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Summary 1 

Durum wheat (Triticum turgidum L. var durum) is mainly produced and consumed in the 2 
Mediterranean region; it is used to produce several specific endproducts. The Durum wheat growing 3 
areas are subjects to various biotic and a-biotic stresses. Many varieties have been developed using 4 
new breeding technologies to cope with stresses, stabilize yield  and maintain grain quality. One of 5 
the most critical step in plant breeding is the selection of genetic material that will make parents for 6 
crosses. ICARDA durum wheat breeding is studying  a core collection of Mediterranean durum 7 
wheat landraces that are incorporated in breeding strategies. Field trials to characterize 8 
phenotypically and physiologically a collection of landraces were run between 2004 and 2007. 9 
Microsatellites were used also to study the genetic diversity.  Geographic information system, 10 
combined with biometrical and population genetics methodologies were applied to identify 11 
phenotypic and genetic diversity spatial patterns. A large phenotypic variation was found in these 12 
collections especially yield components, morphology and quality traits, and the grain yield of 13 
landraces reached 90% of potential yield. Strong spatial patterns and barriers were found for several 14 
phenotypic traits across Morocco. Most of the phenotypic barriers overlapped with Altitude or agro-15 
climatic barriers. In general, landraces collected in close geographic regions tend to have similar 16 
phenotypic characteristics.  This study helped as well identifying different strategies of landraces in 17 
forming yield in different parts of the country. Several long time climatic variables identified to be 18 
proxies for traits variation in particular for phenology, height and grain quality. This could be used 19 
later in recognizing new regions for future germplasm collections and parents for specific crosses. 20 
The collection showed as well a high allelic diversity and strong population structure which was 21 
spatially distributed. Also, a significant molecular barrier was found and coincides mainly with the 22 
Moroccan altitude pattern and fellow the delineation of the two main mountainous chains in the country. 23 
At the end of this study, A geographic information system user interface was developed to help breeders 24 
and gene-bank managers to identify  landraces and geographic region of interest. The outcome of this 25 
study supports the use of geographic information systems together with existing phenotypic data and 26 
genetic markers to assess quickly and efficiently large number of genetic resources entries held by gene-27 
banks in particular in the context of climate change.  28 

  29 
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Resumen 1 

El trigo duro (Triticum turgidum L. var durum) se produce y consume en la región mediterránea 2 

principalmente; empleándose para producir varios productos finales específicos. Las áreas de 3 

cultivo del trigo duro están sujetas a diversos estreses bióticos y abióticos. Muchas variedades 4 

se han desarrollado utilizando las nuevas tecnologías de mejoramiento para hacer frente a los 5 

estreses, estabilizar el rendimiento y mantener la calidad del grano. Uno de los pasos más 6 

críticos en el mejoramiento es la selección de material genético para  identificar padres de 7 

cruzamientos. En el  ICARDA, el  programa de mejoramiento de trigo duro está estudiando una 8 

colección núcleo de las variedades locales de trigo duro del Mediterráneo que se incorporan en 9 

las estrategias de mejoramiento. Los ensayos de campo, para caracterizar fenotípicamente y 10 

fisiológicamente una colección de variedades locales, se realizaron entre 2004 y 2007. Los 11 

micro-satélites se utilizaron también para estudiar la diversidad genética. Los sistemas de 12 

información geográfica (SIG), combinados con metodologías de genética y biométrica se 13 

aplicaron para identificar formas espaciales de diversidad fenotípica y genética. Se encontró una 14 

gran variación fenotípica en estas colecciones especialmente en componentes del rendimiento, 15 

la morfología y la calidad. El rendimiento de grano de las variedades locales alcanzó el 90% del 16 

rendimiento potencial. Se encontraron importantes barreras y patrones espaciales para varias 17 

características fenotípicas a través Marruecos. La mayor parte de las barreras fenotípicas 18 

coinciden con la altitud o con las barreras agroclimáticas. En general, las variedades locales 19 

recolectadas en zonas geográficas cercanas tienden a tener características fenotípicas similares. 20 

El presente estudio ayudó también a la identificación de las diferentes estrategias con 21 

variedades locales para la determinación del rendimiento en distintas partes del país. Algunas 22 

variables climáticas identificados durante mucho tiempo son indicadores de variaciones en  23 

fenología, altura de planta y la calidad del grano. Esto podría ser utilizado más adelante en el 24 

reconocimiento de nuevas regiones para las futuras colecciones de germoplasma y padres para 25 

cruzamientos específicos. La colección estudiada demostró también una alta diversidad alélica y 26 

fuerte estructura de la población distribuida espacialmente.  27 

Se encontró también, una barrera molecular significativa y coincide principalmente con el 28 

patrón de altitud marroquí y siguió con la delimitación de las dos principales cadenas 29 

montañosas del país. Al final de este estudio, se desarrolló una interfaz de usuario del sistema 30 

de información geográfica para ayudar a los mejoradores y los administradores de los bancos 31 

genéticos a identificar las variedades locales de la región geográfica de interés. El resultado de 32 

este estudio apoya el uso de sistemas de información geográfica, junto con datos fenotípicos 33 

existentes y marcadores genéticos para evaluar de forma rápida y eficiente un gran número de  34 

recursos genéticos en poder de bancos de genes, en particular en el contexto del cambio 35 

climático. 36 

 37 

 38 
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1. Preface 1 

Wheat is the cereal most consumed cereal in the world after rice and more popular because of the 2 
presence of gluten; important in making bread and pasta production process. Wheat belongs to genus 3 
Triticum. The principal center of origin and diversity is the Fertile Crescent between the Mediterranean 4 
coasts and the Plaines of the Tigris and Euphrates. For a long time, man has grown wheat and improved 5 
its productivity and quality. Durum wheat (Triticum turgidum L. var. durum), a tetra-ploid wheat, 6 
compared to bread wheat, contains a high specific gluten that its semolina can be used to make couscous, 7 
pasta, burghul, and frike. Durum is mainly grown in the dryland areas of the Mediterranean region where 8 
biotic (diseases and insects) and a biotic (drought, cold and heat) stresses and variable environmental 9 
conditions are widespread. The Mediterranean climate is characterized by low and highly erratic annual 10 
rainfall varying from 200 to 800 mm, with usually poor rainfall distribution, and periods of drought and 11 
temperature extremes (cold and heat) that can occur at any development stage of the plant. Landraces are 12 
varieties of crops that evolved and were improved by farmers over many generations, without the use of 13 
modern breeding techniques. These varieties are generally very diverse within species, because each was 14 
adapted to a specific environment. The pace of improvement accelerated as modern breeding techniques 15 
were developed that facilitated selection of specific desirable traits. Within most types of crops, breeders 16 
have crossed different parental material and selected traits resulting in high yields. Quality changes have 17 
also been the subject of breeding effort. Other goals of breeding have included rapid and simultaneous 18 
germination, flowering, and maturation of crops. 19 

Durum wheat grown by farmers was until recently made of landraces. In the Mediterranean region, 20 
thousands of landraces were grown. Landraces are characterized by a biotic stress tolerance, particularly 21 
drought and also good grain quality. However, they lack yield potential and diseases resistance. The 22 
durum breeding program at the International Center of Agriculture Research in Dry Areas (ICARDA), 23 
have started to use intensively the landraces germplasm to improve varieties for drought tolerance, 24 
adaptation, and grain quality. To make a good use of genetic and phenotypic diversity found in landraces. 25 
Breeders have to dissect this diversity and study the adaptation of landraces. Adaptation and 26 
responsiveness of a plant to varying environments is one of the main tasks of breeding program. To cope 27 
with environmental fluctuations, durum breeding for large and/or diversified target regions may imply the 28 
definition of a breeding strategy, and possibly exploit, Genotype x Environment interactions. Multi-29 
environment yield trials performed for genotype selection or recommendation may also provide 30 
information for defining adaptation strategies, yield stability targets, indirect selection criteria (based on 31 
morpho-physiological traits or genetic markers), and parent germplasm and selection environments. 32 
Repeatable Genotype x Location (GL) interaction effects can be either exploited, by breeding material 33 
adapted to a specific sub-region, or minimized, by breeding material widely adapted to a region. 34 
Interfacing statistical modeling of genotype responses (e.g., by joint regression, Additive Main effects and 35 
Multiplicative Interaction or factorial regression techniques) with indirect selection theory allows for 36 
comparing different adaptation strategies of germplasm. 37 

In the case of genetic resources and since this set of plant material is collected in specific geographic 38 
region, an alternative approach is to link climatic and soil layers with a matrix of durum landraces 39 
characteristics to greatly understand the mechanisms of adaptation to difficult stressed conditions, and to 40 
improve the selection process of parental material used in the future in a Mediterranean breeding 41 
program. This will provide better decisions to develop adapted germplasm. Such linkage will reduce 42 
environmental hazards and abiotic stress risks and thus making breeding a multidisciplinary task 43 
involving breeders, physiologist, geneticists, statisticians, and agro-ecologists, etc. This methodology 44 
involves the use of the Geographic Information Systems (GIS), a family of powerful and dynamic 45 
computer software systems that manipulates and displays layers of spatially variable data. A variety of 46 
data types are used including climatic factors (precipitation, temperature, and radiation), geo-physical 47 
features (topography, soil traits) and biological characteristics (plant information and tolerance). By 48 
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integrating these individual spatial data layers in a GIS, it’s possible to better understand their 1 
interrelationships and create more useful models and maps to discover and study genetic diversity, which 2 
help the breeders to select and improve varieties. 3 

Presently, advanced molecular technologies make it possible to efficiently measure genetic information. 4 
As for geographic information, considerable advancements in computer science have led to the 5 
development of sophisticated software (GIS), in parallel with the elaboration of a wide variety of spatial 6 
analysis methods, making it possible to extract information from any environmental profile. 7 

Specifically, the present work reveals a GIS angle on particular aspects of molecular genetics and 8 
phenotyping of genetic resources. It falls within the discipline of GIS because GIS tools have been 9 
involved in the context of a scientific approach carried out together with biologists to assess their 10 
potential usefulness in discovering genetic diversity patterns and in bearing out hypotheses suggested by 11 
population geneticists. 12 

The use of GIS has increased in several fields that partly deal with geographically based data such as 13 
genetic resource collections. In many cases researchers are interested in using geographical/statistical data 14 
to explain facts in their research. Another alternative methodology is to compute geographical quantities 15 
in GIS and then export these quantities to a standard statistical tool (SPSS, Excel, etc.) or vicse-versa. 16 
These statistical tools cannot be integrated into a GIS so that the statistical analyses can be executed 17 
within a GIS software e.g. ArcMap. In the case of population genetics, several softwares were developed 18 
to study the effect of space or integer space into studying the dynamic of populations and distribution of 19 
alleles. However, no software permitting integration of phenotypic, genetic and GIS analysis was 20 
developed. Since such integrated GIS and statistical programs do not really exist and there is a demand 21 
for them, it is an interesting task to deal with. 22 

The aim of this study was 1) to study the phenotypic and genotypic diversity durum wheat landraces 23 
collections (example, the Moroccan collection), 2) to discover the spatial aspects of phenotypic traits and 24 
genetic variation and 3) develop a GIS user interface to help breeders study genetic resources. To 25 
accomplish this: 1) we used three years of phenotyping a set of durum landraces, 2) we genotyped the 26 
collection with fifty microsatellites across all durum wheat chromosomes and 3) analyzed using a set of 27 
biometrical and spatial statistics methods. This thesis includes a detailed explanation of the most 28 
statistical methodology used in breeding and genetic resources studies. 29 
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 1 

2. Introduction 2 

2. 1. Durum wheat 3 

2. 1. 1. Genome, origin, use and economy 4 

Domestic wheat originated in the Fertile Crescent in the Middle East. The oldest archaeological evidence 5 
for wheat cultivation comes from Syria, Jordan, Turkey, Armenia, and Iraq (ref.). Around 9000 years ago, 6 
wild einkorn (Triticum monococcum) wheat was harvested and domesticated in the first archaeological 7 
sedentary farming in the Fertile Crescent (Mac Key, 2005). The wild and cultivated wheats include 8 
diploid, tetraploid, and hexaploid species for which either Triticum monococcum or Triticum urartu was 9 
the A genome donor. The wild tetraploids T. turgidum ssp. dicoccoides arose from hybridization between 10 
T. urartu and the putative B donor Ae. speltoides. However, it remains uncertain whether Ae. speltoides is 11 
the sole source of the B genome or whether the genome resulted from an introgression of several parental 12 
species (Zohary and Feldman, 1962). T. turgidum (AABB) includes the wild ssp. dicoccoides and several 13 
cultivated subspecies such as T. turgidum ssp. durum grown mainly in the Mediterranean dryland. 14 
Triticum aestivum L. (AABBDD) is an allopolyploid of Aegilops tauschii (DD) cross with Triticum 15 
turgidum L. (AABB). T. aestivum (AABBDD) arose under cultivation 8,000 years ago from spontaneous 16 
hybridization between T. turgidum ssp. dicoccon and the diploid goatgrass Aegilops tauschii ssp. 17 
Strangulate (DD). The range of distribution of Triticum relatives occurs from the Canary Islands to 18 
Western China, and from Southern Russia to Northern Pakistan and India (van Slageren, 1994). The 19 
center of variation of Triticum wild relatives includes Egypt, Palestine, Jordan, Lebanon, Syria, Turkey, 20 
Armenia, Azerbaijan, Iraq, Iran, Afghanistan, and the Turkish Republics of Central Asia (van Slageren, 21 
1994).  22 

Acording to Harlan (1992), the origin of T. aestivum was a coincidental event that probably occurred as a 23 
consequence of cultivating T. turgidum in close proximity to populations of wild Ae. tauschii. Hexaploid 24 
wheat was found in the archaeological sites of Cafer Höyük, Can Hasan and Çatalhöyük in Turkey and 25 
Abu Hureya in Syria, dating to the seventh millennium before Christ (BC). Contrary to this evidence most 26 
of the evolutionary studies have placed its origin in either Transcaucasia or the south Caspian region. 27 
However, the probable absence of Triticum turgidum from this region until the sixth millennium BC 28 
indicates that the biological evidence is at odds with the archaeological evidence. Further, the origins of 29 
emmer wheat (AABB) demonstrated that cultivated emmer is not monophyletic, and it was domesticated 30 
on more than one occasion and at different geographic locations in the Fertile Crescent. The 31 
demonstration that cultivated emmer has diverse origins provides evidence in favor of the hypothesis that 32 
the transition to agriculture in South West Asia was a necessary response to a changing environment 33 
rather than the result of a chance discovery. Ancient or modern farmers have grown four wheat species: 34 
einkorn (T. monococcum), emmer (durum), T. timopheevi, and bread wheat. However, only durum and 35 
bread wheat are currently used for food production, accounting for 4 and 96% of the total wheat acreage, 36 
respectively. The farming communities of the Hauran plateau in Southern Syria, as in the other parts of 37 
the fertile crescent, have contributed for millennia to the evolution and in situ conservation of the durum 38 
landrace Haurani. According to Vavilov (1951) and Harlan (1992), the landrace Haurani can be 39 
considered as an evolutionary link between wild emmer wheat (Triticum dicoccoides), the wild progenitor 40 
of all domesticated wheats and through breeding developed cultivars. The Haurani landrace has evolved 41 
in a heterogeneous environment with large variations in rainfall (250-459 mm), altitude, temperature 42 
extremes (cold and terminal heat), drought, length of growing season, date of sowing, etc. Growing for 43 
thousands of year has led the evolution over many generations, of gene complexes providing the landrace 44 
with adaptive traits for the rainfed areas (Nachit, 1992). The Haurani landrace was continuously cropped 45 
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for millennia until the end of 1980s. It was replaced by the new productive and drought tolerant durum 1 
varieties; its cropping area has declined to less than 5% (Nachit, 1995).  2 

2. 1. 2. Triticum durum 3 

Durum wheat is one of the oldest cultivated plants in the world and is grown mainly in the middle and 4 
near East region and North Africa, which are considered the centers of origin and diversification of this 5 
crop (Vavilov, 1951). Based on archeological evidence it is generally accepted that durum wheat was 6 
domesticated at least 2000 years before bread wheat (Morris and Sears 1967) during the late Mesolithic 7 
period and the early Neolithic age (Harlan 1986). The adaptation of durum wheat largely overlaps that of 8 
bread wheat, but is less widely grown (Autrique et al., 1996). On the other hand, durum wheat is better 9 
adapted to Mediterranean dryland than bread wheat. This is why over 80% of the total world durum wheat 10 
area is located in the Mediterranean basin (Porceddu et al., 1990) and this is why durum has been 11 
concentrated in the driest areas of the West Asia and North Africa (WANA) region. Durum wheat is best 12 
adapted to regions having a relatively dry climate, with hot days and cool nights during the growing 13 
season, typical of Mediterranean and temperate climates. Seed germination will occur as low as 2°C, but 14 
the optimal temperature is 15°C (Bozzini, 1988). Most durum wheat produced in the world is of spring 15 
growth habit; however, durum wheat lines with winter habit (requires vernalization to initiate the 16 
transition from vegetative growth to reproductive growth) have been evaluated for production in the 17 
southern USA (Domnez et al., 2000; Schilling et al., 2003). 18 

