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	 Soil erosion and land degradation are two of the major 
environmental problems in Spain, which affect the South and South-
East of the peninsula. Therefore, it is essential to fully understand soil 
degradation processes so that solutions which will decrease -and ideally 
eliminate- that degradation can be provided. The general objective 
of this doctoral thesis is to improve and to contribute to alternative 
strategies to enhance soil and water conservation practices. The initial 
hypothesis is that it is possible to characterize and model runoff and 
sediment fluxes associated to small crop watersheds from experimental 
studies at different scales (one-off measurements scale, runoff plots in 
hillslopes scale and watershed scale). For this purpose, the doctoral thesis 
is divided into two parts: the first one corresponds to the experimental 
work carried out in the field and laboratory and, a second part, addresses 
the calibration of a physical distributed model which would serve as a 
tool to synthesize and understand the decisive processes involved in the 
water and sediment fluxes within a watershed.

	 In the first experimental part, two methodologies are presented 
for on the one hand, locate runon-runoff areas in olive crops and, on the 
other hand, understand the sediment transport and storage processes at 
the hillslope scale. For the first assumption, soil water repellency measured 
in four different olive crops with different overall soil management 
(abandoned, conventional tillage, herbicide and cover crop) has been 
gathering. The methodology used was the Water Drop Penetration Time 
test (WDPT). Regarding the study of the sediment transport and storage, 
three runoff plots were established in a hillslope in which bare soil and 
vegetation strips were combined alternately. Bare soil was tagged with 
magnetic iron as a tracer. At the watershed level, hydrological data 
(precipitation, runoff, peak flow, sediment loads) measured in two olive 
crop watershed was used to calibrate a physical distributed model. The 
model chosen was SEDD as it allows, on the one hand, the discretization 
of a watershed into morphological units, it predicts sediment delivery 
ratio at both geomorphological unit and watershed scale, it is based on 
the RUSLE and it also easy to couple within a Geographical Information 
System. 
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       I am the rain 

Held in disdain 

Lotions and potions just add to my fame 

The rime that in Spain 

Fall on the plain 

The truth is I'm ruthless 

I can't be contained. 

I'm the rain 

My friend the wind 

To breath he is twinned 

Blow high or low high 

Tornadoes to spin 

My mother the cloud 

In widow's black shroud 

Gives birth to the earth 

Before fields can be ploughed 

Up in the sky, we've demand to supply 

I am necessity, base of the recipe 

I'm the rain 

My cousin the snow 

Lays blankets below 

States that her flakes are 

The threads to the soul 

My rival the sun 

Who ripens the plum 

Is feared and revered 

He gives sight to the gun 

Up in the sky, we've demand to supply 

I am necessity, base of the recipe 

Up in the sky, we've demand to supply 

I am necessity, base of the recipe 

I am the rain, am the rain 

I am the rain, who's held in disdain 

The truth is I'm ruthless, I can't be contained. 

         Peter Doherty. I am the rain. Grace/Wastelands, 2009 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

   Sencillo e intrincado, 

con su tesoro a cuestas 

el olivar cavila. 

En él no son precisos 

ni rosas ni claveles: 

sólo estar, siglo a siglo, 

serenamente en pie. 

 

Cuanto miramos desde arriba es nuestro, 

porque nos mira y somos suyos. 

Cae el cielo, y tú me amas, 

y el olivar nos ama a ti y a mí. 

 

La tormenta muy pronto 

restallará sus látigos. ¿Qué importa?: 

ya no sueño dormido ni despierto, 

ya te tengo entre olivos. 

Mi patria sois; me extinguiré en vosotros 

para que empiece todo una vez más. 

Antonio Gala, Olivares de Mancha Real 
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SUMMARY 
 

Soil erosion and land degradation are two of the major environmental problems in 

Spain, which especially affect the South and South-East of the country. According to statistics 

provided by the Spanish Ministry of Agriculture, Food and Environment (MAGRAMA, 2015), 

22.63 % of this soil is affected by ‘high’ erosive problems corresponding to arid or semi-arid 

environments. In most of the cases, the erosion processes are recurring, intermittent, ongoing 

and irreversible. Soil loss must be seen as a holistic process affecting not only to its biotic 

activity but also to the role of soil in the carbon regulation and emission to the atmosphere, its 

food production capacity and in general, its capacity to sustain society. Therefore, it is essential 

to fully understand soil degradation processes so that solutions which will decrease and ideally 

eliminate that degradation can be provided.  

The Mediterranean region is characterized by sparse vegetation and shallow soils, steep 

topography and large variations in precipitation levels and storms with high erosive power. This 

makes erosion an endemic characteristic of this region. The main driver of erosion in these 

conditions is water, which adopts geomorphological forms such as splash, rills or gullies. 

Olive orchards located in mountainous areas under rainfed conditions in Andalucia (South 

Spain) have led to soil loss mainly caused by the interactions of their environmental features 

and unsuitable management practices. A better understanding of the distributed processes in the 

generation and transport of runoff and sediment at different spatial scales is, however, needed to 

provide solutions adapted to the farm attributes which minimizing effort and cost. With this in 

mind, the diagnosis of the main sediment sources and processes taking place on different scales 

is essential to optimize the temporal and spatial application of different soil conservation 

techniques, such as for instance those  defined by the NRCS (Natural Resources Conservation 

Service) like conservation tillage, cover crops or the use of buffer strips could be implemented 

in order to soil preservation.  

The aims of this work were to characterize and to model the dominant erosion processes that 

take place in olive orchard watersheds as well as design different soil management strategies to 

protect the soil. Three different scales of erosion processes have been utilized: [i] one-off 

measures in which soil water repellency was measured, [ii] hillslope runoff plot were utilized to 

determine the vegetation sediment trapping efficiency by buffer strips was determined and [iii] 

watershed in which a sediment delivery distributed model was calibrated in two different olive 

crop watersheds so the areas prone to erosion could be identified.  

At the one-off measure scale, soil water repellency (SWR) was characterized from field-based 

measurements. According to the SWR studies, it is a soil property that might have a significant 

impact in soil erosion as SWR delays water infiltration, which translates into higher values of 

runoff and flow concentration and at the same time, higher potential erosion. Thus, in this 

chapter, the occurrence, persistence and spatio-temporal variation of SWR is evaluated as well 

as the influence of different tillage systems and soil properties on the appearance of SWR. To 

achieve that, four different olive orchards with different soil managements (abandoned, 

herbicide use, conventional tillage and with cover crop) were selected. The Water Drop 

Penetration Time test (WDPT) was used in situ to determine SWR persistence through the 
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hydrological year of 2011-2012. The SWR was measured along a transect from under the tree 

canopy to the lane at a 10 cm spacing. Simultaneously, soil samples of the top 5 cm of the soil 

were collected to determine gravimetric soil moisture and organic matter content. The results 

show that a high spatial variability and patchiness of the SWR was observed for the four studied 

olive crop. Nevertheless, strong water repellent mean values were determined in autumn for the 

cover crop olive site. During winter, soil water repellency was not present for the conventional 

tillage and the cover crop site. Despite this, the sites in which herbicide was used as well as the 

abandoned one, presented SWR under its canopy projection. In summer, no SWR was found in 

the conventional tillage crop. The cover crop site presented SWR in both lane and under the tree 

canopy (also with high organic matter content values) whereas the herbicide and abandoned 

ones only under the tree canopy. It also showed a radial pattern indicating that high SWR 

occurred at the edge of the canopy projection in autumn and winter, being inexistent in winter. 

Although the combination of soil moisture and organic matter could not globally explain the 

differences of soil water repellency in the olive groves, a clear correlation between organic 

matter content and the appearance of SWR was found for summer and autumn.  

The second measuring scale was the runoff plot in which the trapping efficiency of vegetated 

strips was measured. Different studies have demonstrated that the use of cover crops reduces 

sediment and agrochemical loads. Despite this, there is still a large uncertainty about its 

effectiveness in reducing sediment and agrochemical contribution to streams due to the limited 

number of available studies in the Mediterranean environment, and the large variability 

observed under field conditions. In this chapter, combined use of natural and simulated rainfall 

and magnetic iron oxide was used to understand the performance of vegetation strips on runoff 

and soil losses at plot scale. Then, the effectiveness degree of vegetation strips in buffering 

sediment from bare soil areas under different conditions compared to a control situation with no 

strips was evaluated. Three runoff plots were established in a 20 % Fluvisol hillslope. Each plot 

was divided into three vegetated strips with Lolium multiflorum L and three bare soil strips 

tagged with magnetic iron oxide as a sediment tracer. To measure the vegetation trapping 

efficiency of the strips, six rainfall simulations under four different soil managements 

combining the use of a magnetic iron oxide as a sediment tracer were performed. The results 

demonstrate that, by combining magnetic iron oxides as tracers and rainfall simulations, it is 

possible to quantify the amount of sediment trapped by the vegetation strips. In the same way, 

the combination allowed to identify sediment distribution patterns for different soil tillage 

managements. The magnetic tracer indicated a selective transport of clays in the sediment, thus 

indicating the preferential binding to clays by agrochemicals. 

At the watershed scale, a sediment delivery distributed model (SEDD, Ferro and Porto, 2000) 

was calibrated in two olive crop watersheds with different soil management and in two different 

locations. One watershed (6.7 ha) is located in a mountainous environment close to the 

Grazalema mountain system and the other one (8 ha), in a rolling landscape near the 

Guadalquivir river in Cordoba. One of the main tasks when performing soil conservation 

measures is the determination of the main sediment sources in crop watersheds which contribute 

most to soil degradation. For this purpose, an evaluation of the temporal and spatial patterns of 

Sediment Delivery Ratios (SDRs) is needed to provide guidelines of conservation measures 

optimising effort and investment. SEDD model was chosen because previous studies in small 

catchments showed a good performance. Different calibration strategies based on the sensitivity 

analysis of the RUSLE-factors erosivity (R) and management (C) as well as the 

geomorphological parameter β which represents the weight of travel time of different areas, 
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were explored. The results show that, by using SEDD model, the areas (known as 

geomorphological units) prone to erosion can be identified. The model calibration allowed 

proposing a new calibration technique based on the analysis of the regions of the exponential 

function determining SDR when high soil losses events are recorded in the dataset. This new 

calibration allows the implementation of different values of the beta value so SDR can be 

calculated with more accuracy.  
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RESUMEN 
 

La erosión y degradación del suelo son dos de los mayores problemas ambientales en 

España, los cuales afectan principalmente el Este y Sudeste Peninsular. De hecho, el 22.63 % de 

este suelo se ve afectado por problemas relacionados con altas erosividades de acuerdo con las 

estadísticas del Ministerio de Agricultura, Alimentación y Medio Ambiente (MAGRAMA, 

2015), y que se corresponde con ambientes áridos o semiáridos. En la mayoría de los casos, los 

procesos erosivos son recurrentes, intermitentes, continuos e irreversibles. Es por esto por lo 

que la pérdida de suelo debe ser vista como un proceso holístico que afecta no sólo a la 

actividad biótica sino también al papel del suelo como regulador de las emisiones de CO2 a la 

atmósfera, como capacidad productiva de alimentos y, en general, su capacidad como 

sostenedor de la sociedad. De esta forma, es esencial el profundo entendimiento de los procesos 

de degradación del suelo para que se puedan aportar soluciones que harán que esa degradación 

pueda verse reducida sino eliminada.  

La región Mediterránea se caracteriza por tener una alta variabilidad en la precipitación, así 

como eventos con un alto poder erosivo, escasa vegetación, topografías accidentadas y suelos 

poco profundos que hace de la erosión una característica endémica de la región. El vehículo 

para el transporte de sedimento en este ambiente Mediterráneo es el agua, siendo la lluvia y la 

escorrentía las fuerzas motoras para la entrega de sedimentos.  

Los olivares situados en áreas montañosas y en condiciones de riego en Andalucía tienen el 

agravante de la pérdida de suelo causada por la interacción de operaciones inapropiadas de 

manejo de suelo, así como la no existencia de prácticas de conservación de suelo. Sin embargo, 

y con la finalidad de proveer soluciones adaptadas a los atributos de las cuencas que minimicen 

esfuerzo y tiempo, es necesario un mayor entendimiento de los procesos distribuidos en la 

generación y transporte de escorrentía y sedimento a diferentes escalas espaciales. Con esto en 

mente, se deduce la importancia del diagnóstico de las principales fuentes de sedimento y los 

procesos que se dan a diferentes escalas con el fin de optimizar las aplicaciones temporales y 

espaciales de las diferentes técnicas de conservación, como por ejemplo aquellas definidas por 

el NRCS (Natural Resources Conservation Service) como el manejo de conservación, el uso de 

cubiertas o bandas de vegetación.  

La hipótesis inicial de este trabajo es que es posible identificar los procesos hidrológicos y/o 

erosivos dominantes a distintas escalas espaciales utilizando medidas y modelos para un 

diagnóstico apropiado del problema que proporcione soluciones de manejo que minimicen el 

esfuerzo y la inversión. Para ello se determinaron tres escalas de procesos de erosión en este 

trabajo: [i] medidas puntuales en las que se ha medido hidrofobicidad, [ii] parcelas de 

escorrentía a escala de ladera en las que se determinó la eficiencia de atrape por bandas de 

cubierta, [iii] cuencas olivareras en las que se calibró un modelo distribuido de sedimento en 

dos cuencas olivareras diferentes en las que se delimitaron las áreas más susceptibles a la 

erosión.  

A escala de medida puntual, la hidrofobicidad (SWR) se caracterizó a partir de medidas en 

campo. De acuerdo con los estudios, la SWR es una propiedad de los suelos que puede tener un 

impacto significativo en la erosión del suelo dado que retrasa el tiempo de infiltración, 
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traduciéndose en altos valores de escorrentía y concentración de flujo y, a su vez, en una mayor 

erosión potencial. De esta forma, en este capítulo, la ocurrencia, persistencia y variación 

espacio-temporal de la SWR se valúan, así como la influencia de los diferentes sistemas de 

manejo y propiedades del suelo en la aparición de la SWR. Para conseguir esto, se 

seleccionaron cuatro olivares con cuatro manejos de suelo distinto (abandonado, uso de 

herbicidas, laboreo convencional y uso de cubierta). El Water Drop Penetration Time test 

(WDPT) se usó in situ para determinar la persistencia de la SWR a lo largo del año hidrológico 

2011-2012. La SWR se midió a lo largo de un transecto desde el área debajo de la copa hasta la 

calle a un intervalo de 10 cm. Simultáneamente a las medidas de SWR, se recogieron muestras 

de suelo de los primeros 5 cm para determinar humedad gravimétrica y contenido de materia 

orgánica. Los resultados del capítulo presentan una alta variabilidad espacial de la SWR en los 

cuatro olivares estudiados. Sin embargo, valores medios de hidrofobicidad elevados se midieron 

en otoño en el olivar con cubierta vegetal. Durante el invierno, la hidrofobicidad no estuvo 

presente en el olivar con laboreo convencional ni en el olivar con cubierta. A pesar de esto, el 

olivar en el que hubo uso de herbicida así como el abandonado, presentaron SWR debajo de la 

copa. En verano no se encontró SWR en el olivar con laboreo convencional. El olivar con 

cubierta vegetal presentó SWR tanto en la calle como en el área debajo de la copa (coincidiendo 

con valores elevados de materia orgánica), mientras que el olivar con uso de herbicida y el 

abandonado sólo presentaron SWR en el área debajo de la copa. En este último además se 

aprecia una distribución radial de la SWR indicando que ocurría en el borde del área debajo de 

la copa en otoño e invierno, desapareciendo en invierno. A pesar de que la combinación de 

humedad y contenido de materia orgánica en el suelo no explicaron en totalidad las diferencias 

de SWR en los olivares estudiados, se encontró una correlación clara entre el contenido de 

materia orgánica y la aparición de SWR en verano y otoño.  

La segunda escala de medida es la parcela de escorrentía en la que evaluó la eficiencia de atrape 

de las bandas de cubierta. Diversos estudios han demostrado que, el uso de las bandas de 

cubierta reduce la carga de sedimento y agroquímicos al medio ambiente. A pesar de esto, 

todavía existe una gran incertidumbre acerca de su grado de efectividad a la hora de reducir la 

contribución de sedimentos y carga agroquímica a cursos de agua debido, principalmente, al 

número limitado de estudios en ambiente Mediterráneo así como a la alta variabilidad observada 

en condiciones de campo. En este capítulo se combinan dos técnicas: lluvia natural y simulada, 

con trazadores de óxido de magnético con el fin de entender el rendimiento de las bandas de 

cubierta en la reducción de la escorrentía y atrape de sedimentos a escala de parcela bajo 

distintos manejos de suelo. Se establecieron tres parcelas de escorrentía en una ladera de 

Fluvisol con 20 % de pendiente. Cada parcela se dividió en tres bandas de cubierta (Lolium 

multiflorum L) y tres bandas de suelo desnudo marcado con óxido magnético como trazador de 

sedimento. Para medir la eficiencia de atrape por parte de las bandas, se llevaron a cabo seis 

simulaciones de lluvia con cuatro manejos de suelo distinto en los que se combinó el uso de 

óxido magnético como trazador. Los resultados muestran que, mediante el uso combinado de 

óxidos magnéticos como trazadores de sedimento y las simulaciones de lluvia, es posible 

cuantificar la cantidad de sedimento atrapado por las bandas de cubierta. Esta combinación 

permitió identificar patrones de distribución de sedimento bajo distintos manejos de suelo. El 

trazador magnético indicó selectividad en el transporte de arcillas en el sedimento, indicando de 

esta forma la preferencia de adhesión de los agroquímicos por las arcillas.  

A escala de cuenca, se calibró el modelo distribuido de entrega de sedimentos (SEDD, Ferro y 

Porto, 2000) en dos cuencas olivareras con diferentes manejos de suelo y situadas en dos 
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localidades distintas. Una de las cuencas (6.7 ha) está situada en ambiente montañoso cerca de 

la sierra de Grazalema, la otra cuenca (8 ha) se localiza en el paisaje ondulado de la campiña del 

río Guadalquivir a su paso por Córdoba. Una de las tareas más importantes a la hora de poner en 

práctica medidas de conservación de suelo, es la determinación de las principales fuentes y 

sumideros en las cuencas con cultivos. Para este propósito es necesaria la evaluación temporal y 

espacial de los coeficientes de entrega de sedimento. Una vez evaluados a estas escalas, es más 

sencillo proveer manuales con medidas de conservación, optimizando de esta forma esfuerzo e 

inversión. Se eligió el modelo SEDD porque estudios previos en pequeñas cuencas demostraron 

su buen rendimiento. Se exploraron diferentes estrategias de calibración basadas, por una parte, 

en el análisis de sensibilidad de los factores de erosividad de RUSLE (R) y manejo (C), así 

como en el parámetro geomorfológico β el cual representa los pesos de los tiempos de viaje de 

las diferentes unidades geomorfológicas en las que se dividen las cuencas. Los resultados del 

capítulo muestran que, mediante el uso del modelo SEDD, las áreas más susceptibles a la 

erosión pueden ser determinadas e identificadas. La calibración del mismo permitió proponer 

una nueva estrategia de calibración, basada en el análisis de las regiones de la función 

exponencial que determina la entrega de sedimentos cuando en el conjunto de datos se dan 

eventos con altas tasas de pérdida de suelo. Esta nueva calibración permite la implementación 

de diferentes valores de β para, de esta forma, calcular los valores del coeficiente de entrega de 

sedimentos con más exactitud.  
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Introduction 
 

 

 

‘All civilization is basically dependent upon natural resources. All natural resources…are soil 

or derivatives of soil. Farms, ranges, crops and livestock, forests, irrigation water, and even 

water power resolve themselves into questions of soil. Soil is therefore the basic natural 

resource’.  

Aldo Leopold (1887-1948) 
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Erosion is an inclusive term for the detachment and removal of soil and rock by the 

action of running water, wind, waves, flowing ice and mass movement (Selby, 2005). In terms 

of Geomorphology, it is a normal aspect of landscape development but it is only the dominant 

process of denudation in some parts of the world.  

According to the Pan European Soil Erosion Risk Assessment –PESERA–(2003), soil erosion 

by water is one of the most widespread forms of soil degradation in Europe, affecting an 

estimated 105 million ha, or 17 % of Europe’s total land area. The Mediterranean region 

(defined here as those countries located in the South of Europe) is subjected to long dry periods 

followed by intense rainfall. Those two characteristics plus its topography and soil generalities 

(usually low in humus, biological activity, N, P, slow formation and thin) and unsuitable 

management, makes it a region prone to erosion.  

Spain, with a total surface of 504.645 km2 presents the largest area with high erosion risk 

PESERA- (2003) mainly concentrated in the South and West (which is translated in the 44 % of 

the territory). The increase of erosion in the region has its origin not only in the rain and its 

intensities but in the deforestation, agriculture and cattle breeding that has been happening since 

Neolithic times (García-Ruiz, 2010).  

Among all crops grown in Spain, olive is the most important one. Furthermore, at the 

Mediterranean basin scale, olive is the most representative crop with a total of 8.5 million ha 

(FAOSTAT, 2012). At the national scale, olive crop represents 2.5 million ha of which 1.5 M ha 

is given in Andalucía (Southern Spain) occupying 17 % of the Andalusian surface. As Gómez et 

al., (2005) pointed out in a review on water erosion in olive orchards in Andalusia, the broad 

extension of this crop makes any environmental question happening in the system a serious 

environmental issue. One of the main characteristics which determines this crop in Andalucía is 

that more than half of the cultivated hectares (999.390 ha) are located in mountainous areas and 

under rainfed conditions (INE, 2009). These olive crops in steep areas have the aggravating 

circumstance of soil loss as an inherent risk to the system. In a study carried out by 

Vanwalleghem et al., (2011) the results showed that olive crops located in a mountainous areas 

in Andalucía (Southern Spain) have lost in average between 29 and 47 t ha-1 yr-1 since the 

establishment of this crop in the late XVIII early XIX centuries. Currently this soil loss is 

mainly caused by erosion resulting from the use of herbicides to keep bare soil and intensive 

soil management.  

Soil loss experimental data were mainly carried out on runoff plot experiments. In most of 

studies, the objective was to compare the effects of different management systems such as no 

tillage (Gómez et al., 1999, 2004, 2009; Francia et al., 2000), cover crop strips between tree 

rows (Gómez et al., 2003,2011; Arroyo et a., 2004; Milgroom et al., 2005; Hernández et al., 

2005), conventional tillage (Gómez et al., 2009, 2011; Palese et al., 2011; Lozano et al., 2014) 

or herbicide use (Franco and Calatrava, 2012). Despite the amount of runoff plot scale studies 

(almost all using the USLE or its revised version for computing soil losses), a bias towards high 

soil losses is apparent as none of them took into account the deposition within the watershed 

(Gómez et al., 2005). A better understanding of the distributed processes in the generation and 

transport of runoff and sediment at different spatial scales is needed to plan economical and 

efficient control measures of erosion. Up to 2009, when Taguas et al., 2009 presented their work 

on watershed scale soil loss modeling validated against experimental data, little research was 

carried out to study runoff responses and soil loss at the small catchment or catchment scale.  
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One of the biggest challenges to which conservation agriculture faces nowadays is the 

integrated study at different scales of the erosive processes and sediment transport. The 

following extract from the USDA report from 1928 represents the start of the modern Soil 

Conservation publications. Soil erosion and soil-related environmental problems in the US 

agriculture began to have interest to farmers and thus, to researchers and policy makers 

(Renschler and Harbor, 2000) in the late XIX century. It was in these set of publications in 

which the ‘wasting areas’ (described as areas with sheet erosion) were geomorphological 

described. 

…'Removal of forest growth, grass and shrubs and breaking the ground surface by cultivation, 

the trampling of livestock, etc. accentuate erosion to a degree far beyond that taking place 

under average natural conditions, especially on those soils that are peculiarly susceptible to 

rainwash’.  

