

Hemiascomycetes (yeasts and yeast-like fungi, the majority belonging to the class 

Saccharomycetes) use an alternative urease-independent pathway to convert urea, ATP and 

bicarbonate into ammonia and carbon dioxide (Navarathna et al., 2010). In S. cerevisiae and 

C. albicans, for example, urea is metabolised by the enzyme urea amidolyase (Dur1, 2; 

Degradation of URea), a cytoplasmic, biotin-dependent enzyme (Roon et al., 1972) with two 

enzymatic functions: urea is first carboxylated to allophanate in an ATP-dependent reaction 

by urea carboxylase, and allophanate is then hydrolysed to ammonia and carbon dioxide by 

allophanate hydrolase (Altschul et al., 1997; Carter et al., 2009; Labadorf et al., 2010). Indeed, 

analysis of the genome sequence revealed that F. oxysporum contains both the urease and 

the urea amidolyase system, as reported for most Sordariomycetes except N. crassa (Strope 

et al., 2011). We thus speculate that the urea amidolyase allows F. oxysporum to utilize urea 

as a nitrogen source in the absence of urease, as in the case of the Δure1 and ΔureG mutants. 

A possible explanation of the strong delay of ammonia by the mutants in urea medium is 

that urease-mediated one-step urea breakdown is simpler and therefore faster than the 

energy-consuming, biotin-dependent urea amidolyase system which requires a two-step 

mechanism. A second possible cause for the low amount of ammonia secreted by the urease 

mutants could be the lack of sufficient biotin in the medium. C. albicans strains, for example, 

are biotin auxotrophis (Odds, 1988). Moreover, high amounts biotin are required for 

optimum growth of S. cerevisiae on urea, allantonic acid or allantoin as the sole nitrogen 

sources (Di Carlo et al., 1953). 

Interestingly two other plant pathogens, F. graminearum and M. oryzae also have both the 

urease and the urea amidolyase systems. This raises the question why plant pathogens 

possess two distinct enzymes to convert urea, if plants recycle virtually all of their amino 

groups and thus do not excrete urea, and suggests a possible role of urease in virulence. 

Another member of the G3E family of P-loop GTPases, the COG0523 proteins,  have been 

implicated in the virulence of several fungal pathogens whose hosts are known to induce Zn-

limitation (Haas et al., 2009). This concept is based on nutritional immunity as a defense 

strategy against invading pathogens (Kochan, 1973), where the host organism actively 
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deprives metals from the invaders inducing both hypoferremia and hypozincemia (deficiency 

of iron and zinc, respectively, in the blood) as part of the acute inflammatory response (Liuzzi 

et al., 2005; Motley et al., 2004; Weinberg, 1975). Therefore, the mechanisms that enable a 

pathogen to overcome this host-induced Zn-starvation are considered essential to a 

pathogen's ability to cause infection (Kim et al., 2004; Panina et al., 2003; Pasquali et al., 

2008).  

In a putative scenario of nickel deprivation within the host, it might be a selective advantage 

for the pathogen to retain two pathways of urea degradation and ammonia secretion. The 

use of urea amidolyase Dur1,2 would allow F. oxysporum to overcome the nickel-dependent 

function of the urease Ure1. It has been suggested that the use of urea amidolyase allows 

hemiascomyces such as C. albicans to achieve urea degradation and kidney colonization in 

the nickel—deficient host environment (Navarathna et al., 2010).  

In C. neoformans which lacks urea amidolyase, mutation of components of the urease, its 

accessory proteins or the nickel transporter Nic1 leads to absence of urease activity and the 

lack of ammonia (Singh et al., 2013). By contrast, urease deletion mutants of C. posadasii 

which also lacks the urea amidolyase system (Strope et al., 2011), cause only a partial 

reduction in ammonia secretion (Wise et al., 2013). Interestingly, an additional pathway for 

production of ammonia was recently described in this fungal human pathogen, namely the 

allantoin degradation pathway which is conserved in filamentous fungi, yeast, bacteria and 

higher plants but absent in mammals. The allantoin degradation pathway converts allantoin 

to ammonia and carbon dioxide, allowing the use of allantoin as the sole nitrogen source. 

Conversion of allantoin to ammonia in S. cerevisiae is carried out by the DAL1, DAL2, and 

DAL3 gene products, which work sequentially to generate urea (Yoo et al., 1985). Urea is 

then degraded to ammonia in a two-step process by the DUR1,2 protein. Alternatively, the 

ureidoglycolate hydrolase (Ugh; EC 3.5.3.19) performs the terminal step of allantoin 

catabolism by catalyzing the hydrolysis of ureidoglycolate to glyoxylate, releasing CO2 and 

ammonia. In C. posadasii the the Δugh/Δure double mutant shows a significant reduction of 

extracellular ammonia in the culture medium compared with the wt and the Δure strains, 

correlating with reduced virulence (Wise et al., 2013). Since the F. oxysporum genome 
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contains a predicted protein (GenBank accession number EGU87042) with 56% identity to 

Ugh of C. posadasii, further investigation of the role of this enzyme should provide 

interesting information about the function of ammonia secretion during virulence of F. 

oxysporum.  

In summary, we conclude that 1) F. oxysporum has urease-independent mechanisms for the 

utilization of urea, probably provided by urea amidolyase; and 2) F. oxysporum encodes a 

putative a putative ureidoglycolate hydrolase which represents a potential mechanism 

contributing to ammonia secretion independently of urease. 

 

 

3.4. Extracellular alkalinization by ammonia secretion is triggered by carbon deprivation 
and regulated through carbon-catabolite/glucose repression  

 

When F. oxysporum was grown in urea in the presence of glucose, ammonium secretion and 

medium alkalinization was strongly delayed compared to urea alone, and was only initiated 

when glucose was depleted from the medium. This effect was not detected with the non-

fermentable carbon sources galactose and glycerol, suggesting that repression of ammonia 

secretion and medium alkalinization is specific for glucose. These results suggest that urease-

dependent ammonia secretion and medium alkalinization is controlled by a glucose 

repression mechanism. Glucose or carbon catabolite repression is a known mechanism in 

fungi, whereby the presence of a preferred carbon source, often glucose, triggers a signalling 

cascade that prevents the utilization of non-preferred carbon sources as well as the function 

of different catabolic routes and other cellular processes (Johnston, 1999; Rolland et al., 

2002; Zaman et al., 2008). Among pathways that control the cellular response to glucose 

levels in S. cerevisiae are the Ras2-cAMP protein kinase A (PKA) pathway (Thevelein and 

Voordeckers, 2009); the glucose induction pathway which involves the membrane receptors 

and glucose sensors Snf3 and Rgt2 (Ozcan and Johnston, 1999) and the transcription factor 

Rgt1; and the glucose repression pathway mediated by the nutrient-sensing AMP-dependent 
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kinase (AMPK) Snf1 (sucrose non-fermenting 1) and the transcription factor Mig1 (for review 

see (Carlson, 1999; Forsberg and Ljungdahl, 2001; Rolland et al., 2002; Santangelo, 2006).  

To further examine the hypothesis that urease-mediated environmental alkalinization is 

glucose repressed, we tested the available F. oxysporum Δsnf1 and Δhxk1 (hexokinase 1) 

mutants, two genes with a possible role in glucose metabolism. The roles of these two 

proteins have been studied in detail in S. cerevisiae. The hexokinase Hxk2 phosphorylates 

glucose to glucose 6-phosphate allowing it to enter glycolysis and carbon metabolism.  Hxk2 

also plays a role in carbon catabolite repression mediated by the transcriptional repressor 

Mig1 (Zimmermann and Scheel, 1977). Hxk2 interacts with Mig1 to generate a repressor 

complex located in the nucleus of S. cerevisiae (Moreno et al., 2005) and interacts with Snf1 

(Ahuatzi et al., 2007) causing its inhibition in high glucose growth condition (Tomas-Cobos 

and Sanz, 2002). 