2. 1. 3. Western Mediterranean  19 

The countries include Portugal, Spain, southern France, Morocco, Algeria and Tunisia. Most are 20 
accessible and harbour eight or more species. In northern Portugal, there are landraces of wheat and rye 21 
adapted to unidentified soil problems. There are also primitive wheats, such as spelt, T.dicoccum and 22 
T.monococcum, that are still grown in Spain for specific culinary or animal uses. In North Africa, there 23 
are landraces of diploid, tetraploid and hexaploid wheats that may exhibit physical environmental stress 24 
tolerances. Collections of Ae. bicornis from the coastal areas of Egypt and Cyprus in the eastern 25 
Mediterranean might be useful as a source of salt tolerance. In Morocco, for example, the local 26 
populations of durum wheat offers an important genepool as sources of adaptation and tolerance to many 27 
biotic and abiotic stresses. This important genetic material is continuously subject to genetic erosion and 28 
the rapid adoption of the newly released varieties has already reduced significantly the acreage grown to 29 
landraces in many parts of Morocco. In the mountain and oasis regions of Morocco, however, wheat 30 
landraces are still widely grown by farmers. 31 

2. 1. 4. Economy, cultivation, and use of durum wheat 32 

Wheat is the first important and strategic cereal crop for the majority of world's population. It is the most 33 
important staple food crops of about 40% (nearly half) of the world population, occupying 17% (one 34 
sixth) of crop acreage worldwide, and providing nearly 55% of the carbohydrates and 20% (nearly fifth) 35 
of the food calories consumed globally (FAO, 2003; Gupta et al., 2008; see: 36 
http://www.slideshare.net/ifad/durum-wheat-miloudi-m-nachit-icarda-4998603). Although wheat 37 
production during the last four decades has witnessed a steady significant increase, a fatigue has been 38 
observed during the last few years, leading to the lowest current global wheat stocks ever since 39 
1948/1949. Consequently, wheat prices have also been soaring, reaching the highest level of US $ 367 a 40 
ton as against US $ 165 a year ago.  41 

Wheat exceeds in acreage and production every other grain crops (including rice, maize, etc.); (Gupta et 42 
al., 2008) and is therefore, the most important cereal grain crop of the world, which is cultivated over a 43 
wide range of climatic conditions and the understanding of genetics and genome organization using 44 
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molecular markers is of great value for genetic and plant breeding purposes. The world durum wheat 1 
production was estimated to be 35.4 million tons in 2012-2013. Most important producers are EU, 2 
Canada, Turkey and Syria and North Africa (Figure 1).  Trade is to be around 7.6 Million tons during 3 
2011-2012 compared to 6.8 MT of 1997-2001. There is a continuous durum wheat demand in the world. 4 
In the last decades, Africa is the most demander of durum wheat mainly because of the demand of North 5 
Africa. The regions importing the most are North Africa, European Union and Latin America (Figure 2). 6 
Within North Africa, Algeria is the main importer. The top 5 exporters during 2012 (Figure 3) of wheat 7 
are Canada, India, EU, USA and Mexico 8 

Durum (derived from the Latin word for hard) has the hardest kernel of all wheats. Durum wheat with 9 
high protein content and gluten strength is the preferred choice of processors for producing pasta 10 
products. Durum kernels are amber-colored and larger than those of other wheat classes. Also unique to 11 
durum is its yellow endosperm, which gives pasta its golden color. Durum wheat with strong gluten 12 
characteristics forms strong, non-sticky dough ideal for pasta and couscous production. Semolina with 13 
strong gluten properties also results in pasta and couscous products with superior cooking characteristics. 14 
Durum wheat kernel is normally hard and virtually all varieties have amber, vitreous, and rather large 15 
kernels. The protein content is usually about 13%, but may reach 22%. High protein content, however, 16 
does not always guarantee optimum cooking quality (Ciaffi et al., 1991; Blanco and Giovanni 1996). The 17 
principal use of durum wheat grain is the production of semolina for use in pasta products. However, in 18 
North Africa, durum is preferred for the production of couscous; and in the Middle East and burghul. 19 
Traditional breads are also made with durum flour, particularly in Morocco and South Italy.  20 

 21 

 22 

Figure 1: Major durum wheat producers (Million tons). Source IGC, CWB. 23 
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 1 

Figure 2: Durum wheat top 10 importer countries (source www.factfish.com) 2 

 3 

 4 

Figure 3: Durum wheat top 10 exporter countries (source www.factfish.com)  5 

 6 

2. 1. 5. Wheat growth development stages 7 

Physiologically: germination, emergence, tillering, floral initiation or double ridge, terminal spikelet, first 8 
node or beginning of stem elongation, boot, spike emergence, anthesis, and maturity are usually 9 
distinguished developmental stages. These stages (Figure 4) may be grouped into: germination to 10 
emergence (E); growth stage 1 (GS1) from emergence to double ridge; growth stage 2 (GS2) from double 11 
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ridge to anthesis; and growth stage 3 (GS3), which includes the grain filling period, from anthesis to 1 
maturity. Physiological maturity is usually defined as the time when the flag leaf and spikes turn yellow 2 
(Hanft and Wych, 1982). The period of each development phase depends essentially on genotype, 3 
temperature, day-length, and sowing date. Various environmental stresses may shorten the wheat growth 4 
phases. 5 

Germination to emergence (E): Germination may occur between 4° and 37°C, optimal temperature being 6 
from 12° to 25°C. During germination, the seminal roots grow first, followed by the coleoptile, which 7 
protects the emergence of the first leaf.  8 

Emergence to double ridge (GS1): Wheat tillers grow from the axils of the main shoot leaves. The 9 
potential number of tillers varies with genotype, particularly among flowering types, winter types having 10 
a greater number. Tillering has great agronomic importance in cereals since it may partially or totally 11 
compensate the differences in plant number after crop establishment and may allow crop recovery from 12 
early frosts. The duration of the vegetative stage (GS1) in wheat may vary from 60 to 150 days depending 13 
on sowing date and genotype. This stage has two major components: Vernalization, wheat flowers after 14 
the completion of a cold period. The double ridge stage is not reached until chilling requirements are met, 15 
and the vegetative phase is prolonged generating a higher number of leaves in the main shoot; 16 
Vernalization occurs at temperatures between 0° and 12°C (Ahrens and Loomis, 1963; Trione and 17 
Metzger, 1970). Photoperiod, after vernalization is completed, genotypes, which are sensitive to 18 
photoperiod, require a certain day-length to flower. Sensitivity to photoperiod differs among genotypes. 19 
They flower faster as the day-length increases, but they do not require a particular length of day to induce 20 
flowering (Evans et al., 1975; Major and Kiniry, 1991). The development of the inflorescence after 21 
induction occurs at a rate that is also dependent on daylength in the genotypes sensitive to photoperiod 22 
(Stefany, 1993). Vernalization and photoperiod constitute the basic processes of the adaptation of wheat 23 
to various environments. Knowledge and genetic manipulation of them should continue to provide 24 
significant tools for adaptation and yield. 25 

Double ridge to anthesis (GS2): Wheat plants have from four to eight leaves in the main shoot when the 26 
growing apex changes from the vegetative to the reproductive stage. The length of the apex at this time is 27 
approximately 0.5 mm. Temperatures above 30°C during floret formation cause complete sterility (Owen, 28 
1971; Saini and Aspinal, 1982). Each spikelet has from 8 to 12 floret primordia in the central part of the 29 
spike. The basal and distal spikelets have from six to eight florets. Two stages are differentiated. Terminal 30 
spikelet: Spikelet number per spike is already determined at this stage, varying from 20 to 30 (Allison and 31 
Daynard, 1976; Kirby and Appleyard, 1984). This stage is particularly sensitive to environmental stresses, 32 
especially nitrogen and water (Wuest and Cassman, 1992a). Spike growth: Once the terminal spikelet is 33 
formed, stem elongation starts and the spike begins to grow. Spike growth occurs from the appearance of 34 
the leaf prior to the flag leaf (penultimate leaf) up to ten days past anthesis (Kirby and Appleyard, 1984). 35 
Spike growth, slow in its early stages, increases greatly about the time the ligule of the flag leaf becomes 36 
visible (Krumm et al., 1990). In the wheat crop, there is a close relation between the number of kernels 37 
per unit area and the ratio between incoming radiation to the mean temperature above 4.5°C (the 38 
photothermal quotient) calculated for the 30 days preceding anthesis (Fischer, 1985a).  39 

Anthesis to physiological maturity (GS3): The wheat spike contains only one spikelet per rachis node. 40 
Each spikelet has between three and six potentially fertile florets (Kirby and Appleyard, 1984), which are 41 
self-pollinated in 96 percent of the cases (Martin et al., 1976). Anthesis begins in the central part of the 42 
spike and continues towards the basal and apical parts during a three- to five-day period (Peterson, 1965). 43 
The proximal florets of the central spikelet are fertilized two to four days earlier than the distal florets. 44 
These grains usually have a greater weight (Simmons and Crookston, 1979). After floret fertilization, 45 
cellular division is rapid, during which the endosperm cells and amyloplasts are formed. After there is a 46 
phase of cell growth, and differentiation and starch deposition in the endosperm, which corresponds to 47 
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linear grain growth and takes from 50 to 70 percent of the grain filling period. The embryo is formed at 1 
the time of endosperm growth (Jones et al., 1985). 2 

 3 

 4 

Figure 4: Physiological development stages of wheat (Adapted from Slafer and Rawson, 1994) 5 

S=sowing; G=germination; E=emergence; DR=double ridge appearance; TS=terminal spikelet initiation; HD=heading; 6 
A=anthesis; BGF=beginning of grain filling period; PM=physiological maturity; GS=growth stage 7 
 8 

2. 1. 6. Quantification of wheat development 9 

There are several scales or development codes for wheat that describe visible growth stages without the 10 
need for dissection of the plant. Among these the most widely used is Haun’s scale (Haun, 1973), which 11 
is most useful in defining vegetative growth stages. Feeke’s scale (Large, 1954) and Zadoks’ scale 12 
(Zadoks et al., 1974) provide a good description for both vegetative and reproductive stages (Figure 5). 13 
Crop development stages are determined in representative plants in the field, avoiding the borders of plots 14 
and any interfering material. Zadoks’ scale is the most comprehensive and easiest to use. It describes all 15 
stages of the cereal growth cycle, incorporating characteristics not considered in other scales. It is based 16 
on a decimal code, which incorporates various aspects of plant development. The main growth stages are 17 
self-explanatory. A second digit, values from 0 to 9, gives more detail for each main growth stage using 18 
the position 5 as the middle value. Leaf numbers, for example, have decimal codes from 11 to 19 and the 19 
tillers in the main shoot from 21 to 29. After emergence, all development stages are based on observations 20 
on the main shoot, usually the tallest and thickest. After stage 40 (at 39 the flag leaf ligule is just visible 21 
and at 41, the early boot stage, the spike is beginning to swell), the stages of the main shoot and tillers 22 
become similar, and the stages are determined by viewing the whole plant. Stages 70 to 93 are determined 23 
by the development stage of individual kernels or grain in the middle of average spikes. At the ICARDA 24 



 25  

 

durum program we are using this scale: see physiological data (spectral reflectance for example): ZS45 1 
(booting stage); ZS70 (after anthesis 100% ~Milk stage) 2 

 3 

 4 

Figure 5: Zadok’s scales for wheat physiological development 5 

 6 

2. 1. 7. Potential yield 7 

Yield potential, defined as the yield of an adapted genotype grown under optimal management and in the 8 
absence of biotic and abiotic stresses, has been found to be a very useful concept since progress in yield 9 
potential usually leads to progress in wheat yield in farmers’ fields, particularly if stresses are mild. The 10 
yield of a wheat crop can be expressed as the product of two components: 𝐺𝑌 = 𝐾𝑀2 ∗ 𝐾𝑊 11 

where GY is grain yield (g/m2); KM2 is the kernel number (m-2); and KW is the kernel weight (g). The 12 
KM2 can be also expressed as the number of kernel per spike (KSPK) and the number of spike per meter 13 
square (SPM2). It can be also explained as the product of plants per meter square, spikes per plant, 14 
spikelets per spike, florets per spikelet and grains per floret. It follows the GY equation that changes in 15 
wheat yield potential could be achieved through changes in KM2 and/or KW. Strong associations with 16 
yield have been found with KM2 for sets of wheat genotypes (Austin et al., 1980; Slafer et al., 1990; 17 
Slafer et al., 1996). KM2 is established in the period between 20 and 30 days before flowering and 10 18 
days after anthesis. This period coincides with tiller and floret mortality, along with the active growth of 19 
the stem (peduncle) and spike. Gains in KM2, however, do not translate directly in yield potential gain 20 
due to partial compensation by decreased KW. Slafer et al. (1996) argue that the lower KW observed with 21 
increased KM2 is not only due to a lower amount of assimilates per grain but is the result of an increased 22 
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number of grains with a lower weight potential coming from more distal florets. It has been shown that 1 
competition for limited resources during the spike growth period, including light and nitrogen, is the 2 
major cause of KM2 potential loss. 3 

2. 1. 8. ICARDA durum breeding program 4 

The Mediterranean climate is characterized by low and highly unpredictable annual rainfall varying from 5 
200 to 800 mm, with usually poor rainfall distribution, and periods of drought and temperature extremes 6 
(cold and heat) that can occur at any plant stage of development (Nachit et al., 1992a, 1992b). These 7 
environmental conditions are the main causes of yield reduction and fluctuation in the Mediterranean 8 
region. As irrigation on a large scale for durum commercial production is not available to increase 9 
production, the only applicable alternative is the improvement of drought tolerance and yield stability 10 
through genetics/ plant breeding, stress physiology, and use of molecular markers as tools by the breeders 11 
(Nachit et al., 1998). Consequently, In Syria for example, during the last 10 years the contribution made 12 
by the stress tolerant and productive durum genotypes developed by the ICARDA is reflected in the 13 
spectacular production increase, from less than 1 to 3.4 million tons, without any significant increase in 14 
the cropped area (1.2 million .ha). However, with unrelenting population growth in most countries of the 15 
West Asia and North Africa region, and virtually all show food deficit, the major challenge for 16 
researchers is to increase food- mainly wheat output.  17 

The ICARDA dryland durum-breeding program was initiated in 1977 in northern Syria. The ICARDA 18 
main research station (Tel Hadya) and its related research sites across a rainfall gradient (Lattakia, Terbol, 19 
Kfardan, and Breda) in the Middle East region are located in the heart of the Fertile Crescent. A region 20 
where a wealth of wheat landraces is found along their wild relatives in different agro-ecological zones, 21 
from lowland plains to highland plateaus; and from favorable to stressed environmental conditions 22 
(Nachit, 1992, 1998). Along drought, cold, and heat, multiple biotic stresses (diseases, insects, and 23 
viruses) are endemic with the highest virulence of disease races and insect biotypes. Thus, these 24 
combinations of abiotic and biotic stresses, makes the breeding work in the Fertile Crescent dryland both 25 
complex and challenging.  26 

The Mediterranean basin is rich of durum landraces and wild relatives. In the ICARDA durum breeding 27 
program at ICARDA, landraces and wild relatives possessing novel traits are evaluated and used to 28 
improve durum varieties (Nachit, 1992). Different tools are used to generate durum germplasm for 29 
immediate use by durum scientists in the region: Molecular markers, stress-resistance tools, conventional 30 
cross, etc. The objectives of the durum breeding program at ICARDA, in collaboration with NARS, 31 
advance research institutes and universities are: 1) develop productive durum genetic material combining 32 
high grain quality with resistance to the main abiotic and biotic stresses encountered in the Mediterranean 33 
region; 2) Use the available genetic variation found in the durum wheat local landraces; and 3) use of 34 
molecular assisted selection. As drought is the dominant stress factor limiting durum productivity in the 35 
Mediterranean region, the ICARDA’s durum breeding program has developed with collaborators a 36 
breeding strategy to improve germplasm resistant to drought, cold and heat. The cornerstone of this 37 
strategy is the introgression of resistance genes from landraces and wild relatives to cultivated durum, and 38 
the utilization of contrasting and representative environments in the Mediterranean basin. The standard 39 
experiment in durum wheat breeding program at ICARDA is to evaluate durum cultivars under a range of 40 
environmental conditions as multi-environmental trial strategy; also a particular attention is given to 41 
detailed testing environments characterizations in terms of physiologically relevant meteorological and 42 
soil variables. The dependence of genotypic performance of durum wheat on environmental conditions is 43 
an expression of the genotype by environment interaction (GE), and breeding for abiotic stress 44 
environments means to a large extent trying to understand and overcome problems imposed by GE. For 45 
statistical analysis, durum wheat breeding program is using and developing wide range of methodologies 46 
such as ANOVA, AMMI, stability (parametric and non-parametric), Wescott. Durum breeding program at 47 
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ICARDA is using the marker assisted selection (MAS) through the identification of QTL and QTLxE 1 
pattern for yield and associated traits. That was a very effective selection method compared to traditional 2 
phenotypic (or field) selection of secondary traits influencing yield.  3 