- H.H. Bennet and W.R. Chapline (1928), Soil erosion: a national menace. 

During the 60’s and 70’s watershed modelling studies was generalized. For instance, the work 

of Onstad and Foster (1975) on erosion modelling on Treynor watershed marked a breaking 

point in erosion studies. During the 90’s and up to now the soil deposition studies at this scale 

was generalized due to new sediment dating techniques at watershed scale (mainly 

radionuclides in a 18.5 % as Guzmán, 2011 pointed out) such as 137Cs (Martz and de Jong., 

1991), or 210Pb (Walling et al., 1999) and at hillslope scale (Wallbrink and Murray, 1993). In 

this way, erosion generating processes (detachment and transport) were being attempted at 

different scales.  

 

This PhD thesis is focused on throwing light to the study of different transport processes and 

sediment generation in olive orchards at different spatial scales. They have been chosen 

because; despite decades of research they are still relatively poorly understood. Improvement on 

the understanding of these processes might help to the development of better soil conservation 

strategies in olive growing areas, as well as providing a fruitful environment for PhD training.  

This training purpose was reinforced by the fact that it was developed within the frame of a 

research project 'Caracterización y efecto sobre la exportación total, de las fuentes y sumideros 

de escorrentía, sedimento y carbono en cuencas agrícolas en ambientes mediterráneos'. AGL 

2009 (12936-C03-01). The three topics have been: [1] soil water repellency as local phenomena 

at point scale, [2] sediment trapping by cover crop strips at runoff plot scale and [3] modeling of 

water erosion at small watershed scale. 

 

1.1. One-off measure scale 

Within the hydrology field and as an example of one-off measure, one of the aspects which 

became of interest from 1960-1969 was soil water repellency. Soil water repellency is defined 

by some authors as a soil property that might appear in most soil types which reduces its 

infiltration capacity and it might have important hydrological and geomorphological 

consequences (Jordán et al., 2010). During this decade and as pointed out by the water 

repellency overview done by De Bano (2000) a wide range of papers concerning soil water 

repellency started to surge (most of them published in the first international conference at 

Riverside, CA).  
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At the same time, Letey et al., (1962) developed the contact angle methodology in order to 

characterize soil water repellency. It was during the 70’s when the interest of soil water 

repellency attracted worldwide scientists and research was conducted on fire-induced water 

repellency (De Bano et al., 1976), water harvesting (Cooley et al., 1975), water repellency 

characterization (Watson and Letey, 1970) and soil water movement (De Bano, 1975).  

The occurrence of SWR is determined by the type and quantity of hydrophobic substances in 

the soil, all of them with a biological origin: waxes and resins (DeBano. 1981), root exudates 

(Doerr et al., 1998), fungi or microorganisms (Savage et al., 1969), or directly from 

decomposing organic matter (McGhie and Posner, 1981).Other factors such as soil temperature 

(Savage, 1974), soil texture (Blackwell, 1993) and soil moisture (Dekker and Ritsema, 1996) 

have an effect on its persistence (a review of these factors can be found in Doerr et al., 2000). 

This is indicating that SWR is only found under soils with a certain type of properties such as a 

sandy texture or a certain level of organic matter and, what it is more, not only organic matter 

but certain substances of it. So if the soil does not match those properties, it will be exerting of 

developing SWR.  

Nonetheless, soil water repellency measurements have been performed under extreme 

soil/vegetation situations. In fact, it is still mainly focused on forest soils with pine and 

eucalyptus (Leighton-Boyce et al., 2005) in which soils become hydrophobic due to oleos 

substances from the vegetation (see for instance the work carried out by Doerr et al., 2003 in 

Portuguese watersheds or Bodí et al., 2011 under Mediterranean plant species type).  

To our knowledge, most of those situations in which soil water repellency have been measured 

are not representing what could happen under typical crop conditions. Despite the scarce 

measurements performed under agricultural land, soil water repellency is still considered by 

some authors an inherent soil property and thus it can be extrapolated to all soils even under a 

broad range of cropping systems (Blanco-Canqui and Lal, 2009). 

Soil water repellence is measured one-off through the Water Drop Penetration Time (WDPT) 

test (Letey, 1969) or the MED (Molarity of Ethanol Droplet) for its intensity (Watson and 

Letey, 1970). WDPT is a test based on placing a water drop (0.05 mL in this case), using a 

syringe, on a soil surface and recording the time that it takes for the drop to break the surface 

tension and infiltrate. The more it takes for a water drop to infiltrate (>5 s) the more 

hydrophobic the soil is considered and so the more prone to generate surface runoff. Despite 

both measures being at the one-off scale, Doerr et al., (2003) in a Portuguese watershed scaled-

up the measures from the point scale-plot scale-catchment scale finding reduced correspondence 

between scales. In fact, their work shows that, due to catchment sinks (translated as 

reinfiltration processes) SWR diminishes at a larger scale than the hillslope plot.  

Although SWR has been described as a soil property (Doerr et al., 2000), meaning that all soils 

have it in common, it has been reported to be absent under agricultural land. For instance, in a 

work carried out by Cerdà and Doerr (2007) examining six land uses (two of them crops: orange 

and olives) under calcareous soil and under dry and wet season, found that water repellence was 

absent. In the case of horticultural crops, in which soil properties such as organic matter content 

or soil moisture content (two of the main factors contributing to the appearance of soil water 

repellency) changes depending on the season and tillage systems, little research has been done. 

Following this reasoning, SWR might not be an important runoff and water erosion driver under 

tree crop lands.  
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However, Ziogas et al., (2005) in Northeast Greece found that under the olive tree canopies, the 

soil (sandy loamy), could be extremely water repellent during the winter season. This 

information contradicts with several studies on infiltration rates within olive orchards, 

summarized in Romero et al., (2007) in which high infiltration rates are found under the olive 

tree canopies. The contradictory information and the fact that olive is the main crop in the 

Mediterranean region, make a point on measuring SWR under olive crops in Spain under 

different soil managements. If exists, it aims to be one of the distributed processes at the 

hydrological level which might contribute to the sediment generation and transport, thus being a 

point of support when determining sources of runon and runoff in olive crops.  

 

1.2. Sediment trapping by cover crop strips at hillslope scale 

Once understood runon and runoff areas within the olive crop, sediment tracers were used to 

describe and quantify the sediment transport in plots located in hillslopes under different soil 

management practices commonly applied in olive commercial farms, among others, the impact 

of cover crops.  

Sediment tracing techniques have been in used since the 80’s in order to study the precedence of 

the sediment in maritime transport processes. The ‘tracing’ technique of the sediment comprises 

tagging the sediment which is collected at the watershed outlet with any tracer and compared 

the signal with the watershed soil.  

According to the review by Guzmán (2011), as no single tracer technique fulfills all the 

requirements of an ideal erosion tracer proposed by Zhang et al., (2001), there are different 

sediment tracers used in different sediment tracer studies. Tracer types are divided in 

radionuclides (derived from nuclear techniques), fingerprinting techniques, rare earth elements 

and magnetic tracers (Guzmán 2011). One of the sediment tracing techniques started up in the 

last years is related to the use of the magnetic iron oxide (Fe3O4) as a sediment tracer (Guzmán 

et al., 2010). The tracer is a synthetic magnetic iron oxide commercially available as Bayferrox 

® 318 M and used as a black powder pigment. The main characteristic is that its particles bind 

together with the soil particles thus being able to trace the sediment movement in a Lagrangian 

way. Once the soil is tagged with the tracer, the sediment movement can be tracked and mapped 

using a MS2D® field loop calibration by measuring the changes in tracer concentrations in soil 

after the tagging. Mass magnetic susceptibility in the laboratory is then measured with the 

MS2B® Dual Frequency Sensor at 0.465 kHz with accuracy to ±1 %. For top soil determination 

of magnetic susceptibility, non-destructive measurements are made using a Bartington MS2D® 

field loop, which operates at a frequency of 0.958 kHz (Dearing, 1999). A mixing model 

developed by Guzmán et al. (2013) was used to determine the sources of the sediment within an 

olive orchard. In fact, in the work developed by Guzmán (2011) at the plot scale in an olive 

watershed in Southern Spain, the combined of rainfall simulations-natural rainfall-magnetic iron 

oxide as a tracer resulted in the determination of the erosion areas prone to splash and interrill.  

In soil conservation studies, one of the measures proposed is the use of vegetation strips 

(Giráldez and Gómez, 2009) as a strategy to mitigate soil loss and retain sediment. Grass strips 

are described as permanent vegetation or part of the crop rotation cycle which are set out along 

contour lines, separated by strips of arable land (van Dijk et al., 1996). They work hydraulically 

increasing roughness to reduce flow velocity and promoting sediment deposition as well as 
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adsorption by the vegetation. In our experiment, vegetation strips would be a complementary 

use to conventional tillage that, combined with the use of sediment tracers and rainfall 

simulations at the hillslope scale, would help to identify on a first stage which is the origin of 

the sediment trapped in the strips, and on a second stage, the amount of sediment retained in the 

strips. However, the combination of experimental and modelling analyses indicate that a broad 

range of efficiency degrees of grass strips in sediment trapping and in filtering are expected.  

In the Mediterranean region little research has been performed on the impact and efficiency of 

vegetation strips in order to reduce runoff and soil losses and, thus, trapping sediment. For 

instance, Raya et al., (2006) in runoff plots located in a mountainous area in Southern Spain 

with almond tress tested three different plant-cover strips: barley, thyme and lentils. Their work 

demonstrated that barley cover crop was the most effective in reducing soil losses and runoff 

when compared to bare soil. At the same time, Durán-Zuazo et al., (2009) in the same region 

but with different crop (olives) also found that mean annual soil erosion and runoff was reduced 

by combining no tillage soil management and barley cover crop strip. This indicates that more 

information in order to full the information niche regarding vegetation trapping efficiency in 

Mediterranean areas is of need.  

 

1.3. Watershed scale 

The last scale in which transport processes are performed is the watershed scale. Watershed 

scale modeling has been carried out since the end of the XIX century with the first studies about 

watershed hydrological responses to events (James Mulvaney, in 1851, showed how peak flows 

can be estimated from average rainfall intensity and catchment area). Despite the advances 

performed in rainfall-runoff modeling at this scale from the 70’s up to now, Freezer (1978) 

stated that ‘we would never be able to model the complexity of real world hillslope hydrology, 

and that the divergences between model and reality would always remain substantial’.  

One of the progresses which allowed the improvement of the modeling of hydrological 

processes at this scale is the use of the Geographical Information Systems (GIS). The routine 

implementation to determine watershed travel times, the possibility to obtain DEM and work 

with them and even the computing of equations such as RUSLE (Renard et al., 1997), allowed 

the enhancement of the techniques when generating runoff or soil loss values. Research 

performed during the last 50 years developed mathematical models in order to predict sediment 

production at different spatial and temporal scales, as well as performed specific monitoring of 

the different erosive processes in different regions of the world (a review of the different models 

applied in soil erosion studies can be found in Merrit et al., 2003). Erosion models are useful for 

understanding hydrological processes, simple parametric approximations such as USLE 

(Universal Soil Loss Equation; Wischmeier and Smith, 1978) or its revised version RUSLE 

(Renard et al., 1997) are commonly used for evaluating risk of soil erosion all around the world. 

In order to understand different runoff scenarios for soil management decision-making, water 

conservation plans or climate change information on soil management, soil modeling is then of 

need. It is important to calibrate those models in a complex environmental context derived from 

climate, soil, topographic, land use and soil management variability. It is then necessary 

appropriate calibration techniques.  
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Within the approach to understand the origin of the sediment (or its sources) and reinforcing the 

information that can be obtained from the hillslope scale with the magnetic tracers, the division 

of the watersheds into geomorphological units has been one of the key points for the 

implementation of soil and water conservation strategies. A geomorphological unit is defined as 

an area with a defined aspect, length and steepness (Ferro and Porto, 2000). This division of the 

watershed into geomorphological units allow, on the one hand to the identification of areas 

more prone to soil erosion and thus sediment generation and transport. On the other hand and at 

a more agronomic level, knowing the areas prone to soil erosion allow a more specific 

establishment of soil and water conservation practices.  
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Part of the results of this chapter has been presented as a communication in: 

European Geoscience Union, EGU (2012): 

 

Burguet, M., Taguas, E.V., Gómez, J.A.: Exploring the importance of hydrophobicity in 

the hydrologic cycle of olive groves in Spain. European Geoscience Union, EGU, 2012 

 

 

 

‘To be a successful farmer one must first know the nature of soil’ 

Xenophon (c. 430-354 BC) 
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Resumen 

La hidrofobicidad (SWR) ha sido medida en diferentes suelos, manejos de suelo y 

regiones del mundo, y en particular en zonas forestales después de incendios. A pesar de ello, la 

comprensión de la aparición o no de esta variable en suelos agrícolas todavía es limitada. Este 

estudio presenta la caracterización de la SWR medida en campo y en diferentes olivares (Olea 

europaea L.) en España con diferentes condiciones ambientales y manejos. Los objetivos 

principales de este trabajo fueron: [1] evaluar la ocurrencia y persistencia de la SWR bajo 

distintos manejos de suelo en olivar, [2] explorar sus características espacio-temporales, [3] 

explorar la influencia de los distintos sistemas de laboreo y propiedades del suelo como el 

contenido de materia orgánica y la humedad del suelo en la persistencia de la SWR en el que es 

el mayor cultivo de la cuenca Mediterránea. Para ello se seleccionaron cuatro olivares con 

distintos manejos de suelo (abandonado, laboreo convencional, uso de herbicida y cubierta 

vegetal) en Córdoba (Sur de España) y Valencia (Este de España). El Water Drop Penetration 

Time test (WDPT) se utilizó para evaluar in situ los valores de SWR en tres estaciones: otoño, 

invierno y verano. Las medidas se llevaron a cabo en el año hidrológico 2011-2012 en dos áreas 

para cada uno de los olivares seleccionados: en el suelo bajo copa y en las calles. Los valores 

del WDPT resultaron ser altamente variables en los cuatro olivares estudiados. La SWR estuvo 

ausente en el olivar con laboreo convencional siendo además el olivar con el contenido de 

materia orgánica más bajo. Los valores más elevados se midieron en verano debajo de las copas 

(WDPT= 610 s) y en otoño en las calles (WDPT= 468 s). A pesar de esto, no se encontró un 

patrón estable en la aparición/desaparición de la SWR en relación a los cambios estacionales o 

los diferentes manejos de suelo. La SWR estuvo más relacionada con el contenido de materia 

orgánica del suelo y eventos de lluvia significativos en los meses previos a las mediciones en 

campo. Los resultados ilustran que la importancia hidrológica de la SWR es muy variable y 

puede que no sea importante a la hora de desencadenar procesos de escorrentía en el olivar.  

 

Palabras clave: hidrofobicidad, olivar, hidrología, manejo de suelo, materia orgánica.  
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Abstract 

Soil water repellency (SWR) has been reported under different soils, land uses and 

regions of the world, particularly in forested areas after wildfires, yet the understanding of this 

variable in agricultural lands is still rather limited. This study presents the characterization from 

field-based measurements of SWR in several olive groves (Olea europaea L.) in Spain under 

different conditions and managements. The main objectives of this research were: [1] to 

evaluate the occurrence and persistence of SWR under different soil managements in olive 

groves; [2] to explore its spatio-temporal features; [3] to explore the influence of different 

tillage systems and soil properties such as organic matter content and soil moisture in the 

persistence of SWR in the major cropland system in the Mediterranean basin. Four different 

groves with different soil management (abandoned, conventional tillage, herbicide use and 

cover crop) were chosen in Cordoba (Southern Spain) and Valencia (East Spain). The Water 

Drop Penetration Time test (WDPT) was used in situ to assess SWR values in three seasons: 

autumn, winter and summer. Measurements were carried out for one hydrological year (2011-

20212) in two areas for each of the four groves: below (canopy) and between the tree canopies 

(lanes). A high variability of WDPT values was observed in the studied olive groves. SWR was 

absent for the olive grove under conventional tillage and with the lowest values of organic 

matter. The highest values were found under canopies (WDPT = 610 s) in summer and on the 

lanes (WDPT= 468 s) in autumn. However, there was no stable pattern with regards to seasonal 

changes or different soil managements; SWR appeared more related to organic matter content 

and significant rainfall events in the months prior to field measurements. The results illustrated 

that the hydrological relevance of the SWR is highly variable and it might not be substantial on 

triggering runoff processes in olive groves. 

 

Keywords: soil water repellency, olive, hydrology, soil management, organic matter.  
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2.1. Introduction 

Olive is the main crop in the Mediterranean region and it forms, along with wheat and wine, 

what it is known as the ‘Mediterranean triad’. Mediterranean countries produce over 95% of 

the world’s olive oil which has a relevant socio-economic impact. The olive and olive oil 

production is also resulting in environmental impacts. High soil erosion rates and the diffusion 

of water pollution, among others, are serious degradation risks commonly associated with the 

hydrological processes in olive groves (Goméz-Limón et al., 2011). The non-sustainable soil 

erosion rates are mainly related to steep slopes which favours runoff generation and where, 

traditionally, olives have been cultivated. In addition to the topography and microtopography, 

spatial patterns derived from the traffic, management and the influence of trees cause variations 

of soil physical properties, which encourage high soil erosion rates (Gómez et al., 1999).  

In this context of varying soil properties, accelerated soil erosion rates and enhanced high runoff 

rates in the olive groves, SWR might have a significant impact as delays water infiltration, 

which translates into higher values of runoff and flow concentration (Doerr et al., 2000; 

Shakesby et al., 2000) and at the same time, higher potential erosion.  

The occurrence of SWR is determined by the type and quantity of hydrophobic substances in 

the soil, all of them with a biological origin: waxes and resins (DeBano. 1981), root exudates 

(Doerr et al., 1998), fungi or microorganisms (Savage et al., 1969), or directly from 

decomposing organic matter (McGhie and Posner, 1981). 

Other factors such as soil temperature, soil texture and soil moisture have an effect on its 

persistence (a review of these factors can be found in Doerr et al., (2000)). Many of these 

factors are present in olive groves and can result in SWR occurrence in these crops. However, as 

far as we are concerned, no measurements have been carried out on olive plantations until now. 

Moreover, some of the olive production, specially the one on the floor, is not collected, 

increasing the amount of oils incorporated in the soil surface. SWR can affect water infiltration 

as it reduces the soil matrix infiltration rates, and can increase the macropore flow. This can 

result in the reduction of the water availability for the vegetation, specially the crop. SWR also 

have biological, hydrological and geomorphological implications: the reduction of water 

availability translates into a severe tree stress, and as the water fluxes are more concentrated soil 

erosion rates can get high. Preferential flow is also more feasible if SWR take place. 

Soil water repellency is being a key topic in soil hydrology, but still mainly focused on forest 

soils, although the initial research was done in agricultural sandy soils in Florida (Wander, 

1949). A review done in the Web of Knowledge in September 2013 to find the studies dealing 

with SWR occurrence and different croplands in the period 2000-2013, using the words 

'wettability', 'soil hydrophobicity', and 'soil water repellency' resulted in 55% of the publications 

in forests, 27% in croplands and 18% in grasslands. 

In the case of horticultural crops, preliminary research has been carried out in organic peat soils 

with irrigated potato crop in Sweden under four types of organic soils, reporting low SWR 

values when low soil moisture content (Berglund and Persson, 1996). SWR has been also 

studied on sandy soils in intensive irrigation potato cultivation in Suffolk, -Great Britain- 

(Robinson, 1999). In this study, the author found slightly water repellent points with large 

spatial variability that caused an increase in the deficit irrigation and in the scab infection of the 

cultivation.  
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For SWR variations through time and crop-rotation systems, Keizer et al. (2007) found very 

persistent values in a system of potatoes, maize and fallow in central Portugal. In this case, 

spatial patterns of the studied phenomena were found in furrows and ridges. In a review of field 

crops studies, Blanco-Canqui (2011) found that different soil managements orientated towards 

conservation agriculture (e.g. no-tillage vs. conventional till) increased the trend towards soil 

water repellency, as most of the conventional tillage soils can be classified as 'wettable' whilst 

the no-tillage ones, which had higher organic matter content in the top soil, are classified as 

'slightly water repellent'.  

Considering Mediterranean tree crops, in Northeast Greece, Ziogas et al. (2005) measured SWR 

below olive trees in a sandy soil. Their laboratory results showed that under the olive tree 

canopies the soil could be extremely water repellent during the winter season. These results 

seems to be contradictory with several studies on infiltration rates within olive orchards, 

summarized in Romero et al. (2007), which found higher infiltration rates in the soil below olive 

canopy projection. Cerdà and Doerr (2007) evaluated SWR under orange and olive groves, and 

cereal crop in field surveys in Eastern Spain. No significant SWR was found at the agricultural 

sites.  

Under this context, a better understanding of SWR in olive groves, its extension, temporal and 

seasonal changes as well as intensity in relation to soil management and cropping systems 

seems fundamental to evaluate its implication in the overall hydrologic response of olive 

groves, and may be used to improve water management and irrigation practices in olive groves. 

This study was conceived with aims to: i) evaluate the occurrence and persistence of SWR 

under different soil managements in olive groves; ii) explore its spatio-temporal features as well 

iii) to explore the influence of different tillage systems and soil properties such as organic 

matter content and soil moisture in the persistence of SWR in the major cropland system in the 

Mediterranean basin.  

 

2.2. Study site and available data 

This study was carried out in four olive groves in Southern and Eastern Spain (Fig. 2.1). 

Three were located in the province of Cordoba (Southern Spain), with different soil 

managements (Figure 2.2, Table 2.1): permanent cover crop periodically mowed in an organic 

grove (CC), conventional tillage allowing cover crop in the lanes and bare soil using herbicide 

under the olive canopy (CT), and weed growing controlled with periodic applications of 

herbicide (H). An olive grove abandoned forty years ago was also surveyed in Valencia 

province, Eastern Spain (AB). In this last grove, the soil was partially covered by natural 

vegetation among the olive trees, dominated by rosemary (Rosmarinus officinalis L.), thyme 

(Thymus vulgaris L.), kermes oak (Quercus coccifera L.) and maritime pine (Pinus pinaster L.). 

This abandoned olive grove show the impact of the vegetation and soil recovery after the land 

abandonment. 
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Figure 2.1. Sampling points location. Cordoba sites include the cover crop (CC), conventional tillage (CT) and 

herbicide (H) orchards; Valencia site includes the abandoned (AB) orchard. 

 

The parent materials in the study sites in the province of Cordoba are marls, and the soil types 

are Vertisols and Fluvisols. In the study site in Valencia province, soils were developed on 

limestones and the soil is a Regosol (IUSS Working Group WRB, 2014, Table 2.1).  

The CT site had an average annual rainfall of 510 mm, concentrated in the October-March 

period, and the H and CC groves had an average annual rainfall of 528 mm. The average annual 

temperature was 18.6 ºC for CT and 17.4 for CC and H (IFAPA, Estación de Alameda del 

Obispo, 2013). The elevation of the three sites ranges from 90 m.a.s.l (H and CC) to 147 m.a.s.l 

(CT). At the AB site, the average annual rainfall was 684 mm; mainly concentrated from 

October to December, with an average annual temperature of 17.2°C and an elevation of 103 

m.a.s.l (SIAR, 2013). 

The set of olive groves chosen have been considered representative, in terms of management 

and soil type (Gómez and Giráldez, 2010). In the sites located in Cordoba, tree-space was 6 x 7 

m (CT), 6 x 6 m (H), and 8 x 8 m (CC). In AB, tree spacing was 6 x 7 m. H and CC sites were 

located on a 1% average slope, while the grove in CT was in an area with an average slope of 

8% and AB was in a 4 % terraced hillslope. 
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Table 2.1. Site characteristics.  