High glucose levels in the cell lead to inactivation of the Snf1 complex, thereby inhibiting 

Snf1-mediated phosphorylation and nuclear export of the Mig1. Thus, Mig1 remains in the 

nucleus, preventing expression of carbon catabolite repressed genes. At low intracellular 

glucose concentrations Snf1 becomes activated and phosphorylates Mig1, which is 

translocated to the cytosol thereby releasing glucose repression (Christensen et al., 2009). 

Besides activation of glucose-repressed genes, the Snf1 pathway in S. cerevisiae also 

regulates the response to environmental stresses such as alkaline pH, where Snf1 is 

phosphorylated and required for growth under these conditions (Hong and Carlson, 2007). It 

has been shown previously that a F. oxysporum Δsnf1 mutant displayed reduced expression 

of several genes encoding cell wall-degrading enzymes, poor growth on non-preferred 

carbon sources and a delay in wilt symptoms on plants (Ospina-Giraldo et al., 2003). 

If hexokinase acted as the only key enzyme in F. oxysporum to channel glucose into glycolysis, 

the Δhxk1 mutant should be affected in glucose utilization as well as in glucose repression of 

ammonia release and medium alkalinization. However, we found that Δhxk1 was still able to 

deplete glucose from the medium and showed a similar delay in ammonia secretion and 

alkalinization of urea medium as the wild type strain. This result suggest the presence of 

additional hexokinases or glucokinases in F. oxysporum which are able to phosphorylate 
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glucose and are in line with previous findings in our group revealing normal growth of the 

Δhxk1 mutant on glucose and other fermentable hexoses, even though the mutant displayed 

significantly reduced virulence on tomato plants (Gonzalez-Garcia et al., unpublished). 

In our experiments we only detected ammonia secretion in absence of glucose. If glucose 

repression of ammonia secretion and alkalinization in F. oxysporum was controlled through 

the Snf1 complex, the Δsnf1 mutant should have a defect in activation of these processes 

after glucose depletion. However, we found the opposite outcome, namely a reduced 

glucose repression in the Δsnf1 mutant, as detected by an onset of ammonia secretion 

before complete glucose depletion. Moreover, the Δsnf1 mutant secreted significantly more 

ammonia than the wt, reaching a concentration which was double that secreted by the wt 

strain. This result argues against a key role of Snf1 in promoting ammonia secretion after 

glucose depletion in F. oxysporum. However we cannot yet exclude a role of glucose sensing 

and carbon catabolite repression in this process. In S. cerevisiae Mig2, a functional homolog 

of Mig1 (Lutfiyya and Johnston, 1996), represses the transcription of genes involved in 

metabolism of poor carbon sources under high glucose conditions, but is not regulated by 

Snf1 (Lutfiyya et al., 1998; Treitel and Carlson, 1995). Moreover, it has been suggested that 

the mechanisms mediating carbon catabolite by the Mig1 orthologue in filamentous 

ascomycetes, CreA, are somewhat distinct from those reported in S. cerevisiae (Vautard et al., 

1999). 

The observed initial medium acidification by F. oxysporum in the presence of glucose could 

be related to the breakdown of glucose, a well known effect of the glycolysis. In C. albicans, 

for example, alkalinization of acidic medium, associated with the release of ammonia has 

been described as a glucose-reversible phenomenon (Vylkova et al., 2011). The mechanism 

of this effect was explained by a model based on the utilization of amino acids as the primary 

source of carbon (Figure 1). Under carbon-rich conditions, nitrogen is generally stored in the 

form of glutamate or glutamine. However, under carbon-starved conditions the amino acids 

are used as a carbon source. Amino acids are catabolized through several routes and 

converted into tricarboxylic acid (TCA) cycle intermediates, resulting in acetyl-CoA, succinyl-

CoA, α-ketogluterate or oxyloacetate forming glutamate. Each product includes de-
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amination steps to remove the amino group (s). This process involves transaminases. In 

many vertebrates, the amino group is then feet into the urea cycle and the excess nitrogen is 

excreted in the form of urea. Fungi are able to convert urea into ammonia and CO2 by urease 

or urea amidolyase (Dur1,2). Since high concentrations of cytosolic ammonia are toxic (Hess 

et al., 2006), the excretion of the excess ammonia would detoxify the cytosol and raise 

extracellular pH. 

 

Figure 1. Model of environmental alkalinization by 
C. albicans. Under conditions in which amino acids 
are metabolized as carbon sources, the cell 
upregulates transmembrane transporters for 
various amino acids (facilitated by the Stp2p 
transcription factor). Amino acids are converted 
into tricarboxylic acid (TCA) cycle intermediates via 
several routes. Many of these require acetyl-CoA 
production and intracellular transport mediated by 
acetyl-CoA hydrolase (Ach1p). Degradation of 
amino acids often involves deamination of the 
amino group to alpha-ketoglutarate, forming 
glutamate. This amino group is then removed 

through the urea cycle and is excreted in the form of urea. In mammals, excess nitrogen is secreted as 
urea, whereas in C. albicans, urea is converted by urea amidolyase (Dur1,2) into CO2 and ammonia. 
The latter is exported from the cell in a process involving the Ato proteins (Figure taken from (Vylkova 
et al., 2011)). 

 

In C. albicans, extracellular alkalinization requires carbon deprivation and exogenous amino 

acids (Vylkova et al., 2011), a condition encountered inside phagocytic cells. It has been 

suggested that extracellular pH provides a morphogenetic signal which stimulates the 

filamentous hyphal form essential for virulence in this fungus (Biswas et al., 2007). The 

transcription factors Rim101/PacC and Mnl1 are required for the alkaline pH response (Davis, 

2003). Interestingly, however, the alkalinization observed in C. albicans in the absence of 

carbon is independent of the Rim101/PacC pH response pathway. This suggests that this 

phenomenon is independent of this pH adaptation machinery (Vylkova et al., 2011). 

It is possible that the mechanism controlling extracellular alkalinization in F. oxysporum is 

linked with carbon metabolism and amino acid catabolism as described for C. albicans 

(Vylkova et al., 2011). This would imply that environmental alkalinization by the fungus is a 
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side effect of ammonia secretion to avoid cell toxicity through the high cytosolic ammonia 

concentration associated with low glucose levels. This idea is further supported by our 

results showing that high concentrations of ammonia are secreted during growth on 

casaminoacids in the absence, but not in the presence of glucose, suggesting that under 

glucose starvation the amino acids are used as a carbon source, leading to a secretion of the 

excess ammonia. 

Further supporting this hypothesis are studies in the bacterium H. pylori where ammonium 

generated from urea was shown to be incorporated into amino acids (Williams et al., 1996). 

Interestingly, the UreA subunit of the urease complex in this species was found to interact 

with glutamine synthetase (GlnA) (Stingl et al., 2008), the enzyme that catalyzes the 

synthesis of glutamine from glutamate and NH4
+ in the presence of ATP. Glutamine is 

necessary for several essential metabolic pathways, such as synthesis of purine, pyrimidine, 

peptidoglycan and amino acids (Reitzer, 1996). It has been suggested that the direct physical 

interaction of glutamine synthetase with UreA may allow the urease product ammonium to 

be directly incorporated into glutamine through the action of GlnA (Stingl et al., 2008). 