2. 1. 9. Landraces and genetic resources 4 

Landraces are one important category of genetic resources which have been categorized by Frankel 5 
(1977) and the Food and Agriculture Organization of the United Nations Commission on Plant Genetic 6 
Resources (FAO, 1983). Landraces and obsolete cultivars represent a very valuable part of the genetic 7 
resources of wheat (Zou and Yang 1995) because of their characteristic features such as their tolerance to 8 
locally occurring stress (Tesemma et al., 1998). Landraces, which have been developed through a 9 
combination of a natural selection and selection performed by farmers (Belay et al., 1993) and have been 10 
selected over thousands of years by farmers and nature for characteristics related to local adaptation and 11 
yield stability. Landrace varieties are an important germplasm to move towards sustainable agricultural 12 
development. In the case of durum wheat landraces, several works have reported the presence of 13 
important features for crop improvement such as resistances, early maturity and quality (Porceddu et al., 14 
1975; Boggini et al., 1987; Pecetti et al., 1992).They have some valuable traits which can contribute 15 
significantly to improvement of new durum wheat cultivars and broaden their diversity (Biesantz et al., 16 
1990; Tesemma et al., 1998). Durum wheat landraces are less productive, but they are more tolerant to 17 
environmental stress than the modern varieties. They are still cultivated in the remote rural areas of 18 
several Mediterranean countries for local use because of their high end-product quality (Agorastos and 19 
Goulas, 2005), especially in areas of marginal agriculture, where yield and yield stability are the most 20 
desirable characteristics. The genetic erosion of these varieties could lead to the extinction of valuable 21 
resources which have not been exploited. The protection and utilization of these materials requires their 22 
conservation, evaluation and characterization (Esquinas- Alcazar, 1987). 23 

This category of gene pool should be a major activity of germplasm banks to identify useful genetic 24 
variation and make it available to breeders. 25 

Variation is needed to: 26 

increase yield potential; provide new sources of biotic resistance to maintain current yield levels; 27 

provide adaptation to the more marginal environments (abiotic stress); 28 

provide improved industrial quality. 29 

Evaluation and pre-breeding should be major activities of any collection. The ICARDA durum wheat 30 
collection provides the opportunity and the responsibility to raise involvement in these activities, in 31 
addition to offering new variation to breeding programs. Information systems make it possible to estimate 32 
the degree of relatedness among wheat landraces and allow breeders to increase genetic diversity by 33 
selecting materials of divergent parentage for crosses. This can reduce wheat’s vulnerability to diseases 34 
and climatic changes, and automatically updates family trees as additional ancestry is discovered. A 35 
survey of breeders indicates that 75 percent of wheat breeders acknowledge that future advances in 36 
breeding will be limited by a lack of genetic resources, though this was not considered an immediate 37 
restraint for most programs (Rejesus et al., 1996). This lack of genetic resources can be mediated by 38 
increasing knowledge about the value of genetic resources and through the identification of new and 39 
novel sources of traits, both in the existing ex situ collections and in situ collections yet to be collected.  40 

No insightful study has been done to estimate the contribution of collections to wheat improvement. 41 
Chapman (1986) examined the role of genetic resources (defined as wild materials and landraces) in 42 
wheat breeding and found it difficult to assess. He concluded that genetic resources are used in about 10% 43 
of crosses, based on the occurrence of genetic resources in pedigrees of recently released cultivars and the 44 
frequency of references to genetic resources in the Annual Wheat Newsletter. An example of the utility of 45 
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genetic resources is their contribution to improving wheat resistance to the rust diseases. One of the stem 1 
rust resistance genes, Sr2, originally transferred to hexaploid wheat from Yaroslav emmer by McFadden 2 
in 1923 (Stakman and Harrar, 1957), has provided durable resistance to the disease. Cultivars possessing 3 
Sr2 in combination with other genes have been grown without stem rust losses on millions of hectares in 4 
North America over the last 30 years (Roelfs, 1988b). The tremendous gains in wheat production 5 
associated with the so-called green revolution in India and Pakistan would probably not have been 6 
realized without the protection from stem rust provided by Sr2 in combination with other genes. The 7 
narrow genetic basic of durum and common wheat is a major constraint for the improvement of these 8 
crops (Feldman and Sears 1981). Therefore, it is of great importance to widen the genetic variation of 9 
desirable traits, particularly, those affecting yield and quality (Nachit 1998, 2000). Wild relatives of 10 
wheat, having a much wider range of genetic variation, could serve as an excellent source for 11 
improvement of such desirable traits. In fact, wild relatives hold rich pools of genetic variation and carry 12 
many genes of great economic potential (Feldman and Sears 1981). For this reason, many programs are 13 
now carrying out hybridization programs, based on interspecific or intraspecific crosses between wild 14 
species and cultivated wheats. For instance, the ICARDA durum-breeding project has mainly based its 15 
hybridization program on crosses between improved genotypes, Mediterranean landraces and wild 16 
relatives to improve and broaden the genetic base for resistance to biotic and abiotic stresses. Thus, 17 
landraces and wild relatives from the Middle East have been used to enhance drought tolerance, from 18 
Turkey and Algeria to incorporate cold resistance and from Morocco-Iberia region to improve resistance 19 
to root rot and Hessian fly (Nachit 1989, Nachit et al. 1995b).  20 

To reach their research goals, many research projects either on genome sequencing or in population 21 
genetics and conservation biology have been run; and scientists have to analyze the dramatically growing 22 
amount of genetic data gradually produced by molecular techniques in the context of these projects. These 23 
works are generating a huge quantity of biological data, most of which are spatially located within a 24 
geographic context. In parallel with molecular approaches, it is highly desirable to apply a diversity of 25 
interdisciplinary (statistics, spatial statistics, molecular biology, phenotyping) approaches to understand 26 
such complex information. Geographic Information Systems (GIS) holds promise for being one of the 27 
appropriate ways to investigate genetic data from a point of view, which is somewhat unique to the 28 
traditional field of life sciences. The geographic attributes of molecular data are worthy of attention and 29 
consist of an alternative means of studying the variation of genetic diversity and of analyzing natural 30 
selection processes. Combining GIS with molecular genetics technologies will increase the power of the 31 
latter by exploiting the spatial dimension of the information they provide, proposing an alternative 32 
perspective that may lead to improved understanding of genomic functions. The visualization 33 
(exploratory spatial analysis) and the representation (cartography or thematic mapping) of spatially 34 
distributed genetic data are likely to highlight patterns of diversity and thus offer additional concrete 35 
support for interpretation. Furthermore, spatial analysis may allow the discovery of relationships between 36 
genome regions and properties of the environmental surroundings for the examined populations of plants. 37 

Several and different works had been done to study the phenotypic diversity of the durum wheat 38 
landraces. Ahmadizadeh et al. (2010) studied the genetic diversity of 37 durum wheat landraces from Iran 39 
and Azerbaijan using multivariate analysis under stress and irrigation conditions. This study showed that 40 
under irrigated conditions biological yield, awn length and harvest index showed more direct positive 41 
effects on yield. In drought stress condition, biological yield, spike length, number of grains per spike and 42 
harvest index showed more direct positive effects on yield. Araus et al. (2007) found a significant 43 
relationships between phenotypic variation among landraces from the Middle Euphrates and both 44 
minimum temperatures and the ratio of precipitation to potential evapotranspiration of the sites of origin. 45 
In addition, consistent differences in grain yield, plant structure, and water status were found among 46 
genotypes following both north–south and east–west gradients across the Mediterranean. Moraguees et al. 47 
(2006) demonstrated that the origin of landraces influenced biomass production. Landraces from the north 48 
side of the Mediterranean basin produced 19% more tillers than those from the south, resulting in larger 49 
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biomass and leaf area allocation on tillers at anthesis. Southern landraces showed a better adaptation to 1 
drought environments. Also, the yield components differed also depending to the origin of the durum 2 
landraces and that yield components had a strong or weak correlation depending if the landraces are 3 
originated from the north or the south. The ecological and anthropological causes may have played a role 4 
in the creation of the observed variation using 11 spike characteristics using durum wheat landraces from 5 
Algeria, Ethiopia and Italy (Spagnoletti et al., 1984).  6 

2. 2. Genotyping 7 

2. 2. 1. Polymerase Chain Reaction 8 

The polymerase chain reaction (PCR) is a technique used to amplify small segments of DNA. This 9 
molecular biology method was developed in 1985 by Kary Mullis. Small single-stranded segments of 10 
DNA made of 20-30 nucleotide bases (oligonucleotides) are synthesized in vitro in order to be correctly 11 
bound to opposite strands of the DNA segment it is wished to replicate. At the points of contact an added 12 
enzyme(DNA polymerase) can start to read off the nucleotide sequence and, through bases 13 
complementarily, synthesizes a new sequence until two new double strands of DNA are formed. The 14 
sample is then heated, which makes the strands separate so that they can be read off again. The procedure 15 
is continuously repeated, doubling at each step the number of copies of the desired DNA segment. 16 
Through such repetitive cycles, it is possible to reach millions of copies of the desired DNA segment 17 
within a few hours. According to the common approach, nucleotides provided to start the reaction are 18 
radioactive to make it possible to distinguish the different alleles by autoradiography after electrophoresis. 19 
Since a few years, radioactivity is progressively replaced by fluorescent labeling. The PCR technique is 20 
presently used in numerous molecular genetics applications:  Random Amplified Random DNA (RAPD), 21 
Amplified fragment length polymorphisms (AFLP), Sequence Specific PCR Based Markers, 22 
Microsatellites or Simple Sequence Repeats (SSR) and Single Nucleotide Polymorphisms (SNPs). 23 
Molecular markers are subject of continuous technical advancement and evolution. Most of markers are 24 
used in genetic diversity studies and the assessment and maintenance of genetic diversity, through the use 25 
of molecular markers is crucial as it provides a repository of adaptability to environmental and other 26 
changes (Mondini et al. 2009). 27 

2. 2. 2. Microsatellite markers 28 

Microsatellites are stretches of DNA that consist of tandem repeats of sequences of mono, di or tri 29 
nucleotides which are repeated between 10 and 20 times (for example, the frequent TG di nucleotide 30 
repeated 15 times in succession) and have no known coding function. These sequences are numerous, 31 
regularly distributed over the genome and characterized by an important polymorphism due to the 32 
variation of the number of repeats from an allele to the other. Using PCR, these repeats can be easily 33 
amplified. The number of repeat units that an individual has at a given locus can be resolved using a 34 
polyacrylamide gel whose high resolution permits a distinction of alleles whose size is one base pair 35 
different. From the gels, it is generally possible to perceive two genetic marks (alleles) for individuals as 36 
each one is inheriting one length of nucleotide repeats from his mother and one from his father and are 37 
thus considered co-dominant. Individuals with only one band have in fact received the same allele from 38 
both their mother and father. An important condition to use microsatellites in an efficient way is to make 39 
sure that the considered locus is unique. To check for it, flanking sequences on both sides of the locus 40 
have to be the same. Microsatellites are highly variable. In a population, many alleles of a single 41 
microsatellite locus, different in the number of repeats, may exist (up to 70 at a single locus). Moreover, 42 
microsatellite alleles change rapidly over time (Smith and Gaffney, 2000), evolving over time, from 43 
generation to generation. That is a reason why they are used to detect recent changes in population like 44 
effects of population fragmentation. Microsatellites are also useful for the identification of incipient 45 
differentiation of populations. 46 
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2. 2. 3. Alleles 1 

An allele is likely to play a marker role only if it can be distinguished from other alleles. Moreover, 2 
within a population, a marker is likely to be useful only if the variety is heterozygote at the location of 3 
this marker. This is of course because for a homozygote variety, the marker provides no information to 4 
distinguish two types of descendants. And even in the case for which the father, the mother and the 5 
offspring are heterozygote (A/a), the marker is not providing information. The efficiency of a marker is 6 
assessed according to its unambiguous ability to distinguish two descendants groups according to a 7 
marker allele. A co-dominant (SSR for example) marker is a marker for which all alleles can be merely 8 
deducted from the observation of the phenotype. It is providing more information than a dominant (AFLP 9 
for example) marker whose recessive allele can be observed only when homozygote. A marker is 10 
providing the more information when the number of alleles is high and their frequencies are balanced. 11 
This is why highly polymorphic co-dominant markers are checked. A system to increase the information 12 
provided is to consider a group of narrowly bound markers as a unique marker called haplotype, and 13 
whose polymorphism is the result of the allelic combination of each basic marker (Crow, 1986; Suzuki, 14 
1991). 15 

2. 2. 4. Linkage disequilibrium 16 

Alleles are said to be in linkage equilibrium if the frequency of a particular genotype is equal to the 17 
product of the frequencies of the individual alleles that make up the genotype. A natural way to measure 18 
the deviation from linkage equilibrium is to compare the observed and expected genotype frequencies and 19 
this is what is called linkage disequilibrium (LD):  20 

DAB = pAB – pApB 21 

where DAB is the coefficient of LD, pAB, pA and pB are the frequencies the haplotype AB, allele A and 22 
allele B respectively.  23 

The term linkage disequilibrium is actually an inappropriate name for deviations from this expectation as 24 
physical linkage between loci is neither necessary, nor sufficient to generate associations. LD is often due 25 
to the fact that a genetic link exists, but the reverse is not true and the existence of a genetic link doesn’t 26 
imply LD. Linkage equilibrium is generally admitted as working hypothesis when considering a large 27 
closed population. Indeed, LD generally occurs through selection, migration, mutation, or genetic drift, 28 
and is gradually replaced by successive recombination in the course of generations. Consequently, each 29 
global linkage disequilibrium within a population is not stable and is existing only in the case of recent 30 
evolutionary processes (selection, mutation, migration, drift and admixture) or if loci are physically very 31 
close to one another. In this case, markers efficiency would be weak as the association between two 32 
alleles at two loci detected on a population’s sample could not be generalized on the level of the whole 33 
population. 34 

2. 2. 5. Association mapping 35 

The phenotypic variation (observed) of many complex traits of many crops is influenced by multiple 36 
quantitative trait loci (QTLs), their interactions (epistasis; QTL.QTL), the environment (E), the 37 
environmental effect on QTLs (QTL.E) and on their interactions (QTL.QTL.E). Linkage analysis and 38 
association mapping are the most used methods to dissect complex traits. The traditional method to 39 
identify QTL in plants involves developing a segregating population from two genotypes (parents) 40 
varying in phenotypic values from a trait of interest, following extensive genotyping and phenotyping, 41 
significant marker-trait associations are identified. Although this method identifies genomic regions 42 
associated with traits for which the populations were developed. Furthermore, QTL identification is 43 
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limited to loci that differ between the parents, and unless large populations are used, QTL with small 1 
effects are not detected (Reimer et al., 2008). Different methods are used to identify QTL using bi-2 
parental populations: Approximate methods including markers regression, Haley-Knott and its extended 3 
version regressions and composite interval mapping. Exact methods such as interval mapping, multiple 4 
interval mapping, multiple imputations and Bayesian interval mapping.  5 

Association mapping (AM) is a complementary strategy to QTL mapping to identify associations between 6 
genotype and phenotype (Yu and Buckler 2006), and takes advantage of this “historical” LD to identify 7 
marker-trait relationships. The basic objective of AM is to detect correlations between genotypes and 8 
phenotypes in a sample of unrelated individuals. This technique has been successfully employed in 9 
human and animal genetics (DeWan et al. 2006; Karlsson et al. 2007) where creating large populations of 10 
segregating individuals is not practical or feasible. Compared to linkage mapping in traditional bi-parental 11 
populations, AM offers several advantages: increased sampling of allelic variation, increased mapping 12 
resolution, and reduced research time (Buckler and Thornsberry 2002; Flint-Garcia et al. 2003; Kraakman 13 
et al., 2004; Aranzana et al., 2005). The majority of studies have found that simple sequence repeats 14 
(SSRs) or single nucleotide polymorphism (SNPs) are the markers of choice when performing association 15 
studies, as a result of their ability to detect genetic variability (Eujayl et al., 2001; Stich et al., 2006a). The 16 
high level of polymorphism that SSRs provide increases the power to detect LD and facilitates higher 17 
resolution mapping (Stich et al., 2006a). Under ideal situation, the basic statistics for association analysis 18 
would be ANOVA, t-test, chi-square test and linear regression. However, as the population structure can 19 
affect the association between a trait and a marker (or a phenotype and a genotype); different methods 20 
have been developed to deal with this important factor. Bradbury et al. (2007) implemented a general 21 
linear model (TASSEL) using population structure (Q) estimated using random markers. A unified mixed 22 
model analysis for association mapping accounting for different level of relatedness between used 23 
cultivars was developed by Yu et al. (2006). Patterson et al. (2007) and Price et al. (2006) proposed a fast 24 
effective way to diagnostic population structure and used it further as a correction for association studies 25 
using chi-square test.  26 