Site Location Soil▫ Soil management 
Area  

(ha) 

Mean annual temperature  

(ºC) 

Mean annual precipitation  

(mm)* 

Altitude  

(m.a.s.l.) 

Slope  

(%) 

Sand 

(%) 

Silt  

(%) 

Clay 

(%) 

pH  

(H2O) 

CT Cordoba  Vertisol Conventional tillage 8 18.6 510 147 8 44.3 34.1 21.6 9 

CC Cordoba  Fluvisol Cover crop 0.4 17.4 528 90 1 42.5 39.9 17.6 8.6 

H Cordoba  Fluvisol Herbicide 1 17.4 528 90 1 70.5 22.2 7.2 7.4 

AB Valencia  Regosol Abandoned 1.4 17.2 684 103    4** 77.5 17.6 4.8 6.2 

 

* 2010-2011 and 2011-2012 hydrological years (from 0.8 mm) 

**Terraced hillslope 

CT: conventional tillage; CC: cover crop; H: herbicide; AB: abandoned 

▫WRB  
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Figure 2.2. Study sites: A) Cover crop (CC), B) Conventional tillage (CT), C) Herbicide (H) and D) Abandoned 

(AB). 

 

2.3. Methods 
 

2.3.1. Water Drop Penetration Time (WDPT) measurement 

SWR persistence was measured under field conditions 3 times: autumn (20/10/2011), 

winter (19/12/2011 in Cordoba and 28/12/2011 in Valencia) and summer (29/7/2012). The 

methodology used was the Water Drop Penetration Time test (WDPT) (Letey, 1969). WDPT is 

a measure of the time that the contact angle requires to change from its original value, greater 

than 90º according to Young's law, to a value approaching 90º, when infiltration occurs (Letey 

et al., 2000). It is a test based on placing a water drop (0.05 mL in this case), using a syringe, on 

a soil surface and recording the time that it takes for the drop to break the surface tension and 

infiltrate. Three water drops were applied at each transect point from a height of 3 mm from the 

surface level in order to avoid excess of kinetic energy (Doerr, 1998). The surface organic 

debris was removed carefully with a brush (or by hand when needed) so the mineral soil was 

exposed for measurement. 

Measurements following this procedure were performed for two trees at the CT and CC sites, 

and three trees in the H and AB sites. At each tree, four transects were performed following the 

design depicted in Figure 2.3, each one from the tree trunk to the olive lane centre at 10 cm 

spaced. WDPT values were classified as in Bisdom et al. (1993). 

A B 

C D 
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Figure 2.3. Scheme of the sampling transects performed in every olive tree every 10 cm (red lines) and droplet for 

the assessment of soil water repellency (WDPT). 

 

2.3.2. Soil sampling: soil moisture and organic matter content 

Soil samples were collected from the top 5 cm of the soil for determining the gravimetric 

soil moisture content (θg) at each survey and grove and the organic matter content. The olive 

trees were selected randomly throughout the sites and the same ones were used in each 

measuring period. In the autumn survey, a total of 10 samples were taken; 16 were taken during 

the winter survey and 18 during the summer study. The differences in the amount of samples 

taken was due to an improvement as, once in the field, it was believed that more samples would 

help to understand the variability found in the different orchards.  

Samples were weighted at room temperature, homogenized by hand, then sieved (<2 mm) and 

stored in the desiccators before the measurements were done. For dry-weight calculations, 

samples were oven dried at 105°C during 24 hours. In the case of organic matter content, 

samples were oven dried at 50 °C for 24 hours. This last soil property was analyzed using the 

Walkley-Black method (Nelson and Sommers., 1982), a technique based on the incomplete 

oxidation of the organic carbon due to the oxidation mix of potassium dichromate (K2Cr207) and 

sulfuric acid (H2SO4). 

 

2.3.3. Statistical Analysis 

Normality of the SWR data and homogeneity of variances were checked with the 

Kolmogorov-Smirnov and the Levene test, respectively, at p≤0.05. When data did not satisfy 

both assumptions even after logarithm and root square transformations (as the distribution of 

SWR is known to be not normal), an alternative non-parametric test was used, in our study 

Kruskal-Wallis ANOVA (Kruskal and Wallis, 1952). When K-W ANOVA null hypothesis was 

rejected, post-hoc pairwise comparisons (non parametric Tukey's HSD test) were performed to 

check differences between means. Basic statistics and Pearson correlation analyses were carried 
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out to characterize OM and soil moisture. The analyses were performed using the SPSS Version 

17 statistical software. 

 

2.4. Results 
 

2.4.1. SWR occurrence and persistence 
 

The Kruskal-Wallis ANOVA established that there were significant differences among 

orchards for all the measurement campaigns. Strongly water repellent mean values were 

determined in autumn (Table 2.2), although a high range of variation was observed for this 

period, between 0.25 s and 163 s (for CT-canopy and CC-lane, respectively).  

 

Table 2.2. WDPT values (Max.= maximum; Min.= minimum, Avg.= average; Std.= standard deviation, CV= 

coefficient of variation; n=184) and Tukey HSD test for the autumn survey. Different letters mean significant 

differences at p ≤0.05. 

 

 CC CT H 

 Lane Canopy Lane Canopy Lane Canopy 

Max. 468 600 5 6 33 30 

Min. 1 3 0 0 0 0 

Avg. 163***a 119***a 0.4*b 0.2*b      11**c      7**c 

Std. 111.5 112.2 1.2 1.1 12.8 11.1 

CV % 68.1 96.4 289.9 448.1 119.2 150.9 

 
*Wettable (0-5 s), **Slightly wettable (5-60 s), ***Strongly water repellent (60-600 s), after Bisdom et al. (1993). 

CT: conventional tillage; CC: cover crop; H: herbicide; AB: abandoned 

Kruskal-Wallis ANOVA p-values: .000 between management (CC, CT, H) and location (lane, canopy). 

 

On the other hand, wettable values were determined in winter, particularly on the lanes, where 

the average was equal to 0 for all olive orchards (Table 2.3). In contrast, strongly WDPT mean 

values were observed under canopy for H and AB (571 and 327 s, respectively) with a 

maximum WDPT of 1320 s in the AB orchard. On the other hand, CT and CC sites presented 

all the WDPT-values equal to 0 in winter while the treatments H and AB showed statistically 

significant differences as well as between lane and canopy. 
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Table 2.3. WDPT values (Max.= maximum; Min.= minimum, Avg.= average; Std.= standard deviation, CV= 

coefficient of variation; n=184) and Tukey HSD test for the winter survey. Different letters mean significant 

differences at p ≤0.05. 

 

 

 

 

 

 

 

 

 

 

*Wettable (0-5 s), **Slightly wettable (5-60 s), ***Strongly water repellent (60-600 s), after 

Bisdom et al. (1993). 

CT: conventional tillage; CC: cover crop; H: herbicide; AB: abandoned 

Kruskal-Wallis ANOVA p-values: .000 between management (CC, CT, H) and location (lane, 

canopy). 

 

In the summer survey SWR was found both under the canopy and in the lane for CC grove 

(28 and 61 seconds respectively, Table 2.4). H and AB groves only had SWR under the tree 

canopy (20 and 37 seconds respectively) and wettable conditions were measured in the CT site. 

There were significant differences between lane and canopy for CC, H and AB groves, and 

among groves. In case of CC, SWR showed a stable pattern during autumn and summer, where 

the radial patterns indicates that the highest WDPT values tended to be around the edge of the 

canopy projection whilst, in winter, SWR was inexistent. 

 

Table 2.4. WDPT values (Max. = maximum; Min.= minimum, Avg.= average; Std.= standard deviation, CV= 

coefficient of variation; n=184) and Tukey HSD test for the winter survey. Different letters mean significant 

differences at p ≤0.05. 

 

 CC CT H AB 

 Lane Canopy Lane Canopy Lane Canopy Lane Canopy 

Max. 253 610 0 0 101 190 0 434 

Min. 0 0 0 0 0 0 0 0 

Avg. 28**a 61***a 0*d 0*d 2*c,d 20**c,d 0*b,c,d 37**b,c,d 

Std. 35.4 77.6 0 0 9.0 32.7 0 60.3 

CV % 128.9 126.3 - - 846.8 160.1 - 163.2 

 

*Wettable (0-5 s), **Slightly wettable (5-60 s), ***Strongly water repellent (60-600 s), after 

Bisdom et al. (1993). 

CT: conventional tillage; CC: cover crop; H: herbicide; AB: abandoned 

Kruskal-Wallis ANOVA p-values: .000 between management (CC, CT, H) and location (lane, 

canopy). 

 

 CC CT H AB 

 Lane Canopy Lane Canopy Lane Canopy Lane Canopy 

Max. 0 0 0 0 0 800 0 1320 

Min. 0 0 0 0 0 387 0 0 

Avg. 0*b 0*b 0*b 0*b 0*a,b 571***a,b 0*a,b 327***a,b 

Std. 0 0 0 0 0 158.9 0 459.6 

CV % - - - - - 27.8 - 140.4 
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Figure 2.4. Spatial distribution of WDPT in relation to the tree trunk (normalized dividing by the canopy radius in 

each transect) in the cover crop (CC) olive orchard during the three seasons measured.  
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2.4.2. Factors explaining occurrence of SWR 
 

In Table 2.5, the variation of the medians of WDPT (the median values were used when the 

distribution of the WDPT values did not fit normality), and the amount of organic matter and 

soil moisture in relation to the soil management, the location and the study period are presented. 

A high variability of WDPT and OM values was observed with absent repellency in the case of 

CT and values close to 600 s for H, whilst OM varied between 2.0 % and 14.3 %; the latter was 

an extremely high value compared to what is usually found in olive groves (Gómez and 

Giráldez, 2010). No correlation was derived from soil moisture while r-Pearson only was 

significant for mean OM values of CC. 
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Table 2.5. Median values of the samples of Water Drop Penetration Time (WDPT) and average values of Organic Matter (OM) content and Soil Moisture content (θ %) in relation to the soil 

management. 

 

  CC     CT     H     AB     

Period Location WDPT (s) OM (%) θ (%) WDPT (s) OM (%) θ (%) WDPT (s) OM (%) θ (%) WDPT (s) OM (%) θ (%) 

Autumn Lane 121 15.7 6.5 0 1.1 6.5 6 2.6 3.4 - - - 

 Canopy 81 16.2 7.3 0 2.1 13.0 1 4.6 1.6 - - - 

Winter Lane 0 7.6 13.2 0 1.8 23.5 0 3.8 10.5 0 3.3 16.3 

 Canopy 0 9.4 9.3 0 1.8 23.8 592 5.2 6.3 294 2.9 18.3 

Summer Lane 22 7.2 10.6 0 2.9 11.6 0 - 9.2 0 3.0 2.9 

 Canopy 47 9.3 18.2 0 2.4 7.4 8 - 11.1 14 3.5 4.4 

Median  45 10.9 10.8 0 2.0 14.3 101 4.0 7.0 77 3.2 10.5 

r Pearson     0.8* -0.4         0.6 0.03   -0.7 0.6 

              
(*) significance for p<0.05 

(-) Missing data 

Nº of samples for WDPT (CC=273; CT=256; H=360; AB=264); OM (CC=9; CT=17; H=5; AB=12); θ (CC=10; CT=27; H=10; AB=12). 
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In the H and CT groves, the soil management was the main differential factor compared to the 

less disturbed orchards (with cover crop and abandoned). A significant correlation between 

WDPT and OM content (Figure 2.5) was found for the four studied orchards (WDPT= 0.24 

OM%
2 + 2.904 OM% - 7.368; r2=0.9; n=24) during the autumn and summer surveys, when there 

is no interaction of the leaching compounds by rainfall (see also Fig. 2.4). In this correlation, 

only the autumn and summer values of OM and WDPT are presented as the winter period had 

null WDPT values so it was not possible to establish a correlation with the OM values. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Second grade polynomial relationship between the average OM (%) content and median WDPT (s) 

values for the four studied orchards during autumn and summer surveys. 

 

The surface soil moisture content during the measurements followed a typical Mediterranean 

pattern, with values between 7 and 10 %. Despite the fact that no significant correlation was 

found between mean values of SWR and soil moisture, an increase in the soil moisture content 

was found between autumn and summer. The highest values of soil moisture were found during 

winter in the olive groves with CT management (with absent SWR). On the other hand, the 

lowest values were found in H during autumn (1.6 % under the tree canopy and 3.4 % in the 

lane).  

 

2.5. Discussion 
 

Our results indicate that SWR is present in some periods of the year under different grove 

managements. For the commercial olive groves measured, these values tended to be wettable or 

slightly water repellent according to Bisdom et al. (1993). Only CC, with a permanent cover 

crop and an extremely high OM content (16.2 % under the tree canopy and 15.7 % on the lane 

for the autumn period), and AB showed SWR through the measuring period. 
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The different soil managements in the groves, rainfall data observed in each location, slope and 

soil type and characteristics, suggest that the appearance and magnitude of SWR in this system 

will be moderate, developing during the dry season and being reduced (or disappearing) during 

the rainfall season as the organic compounds reoriented and turn amphiphilic. 

Both CC and AB had hydrophobic spots under the tree canopy. The highest values of WDPT 

and OM were found under the tree canopy which agrees with authors such as Scholl (1971) who 

showed that SWR was confined to the soil under the tree canopy. In AB, it is apparent that the 

soil moisture content might control the appearance of repellency in summer. In addition, the soil 

under tree canopies is usually unaltered or less altered, which improves soil characteristics such 

as soil organic C accumulation, water retention, water infiltration, hydraulic conductivity, 

microbial activity and other soil processes in olives (e.g. Gómez et al. 1999) or field crops (e.g. 

Blanco-Canqui and Lal. 2009). Hence, if the soil structure is stable, the soil porosity enhances 

and the probability of runoff and erosion processes decrease (Bronick and Lal, 2005).  

CT and H showed wettable ('subcritical') values of SWR. Repellency in CT might be controlled 

by its soil texture as the percentage of clays is high (note that clays such as kaolinite have been 

used to reduce soil water repellency of sandy soils, Ma'shum et al., 1989; Cann and Lewis, 

1994; McKissock et al., 2000). In this orchard, the OM is also low compared to the others used 

in our study but within the values found in most olive groves from Spain, which means that the 

hydrophobic inputs are not as high as in the rest and the mineralization rates are higher 

(González-Peñaloza et al., 2012). Therefore, strong water repellent values are not expected, 

particularly because the soil expands when it gets wet. Moreover, tillage operations must also 

contribute to reduce SWR in the top soil as Urbanek et al. (2007) reported. For H, where 

management operations are less intense, organic matter mineralization rates can result higher, 

reducing SWR. 

On the other hand, the exponential correlation between organic matter and the SWR during the 

dry periods of the year (summer and autumn) suggests that the organic matter of the top 5-cm of 

the soil might be used as a proxy variable to identify preliminarily orchards prone to SWR 

under Mediterranean environments, particularly in areas with high soil vegetation cover (such as 

CC and AB). Soil organic matter in olive crops has hydrophobic compounds such as 

Polyphenols, Sterols, Nonsterol, Triterpenoids or Pentacyclic triterpenoids (Briante et al., 2002; 

Stiti and Hartmann, 2012; Peragón, 2013), which decompose in the soil coating soil aggregates. 

These differences can be explained by the amount of rainfall in the AB site between the winter 

sampling period (28/12/2011) and the summer sampling period (29/7/2012) equal to 29.7 mm 

(SIAR, 2013), whereas in CC and H was 146.1 mm, between the 19/12/2011 and the 

20/07/2012 (IFAPA, Estación de Alameda del Obispo, 2013). 

Beyond the exponential correlation between soil organic matter and WDPT during the autumn 

and summer seasons, we did not find that the organic matter and gravimetric soil moisture in the 

different olive groves were significantly correlated. In our results, it is apparent that the negative 

effect of the rainfall season on soil water repellency is the major source of variability given the 

limited disturbance of the soil in the studied orchards. 

The magnitude of the SWR measurements was not significantly larger than those measured by 

other authors in olive groves in similar environments, in commercial (Ziogas et al., 2005) or 

wild  (Zavala et al., 2009) olive groves. Even though, under the tree canopy, the WDPT values 

were strongly water repellent, its influence in the runoff response of the grove may be small due 
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to the high spatial variability with nearby areas with non-hydrophobic values which might act as 

run-on areas, something observed in olive groves (Castro et al., 2006). 

A major feature in understanding the hydrological role of hydrophobicity in olive groves was 

the large spatial variability found in our measurements. A source of spatial variability was the 

location with relation to the olive tree crown canopy. The area underneath the tree canopy was 

the main influence site, although not in a permanent way, apart from in the AB grove; where 

notable differences were observed in soil water repellency between canopy and row. The size of 

the canopy, variable among orchards, might implicate bigger/smaller influence radius of SWR 

as this would increase or decrease the availability of hydrophobic compounds.  

High spatial variability at short distances was also found in our measurements. This showed 

SWR patchiness in most of the studied groves, indicating the coexistence of points with 

relatively high SWR values and others with low or non-existing SWR. This 'patchiness', 

combined with the low persistence of repellency when wet  might explain why the under canopy 

areas is, simultaneously, an area slightly hydrophobic and an area with a high infiltration rate 

when measured using different techniques and teams on many groves (e.g. Romero et al., 2007). 

Our hypothesis is that this patchiness results in a high probability that the rainfall drop will 

eventually infiltrate in a nearby non-hydrophobic area with a larger infiltration capacity during 

the short period (some minutes) when repellency is still present. These phenomena have been 

observed and modelled at a slightly larger scale in the interaction between the lane and the 

below canopy area using numerical models and experimentally demonstrated using large-scale 

rainfall simulation (Castro et al., 2006). Additionally, the below canopy area is subjected to less 

rainfall (especially during the early stages of a rainfall event) due to rainfall interception by the 

olive canopy (Gómez et al., 2001, 2002). This extends the time period for soil wetting at a low 

rainfall intensity, which could mean the reduction of SWR during the early stages of a rainfall 

event.  

Further studies taking into account spatial variability in the field and its correlation with soil 

properties, such as microrelief and orientation, and above ground vegetation at microscale; 

could provide additional insight into the correlation of SWR and other soil properties, as well as 

its environmental implications in olive groves. For instance to explain the differences of 

infiltration and runoff between lane and canopy areas and the large spatial variability in 

infiltration measured in olive groves (Gómez et al., 1999). 

 

2.6. Conclusions 

The temporal and spatial approach carried out has demonstrated that SWR can occur in 

olive groves although a high variability was observed. No permanent spatial pattern lane/canopy 

was found. However, the highest values were mostly found under the canopy, whose the most 

evident influence was in the organic olive grove. The combination of soil moisture and organic 

matter could not globally explain the differences of soil water repellency in the olive groves; 

although a clear correlation among organic matter content and soil water repellency was found 

for the summer and autumn season in the four olive groves. Our measurements also indicate a 

patchiness of soil water repellency in the olive groves. These results suggest that the 

hydrological relevance of soil water repellency in olive groves could be low for spatial scales 

beyond point measurements, such as hillslope or catchment. However, it can contribute to 

explain the differences of infiltration and runoff between lane and canopy areas.  
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‘The conservation of natural resources is the fundamental problem. Unless we solve that 

problem, it will avail us little to solve all others’.  

Theodore Roosevelt (1858-1919) 
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Resumen 

El uso de cubiertas vegetales ha sido prescrito como medida de mitigación de la erosión 

dado que las cubiertas permanentes han demostrado ser efectivas tanto en la reducción de 

sedimentos como en las descargas de agroquímicos. Los objetivos principales de este trabajo 

fueron: [1] explorar el uso combinado de la lluvia natural y la lluvia simulada con óxido 

magnético con el fin de entender el comportamiento de las bandas de cubierta en la retención de 

la escorrentía y las pérdidas de suelo a escala de parcela y, [2] evaluar el grado de efectividad de 

las bandas de cubierta a la hora de tamponar el sedimento procedente de las áreas con suelo 

desnudo bajo diferentes condiciones comparado con una situación control sin bandas. Este 

estudio abarca seis simulaciones de lluvia bajo cuatro manejos de suelo diferentes en las que se 

combina el uso de óxido magnético como trazador de sedimento con el fin de obtener una mejor 

comprensión de la eficiencia de atrape de las bandas de cubierta. Con este fin se instalaron tres 

parcelas de escorrentía de 6 m x 14 m en una ladera de terraza aluvial (Fluvisol) con una 

pendiente de 20 %. Cada una de las parcelas contiene tres bandas de suelo desnudo marcado con 

óxido magnético y tres bandas con cubierta de Lolium multiflorum L. Los manejos de suelo 

simulados fueron: inmediatamente después de plantar las cubiertas vegetales (Junio 2011cubierta 

vegetal), con cubierta vegetal agostada (Junio 2012cubierta vegetal), después de labrar a una 

profundidad de 5 cm (Octubre 2013recién arado) y después de labrar y compactar mecánicamente el 

suelo con una plancha de metal (Noviembre 2013superficie consolidada). Nuestros resultados indican 

que, mediante el uso de bandas de cubierta, la escorrentía y la pérdida de sedimento fueron 

aproximadamente el 50 % y el 12 % respectivamente más bajos que los valores medidos en 

suelo desnudo consolidado o recién labrado. La formación de microrelieve en las parcelas en 

forma de escalones después de la primera simulación ayudó asimismo a la reducción de las 

pérdidas de suelo y escorrentía. El manejo de suelo correspondiente al laboreo y posterior 

compactación obtuvieron las tasas más elevadas de escorrentía acumulada y pérdidas de suelo 

(28 mm y 15 kg respectivamente). Se observó una evidente selectividad en el transporte del 

trazador propiciado por las partículas de suelo de texturas más finas (arcillas) dado que el 

sedimento recogido en las simulaciones estaba enriquecido de éstas. Estas características 

contribuyen a explicar los efectos del manejo y de la vegetación en las distribución de 

sedimentos en laderas y deben ser tenidas en cuenta a la hora de llevar a cabo estudios con 

trazadores así como con bandas de cubiertas para mitigar la contaminación por agroquímicos.  

Palabras clave: bandas de cubierta, trazador magnético, manejo de suelo, selectividad en el 

transporte, lluvia simulada. 
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Abstract 

The use of cover crops has been prescribed as a mitigation measure for both problems 

because permanent cover crops have demonstrated to reduce sediment and agrochemical loads. 

The objectives of the present study were twofold: [1] to explore the combined use of natural and 

simulated rainfall and magnetic iron oxide in understanding the performance of vegetation strips 

on runoff and soil losses at plot scale and, [2] to evaluate the effectiveness degree of vegetation 

strips in buffering sediment from bare soil areas under different conditions compared to a 

control situation with no strips. This study encompasses six rainfall simulations under four 

different soil managements combining the use of a magnetic iron oxide as a sediment tracer to 

obtain a better understanding of the vegetation strips trapping efficiency. Three runoff plots of 6 

m × 14 m were established in a 20% hillslope under a Fluvisol alluvial terrace. Each of the plots 

contained three bare strips tagged with magnetic iron oxide and three strips with Lolium 

multiflorum L. The soil management simulated scenarios were: immediately after sowing the 

vegetation cover (June 2011cover crop), with settled vegetation cover (June 2012cover crop), after 5 

cm of deep ploughing (October 2013freshly tilled) and after ploughing and mechanically compacting 

the soil with a sheet metal (November 2013 consolidated surface). Our results indicate that by using 

cover crop strips, runoff and sediment losses were approximately 50 % and 12 % respectively 

lower than the measured values in bare consolidated and freshly tilled soil. The formation of 

microrelief steps after the first simulation also helped to reduce soil losses and runoff. Ploughed 

and compacted soil management showed the highest cumulative runoff and soil losses values 

(28 mm and 15 kg). Evident tracer selectivity from small particle size soil textures (clays) was 

observed as there was an enrichment of these particles in the collected sediment. These features 

contribute to explain the effects of the management and the vegetation on the sediment 

distribution in the hillslopes and must be taken into account when performing tracing studies as 

well as when using cover crop strips to mitigate offsite contamination by agrochemicals.  