Research in plant metabolism showed that the concentration of many amino acids were 

significantly lower when rice plants were supplied with urea, possibly due to the limited 

availability of carbon skeletons for amino acid biosynthesis (Cao et al., 2010). This is 

supported by an increase in the concentration of asparagine in the presence of urea, since 

the expression of asparagine synthetase has been associated with carbon starvation in plants 

(Lea, 2007). 

In conclusion, we note that 1) urease activity in F. oxysporum under the conditions studied is 

controlled in a rate-limiting fashion by the abundance of the accessory protein UreG; 2) 

urease-derived ammonia secretion is specifically repressed in the presence of glucose; 3) the 

protein kinase Snf1 is not required for activation of ammonia secretion upon relief from 

glucose repression; 4) amino acids are used as a primary carbon source during glucose 

starvation, and therefore environmental alkalinization may be part of a detoxification 

mechanism for the excess ammonia resulting from the utilization of amino acids as a source 

of carbon  
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3.5. Glucose repression of urease-dependent medium alkalizing is linked to nitrogen 
metabolite repression  

 

The mutant strains Δmeab (FOXG_02277), ΔmepB (FOXG_00462) and ΔareA (FOXG_03165) 

failed to show glucose repression of the increase in pH and ammonia secretion. The decrease 

of glucose concentration in these mutants was similar to the wt strain, excluding the 

hypothesis that they cannot uptake or use glucose. Interestingly, on casaminoacids the 

mutants showed the same glucose repression as the wt, suggesting that this phenotype is 

specific for urea.   

The genes affected in the three mutants are involved in different aspects of nitrogen 

metabolite repression (NMR). In fungi, NMR ensures that genes required for the utilization of 

alternative nitrogen sources are only transcribed in the absence of preferred sources such as 

ammonium or glutamine (Arst and Cove, 1973; Marzluf, 1997). This process requires the 

GATA factor AreA/Nit-2. Loss of areA in A. nidulans or nit-2 in N. crassa renders these species 

incapable of utilizing nitrogen sources other than ammonium or glutamine (Arst and Cove, 

1973; Fu and Marzluf, 1987; Kudla et al., 1990; Marzluf, 1997; Stewart and Vollmer, 1986). In 

F. oxysporum the GATA factor AreA is strictly required for de-repression of NMR genes 

(Lopez-Berges et al., 2010). One example is the ammonium permease gene mepB, which is 

strongly downregulated on ammonium by nitrogen catabolite repression, dependent on the 

bZIP protein MeaB. Thus, a ΔmeaB mutant displays nitrogen source-independent activation 

of NMR genes and of certain virulence functions (Lopez-Berges et al., 2010). In non-

alkalinizing C. albicans cells growing in the presence of high glucose condition the genes for 

two ammonia permeases (Mep1 and Mep2), were significantly induced compared to glucose 

starvation conditions, suggesting a possible role of ammonium uptake during these 

conditions- However, the corresponding gene deletion mutants were not impaired in 

environmental medium alkalinization (Vylkova et al., 2011).  

One possible explanation for our results is that urease activity might be controlled by a 

nitrogen metabolite repression mechanism, based on a model where MeaB acts upstream of 

AreA, mediating its negative regulation through the uptake of ammonia. In the presence of 
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the preferred nitrogen source ammonia, and AreA represses NMR genes including mepB 

itself (Lopez-Berges et al., 2010). Recently it was been confirmed in F. oxysporum that a 

ΔareA mutant shows reduced growth on non-preferred nitrogen sources (Lopez-Berges et al., 

2010),  including urea (Lopez-Berges et al., 2014). 

Since urea acts as a non-preferred nitrogen source, in our assays AreA is releasing NMR. The 

ureG gene encoding the urease accessory protein might be under the control of NMR, with a 

direct effect on urease activation. This idea is supported by quantitative real-time PCR 

revealing an increase in expression of ureG under glucose depletion conditions as well as by 

the fact that ΔareA displayed reduced ammonia secretion in urea medium whereas ΔmepB 

behaved as the wt. A link between urease and NMR has been described in A. nidulans, who 

can use urea as a nitrogen source (Darlington et al., 1965; Scazzocchio and Darlington, 1968). 

The transcription of a specific urea transporter (UreA) was not inducible by urea, strongly 

repressed by ammonium and required AreA (Abreu et al., 2010). Further expression studies 

in the presence of absence of ammonium are needed to corroborate the hypothesis that F. 

oxysporum ureG is controlled by NMR. 

Interestingly, in the tomato pathogen Colletotrichum coccodes nitrogen metabolism 

associated with AreA is linked to alkalinization (Alkan et al., 2008). ΔareA mutants showed 

severely ammonia secretion and reduced decay development likely due to impaired 

utilization of external nonreduced nitrogen sources (Marzluf, 1997). In this fungal pathogen 

both the environmental pH and nitrogen availability are major regulators of ammonification 

(Alkan et al., 2008). 

It has been reported that AreA is not only controlled by nitrogen source, but also by carbon 

starvation. In A. nidulans AreA is rapidly inactivated in response to carbon starvation and 

genes dependent on AreA, such as those involved in nitrogen source utilization, are not 

induced under nitrogen starvation in the absence of a carbon source (Fraser et al., 2001). 

This event was described for the enzyme formamidase (formamide amidohydrolase, EC 

2.5.1.49), which mediates the highly specific hydrolysis of formamide to produce formate 

and ammonia (Hynes, 1975a). Like urea, formate is a single carbon molecule, and hence 
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formamide can only serve only as a nitrogen source and not as a carbon source for 

Aspergillus spp.  

Therefore we propose the following scenario in our assays. Urea is sensed as a poor nitrogen 

source leading to the expression of AreA-repressed NMR genes. On the other hand, lack of a 

carbon source would lead to AreA inactivation and lack of de-repression of NMR genes. 

Reduced expression in response to carbon starvation described for formamidase (Fraser et 

al., 2001; Hynes, 1972) has also been observed for other NMR enzymes such as nitrate 

reductase (Hynes, 1973). This has been suggested a specific effect on NMR genes, rather 

than a general effect of carbon starvation on gene expression, since carbon starvation leads 

to increased levels of acetamidase activity even in AreA mutants and relieves ammonia 

repression (Hynes, 1972; Hynes, 1975b). 

AreA is essential for transcriptional activation of NMR genes involved in the utilization of 

nitrogen sources, irrespective of the carbon source present. By contrast, in the case of 

compounds that can serve as both nitrogen and carbon sources, AreA is only required for 

gene expression under conditions of carbon catabolite repression (Arst, 1985; Arst and Cove, 

1973; Davis et al., 1993; Gonzalez et al., 1997). This control allows the organism to utilize a 

given compound as a nitrogen source in the presence of a preferred carbon source, but as a 

carbon source in the presence of a preferred nitrogen source. For example, the set of genes 

involved in proline utilization in A. nidulans is repressed only when both ammonium and 

glucose are present, but not in the presence of either glucose or ammonium alone (Arst, 

1980; Arst and Cove, 1973; Gonzalez et al., 1997). Thus, in the wt repression of the proline 

transporter PrnB requires the presence of both glucose and ammonia, whereas in the ΔareA 

mutant the presence of glucose is sufficient for repression. But it has been suggested that in 

this mutant ammonia has an additional repressive activity, likely due to a direct effect of 

ammonium on the transporter which is not mediated by AreA  (Valdez-Taubas et al., 2004).  