2. 2. 5. Genetic diversity and structure 27 

The amount and distribution of genetic diversity (GD) affect the evolutionary potential of species and 28 
populations (Futuyma 1998) which makes genetic diversity in natural populations of great interest. 29 
Genetic structure of a species can be applied to preservation of the evolutionary potential of the species, 30 
which is one of the goals of conservation (Godt & Hamrick 1998). Genetic diversity, including the 31 
variability of alleles and genotypes, is commonly used to describe the heritable variation in a population 32 
or species. The genetic diversity of plant species reflects their breeding systems. Also, fluctuations in the 33 
number and size of populations and their bio-geographic history may play critical roles in determining the 34 
current genetic composition of species (Hamrick & Godt 1996). GD of a population can be structured by 35 
spatial factors and by the genetic backgrounds of species. Structuring can exist at different scales, for 36 
example, among populations, subpopulations or neighboring individuals (Escudero et al., 2005). The 37 
spatial distribution of plants is a product of environmental influences, including human activities, life-38 
history traits and past demographic histories of species (Knowles et al., 1992, Frankham et al., 2002). The 39 
genetic structure of plant populations is largely shaped by factors such as selection, spatial habitat 40 
structure, isolation by distance, social organization, mating system, gene flow, genetic drift, evolutionary 41 
history, life history, and other ecological and evolutionary factors at a wide variety of spatial and temporal 42 
scales (Loveless & Hamrick 1984, Avise 2004). When dispersal between populations is restricted, gene 43 
flow between them is reduced, resulting in high genetic structuring at the population level. Populations of 44 
nearly all species exhibit at least some degree of genetic differentiation across geography (Ehrlich & 45 
Raven 1969). It is a continuing challenge for scientists to describe population genetic architectures within 46 
species and identify the biological forces responsible for them. Considering genetics only, the study of 47 
spatial structures exist since a long time. Indeed, in 1931 Sewall Wright developed adaptation and 48 
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evolution models which were incorporating spatial distribution and distance considerations (Epperson, 1 
2003). Distance between populations or habitats remains a central issue in spatial genetics as the main 2 
reference models in this discipline directly refer to, or are controlled by it (genetic isolation by distance, 3 
stepping-stone model and infinite- island model) (Epperson, 2003; MacArthur & Wilson, 1967). A lot of 4 
different statistics in which distance is playing a role were developed within spatial genetics (Epperson, 5 
2003). For instance, the well-known Mantel test, developed in 1967, allows testing the association of one 6 
set of pairwise measures with another. This was applied to compare geographical with genetic distances 7 
(Epperson, 2003) to find out if distance from a source was likely to explain genetic diversity gradients 8 
defined by genetic distance.  9 

Population structure results from selection and high levels of admixture (individual accession membership 10 
proportion found in multiple sub-populations) in a population and results in increased LD between 11 
unlinked markers (Nordborg and Tavare 2002; Cardon and Palmer 2003; Farnir et al., 2000; Rostoks et al. 12 
2006). Population structure is often used in genetic studies to summarize relationships between 13 
Individuals within and among populations, and can provide insight into evolutionary relationships. The 14 
probability of a Type I error increases in AM studies if population structure is not accounted for (Flint-15 
Garcia et al. 2003; Gupta et al., 2005). Several methods have been proposed for estimating population 16 
structure and modeling population structure in AM studies, including distance- and model-based methods 17 
(Pritchard et al., 2000a; Ahmad 2002; Lu et al., 2005; Yu et al., 2006; Camus-Kulandaivelu et al., 2007; 18 
Peleg et al., 2008). Distance-based estimates of population structure are generally based on clustering of 19 
individuals using pairwise genetic distance estimates between individuals (Nei 1972; Rogers 1972; Nei 20 
1978). In contrast, model-based methods assign individuals probabilistically to one or more sub-21 
populations (Pritchard et al., 2000a). The most common model-based approach is Bayesian modeling 22 
where allele frequencies are used to estimate the likelihood of an individual belonging to a particular 23 
subpopulation. This approach allows assignment of individuals to respective populations that can be 24 
integrated into statistical models to account for population structure in AM studies (Pritchard et al. 25 
2000a). With Bayesian modeling, the number of sub-populations is usually estimated a priori. Often, 26 
known relationships (pedigree, origin of the individual) and/or genetic distance methods are used to 27 
estimate a realistic number of sub-populations for calculation of model-based assignments (Liu et al. 28 
2003; Lu et al. 2005; Agrama et al. 2007; Chao et al. 2007; Hai et al. 2007).  29 

Few studies were conducted on detailed population structure of durum wheat landraces. Earlier work of 30 
the ICARDA durum breeding program (Autrique et al. 1996) studied genetic diversity and measured 31 
genetic distance between durum wheat cultivars and some landraces of diverse eco-geographical origin 32 
using restriction fragment length polymorphism markers (RFLP). Maccaferri et al. (2005) studied the 33 
structure and Linkage Disequilibrium (LD) of an elite collection of durum wheat using STRUCTURE and 34 
TASSEL programs. High and low molecular weight glutenin and clustering method were used by 35 
Moraguees et al. (2006) to study the genetic diversity between 63 Mediterranean durum wheat landraces. 36 
Unweighted Pair Group Method with Arithmetic Mean (UPGMA) was used to separate white glumes, 37 
black awned, black glumes, and white awned, and classified wheat-like accessions among 56 accessions 38 
of durum wheat using SSRs (Duwayri et al., 2007). Wang et al. 2007 found 87 alleles in 25 primer SSRs 39 
using 60 durum wheat accessions from seven countries. They found more alleles were identified on the B 40 
genome than A genome. Zarkti et al. (2010) measured genetic distance and diversity of 23 Moroccan 41 
durum wheat accessions of which 17 were landraces by using only 7 SSRs; and assumed that the genetic 42 
variability found in durum wheat may be anthropogenic, geographical or environmental. Melnikova et al., 43 
2010 studied the genetic diversity using gliadin coding loci was studied with 465 durum wheat accessions 44 
from 42 countries. This study could differentiate between three groups of accessions, south, north and 45 
advanced lines from international breeding centers (ICARDA and CYMMIT). Fifty microsatellites were 46 
used as molecular markers tool to determine the genetic structure and spatial adaptation of Moroccan (98) 47 
and Syrian (90) durum wheat landraces (Kehel et al., 2013) where Bayesian and Eigen methods were used 48 
to determine the genetic diversity and structure; and to analyze the effects of spatial factors. Neighboring 49 
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landraces tend to have close genetic profile. These results demonstrate the importance of the use of the 1 
spatial Bayesian and the easily usable Eigen methods to analyze the genetic diversity and to discriminate 2 
between the durum wheat landraces.  3 

2. 2. 6. Spatial and non-spatial models in populations genetic 4 

Recently, taking landscape information into account in genetic studies is of a growing interest (Manel et 5 
al., 2003). Among landscape features, space is most likely to influence the genetic structuring of a set of 6 
individuals or populations (Manel et al., 2004; Coulon et al., 2006). This structuring can exhibit different 7 
patterns, such as isolation by distance (Wright, 1943), clines (Haldane, 1948), meta-populations (Hanski 8 
and Simberloff, 1997; Kerth and Petit, 2005) and barriers to gene flow (Slatkin, 1985). There is strong 9 
concern, then, in including space in the analysis of genetic data. Spatial information, since a long time, 10 
can be used a posteriori for graphical display purposes (Bertranpetit and Cavalli-Sforza, 1991; Manel et 11 
al., 2004) or to measure spatial autocorrelation (Sokal and Wartenberg, 1983; Sokal et al., 1986; 12 
Bertorelle and Barbujani, 1995; Smouse and Peakall, 1999). Such methods are not properly designed to 13 
investigate spatial patterns of genetic data but may be useful to visualize and test for spatial structure. To 14 
investigate spatial genetic structures other than the most evident, a method should be spatially explicit. To 15 
be explicit, a method should directly take spatial information into account as a component of the model 16 
used. Such methods have been developed using different approaches. Dupanloup et al., (2002) developed 17 
the SAMOVA, the spatial analysis of molecular variance. Guillot et al., (2005) GENELAND the 18 
Bayesian clustering framework, and, François et al., (2006) a hierarchical Markov random field (HMRF) 19 
model. The last two programs were proposed as improvements of STRUCTURE (Pritchard et al., 2000; 20 
Falush et al., 2003) by integrating geographic information to infer the number of populations and detect 21 
the genetic discontinuities among these populations (Coulon et al., 2006). Manel et al. (2007) proposed a 22 
method to detect genetic boundaries among multilocus genotypes. Another, maybe more concerning, 23 
issue with these methods resides in the clustering approach itself: assigning individuals to groups is a 24 
likely inappropriate strategy when individuals are genetically structured as a cline. A last approach would 25 
be to use a Mantel correlogram (Legendre and Legendre, 1998) to assess the variation of spatial 26 
autocorrelation in allelic frequencies across scales. An alternative for exploring genetic data is offered by 27 
ordination methods (such as principal component analysis PCA) because their utilization is not contingent 28 
on a particular genetic model. Hardy–Weinberg equilibrium or linkage equilibrium are thus no longer 29 
required. Basically, these methods aim at summarizing strongly multivariate data into a few uncorrelated 30 
components, forming the so called ‘reduced space’. For this summary to be meaningful, the components 31 
are chosen so as to reflect most of the variability in data. Such methods can be applied on allelic 32 
frequency data to obtain a summary of the genetic variability among individuals or populations. A great 33 
illustration of such practice was offered by Menozzi et al. (1978), who used PCA to investigate the spatial 34 
patterns of the genetic variability, obtaining the well-known synthetic maps of human gene frequencies. 35 
More recently, PCA proved useful to correct for population stratification (Price et al., 2006) in AM study 36 
and to infer and test the number of subpopulations (Patterson et al., 2006). PCA seeks genetic variability, 37 
not spatial structures; it is not a likely optimal method for revealing spatial genetic patterns. Recently, a 38 
new tool for spatial pattern of genetic variability is developed called spatial principal components sPCA 39 
(Jombart et al. 2008), it is a modified PCA to still study the genetic variance between individuals taking 40 
into account their spatial autocorrelation. Two types of patterns are discriminated at sPCA: global and 41 
local structures.  42 

2 .3 . Geographic Information Systems (GIS) 43 

Geographic information systems (GIS) or geographic information science designates system that can 44 
store, manipulate, and analyze geo-referenced data. GIS are interdisciplinary, being a field that provides 45 
tools useful through their applications to solving problems within other disciplines. In this sense, GIS is 46 
merging cartography, spatial analysis, geostatistics, database management and software development. GIS 47 
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are considered to be applications-led technology (Longley et al., 2001). GIS consists of a two-sided field 1 
closely related to computer science, the GIS part (software, topology, databases, standards, formats, etc.), 2 
and of a collection of methods and models that explicitly use the spatial referencing of each data case, the 3 
spatial analysis (Goodchild and Haining, 2004).  4 

Data in GIS representing real data (road, rivers, buildings, plant landraces, etc.) collected or measured 5 
directly in its environment or captured remotely (remote sensing, aerial photography). These data can be 6 
vector or raster. Vectors are the geometrical way of representing geographic features. Three different 7 
types of vectors can represent a geographical information: 1) Point (or events), which is an ordered pair 8 
(x, y) of spatial coordinates. A point indicates the place of occurrence of an event, like in the case of 9 
durum wheat landrace. 2) Polygon (or zone) which is a set of ordered pairs (x, y) of spatial coordinates, in 10 
such a way that the last point is identical to the first thus forming a closed region in the plane. It is 11 
covering an area. A country or a wheat field are polygons for example. 3) Line (or polyline) is set of 12 
ordered pairs (x, y) of spatial coordinates but representing linear features such as rivers, roads. On the 13 
other hand, raster is a matrix of rows and columns of cells where in each cell a unique value (usually 14 
between 0 and 255) is stored. Raster data can be images where each pixel (cell) has a color value. Raster 15 
can be continuous such as elevation in a digital elevation model (DEM) or discrete like for soil image or 16 
land use. These data are organized in general in database. The most used geographic database 17 
organization is the geo-relational model, that utilizes a relational database management system (DBMS) 18 
like DBASE or ACCESS, to store in its tables the attributes of the geographic objects, and separate graphic 19 
files to store the geometric representation of these objects. 20 

GIS has been applied, for long time, for a multiplicity of uses in military, history, land survey, hydrology, 21 
archeology, anthropology, transportation, medicine, diseases surveillance, etc. For many years, GIS 22 
turned toward environmental modeling (Goodchild et al., 1993), generally concerned with explaining 23 
basic features of GIS to demonstrate how they could be efficiently applied to fields related to the natural 24 
sciences (Caloz and Collet, 1997). Because of this late reflection on what constitutes geographic 25 
information research, we are challenged by a need of integration of GIS and spatial analysis (Goodchild, 26 
1992). This results in a gap between a trend of spatial data management for which geography is a 27 
mechanism for accessing information and whose works are technology-oriented, and a movement of 28 
spatial analysis interested in functionality and models for which geography has a fundamental role. The 29 
information management and business aspects are much more noticeable than the analysis one. The 30 
development of technologies naturally led to a GIS industry (software producers) narrowly involved 31 
together with academic GIS users. The dilemma about GIS is what to consider it as: science or business. 32 
GIS was mainly disseminated by the Environmental Science Research Institute (ESRI), which is a pure 33 
business company. ESRI contains research and science in its name but its objectives are essentially 34 
software industry. GIS science needs to empty itself from software production. The availability of GIS 35 
open source applications is probably to advance the situation that spatial analysis are more important than 36 
business. In this context, GIS are not only tools: their use belongs to a wider group of specific knowledge, 37 
which have spatial information in common and are unified within GIS.  38 

Until now, application to genetics has been very rare. Despite its current predominance in life sciences, 39 
and its direct application to concerns of public society (health, food), genetics had until lately remained 40 
outside the scope of GIS research. In contrast, from the end of the 1960s on, biologists gradually 41 
appropriated GIS tools, mainly in ecology. Only since the mid-1990s, population geneticists and 42 
molecular biologists began to make use of GIS to try to understand how geographical and environmental 43 
features influence the structure of genetic data. The molecular biology and GIS may facilitate novel and 44 
complementary methods of dealing with some of the issues related to evolutionary processes. Power of 45 
the latter by exploiting the spatial dimension of the information they provide, proposing an alternative 46 
perspective that may lead to improved understanding of genomic functions. The visualization 47 
(exploratory spatial analysis) and the representation (cartography or thematic mapping) of spatially 48 
distributed genetic data are likely to highlight patterns of diversity and thus offer additional concrete 49 
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support for interpretation. Furthermore, spatial analysis may allow the discovery of relationships between 1 
genome regions and properties of the environmental surroundings for the examined populations of plants 2 
in general and durum wheat landraces in particular.  3 

Analyses of genetic diversity of plants often consist in evaluating geographical patterns of diversity 4 
(biodiversity maps) generated from biological variables such as vegetation (McKendry & Machlis, 1991), 5 
or in habitat modeling (Jones et al., 1997). This is in fact the notion of biodiversity that evolved with the 6 
integration of genetic data and diversity to complement species diversity, ecosystem diversity and cultural 7 
diversity, which is determining how people interact with nature. This new dimension of biodiversity 8 
possibly reinforced the role of GIS, and especially the one of spatial analysis in the sense it multiplied in a 9 
phenomenal way the number of organisms’ informative elements to be tested in relation to geographic 10 
and environmental information.  11 

Arthur Mourant was the first to have the idea of making geographic maps of gene frequencies and to use 12 
them extensively (Cavalli- Sforza et al., 1994). Mourant (1954) led original works on blood groups and 13 
their hereditary clinical, social, and geographic patterns, he published in “The Distribution of the Human 14 
Blood Groups” which long was regarded as a revolutionary work. The study shown in “The History and 15 
Geography of Human Genes” of Cavalli-Sforza et al. (1950) proposed through mapping the worldwide 16 
geographic distribution of the genes an explanation of the understanding of how humans left Africa and 17 
populated the rest of the world, and also to the detecting of antique migrations, as for example the 18 
migration of Neolithic farmers from the Middle East towards Europe. The authors represented spatially 19 
the proportion of a given allele found in a population between several indigenous populations. They used 20 
110 traits such as blood types, proteins and DNA markers. The spatial presentation was done by 21 
presenting the frequency of the alleles on maps according to the locations where the studied populations 22 
were sampled, and the points of equal gene frequencies were connected by “isogenic” curves. Two 23 
analyses were possible: mapping alleles is practical to understand evolutionary history of an allele; the 24 
correlation of allele frequencies with environmental parameters can be determining to discover specific 25 
genetic adaptations. 26 

Smoothing or interpolation was then used as a spatial analysis. Interpolating surfaces was used in other 27 
genetic works to define specific genetic diversity: Bucci and Vendramin, (2000) to delineate genetically 28 
homogeneous regions and predict haplotype frequencies; and Hoffmann et al. (2003) define Arabidopsis 29 
thaliana areas of similar diversity across Europe based on nucleotide diversity. Hamann et al. (2000) 30 
exploited ordinary Kriging to predict performance of seed sources at un-sampled locations. They 31 
suggested exploring the composition of the environment constituting the dispersal zones (using 32 
temperatures and precipitations) to test if the genetic differentiation would fit the ecological one. This 33 
perception, directly related to what was exploited by Skøt et al. (2002) in their investigation of the 34 
interaction between environmental characteristics of a forage grass (Lolium perenne) and its molecular 35 
information. To increase the efficiency of breeding according to a given interesting property, marker-36 
assisted selection was studied as a potential tool with the aim to understand the ability of Lolium perenne 37 
to survive and grow at low temperature, to acclimate to cold, to tolerate wind, snow cover, and ice 38 
encasement. Six AFLPs markers were identified to be involved in the resistance to cold. In addition, GIS 39 
was used in this study to display plants locations and to retrieve corresponding environmental variable 40 
values available on separate data layers. AFLPs markers were also used to show association with salt 41 
tolerance in wild barley (Pakniyat et al., 1997) applying the same methodology. 42 