Keywords: vegetation strips, magnetic tracer, soil management, selective transport, rainfall 

simulations.  
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3.1. Introduction 

Water erosion and associated offsite contamination are major environmental risks in 

many Mediterranean crops such as olives or vineyards (Beaufoy, 2001; Gómez et al., 2011). 

The use of cover crops has been prescribed as a mitigation measure for both problems because 

permanent cover crops have demonstrated to reduce sediment and agrochemical loads (e.g. 

Gómez, 2009a; 2009b). However, large uncertainty remains about its effectiveness degree to 

reduce sediment and agrochemical contribution to streams due to the limited number of 

available studies, and the large variability observed under field conditions (Taguas et al., 2012). 

Grass strips are described as permanent vegetation or part of the crop rotation cycle which are 

set out along contour lines, separated by strips of arable land (van Dijk et al., 1996). They work 

hydraulically increasing roughness to reduce flow velocity and promoting sediment deposition 

as well as adsorption by the vegetation. Its impact on erosion has been modelled for empirical, 

e.g. RUSLE (Renard et al., 1997) and physically based models, e.g. TRAVA (Deletic and 

Fletcher, 2006). The combination of experimental and modelling analyses indicate that a broad 

range of efficiency degrees of grass strips in sediment trapping and in filtering are expected. For 

instance, Al-wadaey et al. (2012) found a reduction of 50 % in sediment and phosphorus 

contribution using filter strips of tall fescue and orchard grasses which covered, in average, a 3 

% of the plot area. Kapil et al. (2010) in a review of efficiency of filter strips on sediment and 

pesticide offsite contamination found an average reduction of 45 % in runoff volume (ranging 

between 0 and 100 %) and an average of 76 % in sediment mass (ranging between 2 and 100 

%). This variability reflected, among other issues, that there were several factors such as slope, 

type of vegetation and its degree of development (Xiao et al., 2011; Thayer et al., 2012) which 

affect significantly the efficiency of filter strips. In addition, the development of microrelief in 

the strip boundary leaded to the development of rill erosion that could breach the strips and 

decrease their efficiency (Pankau et al., 2012). 

A better understanding of the mechanisms controlling the hydraulics and sediment retention 

capacity of vegetation strips can be obtained from the calibration of models to extrapolate the 

available experimental data to the wide variety of scenarios (Fox et al., 2013) which eventually 

allow improving the effectiveness of their use in farm conditions. Furthermore, the 

determination of sediment sources using suitable sediment tracing/fingerprinting properties has 

been noted as one tool to evaluate the effectiveness and functioning of vegetated filters at the 

catchment scale (Koiter et al., 2013). At the small hillslope scale, the use of sediment tracers can 

provide insight about the origin and path of sediment trapped by vegetation strips. Guzmán et al. 

(2010a) developed a tracing technique based on magnetic iron oxides successfully used to 

determine differences in erosion rates within an olive orchard at plot scale (Guzmán et al., 

2013). This tracer can be potentially used for evaluating the trapping efficiency of vegetation 

strips in conditions similar to those found in orchards under Mediterranean conditions.  

The objectives of the present study are twofold: [1] to explore the combined use of natural and 

simulated rainfall and magnetic iron oxide in understanding the performance of vegetation strips 

on runoff and soil losses at plot scale and, [2] to evaluate the effectiveness degree of vegetation 

strips in buffering sediment from bare soil areas under different conditions compared to a 

control situation with no strips.  
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3.2. Study site and available data 

 Three runoff plots (A, B, C) were used in this experiment sited in Cordoba (Fig. 3.1), 

(Spain; 37º 51' N, 4º 48' W). These plots were located in an area with an average annual 

precipitation of 600 mm, on a slope of 20 % at 101 m.a.s.l. on a Fluvisol (WRB., 2014) with 

sandy loam textural class (5 % clay, 38 % silt, 57 % sand). Each plot was 6 × 14 m and was 

delimited with a 15 cm height steel sheet to avoid runoff coming from the plot surrounding. At 

the bottom of each plot (N-S gradient), the sheet was substituted by a steel channel that was 

connected to a pipe which collected runoff and sediment (Fig. 3.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1. Plot location in Spain and aerial view of the plots in the hillslope. 

 

The year before the starting of the experiment, each plot was subdivided into 6 strips. Three of 

them (6 m long and 2 m wide) were seeded to establish grass strips while the three left (6 m 

long and 2.7 m wide) were maintain bare using periodical tillage. The vegetated strips were 

seeded at a seed density of 120 g·m-2 of Lolium multiflorum, L. and fertilized at a dose 

equivalent to 80 kg ha-1 of N, P and K. 

The experiment lasted the hydrologic years 2011/12 and 2012/13 during which, additionally to 

the simulated rainfall, natural events were also recorded. Sediment was collected in a trap 

following the design of MacDonnald et al. (2001). Four sets of rainfall simulations were 

performed during the period of June 2011 to November 2013 with different soil conditions. 

 

 

 

a b c 
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3.3. Methods 
 

3.3.1. Soil tagging 

In early June 2011, 178 kg of soil, with a background magnetic susceptibility of 1.76 × 

10-7 m3 kg-1, were taken from the top 10 cm of the profile on the same slope outside the runoff 

plots to be air dried, sieved at 6 mm screen size and tagged with magnetic iron oxide following 

the protocol established by Guzmán et al. (2010a, 2013). This soil was mixed with 89 kg of 

synthetic magnetic iron oxide (Fe3O4), acquired as Bayferrox® 318 M, by serial dilutions. 

During this procedure, the mixture was slightly wetted and air dried as proposed by Guzmán et 

al. (2010a). These steps were repeated three times to enhance the binding of the iron oxides to 

soil aggregates.  

A total of 29 kg of the mix were spread by hand on each of the bare strips surface, raked to a 

depth of 5 cm and finally, slightly wetted with a spray. With this procedure, the average plot 

magnetic susceptibility of the tagged strips reached 7.71 × 10-6 m3·kg-1.  

 

3.3.2. Hydrological analysis: Rainfall simulations and natural rainfall events 

A total of six rainfall simulations were conducted in June 2011, June 2012, October 

2013 and November 2013. Six sprinkler nozzles (four in the corners of the plots and two in the 

gaps between the top and the bottom corner) spaced at 5 m and at 2.8 bars of pressure were used 

(Fig. 3.2).  

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Plot magnetic susceptibility, tagging map and sampling scheme (in meters). Grey colour represents the 

position of the vegetation stripes, not tagged, while the white area marks the bare soil tagged with magnetic iron 

oxide. Circles show the position of the raingages during the rainfall simulation. Dotted diamonds depict the position 

of the sprinkler nozzles. 
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The average rainfall intensity simulated was equal to 29.8 mm·h-1. A complete 

description of this rainfall simulator appears in De Luna et al. (2001). That rainfall intensity is 

close to the maximum rainfall intensities of 24-25 mm h-1 during 30 minutes determined by 

García (2007) for a 25 year return period using rainfall data measured at the nearby (5 km) 

Cordoba airport. Well water taken from the irrigation system of the experimental farm was used. 

Each of the four rainfall simulations, performed in summer and autumns time for logistical 

requirements, corresponded to four different scenarios of surface conditions. The two first ones, 

June 2011cover crop and June 2012cover crop, corresponded to grass strips with standing dry 

vegetation. They were aimed to assess the hydrologic response to rainfall events with good 

ground cover by standing vegetation in the grass strips. The two last rainfall simulations 

corresponded to bare soil along the entire plot surface, with freshly tilled, 5 cm deep, soil 

conditions in Octoberfreshly tilled and consolidated soil surface in November 2013consolidated surface. 

After the 2011cover crop rainfall simulation and as the runoff rates were extremely low, the 

experiment of June 2012cover crop was designed dividing the simulation into two halves (2012i and 

2012ii) of 2.30 h each, spaced by a 1 h break between both simulations. Thus, soil reached the 

saturated conductivity point during the first 2.30 h. In October 2013freshly tilled and November 

2013consolidated surface (2013i and 2013ii) the same scheme as in June 2011 and June 2012 was 

followed respectively, mimicking worst and best conditions for runoff generation.  

During the simulations, runoff samples from the drainage channels were collected at 2-min 

intervals from the moment that runoff started for determining total runoff, and sediment 

concentration. From the dried sediment obtained from these samples particle size distribution 

using laser diffraction (Beckman-Coulter® LS-230) as calibrated by Guzmán et al. (2010b) and 

magnetic susceptibility as indicated by Guzmán et al. (2013) were measured. 

Sediment captured at the sediment traps was sampled twice: in December 2012 covering the 

period from 16th/6/2012 (after the second rainfall simulation) to 18th/12/2012, and in May 2013, 

covering the period from 19th/12/2012 to 7th/05/2013. This sediment was also analysed for soil 

particle size distribution and magnetic susceptibility as mentioned above.  

 

3.3.3. Soil and sediment magnetic susceptibility analysis 

3.3.3.1. Determination of bulk density and soil moisture content 

Six soil moisture and bulk density samples from the top 5 cm of the soil were collected 

with a 100 cm3 cylinder for each of the plot strips before and after each rainfall simulation. The 

samples were collected in the middle of the strips (either bare or vegetated). Bulk density values 

were used for the MS2D® field loop calibration. Soil moisture content would give an insight of 

the state of the soil before and after each rainfall simulation. Samples were weighted straight 

after collecting them, then oven dried at 105 °C during 24 h and weighted again in the 

laboratory at room temperature.  
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3.3.3.2. Magnetic susceptibility measurements 

To evaluate the redistribution and delivery of the tagged top soil along the plots after the rainfall 

simulations, measurements of the changes in tracer concentrations in soil after the tagging and 

after each rainfall simulation were conducted, in addition to the determination of the magnetic 

susceptibility of the sediment measured at the plot outlet. 

For top soil determination of magnetic susceptibility, non-destructive measurements were made 

using a Bartington MS2D® field loop, which operates at a frequency of 0.958 kHz (Dearing, 

1999). This sensor was placed on the soil surface every meter forming a 1 × 1 m grid (Fig. 3.2) 

to measure the volumetric magnetic susceptibility along the top 140 mm of the surface. A total 

of 90 points were measured within each plot. To obtain the magnetic iron oxide used as a tracer, 

an empirical correlation between volumetric magnetic susceptibility obtained by the loop 

readings, with mass magnetic susceptibility measured in the laboratory, is necessary. For this 

purpose, six different loop measurements (one per strip) were recorded and after them, five soil 

samples (~15 g, Fig. 3.3) were taken in the locations were the loop was placed. This procedure 

was carried out before and after each rainfall simulation from the top 5 cm of the tagged and 

untagged soil. Mass magnetic susceptibility in the laboratory was measured with the MS2B® 

Dual Frequency Sensor at 0.465 kHz with accuracy to ±1 % (Fig. 3.3). The samples were air 

dried, weighted at room temperature, sieved (< 2 mm) and finely grounded before the analysis. 

The measurements were performed in duplicate. Mass magnetic susceptibility was obtained 

using equations 1 and 2. 

 

 

Figure 3.3. Soil sampling for magnetic susceptibility determination (left) and mass magnetic susceptibility in the 

laboratory (right). 

 
7( 2 10 ) / ( )soil m wMS B SI S  

 [1] 

 

where csoil
 is the sample magnetic susceptibility, MS2Bm

 is the volume magnetic 

susceptibility displayed in the laboratory sensor (dimensionless), 10-7SI  is the conversion of 

the susceptibility to SI units (m3 kg-1) and Sw
 is the sample weight (g). Once determined the 

sample magnetic susceptibility, it was necessary to transform the csoil
 values into g of 

magnetite in the sample (Eq. 2). 
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        [2] 

 

where gt
are the g of tracer in the sample, m is the theoretical mass of tracer that would fit in 

the soil sampler and is in function of the sample bulk density in g cm-3, csoil  is the sample 

magnetic susceptibility determined as in Eq. 1, cbackground
 is the soil background magnetic 

susceptibility and cFe3O4
is the magnetic iron oxide susceptibility.  

The empirical relationship between the volume susceptibilities and the grams of tracer obtained 

is shown in Fig. 3.4. This relation was used to convert the loop values into magnetite content for 

mapping tracer redistribution within the plots after the rainfall simulations.  

 

 

 

 

 

 

 

 

 

 

Figure 3.4. MS2D field loop and MS2B laboratory sensor calibration for mapping magnetic susceptibility along the 

plots. 

 

3.3.3.3. Modeling spatial sediment patterns: mixing model 

A mixing model (Eq. 3) developed by Guzmán et al. (2013) was used to determine the 

sources of the sediment after rainfall events. In this case the sources are on one hand, the 

vegetation strips (untagged soil) and, on the other hand, the bare soil (tagged). An α coefficient 

(Eq. 4) which encompasses the selectivity and distribution processes of the tracer was included 

in the calculation.  
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where csed
 is the magnetic susceptibility of the sediment sample, cb

 is the bare soil magnetic 

susceptibility before the rainfall simulations, fb
 is the fraction of sediment coming from bare 

soil strips, c v
 is the vegetation strips magnetic susceptibility before the rainfall simulations, 

fv
is the fraction from sediment coming from vegetation strips soil fraction after each rainfall 

simulation.  

cs
coefficient explains the preferential bound of the tracer for finer soil particles such as clays. 

To determine the tracer selectivity, 1200 g of tagged soil were passed through a sieve column to 

separate ten different aggregate sizes (ranging from 8 mm up to 25 μm). Their respective clay 

content was measured using laser diffractometry. The magnetic susceptibility was measured in 

the laboratory using the MS2B® Dual Frequency Sensor. All particle size analyses and 

magnetic susceptibility were performed in duplicate. Figure 3.5 shows the linear trend between 

soil aggregate sizes and their magnetic susceptibility. An average value of 1.70 ± 0.91 was 

determined in this study for the three plots in the different rainfall events. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.5. Relationship between the normalized magnetic susceptibility of the ten aggregate size (cs=χi/χ) and the 

mass normalized clay content (ci/c). 

 

describes the distribution of the tracer through the tagged depth which depends on the soil 

management. Guzmán et al. (2013) showed with plastic boxes filled with untagged soil layers 

and tagged soil on the upper ones, that there is a decreasing exponential trend between the 

magnetic susceptibility at each layer interval, (Fig. 3.6). The tracer distribution along the soil 

profile is ultimately determined by the soil bulk density and its application. An average value of 

2.40 ± 0.01 was obtained in this study for the three plots after the rainfall simulations. 
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Figure 3.6. Relationship between the average normalized magnetic susceptibility of the normalized depth intervals 

(hi/h) and the mass normalized clay content (cd=χi/χ).  

 

3.3.4. Statistical Analysis 

A one-wayANOVA was performed at p ≤ 0.05 to evaluate whether the effect of location 

between plots, or between different soil managements on the measured variables was 

statistically significant. When the ANOVA test showed significant differences, a multiple 

comparison post-hoc Bonferroni test was performed at p≤0.05 to check differences between 

means. All the computations were made using SPSS © (SPSS Inc., 2009). 

 

3.4. Results 

3.4.1. Rainfall, runoff and sediment measurements 

 

The summary results of the rainfall simulations appear in Table 3.1. 

There was a relatively large variability among replicated plots for any given set (same date) of 

rainfall simulations. Table 3.2 summarizes this variability among replicated plots, indicating a 

lack of systematic differences among replicated plots, moderately distinct simulated rainfall 

conditions, and a large variability in the measured variables related to runoff and sediment 

generation. This large variability in measured runoff and sediment generation at the plot scale is 

within the range observed and modeled in previous studies (Gómez et al., 2001). It is apparent 

in Table 3.2 that the simulated rainfall variables presented low coefficients of variation, similar 

to other published studies using similar designs (e.g. Castro et al., 2006).  

 

There were statistically significant differences at p ≤ 0.05 for cumulative runoff between June 

2011cover crop, June 2012cover crop and October 2013freshly tilled simulations, and the November 

2013consolidated surface (ii) simulation. A similar pattern in significant statistical differences was found 

for runoff rate, runoff coefficient, peak flow, soil loss and sediment concentration. The results of 
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the rainfall simulations are splitted into two sets that can be associated with different surface 

conditions. Although surface conditions were markedly different between some dates, the initial 

soil moisture of the top soil in the beginning of the four blocks of rainfall simulations (June 

2011cover crop, June 2012cover crop (i), October 2013freshly tilled and November 2013consolidated surface (i) was 

similar, with an average volumetric soil water content in the top 5 cm of the soil of 10.9 % 

without statistically significant differences between plots and different dates. Obviously the 

initial soil moisture in the two rainfall simulations preformed after a 1 h break (June 2012cover crop 

(ii) and November 2013consolidated surface (ii)) was much greater, with an average value of 20.1%. Soil 

conditions varied markedly between different rainfall simulation blocks.  
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Table 3.1. Attributes of the six rainfall simulations (CUC= Christiansen Uniformity Coefficient; P= event rainfall; RI= average rainfall intensity; TRG= Time to runoff generation; Cum. run= 

Cumulative runoff; R. rate= Runoff rate; C= Runoff coefficient; Qp= Peak flow; S.C. = Sediment concentration; Max. S.C = Maximum sediment concentration; i-ii= first and second half of the 

rainfall simulations; * = low value of the CUC coefficient as one of the measuring buckets fell). 

 

 

Simulation 
Duration 

(h) 

CUC  

(%) 

P  

(mm) 

RI  

(mm/h
-1

) 

TRG 

(min) 

Cum. run  

(mm) 

R rate  

(mm h
-1

) 

C 

(%) 

Qp  

(mm h
-1

) 

Soil loss  

(g/m
2
) 

Total soil loss  

(kg
-1

) 

S.C  

(g/L
-1

) 

Max.S.C  

(g/L
-1

) 

A 

jun-11cover crop 3 46.7* 57.7 19.2 7.2 18.3 7.7 31.7 12.6 31.5 2.6 1.9 4.8 

jun-12cover crop (i) 2.45 78.1 77.3 31.5 13.1 6.4 2.4 8.3 6.8 3.0 0.2 0.5 1.0 

jun-12cover crop (i) 2.45 84.1 78.7 32.1 7.2 12.1 4.8 15.4 8.5 7.9 0.6 0.3 0.7 

oct-13freshly tilled 3 84.2 88.6 29.5 6.2 0.03 0.01 0.03 0.04 0.04 0.003 1.5 5.1 

nov-13consolidated surface (i) 2.3 72.6 66.7 29.0 13.3 30.4 13.1 45.5 19.7 151.4 12.7 5.4 11.4 

nov-13 consolidated surface (ii) 2.3 56.4 61.1 26.6 3.2 49.9 20.3 81.5 37.8 439.6 36.9 8.6 12.1 

B 

jun-11cover crop 3 69.7 83.6 27.9 4.3 3.3 1.8 4.0 3.3 6.2 0.5 1.6 4.9 

jun-12cover crop (i) 2.3 89.0 93.7 38.2 13.1 0.4 0.3 0.5 0.7 0.2 0.02 0.7 2.4 

jun-12cover crop (i) 2.3 88.3 98.6 40.2 11.1 4.4 2.0 4.4 5.0 1.7 0.1 0.4 0.7 

oct-13freshly tilled 3 84.3 71.1 23.7 4.3 0.1 0.07 0.2 0.2 0.1 0.01 1.2 3.1 

nov-13consolidated surface (i) 2.3 77.2 68.8 29.9 4.1 22.0 8.8 32.0 13.2 137.8 11.5 5.7 6.9 

nov-13 consolidated surface (ii) 2.3 69.9 60.6 26.3 0.4 31.3 12.8 51.6 18.8 240.0 20.1 7.5 9.7 

C 

jun-11cover crop 3 80.7 72.9 24.3 34.1 4.1 0.9 5.6 1.6 8.8 0.7 1.7 3.9 

jun-12cover crop (i) 2.3 82.8 81.1 33.1 11.5 0.2 0.1 0.3 0.8 0.1 0.01 0.4 0.5 

jun-12cover crop (i) 2.3 79.4 85.9 35.1 15.0 0.7 0.3 0.9 0.8 0.7 0.07 0.8 1.8 

oct-13freshly tilled 3 89.9 97.4 32.5 34.1 0.8 0.8 0.8 3.6 0.9 0.08 1.2 4.0 

nov-13consolidated surface (i) 2.3 81.4 74.9 32.5 38.4 14.2 7.8 19.0 13.3 35.3 2.9 3.4 17.5 

nov-13 consolidated surface (ii) 2.3 87.2 54.7 23.8 5.0 20.0 8.5 36.6 13.6 67.1 5.6 3.2 5.5 
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Table 3.2. Average values of the attributed of the six rainfall simulations (CUC= Christiansen Uniformity Coefficient; P= event rainfall; RI= average rainfall intensity; TRG= Time to runoff 

generation; Cum. run= Cumulative runoff; R. rate= Runoff rate; C=Runoff coefficient; Qp= Peak flow; S.C=Sediment concentration; Max. S.C= Maximum sediment concentration; i-ii= first and 

second half of the rainfall simulations).  

 

 
CUC  

(%) 

P  

(mm) 

RI  

(mm h
-1

) 

TRG  

(min) 

Cum.run 

(mm) 

R rate  

(mm h
-1

) 

C  

(%) 

Qp  

(mm h
-1

) 

Soil loss  

(g/m
2
) 

Total soil loss  

(kg
-1

) 

S.C  

(g/L
-1

) 

Max.S.C  

(g/L
-1

) 

jun-11cover crop 65.7 71.4 ab 23.8 a 15.2 8.5 a 3.5 13.7 a 5.8 ab 15.5 ab 1.3 ab 1.7 ab 4.6 abc 

jun-12cover crop (i) 83.3 84.0 ab 34.3 b 12.5 2.3 a 0.9 3.0 a 2.8 a 1.1 a 0.1 a 0.5 a 1.3 ab 

jun-12cover crop (i) 83.9 87.7 a 35.8 b 11.1 5.7 a 2.4 6.9 a 4.8 ab 3.5 ab 0.3 a 0.5 a 1.1 b 

oct-13freshly tilled 86.1 85.7 ab 28.5 ab 14.8 0.3 a 0.3 0.3 a 1.3 a 0.3 a 0.03 a 1.3 a 4.1 abc 

nov-13consolidated surface (i) 77.0 70.1 ab 30.0 ab 18.6 22.2 ab 9.9 32.2 ab 15.4 ab 108.2 ab 9.0 ab 4.8 bc 11.9 c 

nov-13 consolidated surface (ii) 71.2 58.8 b 25.6 ab 2.9 33.7 b 13.8 56.6 b 23.4 b 248.9 b 20.9 b 6.4 c 9.1 ac 

a,b,c= Within column followed by different letters were significantly different at p ≤ 0.05 using Bonferroni test. 
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Runoff and sediment losses during all the simulations, with the exception of that of November 

2013i-ii on compact bare soil, were of low magnitude with values < 20 mm and <1 g·m-2, 

respectively (Table 3.1). Average sediment losses trapped at the plot outlet from 7th/05/2013 (a 

period with a cumulative rainfall of 805.2 mm) were also low, 4.21 gr m-2 

 

3.4.2. Soil redistribution and source of sediments 

The analysis of the magnetic susceptibility of the sediment allows an evaluation of the 

transport of the tagged soil from bare areas to the plot outlet. Table 3.3 summarizes average 

magnetic susceptibility and clay enrichment (referred to soil clay content) of the collected 

sediment. Although there is a large variability in events generating low sediment losses, there is 

overall a selective transport of finer fractions, with a (weighted) average enrichment ratio of 121 

%. This enrichment ratio fluctuates widely in the small events, which we attribute to 

remobilization of previously deposited sediment within the plot and closer areas to the outlet. 