Because urea has a single carbon molecule, we assume that it can be used by F. oxysporum 

only as a nitrogen source. According to the above, AreA would be required for transcriptional 

activation of the urease system irrespective of the carbon source present. Therefore we have 

less activity in the ΔareA mutant in glucose lacking urea media. However this conclusion is in 
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contradiction with the subsequent ammonia secretion of ΔareA in glucose rich urea medium 

suggestive for a different regulation mechanism in F. oxysporum.  

Here we found a higher expression of ureG than of ure1 when F. oxysporum was grown on 

urea medium, suggesting that urease activity may be controlled by transcriptional levels of 

the accessory protein UreG. However, urease might be regulated differently in other 

organisms. In certain plant systems total urease activity is not influenced by urea or other 

external nitrogen sources, including rice (Cao et al., 2010), potato (Witte et al., 2002) and 

several other plants (Gerendas J., 1999a). In the bacterium K. aerogenes urease activity is 

expressed under conditions of low nitrogen availability and subject to regulation by the 

global nitrogen regulatory system (Magasanik, 1988). In S. pombe urease expression is 

neither subject to nitrogen repression nor to urea induction (Lubbers et al., 1996). In C. 

neoformans, however, urease activity is regulated by transcriptional activation of the 

structural urease gene in urea medium (Singh et al., 2013). C. neoformans presents an 

anomaly from the archetypical NMR mechanism because the AreA orthologue is also 

required for utilization of the preferred nitrogen source ammonium. The biological relevance 

of this mechanism in nitrogen metabolism in C. neoformans may be linked to the primary 

ecological niche of this fungus, nutrient-rich pigeon guano, where 70% of the nitrogen is 

present in form of uric acid (Staib et al., 1978; Staib et al., 1976), and nitrogen availability 

becomes scarce upon infection of humans. Beyond the differences in nitrogen availability 

encountered by C. neoformans during its infection cycle, there is additional evidence 

supporting a role of nitrogen metabolism in virulence. For example, the virulence factor 

urease is implicated in nitrogen-scavenging and invasion of the central nervous system (Cox 

et al., 2000; Olszewski et al., 2004; Shi et al., 2010).  

Our results support the following scenario: 

During growth on urea + glucose, the ammonia produced from the urease is secreted, but is 

taken up at a similar rate by the permease MepB (therefore no increase of the ammonia in 

the medium is detected). MepB is expressed, because urea is a non-preferred nitrogen 

source. It was previously shown that mepB expression on non-preferred nitrogen sources 

requires the bZIP factor MeaB and the GATA factor AreA (Lopez-Berges et al. 2010). Thus a 
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common phenotype of the Δmeab, ΔmepB and ΔareA mutants is the lack of MeaB protein 

during growth on non-preferred nitrogen sources including urea. Therefore, ammonia is 

produced and secreted, but not taken up by these mutants, and it accumulates rapidly in the 

medium increasing the pH. 

As soon as glucose becomes depleted in the wt no more ammonium is taken up by MepB, 

and therefore it accumulates extracellularly, increasing the pH. The mechanism for this could 

be either that a) MepB is inactivated or recycled from the plasma membrane in the absence 

of glucose by an unknown mechanism, and/or b) the inactivation of AreA in the absence of 

glucose prevents expression of the mepB gene, and therefore MepB becomes depleted from 

the membrane. 

 

 

3.6. Urease is not secreted in F. oxysporum 

 

Urease activity in F. oxysporum was determined using a pH-dependent indicator on solid 

medium or ammonia measurements in culture supernatants. Both methods measure 

extracellular conditions and therefore fail to indicate whether urease activity functions intra- 

or extracellularly. The absence of detectable transcripts of the putative urea transporter 

gene dur3 led us to hypothesize that urease activity could be extracellular, thereby 

transforming urea in ammonia outside of the cell.  

Although urease protein lacks a detectable signal peptide, different mechanisms have been 

described how urease can become located extracellularly. In H. pylori, urease enzymatic 

activity was detected on the cell surface (Dunn et al., 1997; Phadnis et al., 1996). The 

postulated mechanism of urease release is that cells undergo spontaneous autolysis, 

followed by adsorption of the enzymatically active enzyme to the surface of intact viable 

bacteria (Dunn and Phadnis, 1998). A similar mechanism has been suggested for the fungal 

pathogen C. posadasii. During the parasitic cycle the cells rupture and release their contents, 

including active urease which subsequently associates with the surface of intact endospores 

and the membranous outer wall fraction (Hung et al., 2000; Hung et al., 2002). In C. 
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neoformans, urease activity was identified in polysaccharide-containing vesicles (Rodrigues 

et al., 2008). These vesicles appeared to be associated with the Golgi apparatus-derived 

secretory pathway (Yoneda and Doering, 2006), and expected to fuse with the plasma 

membrane to release their contents to the extracellular space (Ponnambalam and Baldwin, 

2003). Interestingly, vesicle production was observed during macrophage infection, 

suggesting that C. neoformans uses vesicular secretion as a mechanism to deliver virulence 

factors such as urease to the extracellular space (Rodrigues et al., 2007). 

To test whether urease in F. oxysporum functions intra- and/or extracellularly, we compared 

urease activity in the culture supernatants to that in cell protein extracts.  Ammonia 

production from urea was detected exclusively in the cell extract. We were unable to detect 

any urease activity in the culture supernatans. This result strongly suggests that urease is not 

secreted by F. oxysporum under the tested conditions. However, we cannot exclude that 

under certain conditions urease might function extracellularly or membrane associated as 

prevoiusly reported for H. pylori (Dunn et al., 1997; Phadnis et al., 1996) and C. posadasii 

(Hung et al., 2000; Hung et al., 2002).  

One explanation for the lack of expression of the putative urea transporter Dur3 might be 

that F. oxysporum contains additional proteins that transport urea. Alternatively, urea 

uptake might not need an active transporter. A. thaliana, for example, has the high affinity 

secondary urea transporter Dur3 but also uses passive urea transport mediated by 

aquaporins, which conduct selected low molecular solutes through a channel along a 

concentration gradient (Witte, 2011). 

In conclusion we propose that 1) the urease enzyme in F. oxysporum is not secreted, 

although it cannot be excluded that urease might become membrane-associated or 

extracellular under certain conditions; 2) urea uptake and intracellular transport does not 

require transcriptional activation of the predicted urea transporter Dur3; 3) additional urea 

transporters or passive transport mechanisms may play a role in urea uptake of F. oxysporum. 
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3.7. UreG and urease contribute to virulence on tomato plants 

 

Functional studies on the role of urease in fungal virulence are largely restricted to the 

human pathogens C. neoformans (Cox et al., 2000) and C. immitis (Cole, 1997). Although 

genome annotation revealed the presence of urease in plant pathogenic fungi (Strope et al., 

2011) little is known about their activation and regulation, and to our knowledge the role of 

fungal urease during plant infection has not been studied before. 

Here we demonstrate that F. oxysporum mutants lacking ureG or ure1 display loss of urease 

activity and reduced virulence on tomato plants. Neither of the mutants was affected in 

cellophane penetration under standard assay conditions (Lopez-Berges et al., 2010; Prados 

Rosales and Di Pietro, 2008), suggesting that the role of urease may be associated to 

infection inside the host rather than to impaired ability of root penetration.  