One way to consider gene-environment interaction (apart the classical GE interactions used in breeding) 43 
is to study the influence of the environment on the genome and try to understand how geographical and 44 
environmental features affect genetic structure. The landscape genetics is then created by David Galbraith 45 
(19??) of the Royal Botanical Gardens as the placement of genetic diversity into a spatial framework. 46 
This concept was adopted by several institutions studying genetic diversity by using GIS to analyze the 47 
geographical distribution of different genetic markers. One important work making precise definition of 48 
landscape genetics is “combining landscape ecology and population genetics” by Manel et al. (2003). 49 
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Landscape genetics is likely to facilitate our understanding of how geographical and environmental 1 
features structure genetic variation at both the population and individual levels, and has implications for 2 
ecology, evolution and conservation biology. This made possible the integration between spatial statistics, 3 
GIS and molecular markers. Since then several works used this approach (Hirao and Kudo, 2004; Watts et 4 
al., 2004; Spear et al., 2005). Spear et al. (2005) attributed much importance to GIS tools and concluded 5 
that GIS analyses should be added to the field of landscape genetics to examine the extent to which 6 
landscape features influence genetic structure. All previous works constitute full and direct recognition of 7 
GIS tools and methods’ role in the framework of the analysis of genetic information in a spatial context. 8 
The importance here conferred to the management and the analysis of geographical information makes 9 
GIS a compulsory component of landscape genetics, together with molecular genetics and ecology. It is 10 
very difficult to list all the works combining GIS and genetics because most of these studies are published 11 
under the form of project reports, the most important is that the involvement of GIS in molecular genetic 12 
studies is increasing Joost et al. (2005). Kidd and Liu 2008 defined a ‘geophylogeny’ as a data structure 13 
within which phylogenetic and geographical data and models are explicitly linked. The developed 14 
‘geophylobuilder 1.0’, an extension under ArcGIS to create geophylogeny from a tree and the associated 15 
geographical information.  16 

Proches 2006 presented a principal component derived maps to generate latitudinal and longitudinal 17 
barriers in biogeography. Faleiro et al., 2008 used molecular markers and GIS to study native plant 18 
species. The GIS was used to plot accessions and made it possible to identify areas with great diversity. 19 
Cercueil et al., 2007 introduced new visual tool for investigating spatial variation of allele frequencies. 20 
They developed software called GENBMAP with the framework of the Wombling methods. The method 21 
is generally able to locate genetic boundaries or clines precisely. Manel et al., 2007 proved a method 22 
based on assignment tests applied in a moving window over an extensively sampled study area. For each 23 
individual, a spatially explicit probability surface is constructed, showing the estimated probability of 24 
finding its multilocus genotype across the landscape, and identifying putative migrants. Population 25 
boundaries are localized by estimating the mean slope of these probability surfaces over all individuals to 26 
identify areas with genetic discontinuities. At the university of Alberta, Canada they developed a macro 27 
under Arcview 3.2 using Avenue to run the spatial allele frequencies using the dominant marker data. 28 
Engler from Lausanne University developed a new tool to simulate the future distribution of species in the 29 
context of global warming. He used Arcmap GIS using ArcObjects. Linear relationship between genetic 30 
and geographic distance in a worldwide sample of human populations was found. A close relationship 31 
was shown to exist between the correlation of geographic distance and genetic differentiation (as 32 
measured by FST) and the geographic pattern of heterozygosity across populations (Ramachandranet al., 33 
2005). The spatial prediction of species distribution is an important tool for the conservation and 34 
management of the biodiversity. It uses a wide variety of statistical approaches together with geographic 35 
information systems (GIS) (revision in Austin, 2002).The gradient across different peninsular regions lead 36 
to postulate that it has a natural origin (Cánovas et al., 2004; De la Rúa et al., 2004). The northwards 37 
expansion of A. m.mellifera from Iberia to NW Europe, after the last glaciation period, was subsequently 38 
followed by the spreading out of A. m. intermisa from northern Africa to the Iberian Peninsula. According 39 
to this hypothesis the gradient should be found across the whole Peninsula and its nature should be 40 
explained in relation to natural factors as are climatic parameters and physical barriers (Canovas et al., 41 
2008) - The predictive power of Generalized Linear Models (GLM) versus Canonical Correspondence 42 
Analysis (CCA) models of plant distribution in the Spring Mountains of Nevada, USA, are compared. 43 
Results show that GLM models give better predictions than CCA models because a species specific 44 
subset of explanatory variables can be selected in GLM, while in CCA, all species are modeled using the 45 
same set of composite environmental variables (axes). Although both techniques can be readily ported to 46 
a Geographical Information System (GIS), CCA models are more readily implemented for many species 47 
at once. Wagner et al. (2005) used variogram approach to analyze spatial genetic structure of populations 48 
using microsatellite data. This permitted to estimate the population genetic diversity and provide the 49 
spatial genetic structure accounting for autocorrelation. McVean (2009) provided a framework for 50 
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interpreting PCA axis in term of underlying geographical isolation and admixture. He also demonstrated a 1 
link between PCA and Wright’s Fst. Kato and Yokoyama (1992) studied the Geographical variation in 2 
heading characters among wheat landraces. They found that almost 50% of the variation of a trait is 3 
explained by the geographical difference in origin using 158 wheat landraces. The difference among 4 
localities indicated that wheat landraces had been selected for early heading as an adaptation strategy to 5 
water stress and/or high temperature in early summer. Iwaki et al. (2001) studied the geographical 6 
variation of growth habit of 749 landraces from various parts of the world, with special reference to their 7 
adaptation and eco-geographical differentiation they found out that geographical variation of growth habit 8 
is closely related to the degree of winter coldness.  9 

3. Material and Methods 10 

3. 1. Durum wheat collection 11 

We utilized ninety eight (98) durum landraces from Morocco and ninety (90) from Syria, representing the 12 
two countries' durum collection and representing the main Mediterranean environments: continental, 13 
temperate, and high altitude areas (Figure 6 and 7). The collections were executed by the genetic 14 
resources unit (GRU) of ICARDA in 1985 and 1987 for Morocco and Syria, respectively. During the 15 
collection missions, topographic data (Latitude, longitude and altitude) were recorded for each location. 16 
Physical address and the closest village were also registered (Supplementary table). 17 

 18 
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 1 

Figure 6: Distribution of Moroccan Durum landraces 2 
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 1 

Figure 7: Distribution of Syrian durum landraces 2 

 3 

 4 

 5 
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3. 2. Field evaluation 1 

3. 2. 1. Phenotypic traits 2 

The two collections were evaluated for agronomy, quality, yield and yield components. The phenotypic 3 
data recorded by the GRU during the collection year was also used in the analysis. For the experimental 4 
design and data analyses; we used the augmented design AD (Federer 1956) with 5 checks (Omrabi5, 5 
Haurani, Korifla, Waha, and Gidara2). The AD is based on 10 blocks. Each trial had a total of 240 plots 6 
(N = (10 “Blocks” × 5 “Checks”) + 188 “Landraces”) arranged as a grid layout of 20 rows by 12 columns. 7 
Each block contained 24 plots, including all five check lines, and comprised a pair of adjacent rows in the 8 
layout.  9 

The following observations on inner two rows basis were taken: 10 
* Days to heading (days): number of days from emergence to the day when half of the spikes have 11 
appeared in 50% of the plants (DH).  12 
* Days to maturity (days): number of days from emergence to the day when the peduncle was completely 13 
discolored in 90% of the plants (DM). 14 
* Grain filling development period (days), GFD = DM - DH.  15 
* Plant height (cm): plant height was measured from the ground level to the top of the spikes excluding 16 
awns (PH). 17 
* Number of tillers: from inside rows, mean number of fertile tillers per one meter were counted and 18 
converted to square meter (SPM2). 19 
* Peduncle length (cm): length from the last stem node to the base of the spike (PL). 20 
* Spike length (cm): length was measured from the base to the top of the spike excluding the awns (SL).  21 
* Number of grains per main spike (KSPK). 22 
* Thousand grain weight (g): 200 grains were taken randomly from the harvested grain and converted to 23 
the weight of 1000 grains (TKW). 24 
* Grain yield (Kgha-1): the whole plot was harvested by hand and threshed, then cleaned and the grains 25 
were weighed (GY).  26 
* Sedimentation (SDS). Sedimentation test is a method to estimate the strength of wheat gluten; it is 27 
based on the hydration capacity of flour in a low acidity media. 28 
Gluten strength; sedimentation test (SDS ml), for measuring the gluten strength sedimentation test (ml) 29 
was done according to the method of Pena et al. (1990). Few grams ground by UDY cyclone grinder. One 30 
gram of the ground sample was shacked in the presence of lactic acid and sodium dodecyl sulfate. The 31 
height of the suspension after a standard shaking procedure and standing period is directly measured. The 32 
sediment height > 50 (ml) evaluated as very strong and the < 20 (ml) evaluated as very weak. 33 
* Sedimentation index (SDSI): SDSI = SDS / Protein% 34 
* Sedimentation n (SDSn) : SDSN = (SDS x Protein %) / 100 (Nachit et al. 1992). Firmness is the force 35 
required to cut cooked pasta. Good quality pasta and couscous should have the correct firmness or 36 
chewiness after cooking or steaming, respectively. The SDS index is used as surrogate for firmness test. 37 
* Protein content (PC). Generally, high protein content is associated with good pasta, burghul, and 38 
couscous making values. The protein content was conveniently determined in all cereals by Near-Infra-39 
Red (NIR) of the reflectance spectrometry, due to its rapidness and accurateness. 40 
* Vitreousness (VIT). A high value for vitreousness is related to high semolina extraction. The 41 
vitreousness is expressed as percentage of vitreousness and it is determined visually. The vitreous kernel 42 
has to be 100% free of yellow berry sections. 43 
* Yellow pigment (YP). The color of durum wheat is more or less yellow or amber; and is caused by the 44 
presence of carotenoid pigments, mainly xanthophylls and lutein. Yellow pigment was estimated  45 
according to AACC (1995): by extraction of pigments from the ground durum grains using water-46 
saturated n-butanol, for overnight and the transmittance measured by direct spectrophotometer at 440nm. 47 
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Also flour color can be estimated visually in the semolina, or instrumentally by reflectance spectroscopy 1 
(NIR). 2 

3. 2. 2. Physiological traits 3 

For physiological traits, Spectral reflectance measurements were taken using a portable field spectro-4 
radiometer (FieldSpec UV/VNIR, Analytical Spectral Devices, Boulder, CO). The spectro-radiometer 5 
was capable of measuring radiance from 350 to 1050 nm wavelengths with a sampling interval of 1.4 nm 6 
of the spectrum. Thus, 512 continuous data points were obtained with each reading. Measurements were 7 
taken during the middle of the day on cloudless days. The optical sensor was placed approximately 50 cm 8 
above the plant canopy in nadir position. The incident spectrum was taken from the light reflected from a 9 
white reference panel, and reflectance was calculated from the ratio of reflected light from the crop 10 
canopy against the total radiance reflectance from the white surface. According to the criteria developed 11 
at ICARDA durum breeding program (Motawaj 2007) four spectral measurements at two stages: Zadok 12 
45 and 70 were taken randomly from four different places per genotype, and the mean of the four 13 
readings was used to calculate the spectral reflectance indices as following:  14 

1. Chlorophyll content: CHL = R670 / R800. 15 
2. Water index: WI = R675/ R680. 16 
3. Carotene content: CAROTENE = R675-R680. 17 
4. Chlorophyll Absorption Ratio Index: CARI = R703/R657. 18 
5. Soil Adjusted Vegetation Index (It is a modification of the index NDVI in order to compensate for the 19 
effect of soil): SAVI=[(R770-R660)/R770+R660+L)](1+L).     20 
6. Red-edge Vegetation Stress Index: RVSI= ((R718+R748)/2)-R733. 21 
7. Ratio Nitrogen Vegetation Index: RNVI= (R762/R550). 22 
8. Relation of Carotene/Chlorophyll (Structural Independent Pigment Index): SIPI= (R800-23 
R435)/(R435+R800). 24 
9. Relation of Carotene/Chlorophyll (Normalized Pigment Chlorophyll Index): NPCI=(R680-25 
R430)/(R430+R680). 26 
10. Chlorophyll Degradation (Normalized Phaeophytinization Index): NPQI=(R415-R435)/(R415+R435). 27 
11. Biomass (Simple Ratio): SR=R770/R680. 28 
13. Photochemical Reflectance Index: PRI= (R531-R570)/(R570+R531).   29 
14. Ratio of WI/NDVI. 30 
15.Yield of Photochemical Energy Conversion: YPEC= (F5-F1)/F5 31 
16. Normalized difference vegetation index : NDVI = (NIR-VIS) / (NIR+VIS) 32 
Where: VIS = the spectral reflectance in the visible wavelengths (680 nm) and NIR = the spectral 33 
reflectance in the near infra-red wavelengths (770 nm). 34 
R is the spectral reflectance at X wavelengths. 35 
17. F0= Minimal fluorescence. 36 
18. F1 = Fluorescence at first time. 37 
19. F2 = Fluorescence at 2nd time. 38 
20. F3 = Fluorescence at third time. 39 
21. F4 = Fluorescence at fourth time. 40 
22. F5 = Fluorescence at fifth time. 41 
23. Maximal fluorescence: Fm. 42 
24. Variable fluorescence: Fv. 43 
25. Time for maximal fluorescence: Tfm.  44 
26. Leaf water potential related to drought res.: LWP=Fm/F0. 45 
27. Photochemical efficiency ratio: Fv/Fm. 46 
28. Non Photochemical Quenching : NPQ=(Fm-F5)/F5. 47 
29. Photochemical Quenching: QP= (F5-F1)/(F5-F0). 48 
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30. Non Photochemical Quenching: QN= (Fm-F5)/(Fm-F0). 1 
31. Photochemical quenching: Que=F0/Fv = (Fm-Fv)/(Fm-F0). 2 

3. 2. 3. Growing environment 3 

The planting was conducted at Tel Hadya which was the main research station of ICARDA. Tel Hadya 4 
has a Mediterranean continental climate with average annual precipitation of 335 mm. It is at 35 Km 5 
south west of Aleppo city/Syria and located at 3601' N latitude; 3656' E longitude, and at 284 m above 6 
the sea level. The soil at Tel Hadya is fine to very fine clay. This station is characterized by the following 7 
climatic conditions: wet and cold in winter and warm and dry summer, a typical Mediterranean climate. 8 
Climatic data of 2004, 2005, 2006 and 2007 are given in graph (Figure 8): 9 

 10 

 11 

Figure 8: Climatic profiles for Tel Hadya experimental station during the three years of evaluation 12 

 13 

We planted our landraces in rainfed which is representative for the Mediterranean continental dryland. 14 
This rainfed environment is used at the durum breeding program at ICARDA to screen for adaptation, 15 
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drought and the other associated biotic and abiotic stresses prevalent in the Mediterranean region. The 1 
date of sowing is usually mid- November and of harvesting is around mid-June.  2 

Evaluation was made during four (4) years (2004, 2005, 2006 and 2007); plus 1985 or 1987 which were 3 
the years of the preliminary evaluation after collection at ICARDA Germplasm Resources Unit (Table 1). 4 
Three traits were recorded in five (5) environments or years (PC, VIT and TKW) and three (3) traits 5 
recorded at only one environment (SL, PL and SPM2). Grain yield (GY) was measured in four (4) 6 
different years.  7 

 8 

Table 1: Measured morphological traits 9 

  Col 2004 2005 2006 2007 

ASH   x x x x 

DH x x x     

DM x   x     

GFD x   x     

GY   x x x x 

KSPK x       x 

PC x x x x x 

VIT x x x x x 

PH x   x x x 

SDS   x x x x 

SDSn   x x x x 

SDSI   x x x x 

TKW x x x x x 

YP   x x x x 

SPM2         x 

PL         x 

SL     x     

 10 

 11 

For physiology, ten (10) traits were recorded during three years 2006, 2007 and 2008 at the Zadoc scale 12 
70. Fourteen (14) traits were scored at the Zadoc’s scale 45 during only the 2008 season. The 13 
fluorescence was measured only during 2006 and at Zadoc’s scale 70 (Table 2).  14 

 15 

Table 2: Measured physiological traits 16 

Zadoc scale 45   70 

Year  2008   2006 2007 2008 
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Area     x     

CARI x     x x 

CHL x   x x x 

CAROTENE x   x x x 

F0     x     

F1     x     

F2     x     

F2     x     

F3     x     

F4     x     

F5     x     

Fm     x     

Fv/Fm     x     

Fv     x     

LWP     x     

NDVI x   x x x 

NPCI x   x x x 

NPQ     x     

NPQI x   x x x 

PRI x   x x x 

QN     x     

QP     x     

Que     x     

RNVI x     x x 

RVSI x     x x 

SAVI x   x x x 

SIPI x     x x 

SR x   x x x 

Tfm     x     

WI/NDVI x   x x x 

WI x   x x x 

YPEC     x     

 1 

 2 
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The field collected data was adjusted for field heterogeneity using the block adjustment method as 1 
described in Petersen (1985); this consisted on a mixed model where checks lines, landraces and blocks 2 
effect are considered as fixed effect.  3 