For events generating the largest soil losses, this enrichment ratio tends to decrease to values 

closer to 100 %. As indicated above there was a positive correlation (R2 = 0.85, p<0.05) 

between enrichment in clay fraction and magnetic susceptibility of the sediment which is a 

composite of tagged and untagged soil. 

 

Table 3.3. Weighted values (average) of the collected runoff sediment sample magnetic susceptibility and particle 

size for each rainfall simulation 

 Plot A Plot B Plot C 

 

Magnetic 

susceptibility 

Clay 

enrichment 

(%) 

Magnetic 

susceptibility 

Clay 

enrichment 

(%) 

Magnetic 

susceptibility 

Clay 

enrichment 

(%) 

jun-11cover crop 44.60 367.30 3.08 156.90 2.44 65.40 

jun-12cover crop (i) 8.30 153.40 1.03 92.20 0.34 77.80 

jun-12cover crop (i) 16.10 296.10 5.49 219.90 4.57 147.80 

oct-13freshly tilled 6.10 204.50 2.99 103.90 1.73 68.90 

nov-13consolidated surface (i) 5.45 134.80 4.26 127.70 5.11 166.30 

nov-13 consolidated surface (ii) 3.89 101.20 3.99 103.50 3.91 101.80 

Values of magnetic susceptibility in x10-6 m3 kg-1 

 

An analysis of these two magnitudes during the rainfall simulation experiments is presented in 

Figure 3.7 for Plot B. The other two plots presented similar results. It is apparent that in the 

simulations with the plots having vegetation strips and the freshly tilled plot, a progressive 

increase in the clay content of the delivered sediment is observed as the simulation event 

progress, reaching in most cases an equilibrium state. This trend was not observed in the 

consolidated bare soil plots.  
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Figure 3.7. Sediment magnetic susceptibility variation during the rainfall simulations in plot B. 

 

Figure 3.8 depicts the average contribution for the three plots of each of the two originally 

differentiated areas (bare tagged soil and untagged strips of cover crop) at the end of each of the 

four rainfall simulation blocks. Two major features can be noted. One is that the contribution to 

the delivered sediment of the bare areas among cover crop strips for the three first set of rainfall 

simulations was between 30 to 40 % when the plot surface presented a 57 % of bare soil. This 

might indicate a lower connectivity of these areas to the plot outlet due to the vegetation and the 
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micro-terraces formed by these areas which remained after the tillage and they were performed 

perpendicular to the direction of the maximum slope. The second noticeable feature is the 

increase on the contribution of the originally tagged soil once the vegetation and micro-relief 

was eliminated, as indicated by the 65 % contribution to the delivered sediment in the 

November simulations. This might be a consequence of a better connectivity of the originally 

tagged areas and the remobilization and transport of some of the trapped sediment in the old 

cover crop strips areas.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Average values and tipic standard error bars of the sediment contribution from the tagged (area originally 

bare between cover crop strips) and untagged (area originally covered by vegetation strips) areas to the total 

sediment. CC: cover crop; FT: freshly tilled; CS: consolidated surface. 

 

Figure 3.9 shows the mobilization of the originally tagged sediment during the experiment 

within plot B, with similar results for the other two plots not shown. The use of a sediment 

tracer allows the identification of areas with net erosion and those with net deposition referred 

to the tagged soil. It is observed in Figure 8 that during the first rainfall simulation most of the 

net erosion comes from the bare areas in the lowest half of the plot, while in the uppermost half 

there is a redistribution and re-deposition of mobilized tagged soil. As the experiment 

progresses, June 2012, it is notable how there was no deposition (e.g. no sediment trapping 

coming upslope) in part of the two strips closer to the plot outlet. This situation persisted even 

for the simulations over tilled plots, October 2013 and November 2013, suggesting that 

microrelief at a scale which cannot be obliterated by tillage, also plays a major role in 

connecting the different areas within the plot to the outlet.  
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Figure 3.9. Soil movement along plot B. Dotted lines show the extension of each vegetation strip. Negative values 

denote areas with net soil displacement and positive values areas with net soil deposition. 

 

3.5. Discussion 

The measured variability among replicated plots was similar to those observed in 

rainfall simulations experiments (Lascelles et al., 2000; Seeger, 2007), or natural rainfall 

(Gómez et al., 2001). As expected, there was a large reduction in runoff and sediment losses 

from the cover crop strips conditions compared to the bare and tilled ones. Total sediment losses 

under cover crop were approximately 50 % of those measured under tilled ones. On the other 

hand, cumulative sediment losses under cover crop conditions were approximately 12 % of that 

measured under tilled conditions. 
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This reduction in runoff and in sediment losses was similar to the reduction measured by Le 

Bissonnais et al. (2004) in a plot experiment with a cover crop strip, of 3 m width, similar to the 

ones used in our experiment. Overall the reduction observed is in the range described by many 

studies such as Lidgi and Morgan (1995), van Dijk et al. (1996), Martínez et al. (2006) or 

Mankin et al. (2007). The reduction in sediment losses is a combination of reduced runoff and 

sediment concentration (which in the case of the cover crop strip was approximately 30 % of the 

measurements on the tilled plot conditions). The physical processes for this reduction must be 

associated to: an increase of infiltration and roughness associated to the cover crop strips 

(Römkens and Wang, 1986) and a significant surface storage related with the development of a 

micro-terrace by the cover crop strips and to the effects of perpendicular tillage to the direction 

of the maximum slope. Abujamin et al. (1988) observed the development of similar induced 

bench terraces on the area between the vegetation strips and the sedimentation behind them. All 

these results suggest that the evaluated cover crop strips were properly implanted and 

performing as expected. 

The significant reduction in sediment losses was combined with a significant enrichment of the 

delivered sediment. This can be relevant for the evaluation of the effectiveness of the cover 

crops as filter strips for agrochemicals, since the carrying capacity for pollutant materials is 

related to the size distribution of the eroded material Gabriels and Moldenhauer (1978). Our 

study indicates that for the soil type and situations evaluated, there is a trend towards a selective 

enrichment of fine particles. This selectivity in the erosion process has been noted by many 

studies e.g. Lidgi et al. (1995), Jin and Römkens (2000), Le Bissonais et al. (2004), Malam et al. 

(2006), Pan et al. (2010) or Ma et al. (2013). An innovation in this study is the use of a tracer (in 

this case magnetic) that can mimic the behavior of agrochemicals that bind to the clay particles 

of the soils (case of some fertilizers or herbicides) indicates, and quantifies, these results also in 

a selective transport and an increased concentration compared to the original concentration in 

soil. Pan et al. (2010) also showed that grass strips were more effective trapping sediments 

coarser than 10 or 25 µm. This behavior has not been observed universally in Mediterranean 

soils. For instance, Martínez-Mena et al. (1999) showed a preferential enrichment in sand and 

silt content on a Lithic Xheric Haploxeroll. Our results are in agreement with independent 

measurements on similar soils from different agricultural areas in Andalusia, showing a 

selective enrichment in clay and nutrient content in sediment in olive and vineyard growing in 

Mediterranean soils using a cover crop compared with a soil management based on bare soil 

using tillage (e.g. Gómez et al., 2011). Gómez et al. (2011) indicated how, despite achieving a 

drastic reduction in sediment losses using the cover crops compared to tillage, this selective 

transport resulted in an increased concentration in nutrients in the sediment coming from the 

cover crop treatment compared to the sediment coming from the tilled areas A parallel study 

performed in parallel with this rainfall simulation experiment, currently analyzing the results, is 

measuring the trapping efficiency of the cover crop strips for several herbicides applied in the 

bare soil area, including the implications of this selective transport of finer fractions. 

The analysis of the redistribution of the tagged sediment during all the experiments suggest a 

large impact of microrelief, and the need of careful traffic and soil management to prevent the 

development of areas of preferential flow that can breach the cover crop strips. Stevens and 

Quinton (2008) documented by using rare oxide, how tramlines in a field crop area in UK 

provide a large connectivity for delivering runoff and sediment downslope out of the field. The 

common practice observed in many olive and vineyard growing areas in the Mediterranean of 

establishing cover crop strips perpendicular to the direction of the maximum slope (e.g. Gómez 
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and Giráldez, 2010) but trafficking (for safety or simply convenience) in the direction of the 

maximum slope, might result in a drastic reduction of the buffer effectiveness of the cover crops 

and should be investigated in more detail. It is interesting to note how the elimination of the 

cover crop strips meant the remobilization and delivered to the plot outlet of a large fraction of 

the tagged soil. This implies that temporal elimination of the cover crop strips, which is an 

operation sometime uses rather to seed a new cover crop or to remove this during the dry season 

in tree crops in Southern Spain can cause a severe decrease of trapping effects of cover crop if 

an storm occurs during the summer or early fall period (which is not uncommon in the 

Mediterranean type of climate) prior to the development of a new cover. This kind of 

management should also be discouraged, and when necessary the replacement of the cover crop 

should be made partially leaving some of the strips in place to prevent catastrophic events such 

as the simulated in the tilled conditions of our experiment. 

 

3.6. Conclusions 

Rainfall simulations under different soil conditions combined with the analysis of 

sediment particle size and redistribution movement using magnetic iron oxide as sediment tracer 

have demonstrated to be a useful methodology for determining vegetation strips behavior at plot 

scale in comparison with tilled bare soil. Our results indicate that when using cover crops strips, 

runoff and sediment losses were, respectively, approximately 50 and 12 % of that measured 

when the plot was completely bare and tilled. This reduction was related with increased 

infiltration, higher hydraulic and topographic roughness induced by the vegetation, and 

development of a micro-terrace where the cover crop strip was. There was a selective transport 

of clay particle size in the sediment leaving the plots associated with preferential transport of the 

substances, as the magnetic tracer indicated. Therefore, a great quantity of agrochemicals 

movement, with preferential binding to the clay particles, is expected. This can explain the trend 

observed in other experiments in Mediterranean areas, with similar soils for an increase 

concentration of some nutrients in the sediment leaving cover crop treatments, in comparison to 

bare soil in olive and vineyards. 
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Resumen 

 La optimización de las estrategias de conservación de suelo, requiere un diagnóstico 

apropiado de las principales fuentes contribuyentes a la degradación de suelo en el proceso de 

identificación de las áreas prioritarias para la implentación de dichas estrategias. En este 

estudio, se exploraron distintas estrategias de calibración del modelo SEDD en dos olivares 

comerciales de 6.7 (Setenil) y 8 ha (Conchuela) situados en España, los cuales han estado 

monitorizados por un periodo de 6 años. En Setenil se midieron un total de 121 eventos, 

mientras que en el caso de Conchuela 195. Los principales objetivos de este trabajo fueron: [1] 

calibrar el modelo en las cuencas de estudio con distintas características ambientales y manejos 

de suelo distintos, [2] estudiar diferentes estrategias de calibración y parametrización para 

facilitar el uso del modelo bajo diferentes condiciones de escorrentía y [3], evaluar la 

variabilidad temporal del coeficiente de entrega de sedimento (SDR) a escala de evento y anual 

para, de esta forma, determinar qué áreas dentro de la cuenca contribuyen a la mayor 

exportación de sedimento y, de esta forma, concentrar las diferentes medidas de conservación. 

El valor de β es el principal parámetro del modelo que representa el peso de los tiempos de viaje 

de las distintas unidades geomorfológicas de la cuenca. Para la calibración de SEDD se 

representaron cinco escenarios diferentes de erosividad que combinaban distintas ponderaciones 

de las componentes de lluvia y del flujo. Asimismo se evaluó el efecto de valores únicos y 

quincenales del factor de manejo (C) con el fin de optimizar el esfuerzo en calibración. En este 

caso, se calcularon valores de C-RUSLE anuales (de 0.50 a 0.01 con un intervalo de 5) los 

cuales se asociaron al tipo de manejo de suelo, y valores de C-RUSLE estacionales derivados de 

la humedad del suelo y la cubierta espontánea. El mejor escenario para Setenil (Rt=Rp) se asoció 

a una erosividad total igual a la erosividad asociada a la lluvia. Por el contrario, el mejor 

escenario para Conchuela estuvo asociado a los valores de erosividad equivalentes a la 

erosividad dependiente del flujo (escorrentía y caudal punta, Rt=Rq). La mediana de la 

distribución de los valores de β de los eventos proporcionó un buen ajuste del modelo 

únicamente en Conchuela con C-RUSLE anual (E=0.92, RMSE=4.78 para C-RUSLE=0.30). En 

el caso de Setenil, el análisis de la función del coeficiente de entrega (dependiente de β) justificó 

el agrupar los eventos de acuerdo al signo de β, lo cual proporcionó un aceptable ajuste cuando 

las medianas de cada región (positiva y negativa) fueran usadas (E=0.58, RMSE=7.94 para C-

RUSLE=0.30). Finalmente, el uso de C estacionales mejoró la calibración, particularmente en 

Conchuela (E=0.95, RMSE=5.03) donde los efectos de la humedad asociados al suelo (Vertisol) 

son significativos. 

Los coeficientes de entrega de sedimento (SDR) en ambas cuencas indican un transporte de 

sedimento muy dinámico. El SDR medio anual en Setenil fue de 64.1 % (con una desviación 

estándar de 57.5 %), mientras que en Conchuela fue de 94.2 % (con una desviación estándar de 

83.7 %). Los valores extremos de SDR (>100 %) se asociaron a años muy húmedos con valores 

de precipitación un 30 % mayores que la media. A escala de evento, se observaron tendencias 

simulares y los SDR> 100% se asociaron a un papel dominante en la exportación de sedimentos 

de cárcavas en Conchuela y de regueros y cárcava efímera en Setenil. 

Palabras clave: SEDD, SDR, RUSLE, unidad geomorfológica, microcuenca olivarera 
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Abstract 

 In order to optimize soil conservation strategies, an accurate diagnosis of the main areas 

contributing to soil erosion in catchments which can be identified through models such as 

SEDD (Sediment Delivery Distributed model) is required. In this study, different calibration 

strategies of the SEDD model were explored in two commercial olive microcatchments, both 

located in Spain - Setenil (6.7 ha) and Conchuela (8 ha) - and monitored for a 6-year period. The 

main objectives were: [1] to calibrate the model to study watersheds with different 

environmental characteristics and different soil management, [2] to study different calibration 

and parameterization strategies in order to facilitate use of the model under different runoff 

conditions, and [3] to evaluate the temporal variability of the sediment delivery ratio (SDR) at 

the event and annual scale. This last objective could enable us to determine which areas within 

the watershed are contributing to sediment export and, thus, choose the ideal soil conservation 

strategies in those areas.  

For SEDD calibration, five different erosivity scenarios were represented. In these scenarios, 

combinations of different weights of precipitation components and concentrated flow were 

explored. Furthermore, in order to optimize the calibration, biweekly and annual C-RUSLE 

values were evaluated. In all these scenarios, the analysis was focused on β, which represents 

the weight of the travel times of the different watershed geomorphological units, as the main 

model parameter. 

The SEDD model was calibrated successfully in the Conchuela watershed, whereas poor 

adjustments were found for the Setenil watershed, due to the adjustment of the β-median. In 

Conchuela, the best calibration scenarios were associated with erosivity values related to 

concentrated flow, while the erosivity value for the Setenil watershed was only rain-dependent. 

Biweekly C-RUSLE values provided suitable, consistent results in Conchuela where there tends 

to be considerable variability in soil moisture over the year. In contrast, there were no 

appreciable improvements between annual and biweekly C-RUSLE values in Setenil, probably 

due to the narrower variation interval. 

The analysis of the SDR function justified the grouping of the different β values according to 

their sign (positive or negative) as a calibration strategy in Setenil. The medians of these groups 

of events allowed them to be adjusted (E = 0.7; RMSE= 6.4). In the Conchuela watershed, this 

variation in the model calibration produced only minor improvements to an adjustment which 

was already good. 

The sediment delivery ratios (SDR) in both watersheds indicate very dynamic sediment 

transport. The mean annual SDR for Setenil was 64.1 % (with a standard deviation of 57.5 %), 

while in Conchuela it was 110.1 % (with a standard deviation of 83.7 %). Extreme SDR values 

(>100 %) were associated with very humid years and with precipitations 30 % above the mean 

values. At the event scale, similar SDR behaviour was observed. SDR values >100 % were 

associated with a dominant role of the gully in exporting sediments out of the watershed in 

Conchuela, whereas this was done by rills and an ephemeral gully in the Setenil watershed.  

Keywords: SEDD, SDR, RUSLE, geomorphological unit, olive microcatchment 
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4.1. Introduction  

Olive plantations located in mountainous areas or on steep slopes in Southern Spain 

have been identified as one of the major sources of soil erosion in the region (Gómez-Limón et 

al. 2011). In work carried out by Vanwalleghem et al., (2011), reconstructing the temporal 

variation of soil management and its erosion rates in olive trees located in mountainous areas, 

the authors found soil losses of between 8 and 124 t ha-1 year-1 for water treatment and soil 

losses from 3 up to 42 t ha-1 year-1 for tillage management (similar to values obtained by Gómez 

et al., 2009). A number of experimental studies have been performed to quantify soil losses in 

olive orchards and to evaluate the impact of different managements in runoff plots with a 

maximum size of 200 m2 (Kosmas et al., 1997; Pastor et al., 1999; Gómez et al., 

2003;2004;2009; Licciardello et al., 2013). In a summary of their experimental studies, Gómez 

et al. (2008) indicated how at the hillslope scale, the soil management of olive orchards with 

bare soil resulted in unsustainable water erosion rates when measured in plots of adequate 

length to represent hillslope processes. At this spatial scale, the erosive processes taking place 

are mainly splash, inter-rill and rill erosion; however, on commercial farms, there can also be 

major erosion derived from concentrated flow in larger rills or gullies. For instance, Taguas and 

Gómez (2015) measured total soil losses of >10 t ha-1 year-1 in a hilly olive microcatchment 

with a mean slope of 9.5 % in Southern Spain for hydrological years with annual precipitation 

close to the long-term average (700 mm). Thus, studies of soil losses from geomorphologic 

units such as micro-watersheds (Taguas et al., 2009; 2010; Gómez et al., 2014), can provide 

information which is more relevant to the challenges faced by farmers in implementing suitable 

management measures to ensure the sustainability of resources and safeguard their incomes.  

In order to optimize conservation strategies, an accurate diagnosis of the main sediment sources 

contributing to soil erosion is required, as well as identifying the areas where the measures 

should be implemented more urgently. Locating and determining the morphological origins of 

the sediment will help us to predict which areas are more prone to soil loss and which type of 

soil conservation measure is more suitable (vegetation strips, check dams, afforestation in 

rivers, etc).  

Research carried out over the last 50 years has developed erosion models which can predict 

sediment production at different spatial and temporal scales, as well as performing specific 

monitoring of the different erosive processes in different regions of the world (a review of the 

different models applied in soil erosion studies can be found in Merrit et al., 2003). Erosion 

models can help us to understand hydrological processes, and simple parametric approximations 

such as USLE (Universal Soil Loss Equation; Wischmeier and Smith, 1978) or its revised 

version RUSLE (Renard et al., 1997), calibrated from physical parameters, are commonly used 

to evaluate risk of soil erosion all around the world.  

SEDD (Ferro and Minacapilly, 1995) is a sediment delivery distributed model based on the 

USLE whose main features are its applicability at the scale of the geomorphological units into 

which a basin is divided, and the ability to predict SDR at the geomorphological unit and 

catchment scale (Ferro and Porto, 2000). Using the USLE as a starting point, the model has 

been calibrated under different environments (from studies in the Mediterranean basin, the 

Pyrenees and Northwest USA) and soil managements such as eucalyptus forests (Ferro and 

Porto, 2000); coniferous forests with croplands (Fernández et al., 2003; Fu et al., 2006; López-

Vicente and Navas, 2011), olive watersheds (Taguas et al., 2011) and naturally-colonized 

abandoned farms (López-Vicente et al., 2013). It has been also validated with Cs137 in forested 



Distributed processes in the runoff and sediment generation and transport in olive groves at different scales 

 

56 

 

areas with eucalyptus trees at the mean annual temporal scale. In this study, the model was 

applied at both geomorphological unit and basin scales (Di Stefano et al., 2005). The SEDD 

model was chosen for our study because: (1) it allows for discretization of a watershed into 

geomorphological units; (2) it predicts SDR at the geomorphological unit and basin scales; (3) it 

is based on the RUSLE, a model used under Mediterranean olive catchments with favourable 

results (Gómez et al., 2003; Vanwalleghem et al., 2011); (4) it is easy to couple within a GIS 

(López-Vicente and Navas, 2010); (5) previous studies performed in olive catchments in south 

Spain support its application and reliability (Taguas et al., 2011).  

The present work aims to shed light on watershed scale erosion studies in commercial olive 

farms, by adapting tools to evaluate soil degradation risk. The specific objectives were then [1] 

to calibrate the model on two different commercial farms with olive cultivations located in areas 

with different environmental features in terms of precipitation, soils and management, and 

monitored over a period of six years; [2] to study different calibration strategies and 

parameterisation in order to facilitate the use of the model in different conditions and [3] to 

evaluate the temporal variability of Sediment Delivery Ratios (SDRs) at the event and the 

annual scales, identify the areas which contribute most to the soil losses and decide where the 

conservation measures should be concentrated. 

 

4.2. Study site and available data 

 

4.2.1. Catchment location and description 

Two commercial olive microcatchments were selected for this study (Fig. 1). The 

Setenil microcatchment is located in the province of Cádiz (36.88º N, 5.13º W). The drainage 

area is 6.7 ha, with a mean elevation of 782 m and mean slope of 9.5 %. A full description of 

the watershed can be found in Taguas and Gómez, (2015). A total of six hydrological years 

under different soil management techniques were used in the analysis. In 2005-2006 and 2006-

2007, the soil management applied was no tillage (NT), with bare soil and using herbicide; 

conventional tillage (CT) was used in 2007-08, 2008-09 and 2009-10 and conservation 

measures (CM) which included mulching were applied in 2010-11. A summary of the soil 

management operations conducted in the Setenil catchment was published by Taguas and 

Gómez, (2015).  

The experimental catchment of 'La Conchuela' (37º N, 4º W) is located 10 km west of Cordoba. 

The drainage area is 8 ha, with a mean elevation of 142 m and mean slope of 9 %. The soil 

management technique used was growing natural weed vegetation in the lanes, applying 

glyphosate and occasional mowing in some areas. At the same time, surface tillage was 

occasionally used, but only to cover rills or small gullies so tractors could pass (Gómez et al., 

2014). A total of five hydrological years were used in the analysis. As in Setenil, a complete 

description of the watershed and its measuring equipment can be found in Gómez et al., (2014).  
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4.2.2. Hydrological data 

A total of 121 runoff events were collected in the Setenil watershed for the period 

2005-2011, of which 60 were used in the analysis. 195 were collected in Conchuela from 2006-

2011, 95 of which were used in this study. This reduction is due to the fact that only complete 

events in terms of peak flow, runoff and sediment load at the basin outlet were considered. A 

full description of the dataseries can be found in Gómez et al. (2014) and Taguas and Gómez 

(2015). 

 

 

Figure 4.1 Location and view of the study catchments: (up) situation in Spain; (below) aerial ortophotography with 

their limits and their geomorphological units.  

 

 

Setenil 

Conchuela 
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4.3. Methods 

4.3.1. SEDD model (Sediment Delivery Distributed model) 

4.3.1.1. Model components  

SEDD (Sediment Delivery Distributed model) is a distributed model developed to 

calculate sediment yield based on the USLE (or its revised version RUSLE) and the SDR 

calculations for each geomorphological unit i (SDRi).  