Since urease activity is required for secretion of ammonia and medium alkalinization on urea 

we speculate that this process might be of relevance during plant infection. A role of 

ammonia secretion and pH modulation in virulence has been demonstrated for 

Colletotrichum spp. (Prusky et al., 2001). This phytopathogen uses local secretion of 

ammonia into the host tissue to increase the pH of the host tissue. This ammonification is 

regulated by the ambient acidic pH and nitrogen availability (Alkan et al., 2008). The resulting 

alkalinization modulates expression of pathogenicity genes and the activity of secreted cell 

wall-degrading enzymes like pectate lyase that contributes to virulence (Kramer-Haimovich 

et al., 2006; Yakoby et al., 2001). Thus, local alkalinization as a result of ammonia increase 

contributes to virulence by initiating virulence gene expression and at the same time 

provides the milieu necessary for optimal fungal growth (Prusky et al., 2001).  

Previous results in our group demonstrated that the ability of F. oxysporum to infect tomato 

plants is influenced by pH. Infected tomato plants watered at pH 5 developed significantly 

less mortality than plants watered at pH 7. Moreover, F. oxysporum can cause alkalinization 

in the presence of tomato roots (Segorbe et al., unpublished).  

pH is an important rhizosphere property. Plant roots can acidify the rhizosphere by up to two 

pH units compared to the surrounding soil through the release of protons, bicarbonate, 
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organic acids and CO2 (Atwell, 1999). The distinct rhizosphere pH has a major impact on the 

thin layer of intense biological activity in close proximity to the roots. In addition to proton 

fluxes, release of CO2 by respiring roots and microbes is likely to cause strong acidification of 

the rhizosphere, especially near root apices where respiration is most rapid (Atwell, 1999). 

Since F. oxysporum is a soil-borne pathogen initiating infection through the plant roots, it is 

important to note that urea is the most widely used nitrogen fertilizer in agriculture on a 

global scale (http://faostat.fao.org). It is therefore likely that in agricultural settings the 

presence of high concentrations of urea in the soil could provide the substrate for this 

urease-producing fungus to secrete ammonia and produce extracellular alkalinization. 

While the urea substrate is likely present at high concentrations in the soil, once the fungus 

invades the plant tissue it is confronted with a totally different nutritional environment. To 

examine the role of urease during plant infection of F. oxysporum, knowledge on the 

availability of the substrate urea in plants is essential. It is generally assumed that plants 

mainly take up ammonium and nitrate as nitrogen sources, which are generated by microbial 

conversion of urea in the soil. However, plants also possess an urea transporter and are able 

to hydrolyze urea and use it as a nitrogen source (Witte, 2011). In addition, plant cells can 

recycle nitrogen from urea that originates from arginase-catalyzed breakdown of arginine 

(Zonia et al., 1995). Inside the mitochondria, arginine is degraded by arginase into the 

ornithine and urea (Polacco, 1993b). Urea is then exported to the cytoplasm and hydrolyzed 

by urease. Additionally urea accumulates in source leaves of older plants and in germinating 

seeds (Zonia et al., 1995). Currently, arginine catabolism is the only confirmed source of urea 

in plants (Witte, 2011).  

Although in A. thaliana urea is principally metabolized in the roots, around 20% is 

translocated to the aerial parts before hydrolysis by cytoplasmic ureases (Merigout et al., 

2008). Large amounts of urea were found in shoots of rice plants grown on urea (Gerendas J., 

1998), suggesting a transport of urea molecules from the roots to the aerial parts of the 

plant. Thus, although the concentration of urea in plants is generally low (0.2- 0.9mM in 

Arabidopsis and rice (Cao et al., 2010; Merigout et al., 2008)) it could be used as a substrate 

by the fungal urease to generate ammonium that could be either used for metabolism or, in 
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the absence of a fermentable carbon source, secreted to cause alkalinization of the 

extracellular medium. 

In plants, assimilation of carbon and nitrogen sources and their subsequent distribution are 

closely linked. The plant can be viewed as a coordinated network of assimilatory regions 

(sources) and regions of resource utilization (sinks), and the vascular system provides a path 

for transport of assimilates from source to sink (Atwell, 1999). In vascular plants, it is the 

phloem that carries the transport sap, a water-based solution rich in sugars particularly  

sucrose and glucose, which is produced mainly in the leaves where the majority of 

photosynthesis takes place, to the non-photosynthetic parts of the plant such as the roots, or 

to storage structures such as tubers or bulbs (Lalonde et al., 2004). 

Polacco and Holland suggested that wounding or infection of the immature plant embryo 

can lead to release of arginase from affected mitochondria, resulting in massive arginine 

degradation and formation of large amounts of urea. Subsequently urea hydrolysis by urease 

and production of ammonia could have a toxic effect upon herbivores and pathogens, 

contributing to plant defense (Polacco, 1993b). It is conceivable that pathogens like F. 

oxysporum can avoid the toxic effect of urea via hydrolysis by urease, and use the produced 

ammonia to support infection through an increase of the environmental pH. A similar 

strategy was suggested for C. neoformans brain invasion (Shi et al., 2010) and C.  posadasii 

infection in mammals (Mirbod-Donovan et al., 2006) (see following section 3.8.).  

Our results support the scenario where urease and the accessory protein UreG play a role in 

pH modulation by ammonia secretion and the resulting ammonification contributes to 

virulence of F. oxysporum on tomato plants. 

 

 

3.8. ΔureG but not Δure1 contributes to virulence in animal infection models 

 

F. oxysporum mutants lacking the accessory protein UreG displayed significantly reduced 

virulence in two animal infection models, Galleria and immunodepressed mice. Urease was 

previously shown to act as a virulence factor in two human fungal pathogens, C. neoformans 
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(Cox et al., 2000) and C. immitis (Cole, 1997), as well as the two bacterial pathogens H. pylori 

(Eaton et al., 1991) and P. mirabilis (Jones et al., 1990). 

Urease in fungal pathogens may play a role in ensuring utilization of host urea as a nitrogen 

source. In humans, urea is present at millimolar concentration in the subcutaneous adipose 

tissue, central nervous system (CNS), epithelial lining fluid and blood serum (Ronne-

Engstrom et al., 2001; Tyvold et al., 2007; Waring et al., 2008; Zielinski et al., 1999). C. 

neoformans urease null mutants enter the mouse brain less effeciently and are less virulent 

than the wild type strain (Olszewski et al., 2004; Shi et al., 2010). It has been suggested that 

the ammonia resulting from the ezymatic degradation of urea causes damage to the 

endothelium, increases permeability and favours transmigration of fungal cells (Shi et al., 

2010). 

In this work we showed that urease function, measured as ammonia secretion, strongly 

depends on the availability of glucose. Reported concentrations of glucose in human tissue 

are estimated to be below 0.05 mM (e.g in the lung), compared to relatively high glucose 

levels in blood (6–8 mM) (de Prost and Saumon, 2007). It is feasible that the glucose-limited 

conditions in certain organs of infected mice lead to high urease activities and ammonia 

secretion, facilitating invasive fungal growth in the tissue. Considering that the availability of 

glucose varies in the different mouse organs, our hypothesis would be in line with the 

observation that F. oxysporum develops chlamydospores in some organs such as the lungs 

(Schafer et al., 2014). Chlamydospores are known to be produced in unfavorable conditions 

such as carbon starvation (Couteaudier and Alabouvette, 1990; Kono et al., 1995; Nelson, 

1981b; Schippers, 1981b; Stevenson and Becker, 1972).  