3. 3. Genotyping 4 

The DNA was extracted following the protocol developed at ICARDA durum wheat MAS laboratory. 5 
Briefly, 3-5 gm of leaf tissue per sample (each sample was collected from each landrace seedling 8 weeks 6 
after sowing) were ground in liquid nitrogen and incubated at 60 °C for 30 min with 5 volume (ml) of 7 
extraction buffer to 4 tissue volume, (100 mM Tris-HCl, 500 M NaCl, 50 mM EDTA, 1.25% SDS) in 15 8 
ml polypropylene tubes. After cell disruption and incubation with hot isolation buffer, proteins were 9 
removed by chloroform: iso-amyl alcohol (24:1, v:v). Samples were incubated for 30 min by shaking and 10 
then centrifuged at 2800 rpm for 15 min. The aqueous layer was transferred to a new tube and 0.3% (v:v) 11 
of a 10 μg/ml of stock solution of RNAse A was added. Samples were incubated for 30 min at room 12 
temperature. One volume of cold ethanol (at -20°C) was added to DNA. After 30 min incubation -20°C, 13 
precipitated DNA was hooked out and placed in a 2 ml reaction tube containing 1 ml of 70% ethanol. 14 
After washing twice with 70% ethanol, the washing solution was removed and the DNA pellet was dried 15 
thoroughly and dissolved in 1% TE buffer. The DNA samples were diluted and stored at -20 °C. A 16 
DNA/RNA calculator was used to measure DNA concentration and purity (Nachit et al., 2001; Elouafi 17 
and Nachit, Motawaj, 2007 (PhD Thesis). 18 

The two collections were genotyped by 53 Gatersleben wheat microsatellites (gwm), obtained from Röder 19 
et al.,(1995, 1998) from a conventional genomic library, distributed along the 14 chromosomes of the 20 
durum genome (Table 3). For that we used a DNA extraction protocol used at the durum wheat MAS 21 
laboratory as explained later in this chapter. We utilized ABI377 and each of the gels contains ninety six 22 
(96) landraces and two (2) checks genotypes. Samples were electrophoresed in an automatic DNA 23 
sequencer (ABI 377, Applied Biosystems). The ABI 377 is equipped with GenScan 3.0 software (Applied 24 
Biosystems) for data collection and fragment-size (bp) calculation to two decimals. Electropherograms 25 
obtained by GenScan 3.0 from the gel images were scored for allele size. Alleles were attributed 26 
according to the fragments size in base pair (bp). 27 

Table 3: List of used SSRs and chromosomes localization 28 

ID LOCUS CHROMOSOME ID LOCUS CHROMOSOME 

1 GWM2 2AS,3AS 27 GWM335 5B 

2 GWM6 4BL,5A 28 GWM44 4A 

3 GWM33 1AS,1BL 29 GWM357 1A 

4 GWM60 7AS 30 GWM368 4B 

5 GWM63 7A 31 GWM369 3A,4B 

6 GWM99 1A 32 GWM376 3B 

7 GWM107 3B,4B,6B 33 GWM408 5B 

8 GWM114 3B 34 GWM410 2B,5A 

9 GWM129 2B,5AS 35 GWM413 1A,1B 

10 GWM160 4AL 36 GWM448 2A 

11 GWM165 4A,4BS 37 GWM471 7A 
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12 GWM169 6AL 38 GWM480 3A 

13 GWM210 2A,2B 39 GWM493 3B 

14 GWM219 6B 40 GWM494 1B,3A,4A,6A 

15 GWM234 5A,5BS 41 GWM518 6B 

16 GWM257 2B 42 GWM526 2A,2B 

17 GWM260 7AS 43 GWM537 5B,7B 

18 GWM264 1A,1B,3B,7B 44 GWM601 4A 

19 GWM268 1B 45 GWM610 4A 

20 GWM282 7A 46 GWM611 7B 

21 GWM285 3B 47 GWM614 2A,2B,4A 

22 GWM293 5A,7B 48 GWM617 5A,6A 

23 GWM297 7BS 49 GWM639 5A,5B 

24 GWM311 2A,6B 50 GWM644 1B,3B,6B,7B 

25 GWM319 2B 51 GWM666 1A,3A,5A,7A 

26 GWM344 7A,7B 52   

 1 

3. 4. The GIS interface 2 

ArcGIS is the latest version of Environmental Research Systems Institute's (ESRI) suite of GIS products. 3 
ArcGIS is designed as a scalable system for geographic data creation, management, and analysis. ESRI 4 
products have a large user base. The ESRI website states that there are over 1 million ESRI software users 5 
worldwide, and that 50,000 university students receive instruction utilizing ESRI products every year 6 
(ESRI 2002). 7 

In previous versions, ESRI's desktop GIS, ArcView, and its enterprise level GIS, ArcInfo, were very 8 
different in terms of the primary geographic data model and user interface. In ArcGIS, however, all of the 9 
products use the same data model, GUI interface, and development environment (Limp 2001). In addition 10 
to ArcView and ArcInfo, there is a medium sized version of ArcGIS called ArcEditor. Each variety of 11 
ArcGIS consists of several individual applications that provide a set of functionality. ArcMap is a primary 12 
component of all three versions and is the interface for data display and analysis. An analysis tool 13 
developed for ArcMap can be used in all versions of ArcGIS.  14 

The term Geographic Information System (GIS) is applied to systems that perform the computational 15 
treatment of geographic data and that store the geometry and the attributes of data that are geo-referenced, 16 
that is, situated on the earth surface and represented in a cartographic projection. The durum wheat 17 
landraces are one of these geo-referenced data, as they are collected at a precise location and having 18 
within their passports the spatial coordinates latitude, longitude and altitude.  19 

Making GIS useful to people requires user interface. To make a successful interface, the designer should 20 
understand how the users think and work. The users will not use the algorithms, data structure or 21 
functions. Instead, users choose easy to use and friendly options for calculation. This is making a graphic 22 
user interface (GUI) an illusion because it hides the underlying architecture of the technology prominent 23 
in the programmer’s view and repackages it as something understandable and usable by analysts and 24 
decision makers. Non-programmers can directly manipulate visual representations of their data to retrieve 25 
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it from a database. These graphical representations facilitate browsing for needed information without 1 
having to use formal query languages or specify the location of the data within the database (Donelson 2 
1978; Herot 1980; Friedell, Barnett, and Kramlich 1982; Friedell, 1984; McDonald 1984). Wu et al. 3 
(1989) introduce a visual query language for GIS. Their system provides a graphical way the user can 4 
browse a GIS database. The mouse is used to select layers and processing is determined by pointing to 5 
query commands within the interface. These graphical depictions of layers stored in a GIS are useful 6 
alternatives to directory listings of file names. In addition to querying, GUI systems are useful for laying 7 
out the logical structure of the database. In such systems, database designers manipulate graphical 8 
representations of entities, - relationships, and attributes to create and integrate conceptual models of 9 
database views (Wong and Kuo 1982; Reiner et al., 1984; King and Melville 1984; Goldman et al., 1985; 10 
Bryce and Hull 1986; Abiteboul and Hull 1986). The interface is then one important component of a GIS 11 
application (Figure 9). The other two components are: 1) Data input and integration: should be very well 12 
organized to facilitate the use, edit, and the update. 2) The modules: they are responsible to formulate the 13 
directives and functions asked by users through the GUI. These components relate in a hierarchical way. 14 
The interface defines how the system is operated and controlled. In an intermediate level a GIS must have 15 
spatial data processing mechanisms (input, edition, analysis, visualization, and output).  16 

 17 

 18 

 19 

Figure 9: Conception of GIS application 20 

 21 

Our GUI aims to give to the durum wheat breeder an analytical tool integrating the four mains GIS 22 
functionalities he needs to evaluate durum wheat landraces: 23 

Spatial data manipulation: Spatial operations representing in general classic GIS capabilities. They aim at 24 
the maintenance and transformation of spatial data concerns the ability to input, manipulate, and 25 
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transform data once it has been created such as spatial queries & measurement, buffering and map layer 1 
overlay.  2 

Data and Spatial data analysis: The emphasis of spatial analysis is to measure properties and relationships, 3 
taking into account the spatial localization of the phenomenon under study in a direct way. That is, the 4 
central idea is to incorporate space into the analysis to be made. It is in general a descriptive and 5 
exploratory task. Spatial autocorrelation is a key technique to understand the spatial entity of a trait of 6 
interest or an allele frequency. 7 

Spatial statistical analysis: Spatial statistical methods permit rapid analysis and subsequent mapping of 8 
statistical quantities. A variety of interesting applications are used to illustrate how the integration of 9 
spatial statistics and the display capabilities of GIS enhance understanding of data and interpretation of 10 
the maps.  11 

Spatial modeling or prediction: Spatial patterns of traits or genetic factors together with environmental 12 
variables can be of a good use to breeders in order to point out the germplasm of interest. 13 

 14 

3. 4. 1. The ArcMap9.2 and VBA 15 

ArcMap 9.2 was chosen to implement this application because of its capacity of handling numerical and 16 
alpha-numerical data; it has its own data base management relational system and of the use of Microsoft 17 
Visual Basic for Applications (VBA) as a programming language. VBA is a development environment 18 
that can be embedded into applications (Microsoft, 2002). VBA contains a set of programming tools 19 
based on the Microsoft Visual Basic development system and is designed to enable developers to build 20 
custom solutions using the full power of Microsoft Visual Basic. When using applications that host VBA, 21 
e.g. Word, Excel, Access, CorelDraw, ArcMap, automation and extension of the application functionality 22 
can be done. An example of this is creating tools with new or simplified functions. Software that includes 23 
VBA is called customizable applications, which mean applications that can be suited to fit specific 24 
business requirements. With VBA, customers can buy software and tailor it to meet a specific 25 
requirement, rather than building solutions from scratch. There are different ways of programming in 26 
VBA. Some examples of this are creating a toolbar, creating a macro, or using Visual Basic forms inside 27 
the VBA environment. VBA is mainly like VB, but the macros can easily be added to a toolbar within an 28 
existing program after they are created. 29 

ArcMap gives the opportunity then to customize specific applications for users through ArcObject. VBA 30 
is a development environment that is provided with ArcGIS with which you can access ArcObjects. VBA 31 
macros allow the user to add further capabilities to ArcMap that are not available in the original interface 32 
or develop new analytical modules not present on it. VBA is built around objects (e.g. forms and 33 
controls), which have different properties, and methods. The methods are used to perform actions with the 34 
objects. A property is something that characterizes the object, e.g. its name. VB is so-called event-35 
oriented programming, which means that something is executed when the user for example clicks a 36 
Command button or chooses from a so-called Combobox. These buttons and boxes are called controls 37 
and are connected to the code. 38 

There are different levels of a customizing an application using VBA under ArcGIS: 39 

Customize an interface: it doesn’t need any programming. Project – based macros: You write the code 40 
behind a button or tool saved in a particular document. 41 

 42 
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 1 

Figure 10: Example of interface of classes within ArcMap 2 

 3 

The basic of anything we interact with within an ArcGIS component is an ArcObject: Maps, layers, 4 
geometries (points, lines, or polygons), tables, fields, raster etc. It comes from classes designed by ESRI. 5 
Each class has a logical grouping of properties and methods called interface. The “Map” class has an 6 
interface named IMap and through that interface you can get/set name of the map and you can add a layer 7 
having as well an interface named ILayer (Figure 10). Here is an example of a VBA code to read a point 8 
layer from an existing map on ArcMap: 9 

Dim pMxDoc As IMxDocument, pEnumfeat As IEnumFeature 10 
Dim pGeom As IGeometry 11 
Dim pMap As IMap              12 
Declare a pMap as a Map classe 13 
Set pMxDoc = ThisDocument          14 
This the open ArcMap document 15 
Set pMap = pMxDoc.FocusMap 16 
Dim pFeatureLayer As IFeatureLayer 17 
Dim pILayer As ILayer 18 
Declare a pLayer as a Layer classe 19 
Dim pFeatureClass As IFeatureClass 20 
'Set a UID for GeoFeatureLayers 21 
Dim pId As New UID 22 
pId = "{E156D7E5-22AF-11D3-9F99-00C04F6BC78E}" 'IGeoFeatureLayer 23 
'Create an enumerator of GeoFeatureLayers 24 
Dim pEnumLayer As IEnumLayer 25 
Set pEnumLayer = pMap.Layers(pId) 26 
'Load the input form 27 
Load frmStability 28 
'Populate the layer combo box with point layers existing in the map 29 
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pEnumLayer.Reset 1 
Set pILayer = pEnumLayer.Next 2 
Dim pointExists As Boolean 3 
pointExists = False 4 
Do While Not pILayer Is Nothing 5 
Set pFeatureLayer = pILayer 6 
Set pFeatureClass = pFeatureLayer.FeatureClass 7 
If pFeatureClass.ShapeType = esriGeometryPoint Then 8 
frmStability.cmbLayer.AddItem pILayer.Name  9 
Populate Combobox with points layers 10 
 11 

3. 4. 2. Environmental data in our GIS interface 12 

The environmental maps of the two countries were extracted from Worldclim (Hijmans, R.J. et al., 2005) 13 
climatic database available for downloading free of charge from www.worldclim.org. The database is 14 
representative of current climate and it is an interpolation of observed data from 1950 to 2000. These 15 
maps were associated with the landraces coordinates to identify the climatic data for each landrace’s 16 
spatial location. 17 

The data layers were generated through interpolation of average monthly climate data from weather 18 
stations on a 30 arc-second resolution grid (often referred to as "1 km2" resolution). Variables included 19 
are monthly total precipitation, monthly mean, minimum and maximum temperature, and nineteen (19) 20 
derived bioclimatic variables. 21 

The WorldClim interpolated climate layers were made using: 22 

1- Major climate databases compiled by the Global Historical Climatology Network (GHCN), the FAO, 23 
the WMO, the International Center for Tropical Agriculture (CIAT), R-HYdronet. 24 

2- The SRTM elevation database (aggregated to 30 arc-seconds, "1 km"). 25 

3- The ANUSPLIN software which is a program for interpolating noisy multi-variate data using thin plate 26 
smoothing splines. We used latitude, longitude, and elevation as independent variables. For stations with 27 
multiple years’ records, averages for the 1960-90 period were calculated. After removing stations with 28 
errors, the used database consisted of precipitation records from 47,554 locations, mean temperature from 29 
24,542 locations, and minimum and maximum temperature for 14,835 locations. 30 

A set of 'Bioclimatic variables' were derived from the monthly data. Bioclimatic variables (Table 4) are 31 
derived from the monthly temperature and rainfall values in order to generate more biologically 32 
meaningful variables. These are often used in ecological niche modeling (e.g., BIOCLIM, GARP). The 33 
bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) 34 
seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental 35 
factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry 36 
quarters). A quarter is a period of three months (1/4 of the year).  37 

Table 4: Bioclimatic variables extracted from Worldclim 38 

Variable  Description 

V1 Annual Mean Temperature  

V2 Mean Monthly Temperature Range  

V3 Isothermality (2/7) (* 100)  

V4 Temperature Seasonality (STD * 100)  

http://www.worldclim.org/
http://www.worldclim.org/bioclim
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V5 Max Temperature of Warmest Month  

V6 Min Temperature of Coldest Month  

V7 Temperature Annual Range (5-6)  

V8 Mean Temperature of Wettest Quarter  

V9 Mean Temperature of Driest Quarter  

V10 Mean Temperature of Warmest Quarter  

V11 Mean Temperature of Coldest Quarter  

V12 Annual Precipitation  

V13 Precipitation of Wettest Month  

V14 Precipitation of Driest Month  

V15 Precipitation Seasonality (CV)  

V16 Precipitation of Wettest Quarter  

V17 Precipitation of Driest Quarter  

V18 Precipitation of Warmest Quarter  

V19 Precipitation of Coldest Quarter  

 1 
 2 

3. 4. 3. Shape files in the GIS GUI 3 

The spatial and phenotypic information about landraces was saved under a point format (Tables 5 and 6). 4 
Landraces are considered to be events and not linear or polygonal (zonal). The shape file contains first an 5 
identifier of the landrace, second the spatial information such as: nearest village, coordinates, altitude, 6 
collection date, and origin. Third, the file contains as well the phenotypic and physiological data. When a 7 
trait is measured during two different years, it symbolized by the trait code plus the year, example: GY04 8 
and TKW07 are used for grain yield during 2004 and thousand kernel weight during 2007. The traits 9 
measured during the collecting year were coded as the trait code: PH. The identifier was unique in order 10 
to link easily between different shape files. We used the crop number taken from the ICARDA collection 11 
database as identifier. 12 

 13 
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 1 

Table 5: Geographic information-shape file (Captured from ArcGIS) 2 

 3 

 4 

Table 6: Traits information shape file (Captured from ArcGIS) 5 

 6 

 7 
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For the molecular file, the shape is constructed with the alleles of a locus. Durum is a tetraploid crop and 1 
has one allele on each genome (A and B). Each locus is stored in two columns. The file is having also the 2 
unique identifier and the same used for the phenotypic shape file. Missing genotypes are coded as zero 3 
(0). The file contains also the spatial coordinates. For example M1-1 is the allele on the genome A of 4 
markers M1 (Table 7).  5 

 6 

Table 7: Marker information shape file (Captured from ArcGIS) 7 

 8 

 9 

3. 4. 4. Methods developed within the GUI 10 

The methods developed at our interface are shown in the Table 8. We divided the modules into two parts: 11 
Trait analysis is analyzing phenotypic data (agronomic and physiological data). This category gives 12 
relatedness between traits or individuals. It gives also the possibility to dissect the spatial pattern of traits. 13 
When we have multiple environments evaluation, some GE analyses are possible such as ANOVA or 14 
stability. Marker analysis on the other hand breaks down the genetic and spatial genetic structure of 15 
landraces. It also gives the possibility of running the marker-trait association. Other statistical analysis 16 
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that are not developed under the GIS interface such as mixed model were run using Genstat 12 (Payne et 1 
al. 2009) 2 