SDRi depends on the eroded particle travel time along the hydraulic path until it reaches the 

nearest channel, after which it becomes a variable subrogated to travel time. Ferro and 

Minacapilli (1995) established an equation (1) to calculate the sediment delivery ratio for each 

geomorphological unit (SDRi): 

 
,exp( )i p iSDR t    [1]  

where 
,p it  is the travel time (m) for each geomorphological unit, and β (m-1) is a coefficient 

(assumed constant for the basin) according to the calculated linear relationship between the 

logarithm of the cumulative frequency of length and the square root of the slope of the hydraulic 

path, and the travel time (Ferro and Porto, 1998). The travel time of the eroded particles in each 

geomorphological unit (
,p it ) is calculated as in equation (2): 
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where 
,p il  and 

,i j  (m) are the length of each geomorphological unit i located along the 

hydraulic path, and 
,p iS  (m m-1) is the slope of the hydraulic path along each geomorphological 

unit i. In this study, the slope was calculated as in Laurenson (1986). 

Equation (1) can be rewritten to take into account both the calculation of SDRi and the travel 

time for each geomorphological unit, as in equation (3): 
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Some authors have tried different values for β (described as the median value and assumed 

constant for the calculations according to Ferro and Minacapilli, 1995) without it being directly 

solved from the equation, and then using the value which gave a better approximation (e.g. 

increments of 0.1 in the case of Jain and Kothyari, 2000, or assuming β with a constant value as 

in Fu et al., 2006 and López-Vicente and Navas, 2010, López-Vicente et al., 2011). In this 
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study, β was solved for each event from the equation using the Engineering Equation Solver 

programme (EES Software, 2008), as in Taguas et al. (2011). 

 

4.3.1.2. Geomorphological unit determination 

A geomorphological unit is defined as an area with a defined aspect, length and 

steepness (Ferro and Porto, 2000). The determination of the different geomorphological units 

was carried out following topographical and agronomic criteria. Firstly, the catchment was 

divided into hillslopes following slope length and cumulated drainage areas - in Conchuela this 

was then subdivided by taking into account physical features such as the aspect and the state of 

olive trees. The length of the hydraulic path was defined taking into account the distance 

between the most distant point in each geomorphological unit and the beginning of the channel 

(or where there was a change in the slope). To do so, a 1 x 1 m resolution DEM for ArcGIS 9.0 

Spatial Analyst (ESRI, 2006) was used in both Setenil and Conchuela watersheds. 

 

4.3.1.3. Sediment yield calculations  

The sediment yield of a geomorphological unit iSU  was calculated as follows (equation 

4): 

 ï i i i i i i iY R K LS C P SDR SU         [4] 

 

iSU  is the area of the geomorphological unit i; the R-RUSLE was replaced by the Williams 

runoff factor (1977), equation 5:  

 

 
t p qR d R e R      [5] 

 

where tR  is the erosivity factor for a given event (MJ mm ha-1 h-1), 
pR is the erosion calculated 

as by Wischmeier and Smith (1965) in MJ mm ha-1 h-1; d  and e  are numerical constants 

indicating the weight given to the precipitation and runoff, and 
qR  is the Williams runoff factor 

for a given event (MJ mm ha-1 h-1), calculated as in equation 6: 

 

  
0.56

11.8 pY Q Q    [6] 

where Q  is the runoff volume associated to the event (m3) and 
pQ  is the peak flow of the event 

(m3 s-1).  
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LS-RUSLE represents the proportion of soil loss for a given length and slope. To determine the 

value of the longitude and slope, a 1 x 1 m resolution DEM was obtained in 2011 for both 

basins. The topographic factor was calculated following the Moore and Burch (1986) approach 

(equation 7): 

 

 

0.4 1.3
sin

( 1)
22.13 0.0896

sA
LS n

   
    

  
  [7] 

 

where sA  represents the slope length expressed as the drainage area per unit area (m2 m-1), 

obtained with the 'flow accumulation' function, which calculates the number of cells upstream 

(Arctoolbox, Hydrology functions, ESRI, 2009); n  =0.4 and δ (º) is the DEM cell slope 

(Taguas et al., 2011). 

 

C-RUSLE reflects the effect of the crop and soil management on the erosion rates. It varies 

depending on the soil management and the state of the soil in the catchment, particularly soil 

moisture and ground cover by vegetation and crop residues, and it was calculated as indicated in 

section 2.3.4.  

When calculating K-RUSLE, a total of 13 soil samples were collected in the Setenil watershed 

below the tree canopy and in the tree rows at a depth of 10 cm and the location was stored in a 

GPS. Soil texture was obtained by the pipette method, organic matter content by the Walkley-

Black method and percentage of carbonates by the van Wesemael method (Taguas, 2007). 

Similarly, 45 soil samples were also taken below the tree canopy and in the tree rows at a depth 

of 5 cm in the Conchuela watershed. The M factor was calculated taking into account the 

percentage of clay, silt and fine sand. The K-RUSLE was then calculated according to Renard et 

al., (1997). The K-RUSLE for each watershed was then calculated using an Inverse Distance 

Weight (IDW) interpolation method coupled to the ArcGIS Spatial Analyst (ESRI, 2009).  

In this work, a value of P-RUSLE equal to 1 was used.  

Thus, the basin sediment production would be the sum of the sediment yield of each 

geomorphological unit in which the basin is divided, as in equation 8 (Ferro and Porto, 2000): 

 

  ,exp
pN

b t b i i i p i i

i j

Y R C K LS P t SU


        
    [8] 

Average potential erosion was calculated following the RUSLE (Renard et al., 1997) equation 

(with RUSLE factors calculated as mentioned above) and was only computed with an 

established threshold value of daily precipitation >10 mm for each event and for each 

geomorphological unit.  
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4.3.1.4. Sensitivity analysis and model calibration 

For the model calibration, five different runoff scenarios were performed for the two 

watersheds for different values of erosivity which weighted the importance of rainfall (splash 

and inter-rill erosion) versus the concentrated runoff (Rt=0.5Rp+0.5Rq; Rt=Rq; Rt=Rp; 

Rt=0.75Rp+0.25Rq, Rt=0.25Rp+0.75Rq, Eq. 5). In this study, we present the best fitted scenario 

for each basin.  

In addition, two sets of C-RUSLE were calculated to evaluate different calibration alternatives 

according to the procedure proposed by Gómez et al. (2003). One set was constant C-RUSLE 

(to evaluate the sensitivity of the model) and the second set was adapted to the management and 

soil moisture variations. Firstly, a total of 11 annual C-RUSLE values were calculated at a lag 

interval of 5 from 0.50 to 0.01 and applied to the different erosivity scenarios. For each event, 

the β value was calculated (equation 8) and the histograms associated to each scenario were 

represented.  

Then, the β median of the values calculated from the equation 8 for each event was obtained for 

all erosivities and C-RUSLE values following the model guidelines applied by Ferro and Porto 

(2000). The best calibration of the model with the β median was determined through the 

statistics shown in equations (Eq. 9-11). 

The degree of agreement between the observed sediment yield measured at the basin outlet and 

the predicted data was calculated using the efficient coefficient (E) calculated using the Nash 

and Sutcliffe (1970) equation (Eq. 9), the root mean square error of the residuals (Eq. 10), the 

correlation coefficient between the observed and the predicted data (r) (Eq. 11) and scatterplots 

of observed-predicted values derived from the model calibration.  
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  
2

1

1 n

i ii
RMSE m p

N 
      [10] 

 
  1

1 n

i ii

m p

m m p p
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S S


 





  [11] 

in which ip  is the predicted value by the model for event i=1; n is the number of events 

predicted; p  is the mean value of the simulated ip ; 
pS  is the standard deviation of the 

predicted values; im  is the measured value; m is the average value of the observed im ; mS  is 

the standard deviation of the observed values.  
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Moreover, different calibration strategies to the adjustment with the β median, based on the 

analysis of the SDR function and the impact of variables C-RUSLE during the year were 

studied to improve the model’s performance. C-RUSLE was calculated following the SECO 

program methodology (Marín, 2013), based on Wischmeier and Smith (1978) and for the C 

value in Gómez et al., (2003). 

Finally, the annual SDRs in the catchment and the contribution of each geomorphological unit 

to the sediment yields were calculated through the calibrated parameters. The SDRs and the 

representative contribution of sediments from each geomorphological unit were calculated on 

the event scale and on the annual scale. In the case of Setenil, gaps of total sediment loads in the 

dataseries were calculated after the model calibration using the combinations of parameters that 

provided the best fit with the available experimental data. This only happened in the Setenil 

watershed, where 2 events were calculated for 2005-2006, 3 for 2006-2007, 6 for 2007-2008, 10 

for 2008-2009, 10 for 2009-2010 and 5 for 2010-2011. The contribution to the total sediment 

yield was calculated taking into account the division of the event sediment yield for each unit by 

the sum of the sediment yield for all the geomorphological units in which each watershed was 

divided.  

 

4.4. Results 

4.4.1. Geomorphological and hydrological characteristics of the 

watersheds 

 

The Setenil watershed (Fig. 4.1, Table 4.1) was divided into three geomorphological 

units: unit 1 (the smallest unit with the longest travel time, 1.1 ha and 1148.5 m, respectively) 

corresponds to the top of the watershed, unit 2 has the highest slope value (11 %) and abundant 

calcareous aggregates associated to eroded deep layers of soil, while unit 3 presents the greatest 

area and hydraulic length (3.7 ha and 280.6 m). The Conchuela watershed, on the other hand, 

was divided in this study into six geomorphological units (Fig. 4.1, Table 4.1): unit 1 is located 

at the top of the watershed and develops rills after erosive events, and also has the largest 

drainage area and a long travel time (equal to 2.3 ha and 1161.20 m); unit 2 corresponds to the 

smoothest slope (8 %); units 3-4 present higher apparent electrical conductivity and stone 

content (Pedrera-Parrilla et al., 2014) and the smallest drainage areas (0.8 ha and 1 ha); units 5 

and 6 consists of areas that are infested by Verticilium dahliae and are close to the watershed 

outlet. Unit 6 has the steepest slope and the shortest travel time (14% and 375.9 m; Table 4.1). 
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Table 4.1. Properties of the geomorphological units in Setenil and Conchuela watershed. 

 

 Setenil     Conchuela 

Morphological unit 1 2 3 1 2 3 4 5 6 

Drainage area (ha) 1.1 1.9 3.7 2.3 1.2 0.8 1 1.3 0.7 

Mean slope (%) 5 11.4 11.1 9.6 8 10 10.1 8.1 14.4 

Aspect SE W SW SW W NW E SE SE 

Hydraulic length (m) 238.3 228.9 280.6 225.8 116.8 185.2 226.1 168.3 126.7 

Travel time (m) 1148.5 785.6 895.5 1161.2 469.9 688.7 881.4 1114.3 375.9 

K (t h MJ
-1

 mm
-1

) 
0.047 0.047 0.045 0.034 0.032 0.031 0.032 0.034 0.033 

LS 0.8 2.3 2.5 1.4 1.1 1.4 1.4 1 0.3 

P 1 1 1 1 1 1 1 1 1 

 

K-RUSLE in the watersheds presented average values of 0.046 and 0.035 in Setenil and in 

Conchuela, respectively (Table 4.1; K-RUSLE standard deviations of 0.003 for Setenil and 

0.003 for Conchuela). Tables 4.2 and 4.3 show the main hydrological features of the events used 

for the model’s calibration, as well as the average beta values calculated with equation 8.  

 

Table 4.2. Hydrological attributes of the observed events for the study period in Setenil watershed (P= event rainfall; 

I30= maximum intensity in 30 minutes; Qp= peak flow; Q= runoff; L= sediment discharge; Rp= rainfall erosivity 

(Williams factor in MJ mm ha-1 h-1). 

 

 
P  

(mm) 

I30  

(mm h
-1

) 

Qp  

(l s
-1

) 

Q  

(mm) 

L  

(t) 
Rp  β 

Clay  

(%) 

Silt 

(%) 

Sand 

(%) 

OM  

(%) 
K 

Mean 25.7 10.5 117.3 5.4 4.8 49.9 0.0014 9.3 19 71.7 1.7 0.046 

STD 15.8 6.8 110 5.6 12.4 57.3 0.0017 2.4 2.9 4.7 0.7 0.003 

Min 5.3 4 3.1 0.06 0.04 4.8 -0.0027 5.5 13.4 54 0.7 0.04 

Max 80.1 31.5 350.1 22.6 75.8 304.8 0.0062 18 28 81.1 4.1 0.053 

Median 22.5 8.8 67.2 3.3 1 26.5 0.0013 9.5 19.2 72.6 1.6 0.047 

 

STD: standard deviation; Min: minimum; Max: maximum. 

OM (%): Organic matter 

K: K-RUSLE factor (t ha h ha-1 MJ-1 mm-1) 
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Table 4.3. Hydrological attributes of the observed events for the study period in Conchuela watershed (P= event 

rainfall; I30= maximum intensity in 30 minutes; Qp= peak flow; Q= runoff; L= sediment discharge; Rq= runoff 

erosivity (Williams factor in MJ mm ha-1 h-1). 

 

 
P  

(mm) 

I30  

(mm h
-1

) 

Qp  

(l s
-1

) 

Q  

(mm) 

L  

(t) 
Rq β 

Clay  

(%) 

Silt 

(%) 

Sand 

(%) 

OM  

(%) 
K 

Mean 23.5 8.6 79.2 6.0 6.7 23.6 -0.0007 47.8 44.7 7.5 1.2 0.035 

STD 24.2 7.9 153.3 11.1 17.1 53.8 0.0015 4.2 2.6 2.5 0.4 0.003 

Min 1.2 0.2 0.05 0.03 0.01 0.07 -0.0059 34.3 39.4 2.3 0.6 0.030 

Max 123.2 45 1335.7 84.6 148.1 471.3 0.0045 54.0 52.7 15.2 2.4 0.045 

Median 16.6 6.4 35.2 1.53 0.7 6.9 -0.0009 48.2 44.4 7.6 1.2 0.035 

 

STD: standard deviation; Min: minimum; Max: maximum. 

OM (%): Organic matter 

K: K-RUSLE factor (t ha h ha-1 MJ-1 mm-1) 

 

 

4.4.2. Analysis of calibration strategies: effects of R-value and C-value on 
β features. 

The best adjustments derived from the analysis of scenarios were obtained for Rt=Rp in 

Setenil and Rt=Rq in Conchuela. In most of the scenarios, β values tended to become negative or 

to present lower values for events with high soil losses (e.g. the event of 02-03/01/2009 in 

Setenil with a soil loss of 75.8 t ha-1, or the event of 20/12/2009 in Conchuela with a soil loss of 

148.1 t ha-1) and positive for events with low soil losses. As a result of this analysis in which a 

wide range of variability was detected, particularly in Setenil, two subsamples were considered: 

events with negative beta and events with positive beta. In Tables 4.4 and 4.5, the results are 

showed. 

As it is observed in Table 4.4, the best fitted scenario in Setenil (Rt=Rp), was associated to the 

total erosivity equal to the erosivity of the rainfall (Rt=Rp). This is in relation to the correlations 

of catchment responses with the rainfall found by Taguas et al., (2009). In contrast, in 

Conchuela the best adjustments were associated to erosivity values (Table 4.5) depending on the 

flow (runoff and peak flow; (Rt=Rq).  

Figure 4.2 also shows the histograms of the observed event β values for each watershed to 

compare the effects of annual C-value (equal to 0.30) and the corresponding seasonal C 

computing soil moisture and the management impact for the best adjustments. Using a seasonal 

C-value the histogram of β did not present a normal distribution (p=.000) in both watersheds. 

The distribution pattern changed for Setenil when unique C-value were used (p=0.16; Fig. 4.2, 

Table 4.6). In fact, a narrower variation of interval of beta is obtained with values slightly 

greater (Fig. 4.2). Setenil histogram seems to be displaced to the right if compared to Conchuela 

histogram values.  
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Table 4.4. Summary of the analysis of the combination of the different R-Williams runoff factor for Setenil watershed using a biweekly C-RUSLE value. 

 

Williams factor (MJ mm/ha h) β median E-Nash-Sutcliffe RMSE (t) r β
+
 n β

-
 N E-Nash-Sutcliffe RMSE (t) r 

0.5Rp+0.5Rq 0.0018 0.01279 12.2679 0.34 0.002 53 -0.00055 7 0.66643 7.1311 0.9 

Rt=Rp 0.00184 0.02671 12.1737 0.25 0.002 53 -0.00037 7 0.72937 6.4193 0.91 

Rt=Rq 0.00115 0.02354 12.2009 0.36 0.0015 45 -0.000711 15 0.4978 8.7499 0.86 

0.25Rp+0.75Rq 0.00153 0.0206 12.2193 0.41 0.0018 51 -0.00034 9 0.49676 8.7589 0.85 

0.75Rp+0.25Rq 0.00181 0.02514 12.1909 0.29 0.002 54 -0.000709 6 0.80359 5.4719 0.93 

RMSE: Root Mean Square Error. 

r= Pearson correlation coefficient. 

n: number of samples. 

Rt: erosivity factor for a given event (MJ mm ha-1 h-1). 

Rq: Williams runoff factor for a given event (MJ mm ha-1 h-1). 

Rp: Erosion calculated as Wischmeier and Smith (1965) in MJ mm ha-1 h-1. 

 

Table 4.5. Summary of the analysis of the combination of the different R-Williams runoff factor for Conchuela watershed using a biweekly C-RUSLE value. 

 

Williams factor (MJ mm/ha h) β median E-Nash-Sutcliffe RMSE (t) r β
+
 n β

-
 N E-Nash-Sutcliffe RMSE (t) r 

0.5Rp+0.5Rq -0.00028 0.44 16.09 0.71 0.0012 43 -0.00124 54 0.9 6.75 0.96 

Rt=Rp -0.00001 0.17 19.52 0.46 0.0014 48 -0.00142 49 0.87 7.78 0.93 

Rt=Rq -0.00093 0.85 8.96 0.95 0.0006 27 -0.00131 70 0.92 6.37 0.96 

0.25Rp+0.75Rq -0.00041 0.56 14.16 0.88 0.0012 38 -0.00112 59 0.81 9.29 0.9 

0.75Rp+0.25Rq -0.00014 0.3 17.95 0.57 0.0013 46 -0.00131 51 0.88 7.54 0.94 
RMSE: Root Mean Square Error. 

r= Pearson correlation coefficient. 

n: number of samples. 

Rt: erosivity factor for a given event (MJ mm ha-1 h-1). 

Rq: Williams runoff factor for a given event (MJ mm ha-1 h-1). 

Rp: Erosion calculated as Wischmeier and Smith (1965) in MJ mm ha-1 h-1. 
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Figure 4.2. β distribution for biweekly C-values and equal to 0.30 for the best fitted scenario in each watershed 

(Setenil Rt=Rp; Conchuela Rt=Rq). 

 

In the case of Conchuela, the effects of C-value were not so evident (Fig. 4.2, Table 4.7).The 

variation of β interval was higher in Conchuela, however the most of values were concentrated 

between -0.002 and 0.002 and the distribution was approximately symmetric. In the case of 

Setenil, in the scenario with annual C-value, an almost bimodal distribution could be observed. 

In the rest of scenarios, similar tendencies were observed.  
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4.4.3. Model calibration 

Conchuela presented a very good model performance (especially good for Rt=Rq and 

seasonal C-value) when the β median of the distribution was used as was also determined by 

different authors (Ferro and Minacapilli, 1995; Table 4.5, E=0.85; RMSE=8.96 t). For Setenil, 

the model showed a very poor adjustment (Table 4.4). Nevertheless, in both catchments the fit 

improved when the differentiation between positive or negative β values and their 

corresponding medians were considered to calculate the sediment yield. In Tables 4.4 - 4.5 and 

Figure 4.3 a summary of the statistics derived from the both calibration approaches are showed. 

The best scenario for Setenil presented 53 events with positive β and 7 with a negative sign 

(Table 4.4). The statistics derived from the adjustments with the medians of both groups were 

E=0.73 and RMSE=6.4 t. In Figure 4.3, the scatterplots of observed and predicted values are 

showed. A high deviation of both groups can be appreciated indicating the need of using two 

representative β-values. In contrast, the improvement was minor in Conchuela (Fig. 4.3; Table 

4.5) as a result a lesser dispersion.  

 

Figure 4.3. Scatterplots of observed-predicted values derived from the model calibration in the study catchments. 
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Table 4.6. Seasonal C-values for Setenil watershed. 

Event C-values Event C-values 

13-oct-05 0.05 15-16-17-feb-10 0.25 

27-28-jan-06 0.22 18-19-feb-10 0.25 

3-4-may-06 0.15 21-22-23-24-feb-10 0.25 

21-oct-06 0.21 25-26-feb-10 0.25 

23-oct-06 0.21 28-feb-1-mar-10 0.23 

24-oct-06 0.21 2-3-4-mar-10 0.23 

27-28-jan-07 0.18 7-8-9-mar-10 0.23 

29-jan-07 0.18 16-17-sep-2010 0.11 

29-mar-07 0.17 9-10-oct-10 0.16 

25-aug-07 0.05 8-9-nov-10 0.22 

21-sep-07 0.14 26-27-28-nov-10 0.22 

2-3-oct-07 0.17 29-nov-10 0.22 

24-oct-07 0.18 1-dec-10 0.23 

22-nov-07 0.21 5-6-7-dec-10 0.23 

21-24-dec-07 0.22 18-19-dec-10 0.24 

2-jan-08 0.24 20-21-22-23-dec-10 0.24 

3-jan-08 0.24 30-31-dec-10 0.24 

14-jan-08 0.24 7-jan-11 0.24 

19-feb-08 0.21 8-jan-11 0.24 

24-feb-08 0.21 14-15-feb-11 0.16 

18-19-apr-08 0.13 09-mar-11 0.16 

11-oct-08 0.19 11-12-mar-11 0.16 

28-29-30-nov-08 0.14 13-mar-11 0.16 

2-3-jan-09 0.22 14-15-mar-11 0.11 

14-jan-09 0.22 23-24-apr-11 0.16 

20-21-jan-09 0.24 1-2-may-11 0.1 

29-nov-09 0.15 4-5-may-11 0.1 

18-19-dec-09 0.25   

28-29-dec-09 0.25   

30-31-1-jan-10 0.25   

4-5-jan-10 0.25   

12-jan-10 0.25   

23-jan-10 0.22   
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Table 4.7. Seasonal C-values for Conchuela watershed. 