Besides glucose being limited in vivo, additional environmental factors may accentuate the 

need to metabolize sugars. Most fungi are obligate or facultative aerobes and generate most 

of their ATP via the respiratory pathway. However, oxygen levels within the host tissue are 

considerably lower than atmospheric levels (21%) and may thus not be sufficient to support 

a respiratory mode of growth. For example within the parenchyma of healthy lungs the 

oxygen level is around 14%, but can drop to 2–4% (Grahl and Cramer, 2010). Thus, fungal 
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pathogens in the host may experience severe hypoxic stress and require the use of a 

fermentative metabolism for sustained energy production (Fuller and Rhodes, 2012).  

In C. neoformans deletion of the urease (Δure1) or of any accessory protein, including the 

UreG orthologue or the nickel transporter, lead to a significant decrease in virulence. By 

contrast, in F. oxysporum only the ΔureG mutants displayed reduced virulence in the two 

animal infection models, while the Δure1 mutants displayed wt virulence levels. These 

differences could be explained by two hypotheses. First, F. oxysporum has two putative 

urease genes, ure1 and ure2 in its genome, but only a single ureG gene. Even though we 

were unable to detect ure2 transcripts under the conditions studied, ure1 expression was 

also very low in contrast to ureG which was signifcantly upregulated in conditions of glucose 

depletion and during Galleria infection. Low levels of Ure2 present in the fungus could 

account for the very low enzymatic activity detected by our urease assay in the Δure1 

mutant, and might be sufficient for maintaining virulence on animal hosts. The single UreG 

protein is likely to be required for the activation of both ureases. Likewise, in the plant G. 

max which also has two structural ureases (Meyer-Bothling and Polacco, 1987; Torisky et al., 

1994), mutation of the single gene encoding the UreG accessory protein eliminated both 

urease activities (Freyermuth et al., 2000) as well as background activity  thought to be of 

bacterial origin (Meyer-Bothling et al., 1987). 

Unexpectedly we observed a faster mortality in mice infected with the Δure1 mutant than in 

those infected with the wt strain. This phenotype is reminiscent of reports from H. pylori, 

where the virulence factor urease stimulates the production by macrophages of nitrite oxide, 

a potent inhibitor of H. pylori growth (Gobert et al., 2002b). It is possible that the absence of 

urease in F. oxysporum leads to a reduced production of nitrite oxide (NO) by mouse 

macrophages, thus causing an increase of fungal growth and higher mortality in the animals.  

An alternative hypothesis to explain the difference in virulence between the ΔureG and the 

Δure1 mutants is that the urease accessory protein UreG has additional functions besides 

urease activation which contributes to virulence on animal hosts. This might explain the high 

expression levels of ureG during Galleria infection. Although no urease-independent function 

of UreG has been reported so far, we briefly speculate on the possibility of such a function in 
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F. oxysporum UreG. The presence of a fully conserved P-loop motif in F. oxysporum UreG 

suggests a possible GTPase activity for this protein. Although studies in K. aerogenes and H. 

pylori suggested that UreG does not, by itself, hydrolyze GTP or ATP (Mehta et al., 2003; 

Moncrief and Hausinger, 1997), UreG from Bacillus pasteurii displayed a clear GTPase activity 

(Zambelli et al., 2005). If a similar GTPase activity should exist in the UreG protein in F. 

oxysporum, it might account for the urease-independent role of UreG in virulence.  

Another possibility is that F. oxysporum UreG might be involved in metal (Zn2+ and Ni2+) 

delivery to additional metal enzymes other than urease. In plants, Zn2+ acts as a functional, 

structural or regulatory cofactor for a large number of enzymes with diverse properties 

(Brown, 1993). Importantly, in G. max incubation of UreG with Zn2+ results in a change in 

tertiary structure of the protein backbone, suggesting that the metal ion assumes an 

important structural role in stabilizing protein conformation beyond its role in catalytic 

activity (Real-Guerra et al., 2012). UreG proteins belong to the class of intrinsically 

unstructured proteins that require the interaction with cofactors or other protein partners to 

perform their function (Zambelli et al., 2005), and are able to perform catalysis (Zambelli et 

al., 2012). UreG has been described as the only known natural member of the class of 

intrinsically disordered proteins lacking a rigid tertiary structure (Zambelli et al., 2012; 

Zambelli et al., 2007; Zambelli et al., 2005; Zambelli et al., 2009). Therfore It is possible that 

UreG acts as a scaffold protein or a hub for protein-cofactor interactions or protein-protein 

interaction networks, binding several different partners in regulatory processes (Zambelli et 

al., 2012). 

If F. oxysporum UreG can undergo different conformational changes, it might also have the 

ability to engage in distinct protein interactions to catalyze distinct reactions. In this context 

it is important to note that UreG belongs to a growing family of G-proteins regulated by 

homodimerization (Gasper et al., 2009). Two other well-characterized nickel-delivering 

NTPases, HypB and CooC1, share strikingly similar properties with UreG. HypB is a close 

relative of UreG, responsible for delivering nickel to hydrogenases. Similar to UreG, it 

exhibits a varying degree of dimerization in the presence of guanine nucleotides, but 

achieves complete dimerization in the presence of both GTP and nickel (Chan et al., 2012). 
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Important to mention is that in H. pylori the urease accessory protein UreG physically 

interacts with HypB (Stingl et al., 2008), a GTPase and accessory protein essential for Ni2+ 

incorporation into hydrogenase (Maier et al., 1993). Similar to H. pylori where the 

maturation events of these two nickel-containing proteins are interconnected (Olson et al., 

2001), in F. oxysporum UreG might interact with HypB. Interestingly, [NiFe] hydrogenase in H. 

pylori not only allows this organism to utilize hydrogen as an energy source, but is also 

required for bacterial colonization in a mouse model (Olson and Maier, 2002).  

We conclude that 1) UreG plays an important role during animal infection; 2) glucose 

limitation during infection might be important for urease function and contribute to 

virulence on animal hosts; 3) Ure2 might be responsible for low amounts of ammonia 

secretion and virulence on animal infection models of the Δure1 mutant; 4) the urease 

accessory protein UreG might have an additional role in virulence beyond the activation of 

the ureases Ure1 and Ure2, related to different cellular processes.  

 

 

3.9. UreG interact with the mucin transmembrane protein Msb2 in a YTH assay 

 

In this work the urease accessory protein UreG was identified as an protein interactor of the 

cytoplasmic tail of Msb2 in an YTH screen against a cDNA library of F. oxysporum (see 

previous chapter). The transmembrane protein Msb2 was previously shown to promote 

invasive growth and plant infection via surface-induced phosporylation of Fmk1 (Perez-

Nadales and Di Pietro, 2011). Although ΔureG mutants displayed slightly impaired invasive 

growth on apple fruits and reduced virulence on tomato plants, none of the other key Δmsb2 

phenotypes were detected in the ΔureG mutants. For example, we failed to detect impaired 

ability to penetrate cellophane membranes, reduced phosphorylation of the MAPK Fmk1 or 

reduced expression of the downstream pathway effector fpr1 in the ΔureG strains. This 

suggests that UreG does not function in activation of the Fmk1 pathway as Msb2 does. 

Moreover, the ΔureG strains also lacked another Fmk1-independent Δmsb2 phenotype 

namely increased sensitivity to CFW.  
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To our knowledge, a putative link between the mucin protein Msb2 and UreG or any 

component of the urease complex has not been reported before, raises questions on the 

significance of the putative physical interaction. In the following section it will be discussed 

how UreG and the urease complex might be connected to Msb2 or the Fmk1 MAPK signaling 

pathway. 