 3 

Table 8: Menus developed within the Durum GIS interface 4 

Trait analysis Marker analysis 

Statistics Individuals 

Descriptive Statistics Moran's I 

Pearson correlation PCA 

Spearman rank correlation Spatial PCA 

Regression Populations 

PCA Populations Statistics 

Path analysis Genetic Distance 

Multiple regression PCA 

K-mean clustering One Locus PCA 

Spatial Statistics Spatial PCA 

Moran's I Population Centroid 

Spatial PCA Marker-Trait association 

GxE T-Test 

ANOVA PCA+Chi test 

Stability Multiple regression 

Ranking Genotype  

Non Parametric stability 

 5 

3. 5. Statistical methods 6 

3. 5. 1. Correlation 7 

Correlation is a measure of relation between two variables. The correlation coefficients ranged from -1 for 8 
a perfect negative correlation to 1 for perfect positive correlation. A correlation coefficient of 0 means a 9 
lack of relation. The most widely used correlation is the Pearson (product moment) correlation which is 10 
defined as the covariance between two variables divided by the product of their standard deviations. The 11 
other correlation we used is the Spearman’s rank correlation which is the Pearson correlation between the 12 
ranked variables. Correlation can be used to study or compare two different traits, same trait measured 13 
during two different. Also, correlation can be used as method for association between trait and an allele 14 
frequency (marker). 15 
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3. 5. 2. Regression 1 

The simple regression is the statistical method attempting to determine the strength of the relationship 2 
between one dependent variable and other changing variables. Multiple regression is an extension of the 3 
simple regression problem to include more than one explanatory variable. In general, we will be 4 
considering linear regression with m independent variables, and our regression model will look like: 5 

 6 

Our model states that our observations Yi can be explained by a constant term a0 plus a linear combination 7 
of the variables, with each variable having its own ``slope". Thus, a2 includes how fast Y changes when X2 8 
changes, holding all other Xi fixed. In matrix notation, we can write the problem as: 9 

 10 

 11 

This is nothing more than our general least squares problem, to which the solution is given as: 12 

𝑥 =  ⟦𝐴𝑇𝐴⟧ −1 𝐴𝑇𝑏 

The values of the regression coefficients tell us little, since they depend on the units chosen. We 13 
overcome this problem by normalizing the coefficients. These coefficients give an idea about, in a 14 
multivariate context, the contribution of a trait (or an allele frequency) on another composite trait such as 15 
GY. 16 

3. 5. 3. ANOVA 17 

The analysis of variance (ANOVA) is widely used to study GE data (Skroppa, 1984). An ANOVA allows 18 
the partitioning of total phenotypic variation into components due to genotype, environment, GE 19 
interaction and error. The relative sizes of these variance components can then be used to quantify the 20 
magnitude of the GE (Cooper and DeLacy, 1994). ANOVA is a basis for any study of GE, but it does not 21 
allow a final interpretation (Barnes et al., 1984).  22 

3. 5. 4. Path analysis 23 

Path analysis (PA) represents an early attempt at dealing with casual relationships between variables. It 24 
was developed by Wright in 1930’s. Path analysis is an extension of the regression model, used to test the 25 
fit of the correlation matrix against two or more causal models which are being compared by the 26 
researcher. A path coefficient is a standardized regression coefficient (beta) showing the direct effect of 27 
an independent variable on a dependent variable in the path model. Thus when the model has two or more 28 
causal variables, path coefficients are partial regression coefficients, which measure the extent of effect of 29 
one variable on another in the path model controlling for other prior variables, using standardized data or 30 
a correlation matrix as input. Some assumptions need to be done to run path analysis; all the relationships 31 
are linear and the casual effect is one-way. The basic model for PA is the correlation matrix which is 32 
decomposed to direct effect and indirect effect. Direct effect is the path coefficient from one variable to 33 
another. Indirect effect is sequence of paths through one or more variables. Note that the sum of direct 34 
and indirect effects is the total casual part of the correlation between the two variables.  35 
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3. 5. 5. Stability 1 

Phenotypic stability can be a good criterion for breeding or genotype selection. Several statistical methods 2 
have been developed to evaluate stability. The variance of a genotype evaluated across environment has 3 
been used as a measure of stability and a genotype with a low variance is considered stable. The mean of 4 
the estimated variance components of GE for all pairs of genotypes that include a specific genotype is the 5 
stability measure for that genotype (Plaisted, 1959, 1960). This approach involved the deletion of a 6 
genotype from the entire set of data and the GE interaction for the variance for the subset is the stability 7 
index for the deleted genotype. Francis and Kannenberg (1978) on the other hand used the coefficient of 8 
variation (CV) of each genotype as a measure of stability. A high yielding genotype with a low CV was 9 
considered stable. Other stability indices include Wricke’s (1962) ecovalence, Shukla’s (1972) stability 10 
variance, Perkins and Jinks’ (1968) regression coefficient, Finlay and Wilkinson’s (1963) and Eberhart 11 
and Russel’s (1966) coefficients. In Finlay and Wilkinson (1963) model, the observed yields of the 12 
varieties were regressed on an environmental index defined as the difference between the marginal mean 13 
yield of the environments and the overall mean. The regression coefficient (bi) for each genotype was 14 
considered a measure of stability. A b-value approximating to 1.0 indicated average stability, genotypes 15 
with b = 1.0 and above average yield were considered as having general adaptation, while a genotype 16 
with b = 1 and below average yield was associated with poor adaptation to all environments. In this 17 
model, stability was defined by the regression coefficient, while adaptability was defined by the relative 18 
mean yield of the variety. In addition to the regression coefficient, Eberhart and Russell (1966) estimated 19 
the mean square of deviation from the regression as another stability parameter.  20 

3. 5. 6. PCA 21 

Principal Component Analysis (PCA) is an exploratory tool designed by Karl Pearson in 1901 to identify 22 
unknown trends in a multidimensional data set. Principal components analysis is the procedure to 23 
transform a number of possibly correlated variables to smaller number of uncorrelated variables called 24 
principal components. The first principal component should account of as much of the variability in the 25 
data as possible. Let’s note p observations for n entries by X = (X1 , X2, X3, ….., Xp )t:  26 

X1= (x1
1, x1

2, …., x1
n); X2= (x2

1, x2
2, …., x2

n); …..; Xp= (xp
1, xp

2, …., xp
n). 27 

𝐶𝑂𝑉(𝑋) =  
1

𝑛
 × 𝑋𝑋𝑇 

COV(X) is a positive symmetric matrix, so there is a vector V Є Rn, such that: 28 

COV(X)* V = λ*V is an eigenvector of A and the corresponding scalar λ > 0 is the eigenvalue associated 29 
with V. We selected only eigenvectors Vj (j=1, 2,…, k<n) with large enough eigenvalue λj.  30 

We project then the data points Xi to the hyper plane defined by selected eigenvectors Vj: xj
i = Vj

t * Xi 31 

Amount of variance explained by an eigenvalue is (𝛌𝐢/ ∑ λi𝑛
1 ). 32 

Applying PCA to a data table X correspond to the analysis of triplet (X, Q, D); where Q is a (p x p) scalar 33 
matrix (can be identity), D is an (n x n) scalar matrix and X is the (n x p) centred (PCA on covariance 34 
matrix) or standardized (PCA on correlation matrix) matrix.   35 

Running PCA analysis consists on finding a vector u1 (first principal axis) so that: 36 

Q(u1) = || XQu1||2D =u1
t QXt DXQu1 37 

Under the constraint that || u1 ||2Q = u1
t Qu1 = 1.  38 

The solution vector uj is obtained the right-hand eigenvectors of QXt DXQ. The eigenvalue λj is the 39 
maximum of Q(u1).  40 
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3. 5. 7. K-mean cluster 1 

The k-means algorithm (MacQueen, 1967), in comparison with other partitional clustering algorithms 2 
(Fuzzy c-means clustering), is fast, doesn’t require any specific preparation of the different data sets and 3 
is particularly easy to use. Its main weakness consists of the fact that it has to be told the number of 4 
clusters (k) to be found. Initially, it is necessary to define k a priori temporary centers (one for each 5 
cluster) which are located at random in the multidimensional scatter of points. All points belonging to the 6 
different data sets are associated with their nearest centre and this constitutes an early grouping together. 7 
Then each one of the k centers is calculated as the centroid of the points it «owns» and a new association 8 
is established with the nearest points of the data sets, and so on. The k centroids change their location step 9 
by step until they don’t move any more. 10 

The algorithm aims at minimizing an objective squared error function. 11 

J= ∑ ∑ abs (xi
(j) – cj)2 12 

Where k = number of clusters and n = number of individuals 13 

And abs (xi
(j) – cj)2 is a measure of the distance between a data point xi

(j)and the cluster centre cj. 14 

k-mean can be used to classify landraces using traits or a matrix of allele frequencies resulting from 15 
markers characterization. 16 

3. 5. 8. Descriptive locus statistics 17 

The variation in alleles is critical to the survival of a species and allows organisms to adapt to changing 18 
environments. This variation is revealed by genetic diversity. The more variation, the better the chance 19 
that at least some of the individuals will have an allelic variant that is suited for a new environment. A 20 
large gene pool indicates a large genetic diversity, which is associated with a robust population able to 21 
survive intense selection. Meanwhile, low genetic diversity can cause reduced fitness and increased 22 
chances of extinction. Allele frequency, or the frequency at which alleles are found at any locus of 23 
interest, is used to estimate the frequency of a given genetic profile. Every diploid cell has two alleles, 24 
one inherited from each parent. If an individual has two different alleles at a specific locus, the individual 25 
is heterozygous at that locus; if the two alleles are the same, the individual is homozygous. Allele 26 
frequency is used to characterize the genetic diversity, or richness of the gene pool, in a population.  27 

The measure of the amount of heterozygosity across loci is used as a general indicator of the amount of 28 
genetic variability in a population. Two measures of heterozygosity are defined: 29 

Expected Heterozygosity (He) or genetic diversity (GD) is the probability that two alleles drawn at random 30 
are different alleles. It estimates the fraction of all individuals who would be heterozygous for any 31 
randomly chosen locus and is calculated as: 32 

𝐻𝑒 = 𝐺𝐷 = 1 − ∑ 𝑝𝑖
2

𝑘

𝑖=1

 

Where pi is the frequency of the ith allele and k is the total number of alleles. The expected heterozygosity 33 
over m loci (HE) is 34 

𝐻𝑒 = 1 − 
1

𝑚
 × ∑  

𝑚

1

∑ 𝑝𝑖
2

𝑘

1
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Observed heterozygosity (Ho) of a population is measured by determining the proportion of loci that are 1 
heterozygote and the number of individuals that are heterozygote for each particular locus. For a single 2 
locus with two alleles, (HO) is the number of heterozygotes at this locus divided by the total number of 3 
surveyed individuals. Over a series of several loci, HO is the sum of Ho heterozygotes calculated for each 4 
locus divided by the number of considered loci. 5 

𝐻𝑜 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑒𝑡𝑒𝑟𝑜𝑧𝑦𝑔𝑜𝑠 𝑎𝑡 𝑎 𝑙𝑜𝑐𝑢𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠
 

F-statistics are measures of genetic structure developed in the 1920s by Sewall Wright (University of 6 
Chicago), one of the primary founders of population genetics, related to statistical analysis of variance. 7 
For a locus, F is the ratio of the difference between expected and observed heterozygosity to the expected 8 
heterozygosity. F has values between 0 for no genetic drift and 1 fixation of alternative alleles: 9 

𝐹 =  
𝐻𝑒−𝐻𝑜

𝐻𝑒
  10 

For a population: 11 

𝐹 =  
𝐻𝐸 − 𝐻𝑂

𝐻𝐸
 

3. 5. 9. PCA for Multi-Locus data 12 

Principal component analysis for population genetic data can be led on individuals or populations. The 13 
basic data or matrix for the PCA is matrix of allele frequencies. For individuals based PCA, consider n(i,j) 14 
is the number of copies of the jth allele found in individual i at locus k. The matrix n has one row for each 15 
individual and one column for each allele j of the locus k. µ(j) and σ(j) are respectively the mean and 16 
standard deviation of jth column of the matrix N. the normalized matrix M of n is then:  17 

𝑀(𝑖, 𝑗)  =  
𝑁(𝑖, 𝑗) −  µ(j) 

σ(j)
 

For population based PCA, consider G(i,j) is the frequency of the jth allele found in population i at locus 18 
k. We standardize by the mean and then the matrix M(i,j) is defined as:  19 

M(i,j) = G(i, j) − μ(j) where μ(j) is the mean of the jth column of the matrix G. 20 

After defining the M matrix, we compute the C covariance matrix among individuals or populations as: 21 

𝑋 =  
1

𝑛
 × 𝑀𝑀𝑇     22 

The last step is to calculate eigenvectors of X. each of the eigenvector will have n (number of individuals 23 
or populations) as length.  24 

3. 5. 10. PCA to correct for stratification in association studies 25 

There are three steps to use PCA analysis for association studies (Price et al., 2006). First, we run PCA on 26 
genotype data (see PCA for multi-locus data) to get small numbers of PCA axes which are continuous 27 
axes reflecting the genetic variation of data. Second, we adjust the candidate loci for association and the 28 
phenotype using the significant axes of variation. To make the adjustment to an axis, let’s consider gij the 29 
genotype of individual j at locus i, aj is the coordinate of individual j at axe a. So 30 
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Gji adj = gji – γiaj, where γi is the regression coefficient for predicting genotype across individuals j. We 1 
adjust with the same method the other axes of variation and the phenotype. The third part is to compute 2 
Χ2 statistics between the adjusted phenotype and genotype; this is equal to (n-k-1) times the squared 3 
correlation between the two vectors with n is sample size and k is the number of used axes.  4 

3. 6. Spatial statistics 5 

3. 6. 1. Connectivity networks 6 

Triangulation is a method for tessellation of domain. In fact triangulation is a common method for surface 7 
representation and for building a TIN. Triangulation produces a continuous surface. Important problems 8 
in triangulation algorithm are independency from starting point or dispersion of them. Further result must 9 
be repeatable and predictable. Therefore, the triangulation is made, the aim is to maximize the minimum 10 
angles and establish circle condition.  11 

Delaunay triangulation: DT is the most widely used triangulation in scientific computing. A technique 12 
for creating a mesh of contiguous, no overlapping triangles from a dataset of points. Each triangle's 13 
circumscribing circle contains no points from the dataset in its interior. 14 

Distance-based connections: This procedure connects all points separated by a specified distance range. 15 
Any pair of points whose distance is between the specific minimal and maximal values (inclusive) will be 16 
connected; all pairs whose distance is outside of this range will remain unconnected. 17 

Nearest neighbors: This procedure finds the nearest neighbor to every point. The nearest neighbor for a 18 
point is simply the point that is closest to it. A nearest-neighbor connections matrix does not have to be 19 
symmetric, because the nearest neighbor of one point is not necessarily the neighbor of the other point. 20 
Furthermore, a nearest-neighbor network does not have to completely span the points; usually it will not. 21 
One also has the option of specifying the number of neighbors to connect; the standard default is one, 22 
which is the traditional nearest-neighbor network, but one can choose to connect the closest two 23 
neighbors, or closest three, etc. 24 

Minimum spanning tree:A minimum spanning tree is a connections matrix in which all of the points are 25 
connected in a single network without any reticulate (closed) loops and in which the sum of the distances 26 
along each connection is minimal. The procedure works by starting with a single point in the “connected” 27 
group and placing the remaining points in an “unconnected” group. The nearest neighbor connections are 28 
a subset of the minimum spanning tree. 29 

Relative neighborhood network: The relative neighborhood network is a connection scheme in which two 30 
points are connected if the intersection between the two circles (or spheres in three dimensions) centered 31 
on the two points with radii equal to the distance between the points does not contain any additional 32 
points. Mathematically, another way to think of this is that points i and j are connected if the distance 33 
between them, dij, is less than the maximum of dik and djk for all other points k.  34 

Connect i and j if dij < Maximum(dik , djk) for all k 35 

 36 
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Gabriel graph: In a Gabriel Graph, a connection scheme proposed by Gabriel and Sokal (1969), two 1 
points are connected when the circle (or sphere in three dimensions) associated with the diameter that has 2 
the two points as endpoints does not have another point within its circumference (volume). 3 

 4 

Mathematically, two points i and j are connected if the square of the distance between them, 𝑑𝑖𝑗
2 , is less 5 

than the sum of the squared distance between each of these points and any other point k.  6 

Connect i and j if  𝑑𝑖𝑗
2 <  𝑑𝑖𝑘

2 +  𝑑𝑗𝑘
2  for all k. 7 

The relative neighborhood network is a subset of the Gabriel graph. See Gabriel and Sokal (1969) and 8 
Matula and Sokal (1980) for more information on Gabriel Networks and their properties. 9 

3. 6. 2. Spatial autocorrelation and Moran’s I index 10 

Autocorrelation is the statistical method to study and measure the dependence of the same variable over 11 
time, while spatial autocorrelation is to measure the degree of dependence of a variable in a geographic 12 
space. Moran's I is a measure of spatial autocorrelation developed by Patrick A.P. Moran. Moran 13 
introduced in 1950 the first measure of spatial autocorrelation in order to study stochastic phenomena, 14 
which are distributed in space in two or more dimensions. Moran's index has been subsequently used in 15 
almost all studies employing spatial autocorrelation. Moran’s I is used to estimate the strength of this 16 
correlation between observations as a function of the distance separating them. Like a correlation 17 
coefficient the values of Moran's I range from +1 meaning strong positive spatial autocorrelation, to 0 18 
meaning a random pattern to -1 indicating strong negative spatial autocorrelation. A positive (negative) 19 
spatial autocorrelation corresponds to a global (local) spatial structure (Thioulouse et al., 1995). 20 