 

Event C-values Event C-values 

11-jan-06 0.28 23-dec-09 0.29 

12-jan-06 0.28 25-dec-09 0.29 

12-apr-06 0.24 28-dec-09 0.29 

12-july-06 0.04 29-dec-09 0.29 

17-oct-06 0.29 30-dec-09 0.29 

18-oct-06 0.29 13-jan-10 0.32 

15-nov-06 0.28 14-jan-10 0.32 

24-nov-06 0.28 03-feb-10 0.33 

02-feb-07 0.32 18-feb-10 0.35 

04-feb-07 0.32 21-feb-10 0.35 

05-feb-07 0.32 22-feb-10 0.35 

17-feb-07 0.34 24-feb-10 0.35 

22-feb-07 0.34 24-feb-10 0.35 

02-mar-07 0.26 26-feb-10 0.35 

5-apr-07 0.33 28-feb-10 0.35 

25-apr-07 0.24 01-mar-10 0.35 

05-may-07 0.27 14-apr-10 0.16 

22-may-07 0.14 01-may-10 0.17 

23-may-07 0.14 03-may-10 0.17 

2-aug-07 0.009 13-may-10 0.17 

02-oct-07 0.16 14-may-10 0.17 

20-nov-07 0.23 01-jun-10 0.08 

21-nov-07 0.23 3-aug-10 0.01 

4-dec-07 0.2 05-sep-10 0.04 

26-dec-07 0.22 01-oct-10 0.2 

13-jan-08 0.31 02-oct-10 0.2 

15-jan-08 0.27 05-oct-10 0.2 

01-feb-08 0.21 29-oct-10 0.2 

18-feb-08 0.31 14-nov-10 0.27 

19-feb-08 0.31 1-dec-10 0.27 

20-feb-08 0.31 2-dec-10 0.27 

23-feb-08 0.31 5-dec-10 0.27 

01-mar-08 0.24 18-dec-10 0.28 

18-apr-08 0.26 20-dec-10 0.28 

19-apr-08 0.26 21-dec-10 0.28 

04-jul-08 0.05 30-dec-10 0.28 

04-oct-08 0.2 7-jan-11 0.32 

1-jan-09 0.3 8-jan-11 0.32 

2-jan-09 0.3 9-jan-11 0.32 

22-jan-09 0.31 14-feb-11 0.27 

25-jan-09 0.31 16-feb-11 0.31 

01-feb-09 0.31 19-feb-11 0.31 

03-feb-09 0.31 14-mar-11 0.24 

01-mar-09 0.29 23-apr-11 0.23 

05-mar-09 0.29 29-apr-11 0.63 

29-mar-09 0.24   

18-dec-09 0.29   

20-dec-09 0.29   

22-dec-09 0.29   

23-dec-09 0.29   
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4.4.4. Characterization of the spatio-temporal variability of soil loss, 
sediment yield and SDR 
 

4.4.4.1. Hydrological year and watershed scale 

The average potential erosion in Setenil for the study period predicted by RUSLE was 

19 t ha-1 (with a standard deviation= 7.9 t ha-1), and the average sediment yield was 14.2 t ha-1 

(with a standard deviation= 14.4 t ha-1). In Conchuela, the average potential erosion was 12.4 t 

ha-1 (standard deviation =7.1 t ha-1), whereas the average sediment yield was 13.4 t ha-1 

(standard deviation =16.8 t ha-1; Tables 8, 9). As can be observed, the average potential erosion 

for Conchuela was lower than the average sediment yield in 2009-2010 and 2010-2011, 

concurring with large runoff (Gómez et al., 2014) and the development of rills and a gully in the 

catchment. 

In Setenil, the lowest soil loss values (9.5 t ha-1) corresponded to the hydrological year 2005-

2006, a period with low precipitation (552.6 mm) and no tillage soil use (Taguas et al., 2015). 

On the other hand, the highest values of potential erosion corresponded to the years of highest 

precipitation and conventional tillage soil use: 2007-2008 (21.6 t ha-1), 2008-2009 (33 t ha-1) 

and 2009-2010 (23.2 t ha-1). As regards potential erosion (Ep), Setenil sediment yield had the 

highest values for the period 2008-2010 (22.7 t ha-1 for the 2008-2009 hydrological year and 

42.2 t ha-1 for the 2009-2010 hydrological year). The same pattern was observed for the annual 

SDRs (68.7 and 181.8 % for the hydrological years 2008-2009 and 2009-2010, respectively). 

When SDR was calculated, two hydrological years were incomplete, as some sediment loads 

were missing. Thus, the gaps in the sediment loads were completed by applying SEDD, 

differentiating positive and negative values for the β coefficient. The criteria used for including 

the negative β median was the result of the event patterns: thus, if precipitation exceeded 10 

mm, the erosivity was greater than 15 MJ mmha-1 and the runoff (mm) was over 3.5. In all the 

other cases, a positive β median was used to complete the gaps.  
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Table 4.8. Sediment delivery ratios and erosion values for each hydrological year for the Rt=Rp scenario in Setenil 

watershed (SDRw: Sediment Delivery ratio of the watershed; P=precipitation). 

 

Hydrological year Ep -RUSLE (t/ha)* Sediment yield (t/ha)** SDRw (%) P (mm) 

2005-2006 9.5 1.5 15.7**** 552.6 

2006-2007 13.2 1.7 12.87 647.8 

2007-2008 21.6 7.2 33.3**** 692.5 

2008-2009 33 22.7 68.7 887.9 

2009-2010 23.2 42.2 181.8 910.1 

2010-2011 13.6 9.8 72 709.4 

Mean 19 14.2 64.1 733.4 

STD 7.9 14.4 57.5 127.4 

Min 9.5 1.5 12.87 552.6 

Max 33 42.2 181.8 910.1 

*Potential erosion (RUSLE). Calculated with precipitation >10mm. 

** Measured at the basin outlet. 

***Sediment Delivery Ratio of the watershed. Calculated dividing the sediment yield by the potential erosion 

****Incomplete years in which the sediment loads (t/ha) needed to be calculated with SEDD (2005-2006 n=2; 2006-

2007 n=3; 2007-2008 n=6; 2008-2009 n=10; 2009-2010 n=10; 2010-2011 n=5). 

STD: standard deviation; Min: minimum; Max: maximum. 

P: precipitation. 

 

As in Setenil, the lowest soil loss value in Conchuela (4.5 t ha-1) corresponded to the 

hydrological year with the lowest precipitation input (366.6mm). The highest potential erosion 

value (22.3 t ha-1) also corresponded to the hydrological year with the highest precipitation input 

(986.8 mm). Low sediment yields (1.4 t ha-1) were related to low soil losses and low 

precipitation. On the other hand, the highest sediment yields (48.9 t ha-1) corresponded to the 

hydrological year with the highest potential soil losses. The SDR values were high (219.2 %) 

when the potential soil loss and sediment yield were high (2009-2010 hydrological year). In 

fact, Gómez et al., (2014) reported annual runoff values of 366.9 mm (the highest of the six 

hydrological years included in the study).  

 

Table 4.9. Sediment delivery ratios and erosion values for each hydrological year for the Rt=Rq scenario in 

Conchuela watershed (SDRw: Sediment Delivery ratio of the watershed; P=precipitation). 

Hydrological year Ep -RUSLE (t/ha)* Sediment yield (t/ha)** SDRw (%)*** P (mm) 

2006-2007 12 3.8 31.6 435.2 

2007-2008 15.2 10.3 67.7 518.4 

2008-2009 4.5 1.4 31.1 366.6 

2009-2010 22.3 48.9 219.2 986.8 

2010-2011 7.9 15.9 201.2 689.2 

Mean 12.4 16 110.1 599.2 

STD 7.1 16.8 83.7 282.1 

Min 4.5 1.4 31.1 366.6 

Max 22.3 48.9 219.2 986.8 
*Potential erosion (RUSLE). Calculated with precipitation >10mm. 

** Measured at the basin outlet. 

***Sediment Delivery Ratio of the watershed. Calculated dividing the sediment yield by the potential erosion 
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****Incomplete years in which the sediment loads (t/ha) needed to be calculated with SEDD (2005-2006 n=2; 2006-2007 

n=3; 2007-2008 n=6; 2008-2009 n=10; 2009-2010 n=10; 2010-2011 n=5). 

STD: standard deviation; Min: minimum; Max: maximum. 

P: precipitation. 

 

 

 4.4.4.2. Geomorphological unit scale 
 

Figure 4.4 summarises the SDR histograms for each geomorphological unit in which 

Setenil watershed was divided. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Event SDRs histogram for each geomorphological unit in Setenil watershed.  
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Unit 1 was characterized by having the lowest mean slope and LS-RUSLE value, and so the 

lowest potential soil loss values (mean value of 0.4 t ha-1 and a standard deviation of 23 t ha-1). 

In contrast, unit 2 had the steepest slope of the three (Table 4.1), with an average potential soil 

loss of 1 t ha-1 and a standard deviation of 62.4 t ha-1. Unit 3 had average potential soil loss of 1 

t ha-1 with 1.2 t ha-1 of standard deviation. This last unit presented the largest drainage area (3.7 

ha). Although its mean slope was not the steepest, it produced the lowest K-RUSLE value 

(Table 4.1). The annual contribution of each geomorphological unit to the soil losses measured 

at the outlet is summarised in Table 10. At the event scale (Fig. 4.4.), SDRs greater than 100% 

were associated to frequencies of 23 % (14 events out of 60 had SDR>100). The maximum 

SDR value calculated was 2110 % for the 16/17-09-2010 event in unit 1 (equation 8; Fig. 4.4). 

 

Table 4.10. Mean and standard deviation of annual contributions of each geomorphological unit in Setenil and 

Conchuela watersheds on the total soil losses and potential erosion, sediment delivery ratios (SDR) and 

percentage/contribution on the annual total sediment yield. 

 

 Unit 

Ep-RUSLE  

(t/ha) 

Sediment yield  

(t/ha) 

SDR  

(%) 

Contribution on the total  

(%) 

Conchuela 

1 0.7 ± 7.1 1.4 ± 3.6 197.1± 3686.9 42.7 ± 11.4 

2 0.5 ± 1.2 0.4 ± 1.1 77.5 ± 221.6 12.8 ± 9 

3 0.6 ± 1.5 0.7 ± 1.7 101.9 ± 453 9.8 ± 3.3 

4 0.7 ± 1.6 0.9 ± 2.3 131.7 ± 1023.6 14.5 ± 2 

5 0.5 ± 1.2 1 ± 2.5 183.7 ± 2961 17.5 ± 3.7 

6 0.2 ± 0.4 0.1 ± 0.3 69.2 ± 184.5 2.6 ± 2.4 

Setenil 

1 0.4 ± 0.4 0.4 ± 1.2 97.2 ± 285.9 4.8 ± 2.1 

2 1.04 ± 1.2 0.7 ± 1.6 68.9 ± 117.8 35.4 ± 4.8 

3 1.06 ± 1.2 0.8 ± 2 74.5 ± 153 59.6 ± 2.9 

 

In the Conchuela watershed, unit 1 had the largest drainage area (2.3 ha), although it was not the 

steepest (mean slope of 9.6 %, compared with a 14.4 % slope in unit 6; see Table 4.2) and the 

highest travel time value (1161.2 m; Table 4.2). The average potential soil loss and annual 

contribution to the total soil losses are shown in Table 4.10. In this watershed, at the event scale, 

SDRs greater than 100% (Fig. 4.5) corresponded to frequencies of around 46 %. For units 1 and 

5, the probability of exceeding SDR >100% was 53 % (51 events out of 95 with SDR>100) and 

around 40 for all the other units (42 % for unit 2, 45 % for unit 3, 48 % for unit 4 and 40 % for 

unit 6). The highest SDR out of the six units was calculated for unit 1 (27617 %) for the 5-9-

2010 event, with a potential soil loss of 0.0004 t ha-1 and a calculated sediment yield of 0.10 t 

ha-1.  
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Figure 4.5. Event SDRs histogram for each geomorphological unit in Conchuela watershed. 

log
10

 SDR

1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5

R
e

la
ti
v
e

 f
re

q
u

e
n

c
y
 (

%
)

0

10

20

30

40

Unit 1

log
10 

SDR

1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5

R
e

la
ti
v
e

 f
re

q
u

e
n

c
y
 (

%
)

0

10

20

30

40

Unit 2

log
10

 SDR

1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5

R
e
la

ti
v
e
 f

re
q
u
e

n
c
y
 (

%
)

0

10

20

30

40

Unit 4

log
10

 SDR

1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5

R
e
la

ti
v
e
 f

re
q
u
e

n
c
y
 (

%
)

0

10

20

30

40

Unit 5

log
10 

 SDR

1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5

R
e
la

ti
v
e
 f

re
q
u
e

n
c
y
 (

%
)

0

10

20

30

40

Unit 6

log
10

 SDR

1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5

R
e
la

ti
v
e
 f

re
q
u
e

n
c
y
 (

%
)

0

10

20

30

40

Unit 3



Chapter 4: Exploring calibration strategies of SEDD model in two olive orchard watersheds 

 

 

75 

 

4.5. Discussion 

Ferro and Minacapilli, (1995) proposed the use of the β median value approach, 

followed afterwards by other model users. In a 6.1 ha olive watershed located in Southern 

Spain, Taguas et al., (2011) found a bimodal distribution of β value and proposed an alternative 

methodology for calibrating the model: they calculated two β values which corresponded to the 

two medians observed from the distribution. In our study, the analysis of the different regions of 

the exponential function determining SDR (equation 3) allowed us to improve the calibration of 

dataseries with a wide range of variation. When β values were compared for any two subsets, 

the variability of the events observed for sediment loads was suitably adjusted in all cases. For 

the Setenil watershed, with a C-RUSLE value of 0.30, the median value of β (0.0018) was lower 

than the value obtained by Taguas et al., (2011) which was 0.023 for the period February-June. 

This lower value of β implies lower sediment transport and yields (Ferro and Porto, 2000). The 

best adjustment for the Setenil watershed was produced with R-RUSLE, which was only 

dependent on the rain. This agrees with the relevance of the cumulated precipitation of the event 

as a determining factor in catchment responses described by Taguas and Gómez (2015). 

Furthermore, there were no appreciable effects associated to C-RUSLE in Setenil, probably due 

to less variation during the year. This can be noted in Table 5, where C-RUSLE values 

calculated for the events varied between 0.05 and 0.25, compared with values in Conchuela of 

0.009 to 0.63. The impact of antecedent soil moisture on erosion risk in this catchment is 

probably not as important as in Conchuela due to its fast-draining sandy texture and low 

connectivity. For Setenil, the original model calibration did not present good results (E-Nash-

Sutcliffe´s coefficient of efficiency of 0.28). Nevertheless, once the model calibration was 

improved by separating positive and negative β values, better results were obtained (E-Nash-

Sutcliffe´s coefficient of efficiency of 0.78) as a result of grouping the events of contrasted 

magnitude. 

The Conchuela watershed presented the lowest β values found in the literature. Values for both 

seasonal and constant C-RUSLE in Conchuela were negative. In this case, the original model 

calibration with the median β value produced good results (E-Nash-Sutcliffe´s coefficient of 

efficiency of 0.90). Separating positive and negative β values improved the calibration from E-

Nash-Sutcliffe´s coefficient of efficiency to 0.95. For this watershed, the Nash-Sutcliffe values 

reported in this work are in the same range as the ones presented by Taguas et al., (2011) in 

olive crops (0.9 for a runoff scenario with a C-RUSLE value of to 0.4, compared with 0.7 for a 

rainfall erosivity scenario with a C-RUSLE value of 0.10). In a 30 ha watershed with 60 % of its 

area sown with wheat, Di Stefano and Vito, (2007) obtained a 0.5 Nash-Sutcliffe index; in 

addition, López-Vicente et al., (2011) calculated a coefficient of Nash-Sutcliffe of 0.7 in an 

abandoned, naturally- colonized 284 ha watershed in the Pyrenees. The low β median 

coefficient value in Conchuela can be attributed to the fact that 67 out of 95 events presented 

negative values in a scenario where R-RUSLE highlighted the importance of runoff compared 

to precipitation. The Williams runoff factor used in this scenario associated to the concentrated 

flow is consistent with the presence of gullies and rills described in Gómez et al., (2014). In 

fact, there is a gully intersecting the basin from SE to NE.  

The annual delivery ratios for the watershed (calculated as Sediment yield/ potential erosion 

from RUSLE) ranged between 12.8 % and 181.8 % in Setenil and between 31.1 % and 219.3 % 

in Conchuela. For both watersheds, the highest SDRw were calculated with the highest annual 

precipitation (181.8 % for an annual precipitation of 910.1 mm in Setenil and 219.2 % for an 

annual precipitation of 986.8 mm in Conchuela). According to Walling (1983), SDR values can 
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vary from 0.1 to 100% at the annual scale, as the equations to calculate it were developed for 

basins from particular regions. Values close to 100 % are also reported in the work of Fernández 

et al., (2003), Fu et al., (2006) and López-Vicente et al., (2011). These high SDRw are explained 

by what Walling (1983) describes as a 'temporal paradox'. This paradox is defined as the 

temporal attenuation due to sediment storage and remobilisation within the watershed, no matter 

the size. This idea was supported by the work of Priest et al., (1975) who reported SDRw 

between 1 % and 554 % at the event scale in the Treynor watershed (U.S), or Duijsings, (1986) 

who reported seasonal (winter vs. summer) SDR of nearly 100% in a Luxembourg basin. 

Walling (1983) interpreted these high values as showing that sediment from past events stored 

into the channel network or deposited on the hillslopes can be removed, thus increasing the 

amount of available sediment for its transport to the basin outlet. In fact, Ferro and Porto (2000) 

stated that SDRw can be above 100%, meaning that the sediment stored in the channel network 

or deposited on the hillslopes in previous events can be removed. In the case of Setenil and 

Conchuela, high SDRw values were attributed to sediment sources that are not computed by the 

RUSLE equation when calculating potential erosion at the hillslope scale. The SEDD model 

was devised for small catchments and did not consider channel processes (Ferro and Porto, 

2000). However, in Conchuela, gully processes necessarily play a major role. In fact, Gómez et 

al., (2014) highlighted the significant role of rills and gullies as well as peak flow (Rt=Rq) in 

sediment transport in the catchment, and the fact that in relation to rill and gullies it constitutes 

the main type of erosion in the watershed. In the Setenil watershed, although there is an 

ephemeral gully (width >30 cm) and a small gully in unit 3, the main sediment sources are 

associated with sheetwash and rills. Our interpretation of the SDR value of > 100% in both olive 

catchments is that this is the model’s numerical answer to the problem of incorporating 

sediment losses that can only be due to activation of gully erosion processes and/or channel 

contribution, which also includes remobilization of sediment deposited within the catchment 

from previous storms. This behaviour of the model also explains a large fraction of the negative 

β vales.  

A variable C-RUSLE factor is a more consistent parameter than the annual C-RUSLE value 

adapted to the management and other factors such as soil moisture. It should be calculated, 

among other reasons, when the impact of the management is significant and/or wide variations 

in soil moisture are expected. This might be a major factor with vertisols, such as in the case of 

Conchuela. Gómez et al., (2003), in a model analysis of an olive orchard in Southern Spain, 

calculated different C-RUSLE values depending on different conservation strategies (from non-

tillage to full cover crop). Each soil management technique had its own C-RUSLE, thus 

showing the importance of the calculation of this RUSLE value. In the literature, the most 

widely extended use of C-RUSLE in SEDD calibration is a unique value, possibly because most 

studies were not carried out on agricultural areas or because of the great complexity on a larger 

spatial scale. For instance, Jain and Kothyari (2000) attributed a unique C-RUSLE value based 

on land cover categories estimated using Landsat TM and IRS 1C LISS-III data; Fernández et 

al., (2003) used a unique value for rangelands and forests from the literature; Di Stefano et al., 

(2005) set a value of 0.164 for an ungauged basin; Fu et al., (2006) calculated the C-RUSLE 

value following RUSLE and use one value for crop rotation and another for land use practice. 

However, although they did not calculate the seasonal value, some authors used a C-RUSLE 

value which was more consistent with the watershed crop or land use. For example, Di Stefano 

and Ferro (2007) divided the basin into areas with the same crop and, for each polygon into 

which the basin was divided, a C-RUSLE value was assigned (wheat=0.45, olive trees=0.41, 

urbanized areas=1, bare fallow soil =1). In addition, Taguas et al., (2011) tried different values 
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of C-RUSLE measured in olive crops (from 0.01 to 0.5) and kept the one that gave the best 

results (0.4 and 0.1 for runoff and precipitation scenarios, respectively). The predicted soil loss 

values for both watersheds were in the same range as the ones predicted by Taguas et al., (2011) 

in olive orchards in Southern Spain or the ones predicted in a U.S. cropland watershed by 

Fernández et al., (2003).  

At the geomorphological unit and event scale, the most efficient unit at exporting sediments in 

Setenil was unit 1, with a mean unit SDR of 100 % (standard deviation 285.9 %) whereas the 

lowest (67.3 %, standard deviation 117.80 %) was observed in unit 2. Nevertheless, unit 1 had 

the lowest potential erosion values (0.4 t ha-1). At the watershed scale, the SDRw mean value 

was 64.1 % (standard deviation 57.5 %). This is linked to the longest travel time, thus indicating 

high probability that the eroded particles arrive from the source to the nearest stream (Ferro and 

Minacapilli, 1995). In both cases, the observed variation ranges of event SDRs were notably 

narrower than the ones described by Taguas et al., (2011) in an olive orchard catchment with an 

annual precipitation of 400 mm and more arid features. In the case of the Conchuela watershed, 

the most efficient units at exporting sediments were units 1 (mean SDR of 200 % and a standard 

deviation of 3686.9 %, concurring with the biggest areas) and 5 (mean SDR 200 % and standard 

deviation 2961 %). On the other hand, the least efficient unit was unit 6 (mean SDR value 50 % 

and standard deviation 184.53 %). At the catchment scale, the average SDR value was 94.2 %, 

with a standard deviation of 83.7 %. Unlike the Setenil watershed, in the Conchuela watershed, 

the unit with the highest potential soil losses and contribution to the sediment measured at the 

outlet was also unit 1.  

Annual SDRs in both watersheds indicated very active dynamical sediment transport. Extreme 

SDR values (>100%) were associated with very humid years with precipitation values at least 

30 % higher than the annual average. At the event scale, similar tendencies were observed and 

SDRs >100% were linked to frequencies of 23 % in Setenil and 53 % in Conchuela, which 

might mean that for these fractions of events, total loads in the outlet would transport sediment 

detached in previous events.  

In terms of soil conservation practices such as mulching or the use of cover crops between the 

lanes, the greatest efforts should be made in unit 3 in the Setenil watershed, as it contributed 

59.7 % of the total sediment measured at the basin outlet and also had the highest sediment 

yield (0.8 t ha-1). In the case of the Conchuela watershed, these efforts should be made in unit 1, 

which contributed 42.7 % of the total sediment measured at the basin outlet and, as in Setenil, 

had the highest sediment yield (1.43 t ha-1). In order to control gullies in these agricultural areas, 

check dams were installed in 2012. 

 

4.6. Conclusions 

The SEDD model was successfully calibrated in the Conchuela watershed, while poor 

adjustments were found for the Setenil watershed. In this calibration, different R-RUSLE 

values, indicating different watershed hydrological responses, were observed. For instance, in 

Conchuela the best calibration scenarios were associated with concentrated flow-dependent 

erosivities or runoff values. On the other hand, the erosivity value for the Setenil watershed was 

only rain-dependent. Eventually, seasonal C-RUSLE values should be included when there are 

major changes in the impact of soil management due to soil humidity, as in the case of the 

Conchuela watershed with a vertic soil.  
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The analysis of the different calibration strategies allowed us to improve the adjustment in the 

Setenil watershed. To do so, the events were separated into positive or negative values 

according to the sign of the β parameter. The medians of these groups of events allowed us to 

obtain an E value of 0.7 and an RMSE of 6.4. In the Conchuela watershed, only minor 

improvements to this variation in the model calibration were possible (E value of 0.9 and an 

RMSE of 6.3).  

The annual SDR values indicated a very active dynamic in both watersheds. The mean annual 

SDR in the Setenil watershed was 64 %, with a range of variation for a six-year period between 

181.8 and 12.8 %. In Conchuela, it was 94 % (ranging between 219.2 and 14.2 %). Extreme 

SDR values were associated to very humid years with precipitation values around 30 % higher 

than the annual average. At the event scale, it was possible to isolate the most active areas in 

terms of sediment contribution to the watershed outlet and improve the soil conservation 

measures in these areas.  
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Chapter 5 

 

General Conclusions 

 

 

‘This is the end, beautiful friend 

This is the end, my only friend, the end 

Of our elaborate plans, the end 

Of everything that stands, the end 

No safety or surprise, the end’.  

Jim Morrison. The End. The Doors (1967) 

 

 

 

 

 

 

 

 



Distributed processes in the runoff and sediment generation and transport in olive groves at different scales 

 

80 

 



General Conclusions 

 

81 

 

5.1. General Conclusions 

This study highlights the need of considering upscaling measures from on-off to the 

watershed scale in olive orchards under semi-arid Mediterranean environments in order to have 

the best soil conservation measures implementation and thus, reduce soil erosion and sediment 

deposition. A combination of both field measures and sediment delivery physical modelling was 

used to throw light to the described effects.  