In S. cerevisiae, filamentous growth occurs in response to limiting nitrogen (Gimeno et al., 

1992) or glucose (Cullen and Sprague, 2000) and is regulated by multiple signaling pathways 

including the nutrient responsive TOR pathway (Rohde and Cardenas, 2004),Ras-cAMP-PKA 

(Gimeno et al., 1992), Snf1 (Cullen and Sprague, 2000) and the Kss1 MAPK pathway 

commonly referred to as the filamentous growth pathway (Liu et al., 1993; Roberts and Fink, 

1994), which is orthologous to the Fmk1 cascade in F. oxysporum (Rispail et al., 2009). 

Although the filamentous growth MAPK pathway is stimulated by nutrient limitation 

(Pitoniak et al., 2009), the plasma-membrane regulators Msb2 and Sho1 (Cullen et al., 2004; 

Cullen and Sprague, 2000; O'Rourke and Herskowitz, 1998) are not thought to sense 

nutrients directly. Rather, the MAPK pathway is sensitized to nutrient levels by regulatory 

inputs from Ras2-cAMP-PKA (Chavel et al., 2010; Mosch et al., 1996) and has been suggested 

to regulate proteolytic processing of Msb2 (Cullen et al., 2004) by starvation-dependent 

induction of genes that encode its cognate proteases (Vadaie et al., 2008). 

A recent study revealed a connection between the major glucose-sensing (AMPK) pathway 

and the filamentous growth MAPK cascade, whereby Mig1, Mig2 and the AMPK Snf1 are 

required for induction of the filamentous growth pathway in response to glucose limitation 

(Karunanithi and Cullen, 2012). This provides a direct link between glucose sensing (via 

AMPK) and cell differentiation (via MAPK), where Mig1 and Mig2 are direct associated with 

the cytosolic domain of Msb2 (Karunanithi and Cullen, 2012). In earlier studies, only the 

small GTPase Cdc42 was shown to associate in a Y2H analysis with the cytosolic domain of 

Msb2 (Cullen et al., 2004). 

In glucose starvation, Mig1 is exported from the nucleus in an Snf1-dependent manner (De 

Vit et al., 1997; DeVit and Johnston, 1999). Snf1 is required for filamentous growth (Cullen 

and Sprague, 2000) and it has been suggested that a Δsnf1 mutant is defective for induction 
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of filamentous growth in response to glucose depletion, because Mig1 does not exit the 

nucleus and is unable to regulate Msb2 at the cytosol–plasma membrane interface  

(Karunanithi and Cullen, 2012).  

The cAMP/PKA pathway in S. cerevisiae is involved in glucose sensing (Rolland et al., 2000; 

Santangelo, 2006). In glucose-starved cells of C. neoformans, this pathway is rapidly 

activated by addition of glucose via the G protein α subunit Gpa1 (Xue et al., 2006). 

Interestingly, it has been shown in this pathogen that PKA negatively regulates the level of 

extracellular urease (Choi et al., 2012).  

Similar to the MAPK Kss1 in S. cerevisiae, Fmk1 in F. oxysporum regulates multiple functions 

including virulence on plants, invasive growth and cellophane invasion in response to 

nutrient limitation (Di Pietro et al., 2001; Qi and Elion, 2005; Truckses et al., 2004). Recent 

results in our group have shown that Fmk1 phosphorylation is increased by alkaline pH 

(Segorbe et al. unpublished). Based on this information and on that from other fungal 

systems, we propose the following regulatory link between glucose sensing (via AMPK) and 

cell differentiation (via MAPK) in F. oxysporum: glucose starvation and regulatory inputs from 

Ras-cAMP-PKA may regulate activation of Msb2 by starvation-dependent mechanisms. 

Under glucose limitation, Snf1 phosphorylates and mediates export of the Mig1 orthologue 

CreA from the nucleus, leading to transcriptional derepression of glucose-repressed genes. If 

CreA directly associates with the cytosolic domain of Msb2, as described for S. cerevisiae 

Mig1, this association might lead to the release of UreG which could activate the urease 

complex, causing an increase in extracellular pH and triggering Fmk1 pathway activation. 

This model would be in line with reports showing that PKA activation caused by glucose 

addition negatively regulates urease activity (Choi et al., 2012).  

In an Δmsb2 mutant, UreG could not be sequestered and would be able to activate urease 

even in glucose limiting conditions. Under glucose limiting conditions the fungus could be 

able to overcome the need of carbon by a catabolism process of amino acids and/protein 

degradation. This amino acid recycling process would need in parallel the activation of 

urease and following detoxification of the cytoplasma from the excess ammonia would rise 

the environmental pH which is produced by this reaction.  
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Interestingly, when MM plates containing urea as a sole nitrogen and carbon source were 

buffered to low pH (4 or 5), only the Δfmk1 mutant, but not the wt, was able to produce a pH 

increase. Moreover, in liquid MM the Δfmk1 mutant secreted almost double the amount of 

ammonia than the wt strain. These findings suggest that the MAPK Fmk1 might be required 

for inhibition of urease function at low pH, shown by the lack of alkalinization in the wt at pH 

4 and 5. This putative negative control would be lacking in the Δfmk1 mutant, leading to a 

high secretion of ammonia even at low pH and causing medium alkalinization..  

We propose that, 1) Msb2 contributes to ureG expression; 2) glucose negatively regulates 

urease activity, putatively via Fmk1; 3) acidic conditions could lead to an Fmk1-dependent 

inhibition of urease function. 

 

 

3.10. F. oxysporum arginase contributes to arginine catabolism and ammonia secretion  

 

In the urea cycle, the enzyme arginase (Car1) hydrolyzes L-arginine to L-ornithine and urea 

(Kinne-Saffran and Kinne, 1999; Mendz and Hazell, 1996; Mendz et al., 1998). Car1 would be 

the only enzyme in F. oxysporum that generates urea in vivo, as described for plants (Witte, 

2011). Because urease production from arginine hydrolysis is blocked in the Δcar1 mutant, 

the only source of urea would be extracellular. Thus, an urease assay with the Δcar1 mutant 

would provide important information on the metabolic source of ammonia in urea-grown 

culture supernatants. We compared the concentration of ammonia secreted in urea medium 

by the Δcar1 mutant with that of the wt strain and found that it was reduced approximately 

35% (wt:  52.5 mM,  Δcar1: 34.2 mM). This suggests that the ammonia secreted by the wt 

originates in about 65% from extracellular urea and in 35% from intracellular arginine 

recycling. 

This suggests the following scenario. As mentioned above, F. oxysporum secretes less 

ammonia in the presence of glucose. It would make biological sense to channel all available 
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ammonia into production of amino acids while sufficient carbon (glucose) is available. 

However, once glucose is depleted carbon is obtained from amino acid recycling via arginase, 

among others, thereby generating an excess of ammonia that needs to be secreted for 

detoxification, triggering an increase in extracellular pH.  

 

 

3.11. F. oxysporum arginase contributes to virulence on tomato plants and animals 

 

Previous reports showed that a mutation of the arginine biosynthesis gene argininosuccinate 

lyase (arg1) causes reduced pathogenicity in F. oxysporum f.sp. melonis (Namiki et al., 2001). 

Here we show that F. oxysporum mutants lacking the arginine-degrading enzyme Car1 have 

attenuated virulence on tomato plants. One possible explanation for this result is that F. 

oxysporum uses plant arginine as an important source of nutrients. Arginine is the most 

important single metabolite for nitrogen storage in many plant seeds (Vanetten C.H, 1967) 

and high arginine concentrations are found in underground storage organs of several plants 

(Reviewed in (Witte, 2011). Indeed, the impaired growth of the Δcar1 mutant on arginine 

suggests that the use of plant arginine by this mutant is completely blocked during infection.   