1. The one-off scale Soil Water Repellency (SWR) measurements in olive orchards 

showed that it occurs at a low or moderate intensity (average values of 49 s, considered 

slightly wettable). SWR presents a high spatial variability with hydrophobic areas 

nearby to non-hydrophobic areas which could infiltrate the excess of water trough 

runoff processes. This indicates that the hydrological relevance of the process in 

commercial olive farms at hillslope and catchment scale will be very small or even it 

might be negligible. Wettable SWR began to appear in summer under the tree canopy 

(except for the conventional tillage orchard), got the highest values in the lanes between 

trees in autumn (especially in the cover crop orchard) and disappeared in winter. 

However, when appeared (even in a moderate intensity) it tended to be concentrated in 

the area under the olive tree canopy, where the concentration of organic carbon content 

and soil moisture was higher. In fact, for summer and autumn measurements, a 

correlation between organic matter content and soil water repellency was found (r2= 

0.92).  

2. At the hillslope runoff-plot scale, the use of vegetation cover strips combined with 

magnetic iron oxides and simulated rainfall, allowed to identify distribution patterns of 

sediment redistribution for different management operations. Vegetation strips caused 

selective fine texture particle size transports which come from the closest area to the 

plot outlet. Tillage resulted very effective to diminish runoff and soil losses (50 % and 

12% respectively lower if compared to bare soil) and increasing infiltration when it is 

recently performed, a situation that changes when it gets consolidated and degraded. It 

is with this last situation when high soil erosion rates (soil losses up to 15 kg) and 

sediment transport interconnection along the slope occurs. Vegetation cover strips under 

Mediterranean conditions, should be then a safeguarding in order to maintain the 

discontinuity in moment with high runoff responses. 

3. At the watershed scale, the use of SEDD model allowed the identification of the areas more 

prone to erosion in two olive crop watersheds of very different environmental characteristics. 

Different calibration alternatives based on the analysis of R-RUSLE, C- RUSLE and β, (an 

empirical parameter which controls the travel time in the different geomorphological areas in the 

catchment) were explored. A new calibration strategy based on the adjustment of the dataseries 

range to the regions of the exponential function that determine the SEDD was proposed. Thus, 

we proposed by separating β-positive or β-negative values to adjust sediment loads of events 

when outliers were found such as the case of Setenil. The results allowed the evaluation of the 

areas to concentrate the control measures through the analyses of the values of sediment delivery 

ratios. The extrapolation of the use of SEDD to other catchments with different attributes is not 

advisable without a previous calibration.  
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5.2. Future Research Lines 

This thesis shows the importance of considering different scale measurements when 

studying sediment transport processes in order to have the best soil conservation strategies 

implementation. From the above findings and limitations, the following research lines are now 

open. 

Soil water repellency 

- Despite this work has shown that the SWR influence in the runoff generation and thus, in soil losses, 

is small, it is a process which can be found under the tree canopy. This area is known to have 

relatively high organic matter content, facilitating the appearance of hydrophobic spots. In order to 

have a complete study of the appearance of SWR in olive crops, two research lines can be open. [i]  

soil humidity measured with sensors through an entire olive watershed could be correlated with 

SWR measurements. For this, SWR could be measured with the WDPT test in those areas where the 

sensors are placed. At the same time, a profile distribution of the soil humidity and SWR could be 

measured with the sensor data and the field WDPT measurements. [2] On the other hand, as organic 

matter appears to have significant influence in the SWR appearance, a chemical analysis of the type 

of organic matter found under the canopies and on the tree rows could be done. Both research lines 

would be performed for, at least, two hydrological years and in two orchards with the same soil 

management system (as it has been shown that the tillage systems only affects SWR when it is 

related to cover crops).  

 

Vegetation trapping efficiency 

- Once studied and determined the efficiency of the vegetation strips for trapping sediments at the plot 

scale, the next step would be to quantify the total amount of sediment trapped by the strips and of 

which particle size. To do so, and at a larger scale, the same experiment can be replicate in an 

experimental olive watershed. Several vegetation strips could be implemented and the rows between 

trees could be tagged with magnetic iron oxide. With this, it would be easy to determine the 

influence of soil management in the sediment transport.  

 

Sediment Delivery Ratio (SDR) 

- SEDD model allowed the identification of the geomorphological areas within a catchment more 

prone to soil erosion and thus, more efficient in sediment transport. Within this frame, the 

identification of carbon sources and sinks is of interest. The isotopic signature of δ13C is one the 

techniques that could allow estimating those sources and sinks. This work started in 2012 with Dr 

Richard Brazier (University of Exeter) and the main hypothesis to be tested are: [1] are there any 

differences/ relationships between C3 and C4 along the catchment?; [2] Are there any 

differences/similarities in δ13C between the soil collected in the outlet and the soil collected in the 

hillslope plots?; [3] is there any relationship between total organic carbon (TOC) and δ13C?; [4] 

Can we prove that vegetation cover has influence in retaining soil, so soil conservation practices can 

be improved? Finding the sources and sinks of the in the catchment (lanes or under the tree canopy 

as well as different soil profile depths), would allow me to discriminate if the vegetation is really 

helping to prevent soil loss (and if so, give it a number). This might be strongly correlated to the 

results found in the SOC distribution. In the case that the isotopic signature is not different, 

vegetation η-alkanes values would be used for the atomic discrimination. 
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Hydrological attributes of the observed events for the study period in Setenil 

watershed 
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Table A.1. Hydrological attributes of the observed events for the study period in Setenil watershed (P= event rainfall; 

I30= maximum intensity in 30 minutes; Qp= peak flow; Q= runoff; L= sediment discharge; Rp= rainfall erosivity 

(Williams factor). 

 

Event date P (mm) I30  (mm h
-1

) Qp (l s
-1

) Q (mm) L (t) Rp (M mm ha
-1

 h
-1

) β 

13/10/2005 24.02 5.87 24.20 0.23 0.04 20.34 0.0033 

27-28/1/06 40.65 4.40 32.20 1.83 2.38 28.88 0.0007 

3-4/5/06 46.24 25.77 81.50 1.25 0.57 169.12 0.0039 

21/10/2006 12.69 9.21 17.60 0.52 0.27 21.15 0.0029 

23/10/2006 7.70 6.20 8.30 0.24 0.09 4.94 0.0025 

24/10/2006 5.30 6.20 9.10 0.06 0.06 5.37 0.0030 

27-28/1/07 46.99 11.06 56.20 2.40 2.30 90.91 0.0018 

29/01/2007 24.38 6.98 34.40 1.90 1.40 25.35 0.0010 

29/03/2007 9.56 10.32 13.90 0.40 0.46 12.29 0.0013 

25/08/2007 16.38 28.45 326.41 3.12 0.41 116.32 0.0026 

21/09/2007 23.55 20.07 37.24 0.42 0.05 93.48 0.0062 

02-03/10/07 19.64 19.69 21.93 0.37 0.27 79.53 0.0041 

24/10/2007 34.06 28.83 126.40 2.69 4.25 196.88 0.0021 

22/11/2007 17.62 9.58 47.50 0.78 0.59 27.65 0.0022 

21-24/12/07 43.24 9.95 40.80 1.78 0.21 161.34 0.0055 

02/01/2008 20.25 14.80 67.91 2.14 0.53 37.17 0.0029 

03/01/2008 52.84 14.80 179.52 12.94 3.84 147.71 0.0022 

14/01/2008 24.79 11.81 116.09 3.74 3.36 51.21 0.0011 

19/02/2008 30.94 16.68 81.67 4.84 9.78 64.19 0.0000 

24/02/2008 13.96 8.83 67.59 3.48 6.94 21.23 -0.0009 

18-19/4/08 17.05 31.52 21.37 0.58 1.14 75.77 0.0020 

11/10/2008 56.99 31.52 65.31 3.24 6.79 304.82 0.0020 

28-29-30/11/08 80.17 9.58 66.74 9.41 13.14 120.85 -0.0001 

02-03/1/09 59.81 14.43 206.13 16.65 75.84 146.02 -0.0014 

14/01/2009 9.52 4.40 3.17 0.14 0.04 6.11 0.0037 

20-21/1/09 24.54 6.61 29.50 2.74 2.12 24.02 0.0007 

29/11/2009 21.84 8.09 23.52 1.48 0.24 27.20 0.0028 

18-19/12/09 27.41 13.30 350.09 5.74 13.43 58.71 -0.0003 
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28-29/12/09 12.46 4.77 66.89 1.96 0.19 4.80 0.0017 

30-31/1/10 24.19 6.24 113.48 6.17 1.70 19.62 0.0008 

04-05/1/10 32.47 10.32 304.28 11.09 2.21 46.82 0.0015 

12/01/2010 14.66 6.24 70.56 2.81 0.80 13.10 0.0012 

23/01/2010 15.02 6.61 32.09 2.77 0.43 15.55 0.0020 

15-16-17/2/10 35.58 10.32 330.16 22.67 2.62 45.79 0.0013 

18-19/2/10 27.13 7.35 171.66 16.62 7.56 32.44 -0.0003 

21-22-23-

24/2/10 
38.67 8.09 268.46 15.45 6.82 30.44 -0.0003 

25-26/2/10 14.64 4.03 68.00 5.56 0.65 7.77 0.0008 

28/2/2010-

1/3/10 
9.35 5.14 72.72 3.87 0.80 6.45 0.0003 

02-03-4/3/10 23.08 5.87 119.43 8.47 1.20 18.09 0.0010 

07-08-09/3/10 30.79 8.09 233.15 15.53 3.41 19.92 -0.0001 

16-17/9/10 33.56 14.43 281.23 4.99 59.30 69.75 -0.0027 

09-10/10/10 23.36 12.56 350.02 3.47 17.30 38.33 -0.0016 

08-09/11/10 21.07 6.61 56.89 3.50 0.77 20.91 0.0016 

26-27-28/11/10 21.96 5.51 57.34 6.91 1.53 12.55 0.0003 

29/11/2010 13.18 4.40 34.48 4.19 0.40 13.33 0.0019 

01/12/2010 9.89 4.77 57.80 5.01 1.35 6.40 -0.0003 

05-06-07/12/10 42.23 11.81 349.95 17.22 0.15 64.66 0.0049 

18-19/12/10 42.78 12.56 350.11 12.15 2.96 85.41 0.0018 

20-21-22-

23/12/10 
61.75 8.83 227.72 19.21 13.84 56.90 -0.0004 

30-31/12/10 15.01 4.03 62.37 2.03 0.14 6.40 0.0024 

07/01/2011 7.70 5.87 51.33 2.02 0.27 7.45 0.0018 

08/01/2011 6.42 7.72 73.21 2.32 0.22 8.37 0.0021 

14-15/2/11 46.48 12.56 324.50 16.01 6.00 91.01 0.0006 

09/03/2011 30.94 4.03 54.17 8.90 3.59 17.10 -0.0007 

11-12/3/11 10.98 4.03 62.63 2.46 0.58 6.38 0.0002 

13/03/2011 6.96 5.87 54.75 0.98 0.30 5.57 0.0008 

14-15/3/11 13.20 9.21 158.64 3.43 0.91 13.93 0.0002 

23-24/4/11 13.56 6.61 25.68 2.37 0.29 13.99 0.0019 
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01-2/5/11 20.58 8.83 119.44 6.47 0.80 35.03 0.0013 

04-5/5/11 13.8 10.69 283.74 6.73 2.93 25.98 -0.0005 

Mean 25.76 10.55 117.39 5.47 4.88 49.98 0.0014 

STD 15.85 6.84 110.03 5.62 12.45 57.39 0.0017 

Min 5.30 4.03 3.17 0.06 0.04 4.80 -0.0027 

Max 80.17 31.52 350.11 22.67 75.84 304.82 0.0062 

Median 22.52 8.83 67.24 3.335 1.03 26.59 0.0013 
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APPENDIX 2 

Hydrological attributes of the observed events for the study period in Conchuela 

watershed 
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Table A.2. Hydrological attributes of the observed events for the study period in Conchuela watershed (P= event 

rainfall; I30= maximum intensity in 30 minutes; Qp= peak flow; Q= runoff; L= sediment discharge; Rq= runoff 

erosivity (Williams factor). 

 

Event date P (mm) I30  (mm h
-1

) Qp (l s
-1

) Q (mm) L (t) Rq (M mm ha
-1

 h
-1

) β 

11/01/2006 9.38 7.14 1.20 0.03 0.05 0.11 -0.0017 

12/01/2006 17.50 7.00 35.00 3.60 0.73 10.46 0.0002 

12/04/2006 11.50 12.00 13.90 0.37 0.31 1.74 -0.0009 

12/07/2006 8.00 9.00 11.25 0.37 0.09 1.54 -0.0016 

17/10/2006 51.05 17.28 3.33 0.48 0.03 0.91 0.0011 

18/10/2006 72.60 29.40 96.67 2.08 3.22 13.59 -0.0010 

15/11/2006 18.40 5.30 35.20 3.30 3.42 9.99 -0.0014 

24/11/2006 12.00 4.00 2.58 0.88 0.50 1.10 -0.0017 

02/02/2007 5.50 4.00 15.87 0.58 0.13 2.42 0.0007 

04/02/2007 3.00 2.00 0.21 0.08 0.01 0.07 -0.0004 

05/02/2007 42.00 14.00 135.60 10.83 10.99 41.38 -0.0010 

17/02/2007 2.50 2.00 9.75 0.93 0.06 2.40 0.0017 

22/02/2007 11.00 8.00 53.30 3.30 0.49 12.61 0.0011 

02/03/2007 2.50 1.00 1.18 0.44 0.03 0.48 0.0003 

05/04/2007 16.50 23.00 136.70 3.46 9.44 21.94 -0.0015 

25/04/2007 14.50 27.00 43.30 0.74 0.52 4.86 -0.0004 

05/05/2007 3.50 11.00 22.90 1.02 0.46 4.07 -0.0003 

22/05/2007 23.50 15.00 0.50 0.10 0.02 0.13 -0.0013 

23/05/2007 9.00 16.00 7.72 0.20 0.45 0.89 -0.0025 

02/08/2007 19.50 5.00 40.00 3.99 0.58 11.94 -0.0029 

02/10/2007 2.50 2.00 2.20 0.38 0.03 0.63 0.0000 

20/11/2007 109.00 45.00 112.60 10.92 31.25 37.46 -0.0025 

21/11/2007 4.50 6.00 11.30 0.29 0.56 1.36 -0.0018 

04/12/2007 17.50 7.00 28.30 1.17 0.32 4.95 -0.0001 

26/12/2007 18.40 11.60 15.60 0.41 0.80 1.97 -0.0018 

13/01/2008 9.00 6.80 43.30 1.37 4.71 6.86 -0.0020 

15/01/2008 3.60 3.20 1.20 0.13 0.12 0.25 -0.0018 

01/02/2008 24.40 10.00 62.40 2.80 9.17 12.56 -0.0024 
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18/02/2008 30.80 9.60 95.60 7.70 15.91 28.11 -0.0018 

19/02/2008 4.40 4.80 4.60 0.49 0.12 1.10 -0.0002 

20/02/2008 2.80 2.40 0.35 0.06 0.01 0.08 -0.0003 

23/02/2008 7.00 4.00 8.60 0.17 0.08 0.86 0.0000 

01/03/2008 14.80 11.20 68.10 0.90 2.20 6.99 -0.0015 

18/04/2008 22.40 15.20 15.55 0.43 0.23 2.02 -0.0004 

19/04/2008 37.40 14.80 67.60 2.43 3.42 12.14 -0.0013 

04/07/2008 87.80 16.40 71.30 4.43 13.96 17.50 -0.0039 

04/10/2008 18.00 10.40 3.30 1.47 0.01 1.69 0.0029 

01/01/2009 12.40 4.00 4.84 0.71 0.03 1.39 0.0017 

02/01/2009 5.00 4.00 3.72 0.59 0.03 1.08 0.0014 

22/01/2009 11.20 3.20 3.78 0.46 0.01 0.95 0.0027 

25/01/2009 6.80 6.40 4.13 0.24 0.01 0.70 0.0023 

01/02/2009 41.20 7.20 61.97 11.81 4.94 28.02 -0.0007 

03/02/2009 41.00 10.80 51.80 11.55 5.95 25.03 -0.0010 

01/03/2009 29.80 3.60 26.20 3.64 0.55 8.95 0.0004 

05/03/2009 2.80 3.20 2.13 0.23 0.03 0.47 0.0003 

29/03/2009 22.60 6.40 4.08 0.52 0.05 1.06 0.0005 

18/12/2009 37.00 24.40 24.10 1.54 0.41 5.28 0.0001 

20/12/2009 121.00 21.60 1335.77 84.68 148.12 471.30 -0.0013 

22/12/2009 1.20 2.00 21.34 0.63 0.03 2.99 0.0027 

23/12/2009 17.20 10.40 119.20 14.61 8.51 45.53 -0.0008 

23/12/2009 37.60 15.20 193.38 23.71 31.64 78.29 -0.0016 

25/12/2009 24.60 6.80 115.03 10.36 11.15 36.82 -0.0013 

28/12/2009 29.80 6.80 114.76 16.30 9.76 47.39 -0.0009 

29/12/2009 19.80 16.00 192.29 12.11 7.17 53.58 -0.0005 

30/12/2009 28.80 12.00 138.79 12.23 4.64 44.87 -0.0002 

13/01/2010 18.80 5.20 109.29 10.32 10.68 35.69 -0.0012 

14/01/2010 45.80 7.60 117.41 27.15 11.09 63.86 -0.0006 

03/02/2010 37.00 6.00 117.15 20.78 24.13 54.92 -0.0015 

18/02/2010 16.60 4.40 76.10 8.15 2.35 25.53 0.0002 

21/02/2010 51.20 25.60 312.66 24.80 17.59 105.07 -0.0005 
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22/02/2010 49.80 29.60 298.70 24.18 17.69 100.98 -0.0005 

24/02/2010 2.00 1.20 29.97 0.54 0.20 3.30 0.0006 

24/02/2010 11.40 3.20 148.17 6.09 4.16 31.51 -0.0002 

26/02/2010 1.60 1.20 9.44 0.77 0.13 2.11 0.0006 

28/02/2010 6.20 2.00 83.64 1.53 0.88 10.55 0.0003 

01/03/2010 50.00 9.60 491.24 27.66 53.45 143.85 -0.0013 

14/04/2010 41.40 4.80 112.06 4.63 4.34 23.12 -0.0014 

01/05/2010 3.80 7.20 102.18 1.56 1.61 11.95 -0.0010 

03/05/2010 20.40 3.20 115.23 6.03 3.55 27.22 -0.0009 

13/05/2010 7.20 8.80 8.99 0.15 0.22 0.82 -0.0017 

14/05/2010 9.80 18.40 103.15 1.51 5.55 11.80 -0.0022 

01/06/2010 16.20 3.60 64.78 5.39 3.68 18.50 -0.0021 

03/08/2010 18.40 5.60 94.97 8.53 8.35 29.66 -0.0041 

05/09/2010 3.00 0.40 0.58 0.07 0.36 0.12 -0.0051 

01/10/2010 9.80 4.40 22.64 0.70 0.12 3.28 0.0006 

02/10/2010 7.20 2.40 1.33 0.10 0.01 0.23 0.0004 

05/10/2010 15.40 2.80 0.05 0.56 2.88 0.09 -0.0059 

29/10/2010 52.46 14.10 83.97 2.44 0.03 13.73 0.0045 

14/11/2010 12.29 0.21 11.71 0.38 0.19 1.60 -0.0004 

01/12/2010 25.20 22.00 246.08 8.45 24.42 50.29 -0.0018 

02/12/2010 9.80 2.40 8.08 0.61 0.11 1.70 0.0003 

05/12/2010 123.20 4.00 235.79 39.09 30.02 115.75 -0.0012 

18/12/2010 52.40 3.60 165.80 13.11 19.04 51.55 -0.0015 

20/12/2010 27.40 11.60 134.74 6.95 5.08 32.16 -0.0007 

21/12/2010 49.40 10.00 85.87 14.91 9.81 38.32 -0.0011 

30/12/2010 55.00 2.40 117.72 13.58 14.42 43.40 -0.0014 

07/01/2011 4.40 0.40 1.36 0.03 0.01 0.12 0.0002 

08/01/2011 14.00 1.20 25.69 1.70 1.25 5.78 -0.0009 

09/01/2011 2.80 1.60 25.12 0.25 0.18 1.95 0.0000 

14/02/2011 36.20 4.80 115.20 6.15 8.41 27.52 -0.0014 

16/02/2011 18.20 14.00 93.52 3.47 6.08 17.77 -0.0013 

19/02/2011 8.20 0.80 11.54 0.58 0.57 2.02 -0.0011 
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14/03/2011 16.60 2.80 45.10 1.64 1.94 7.75 -0.0013 

23/04/2011 8.40 0.40 1.25 0.09 0.10 0.21 -0.0019 

29/04/2011 17.80 0.80 3.31 0.25 0.23 0.63 -0.0007 

Mean 23.52 8.61 79.23 6.03 6.76 23.68 -0.0007 

STD 24.27 7.94 153.34 11.14 17.13 53.81 0.0015 

Min 1.20 0.21 0.05 0.03 0.01 0.07 -0.0059 

Max 123.20 45.00 1335.77 84.68 148.12 471.30 0.0045 

Median 16.60 6.40 35.20 1.53 0.73 6.99 -0.0009 
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APPENDIX 3 

SEDD model calibration for Setenil and Conchuela watersheds 
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Figure A.1. Model predictions for C-RUSLE values equal to 0.30 for the best fitted scenario in each watershed. The 

dotted box is zoomed in on the right plots.  

 

 

 

 

 

Observed sediment loads (t)

0 20 40 60 80 100 120 140 160

P
re

d
ic

te
d
 s

e
d
im

e
n
t 
lo

a
d
s
 (

t)

0

20

40

60

80

100

120

140

160

Median value

Positive/Negative value

y=0.6808x+1.3689

R
2
=0.89

RMSE=6.78
n=95
positive/negative values

y=0.2854x+2.3876

R
2
=0.27

RMSE=14.76
n=95
median values

CONCHUELA C-RUSLE=0.30

Observed sediment loads (t)

0 5 10 15 20 25 30 35 40
P

re
d

ic
te

d
 s

e
d

im
e

n
t 
lo

a
d

s
 (

t)

0

5

10

15

20

25

30

35

40

y=0.7545x+1.1387

R
2
=0.64

RMSE=4.21
n=92
positive/negative value

y=0.3305x+1.698

R
2
=0.21

RMSE=7.39
n=92
median value

Observed sediment loads (t)

0 10 20 30 40 50 60 70 80

P
re

d
ic

te
d

 s
e

d
im

e
n

t 
lo

a
d

s
 (

t)

0

10

20

30

40

50

60

70

80

y=0.5982x+0.9732

R
2
=0.80

RMSE=6.20
n=60
positive/negative value

y=0.0495x+1.7235

R
2
=0.09

RMSE=12.24
n=60
median value

SETENIL C-RUSLE= 0.30

Observed sediment loads (t)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

P
re

d
ic

te
d

 s
e

d
im

e
n

t 
lo

a
d

s
 (

t)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

y=0.9267x+0.1936

R
2
=0.58

RMSE=2.98
n=58
positive/negative value

y=0.1554x+1.4651

R
2
=0.09

RMSE=3.81
n=58
median value



Distributed processes in the runoff and sediment generation and transport in olive groves at different scales 

 

98 

 

 

 

Figure A.2. Model predictions for C-RUSLE values equal to 0.30 for the best fitted scenario in each watershed. The 

dotted box is zoomed in on the right plots.  
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