Interestingly, we also found a significant reduction in virulence of Δcar1 mutants on G. 

mellonella and on immunodepressed mice. Additionally, the F. oxysporum car1 gene was 

highly expressed during G. mellonella infection and slightly reduced in the ΔureG mutant. 

This could be explained by a feedback mechanism, whereby the accumulation of urea which 

cannot be converted in the ΔureG mutant results in a down-regulation of the urea-producing 

enzyme arginase. This idea is in line with the reduced expression of the glutamine synthetase 

in the ΔureG mutant which could be caused by the lack of ammonia needed for amino acid 

synthesis. 

The finding that Car1 is essential for the use of extracellular arginine by F. oxysporum in vitro 

implies that this fungus is also able to metabolize arginine from the host. In the pathogen H. 

pylori it has been reported that arginase competes for host arginine with nitrite oxide 
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synthase (iNOS) produced by macrophages, and that this competition increases the outcome 

of infection (Chaturvedi et al., 2007; Gobert et al., 2001). The iNOS product nitric oxide (NO) 

is an important component of innate immunity in murine macrophages and acts as an 

effective antimicrobial agent against intracellular pathogens (Chakravortty and Hensel, 

2003). By channeling host arginine towards the arginase pathway, the fungus might thus 

limit the substrate for iNOS from macrophages, thereby reducing the amount of NO 

produced (Das et al., 2010). In addition, diverting host arginine into its own arginase pathway 

would support fungal growth and production of polyamines known to downregulate pro-

inflammatory cytokine release (Munder et al., 1999). In this regard, a study on C. albicans 

pathogenesis should be taken in account. In order to escape from macrophages after being 

ingested, Candida induces it own intracellular arginase and urea amidolyase to achive hyphal 

switching. In addition two exogenous arginase are secreted out, provide survival benefit by 

reducing nitrosative stress via quenching the iNOS substrate arginine (Ghosh et al., 2009).  

Different mechanisms are described how pathogenic arginases that are intracellular and not 

secreted can get access to the host arginine pool. Helicobacter possess its own arginine 

transport protein to uptake arginine present in the extracellular milieu (Yoshiyama and 

Nakazawa, 2000). Beside to their own endogenous arginine uptake systems Leishmania 

employs the unique ability to recruit host arginine transporters to their vacuoles (Shaked-

Mishan et al., 2006; Wanasen and Soong, 2008). Whereas Mycobacteria infection also 

upregulates host arginine transport it utilizes this host-derived amino acid for its own benefit 

instead of synthesizing its own (Talaue et al., 2006). Taken together pathogen-encoded 

arginases can modulate iNOS activity irrespective of their spatial localization by modulating 

the cellular distribution of arginine. 

Loss of arginase in F. oxysporum might thus leave more arginine available for host iNOS to 

produce NO radicals, resulting in more efficient defense (Lahiri et al., 2010). Different 

pathogens have been suggested to use this strategy to survive in the host, including 

Salmonella typhimurium (Lahiri et al., 2008), Mycobacterium tuberculosis (El Kasmi et al., 

2008), Leishmania mexicana (Gaur et al., 2007) or Schistosoma mansoni (Thompson et al., 

2008) .  
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We conclude that 1) F. oxysporum arginase functions in utilization of extracellular arginine 

and in intracellular arginine breakdown; 2) under the conditions studied, around 35% of the 

secreted ammonia might ultimately derive from intracellular amino acid catabolism; 3) 

reduced virulence of Δcar1 mutants in plant and animal models might be due to different 

causes, including inability to use host arginine as a nutrient source or to prevent production 

of NO radicals produced by host macrophages. 
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Conclusions 

 

Chapter 1 

1.  The invasive fusariosis murine model of F. oxysporum leads to symptoms similar to those 

     reported in humans 

2.  F. oxysporum displays distinct invasion strategies in different organs of the host 

3.  Persistence of F. oxysporum in the immunocompetent host can lead to subsequent 

     systemic infection upon immunosuppressive treatment   

 

Chapter 2 

1.  F. oxysporum germlings undergo rapid recognition and uptake by murine macrophages 

2.  F. oxysporum germlings continue hyphal growth after phagocytosis, leading to escape   

     and associated macrophage lysis 

3.  The rate of macrophage killing increases with the number of internalized F. oxysporum  

     cells 

4. Phagocytosed F. oxysporum inhibits completion of macrophage mitosis, resulting in large  

     multinucleated daughter cells  

 

Chapter 3 

1. The Y2H sceen identified FOXG_13832, a putative urease accessory protein G as an 

interactor of the cytoplasmic tail of Msb2 

 

Chapter 4 

1.  F. oxysporum urease accessory protein G is essential for urease function 

2.  UreG and Ure1 contribute to medium alkalinization via ammonia secretion 

3.  Extracellular alkalinization by ammonia secretion is triggered by glucose deprivation and 

     regulated by carboncatabolite repression 

4.  Glucose repression of urease-dependent medium alkalinization is linked to nitrogen 

     metabolism 
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5.  UreG and Ure1 contribute to virulence on tomato plants 

6.  UreG, but not Ure1 contributes to virulence in animal infection models 

7.  F. oxysporum arginase is required for arginine catabolism and contributes to ammonia  

     secretion 

8.  F. oxysporum Car1 contributes to virulence on tomato plants and in animal infection  

     models 
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Supplementary figures 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure S1. ΔureG shows no aberrant growth on different nitrogen source. 2 x 10

4
 microconidia of the 

indicated strains were spot-inoculated on complete medium (PDA) or on MM containing the indicated 
nitrogen source. Plates were incubated for three days at 28°C. 
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Figure S2. Δfmk1 alkalizes acidic urea medium (buffered at pH5). Microconidia of the indicated 
strains were inoculated on minimal medium (MM) containing 50 mM urea as the sole nitrogen and 
carbon source and the pH indicator Bromocresol purple. Urease activity was determined indirectly 
through the alkalinization of the medium represented by a colour change of the pH indicator (yellow 
<5.2; purple >6.8). Plates were incubated for 3 days at 28°C. Data shown are from one representative 
experiment. Experiments were performed three times with three technical repeats each, providing 
similar results.  
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Figure S3. Gene complementation strains of ΔureG restores the ammonia secretion and medium 
alkalinization. 2 x 10

8
 microconidia of the indicated strains were germinated for 14 h in 100 ml PDB 

and transferred to 50 ml liquid MM media containing 50 mM urea plus 3% glucose. Samples of the 
culture supernatant were taken at the indicated time points to measure pH (A), concentration of 
ammonia (B) or of glucose (A,B). Mean values and standard errors were calculated from 3 biological 
repeats
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Figure S4 . Gene complementation strains of ΔmepB, ΔmeaB and ΔareA restore the wt phenotype 
showing carbon catabolite repression of ammonium secretion. 2 x 10

8
 microconidia of the indicated 

strains were germinated for 14 h in 100 ml PDB and transferred to 50 ml liquid MM media containing 
either 50 mM urea, urea plus 3% glucose, 1% casaminoacids, or casamoinoacids plus 3% glucose. 
Samples of the culture supernatant were taken at the indicated time points to measure pH (A,C,E), or 
concentration of ammonia (B,D,F) or glucose (A-F). Mean values and standard errors were calculated 
from 3 biological repeats.  
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