 21 

 22 

 23 

Where: 24 

N is the number of studied locations 25 
Xi is the variable value at a particular location 26 
Xj is the variable value at another location 27 
X is the mean of the variable 28 
Wij is a weight applied to the comparison between location i and location j 29 

The expected value of Moran's I under hypothesis of no spatial autocorrelation is 30 

𝐼0  =  
−1

(𝑁 − 1)
 

With a matrix notation, Moran’s I (x) index of a geo-referenced variable x of dimension n is: 31 
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Where W is a weight matrix (wij, i=1 to n, j=1 to n) applied to comparison between location I and location 1 
j. If location i is adjacent to location j, the weight receives, for example, 1 and 0 if not. W can be a 2 
distance-based, and the weight will be the inverse of the distance between two locations. w is the sum of 3 
all terms in the matrix W.  Another way of constructing W, is to use the spatial connectivity networks 4 
(Legendre and Legendre1998) as shown in part “3-5-2-1” of this chapter. Spatial auto-correlation 5 
measures the degree of clustering of data in the studied space and allows checking if the data is dispersed 6 
or clustered. When testing for SA a p-value is calculated to test for Null hypothesis, the NULL hypothesis 7 
is that the spatial distribution of data is Random. When the p-value is statistically significant, one can 8 
reject the null hypothesis. When the p-value is not statistically significant, one cannot reject the null 9 
hypothesis. It is possible that the spatial distribution of feature values is the result of random spatial 10 
processes. 11 

3. 6. 3. High/Low Clustering (Getis-Ord General G)-hot spots (Getis-Ord Local G) 12 

If one computes SA and finds out the the data is clustered. One question is essential: how the data is 13 
clustered? Methods developed by Getis and Ord (1992; 1996) not only provide hypothesis testing to 14 
determine whether clustering has occurred within data, but also provide information on the extent to 15 
which above and below average values cluster more strongly and identify local concentrations of 16 
clustering (Laffan, 2006; Mueller-Warrant et al., 2008). The Getis-Ord General G high/low clustering is 17 
calculated as: 18 

𝐺 =  
∑ ∑ 𝑤𝑖𝑗𝑥𝑖𝑥𝑗

𝑛
𝑖=1

𝑛
1=1

∑ ∑ 𝑥𝑖𝑥𝑗
𝑛
𝑖=1

𝑛
1=1

 , 𝑗 ≠ 𝑖 

Where xi represents the value of feature i, xj represents the value of feature j, and wij is the weight 19 
assigned to each pair of features xi, xj.  20 

The z-score statics is computed as: 21 

 22 

Where 23 

 24 

z-score is high positive (negative) and significant at 1, 5 and 10% means that high (low) values of the data 25 
are clustered spatially together and that there is a less than 1%, 5 and 10% likelihood that this high-26 
clustered (low-clustered) pattern could be the result of random chance. 27 

The Getis-Ord Gi
* test statistic is a local adaptation of global Getis-Ord General G and seeks to identify 28 

areas of hot and cold clustering based on local neighborhood values (Getis & Ord, 1996; Laffan, 2006). 29 
The Gi

* statistic is calculated as the summation of the differences between local sample values and the 30 
mean, and is observed as standard normal distribution z-score values: 31 
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 1 

Where xj is the attribute value for feature j, wij is the spatial weight between feature i and j, n is the total 2 
number of features and:  3 

 4 

The results of the Getis-OrdGi
* testing may be best visualized in acartographic output format to easily 5 

identify local variation within the data. The resultant z-scores (Gi
* ) and p-values allow to know where 6 

features with either high or low values cluster spatially. This score works by looking at each feature 7 
within the context of neighboring features. A feature with a high (low) value is interesting but may not be 8 
a statistically significant hot (low) spot. To be a statistically significant hot (low) spot, a feature will have 9 
a high (low) value and be surrounded by other features with high (low) values as well.  10 

3. 6. 4. Local and global structure 11 

For the analysis of spatial structure of a single variable x, total variance VAR(x) is partitioned between 12 
global variability GV(x) and local variance LV(x) according to Thioulouse et al. (1995): 13 

VAR(x) = GV(x) + LV(x), with 14 

𝑉𝐴𝑅(𝑥) =  ∑ 𝑝𝑖

𝑛

𝑖=1

 (𝑥𝑖 −  𝑥𝑝̅̅ ̅ ) 2 

𝐿𝑉(𝑥) =   ∑ ∑ 𝑝𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 (𝑥𝑖 − 𝑥𝑗) 2           

𝐺𝑉(𝑥) =   ∑ ∑  𝑛
𝑗=1

𝑛
𝑖=1 (𝑥𝑖 − 𝑥𝑝̅̅ ̅)  × (𝑥𝑗 − 𝑥𝑝̅̅ ̅)                                       15 

Global variance can be seen as the covariance between x and the mean of its neighbors and that local 16 
variance can be seen as the covariance between each point and the mean of its neighbors.  17 

3. 6. 5. Multispati 18 

Examples from mapping the PCA scores or computing their spatial autocorrelation showed that the 19 
multivariate data contain spatial entity. Methods based on the principals of geostatistics combined with 20 
the multivariate analysis Wartenberg 1985, and Borcard and Legendre2002 permitted to identify the 21 
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spatial structure of multivariate data. This kind of analysis is easy to implement but requires that sample 1 
data should be well distributed over the studied space especially when we have natural barriers 2 
(Mountains, rivers). The use of the spatial connection networks is appropriate for the spatial multivariate 3 
analysis. Most of the methods running the spatial multivariate analysis are using the Moran’ Í or Geary’ C 4 
indexes.  5 

Multivariate spatial analysis based on Moran’s I (MULTISPATI) originates in a course in French 6 
(Chessel et al., 2004) and introduces the row-sum standardized weight matrix W in the analysis of a 7 
statistical triplet (X, Q, D). It is possible to extend the concept of lag vector to construct a lag matrix 8 
Lag(X) = WX. The two tables Lag(X) and X are fully matched, i.e. it contains the measurements of the 9 
same variables for the same sites. The principle of MULTISPATI consists of the analysis of this pair of 10 
tables by the co inertia analysis (Dolédec & Chessel 1994; Dray et al., 2003) of a pair of fully matched 11 
tables (Torre & Chessel 1994; Dray et al., 2003). MULTISPATI seeks for u1 maximizing the quantity: 12 

Q(u1) = a1
t D Lag(a1) with a1 = XQu1. 13 

This analysis maximizes the scalar product between a linear combination of original variables (a1 =XQu1) 14 
and a linear combination of lagged variables (Lag(a1)= WXQu1). Then 15 

Q(u1) = ID (a1) || a1 ||2D  (equa8) 16 

This formulation shows that MULTISPATI finds coefficients (u1) to obtain a linear combination of 17 
variables (a1 = XQu1) which maximizes a compromise between the classical multivariate analysis 18 

(||a1||D
2

) and a generalized version of Moran’s I (ID(a1) ). The only difference between the generalized ID 19 
and the classical Moran’s I is that the first one used a general matrix of weights D while the second 20 
considers only the usual case where D=1/n. 21 

In practice, it is preferable to diagonalize the Q-symmetric matrix H = (1/2)(Xt(WtD + DW) XQ) instead 22 
of XtDWXQ which is not symmetric. The maxima of eq. 8 is equal and given by the first eigenvalue (λ1) 23 
of H. 24 

In the case of the normalized PCA, MULTISPATI is equivalent to Wartenberg’s approach using a row-25 
sum weighting scheme. In order to test the statistical significance of the spatial structure of the table X, a 26 
permutation procedure can be used. The statistic used is equal to trace(Xt DWXQ). The p-value is 27 
computed by comparing the observed value to those obtained by permutation of the rows of the table X. 28 
The MULTISPATI approach has been implemented in the R software as a function of the ade4 package 29 
(Chessel et al., 2004).  30 

Trying to combine multiple analysis, spatial autocorrelation and GIS offers an opportunity to have a very 31 
practical system to analyze spatial multivariate data. Multivariate analysis dissect the structures of data, 32 
SAU help understanding the spatial pattern of these structures and GIS as a powerful tool to stock, 33 
analyze and visual spatial data.    34 

 35 

3. 6. 6. Spatial principal components analysis sPCA 36 

Let’s have x a vector of allelic frequencies of n entities (individuals or populations). Moran’s index of x 37 
will be computed using the Moran’s I formula. Consider L the standardized matrix of W. w, the sum of all 38 
terms in W will be n which is the number of entities and then Moran’s I formula will be:   39 

𝐼(𝑥) =  
𝑥𝑇 𝐿 𝑥

𝑥𝑇𝑥
                    40 

From the paragraph (PCA), the solution of PCA problem is to find eigenvalues of 𝑐𝑜𝑣(𝑥) =  (1 𝑛) 𝑋𝑋𝑇⁄  41 
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These eigenvectors summarize the genetic variability of data but give no information about spatial 1 

patterns. As for the sPCA, finding a solution is equal to find eigenvectors of: 
1

2𝑛
 𝑋𝑇 (𝐿 + 𝐿𝑇) 𝑋 2 

where X is the matrix of p allelic frequencies for n entities. sPCA does not decompose the variance into 3 
decreasing additive components but separates the product of variance and spatial autocorrelation into 4 
positive, null and negative. The most important scores at sPCA analysis are first, the score with strongest 5 
variance and the highly positive spatial autocorrelation called the global score or global structure and 6 
second, the score with strong variance and the highly negative spatial autocorrelation called local score or 7 
local structure. As for PCA, a map of sPCA scores can help assess visually the spatial and genetic patterns 8 
of data (Cavalli-Sforza, 1966).  9 

3. 6. 7. Geographic patterns using Monmonier’s algorithm 10 

Scientists used several analytical techniques to determine relationships between geography (or space) and 11 
a character of interest. As an example, spatial autocorrelation may reveal a spatial pattern but it is not 12 
explicit. SA or any other technique cannot establish a discontinuity of phenomena over space. Recent 13 
implementations of Monmonier’s maximum-difference algorithm offer a particularly powerful example. 14 
This algorithm identifies boundaries from a distance matrix by visualizing data on a map. The algorithm 15 
begins with plotting sites to be used in the analysis using geographic coordinates into a map. Then a 16 
Voronoï tessellation are constructed, polygons for each site consisting of points on a plane nearer to the 17 
site’s centroid than to any other centroid. From the tessellation the algorithm builds a Delaunay 18 
triangulation (Brassel & Reif, 1979), the fastest and ‘most direct way to connect (triangulate) adjacent 19 
points on a map’ (Manni et al., 2004). The distance (dissimilarity) matrix is mapped onto the triangulation 20 
such that each pairwise line between sites has an associated distance. Monmonier’s algorithm then builds 21 
biogeographical boundaries beginning with the maximum pairwise distance and continuing until (1) the 22 
edge of the map is hit, (2) a loop is formed, or (3) a previously computed barrier is reached. Boundaries 23 
are drawn perpendicular to triangulation lines, and the growing boundary extends in the direction of the 24 
line with the largest pairwise distance (Manel et al., 2003; Manni et al., 2004). BARRIER 2.2 software 25 
(Manni & Guérard, 2004) was used to compute biogeographical boundaries by Monmonier’s algorithm. 26 
Correlation distance matrices of agronomical, physiological, genetic and climatic were computed and 27 
used to study and determine barriers and discontinuities for durum wheat landraces. 28 

3. 6. 8. Interpolating surfaces 29 

Mapping techniques such as kriging can help understanding the spatial distribution of a trait, and allele 30 
frequency or yield stability. Landraces data are often collected at multiple points in space and time. These 31 
data are often correlated, and thus it will be important to take advantage of these dependencies to interpret 32 
them. Also, it is better to take in consideration all possible data that influences plant growth and 33 
development, physiology, phenology and yield components. Understanding the stochastic distribution of 34 
these data in time and space is therefore fundamental to solving problems of data interpretation in using 35 
these landraces in a crossing program. A lot of these analyses can be done through mapping. One can use 36 
mapping, in the framework of landraces evaluation in different ways. Table 9 gives examples of possible 37 
thematic mapping. 38 

Table 9: Mapping examples in landraces diversity studies 39 

 40 

Data May it be used for mapping? 
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Trait Map of the trait 

 Map of the stability of the trait, GE effect 

 Map of residuals from a regression model 

 Map of the axis resulting from ordering analysis (PCA, Multispati) 

 Map of clusters assignment 

 Map of local spatial autocorrelation 

Marker Allele chart, map of allele frequency 

 Population assignment of individuals 

 Map of heterozygosity 

 Map of axis resulting from ordering analysis (PCA, sPCA) 

 1 

To map all events we used kriging which is a method for interpolation. Interpolation is the process of 2 
estimating a variable at an unmeasured location from observed values at surrounding locations. All 3 
interpolation algorithms (inverse distance squared, splines, radial basis functions, triangulation, etc.) 4 
estimate the value at a given location as a weighted sum of data values at surrounding locations. Almost 5 
all assign weights according to functions that give a decreasing weight with increasing separation 6 
distance. Kriging assigns weights according to a (moderately) data-driven weighting function, rather than 7 
an arbitrary function, but it is still just an interpolation algorithm and will give very similar results to 8 
others in many cases (Isaaks and Srivastava, 1989). In particular if the data locations are fairly dense and 9 
uniformly distributed throughout the study area, you will get fairly good estimates regardless of 10 
interpolation algorithm. 11 

Semivariance, which is used by kriging, is a measure of the degree of spatial dependence between 12 
samples. The magnitude of the semivariance between points depends on the distance between the points. 13 
A smaller distance yields a smaller semivariance and a larger distance results in a larger semivariance. 14 
The plot of the semivariances as a function of distance from a point is referred to as a semivariogram. The 15 
semivariance increases as the distance increases until at a certain distance away from a point the 16 
semivariance will equal the variance around the average value, and will therefore no longer increase, 17 
causing a flat region to occur on the semivariogram called a sill.  18 

Kriging is the estimation procedure used in geostatistics using known values and a semivariogram to 19 
determine unknown values. It was named after D. G. Krige from South Africa. The procedures involved 20 
in kriging incorporate measures of error and uncertainty when determine estimations. Based on the 21 
semivariogram used, optimal weights are assigned to unknown values in order to calculate unknown ones. 22 
Since the variogram changes with distance, the weights depend on the known sample distribution. 23 

In ordinary kriging, which estimates the unknown value using a weighted linear combinations of the 24 
available sample. 25 

𝑣 ̂ =  ∑ 𝑤𝑗

𝑛

𝑗=1

 × 𝑣     , ∑ 𝑤𝑖

𝑛

𝑖=1

= 1 

The error of ith estimate, ri, is the difference of estimated value and true value at that same location:  26 
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𝑟𝑖 =  𝑣 −  𝑣𝑖  

The average error of a set of k estimates is:  1 

 2 

The error variance is:  3 

 4 

3. 7. Population genetic computations 5 

3. 7. 1. Genetic structure and population genetics 6 

We examined genetic structure of populations using two methods of population assignment using both 7 
Bayesian clustering method. We used STRUCTURE (Pritchard et al., 2000) and GENELAND version 8 
1.0.5 (Guillot at al., 2005). GENELAND is a computer program developed under R but exists also as 9 
clickable user interface requiring no particular knowledge of R. GENELAND’s main goal is to process 10 
individual multilocus genetic data to detect population structure, i.e. sub-populations at Hardy-Weinberg 11 
and linkage equilibrium. Although the concept of population refers here to genetic structure only, it is 12 
often realistic to assume that populations are spatially organized. Toward this aim, GENELAND is based 13 
on a spatially explicit model that can make use of both geographic and genetic information to estimate the 14 
number of populations in a dataset and delineate their spatial organization.  15 

The general principal of Bayesian methods, which is the approach developed in STRUCTURE, is to 16 
consider data and parameters as random variables (Beaumont & Rannala, 2004). Bayesian statistical 17 
analysis is becoming very popular in quantitative genetics. Informally, Bayesian analysis is a natural 18 
extension of maximum likelihood. One reason that Bayesian methods have recently become very popular 19 
is that the very difficult issues of analytically obtaining the full posterior distribution for interesting 20 
problems has been complete circumvented by Markov Chain Monte Carlo (MCMC) methods. Bayesian 21 
statistics is concerned with generating the posterior distribution of the unknown parameters given both the 22 
data and some prior density for these parameters. As such, Bayesian statistics provides a much more 23 
complete picture of the uncertainty in the estimation of the unknown parameters, especially after the 24 
confounding effects of nuisance parameters are removed. These random variables have specific 25 
distributions, called a priori distribution. The critical feature of any Bayesian analysis is the choice of a 26 
prior. The key here is that when the data have sufficient signal, even a bad prior will still not greatly 27 
influence the posterior. 28 

This is the main difference between non spatial Bayesian clustering methods, such as STRUCTURE, 29 
where this a priori distribution is uniform through the studied space. In GENELAND software, the a 30 
priori distribution is randomly modeled across space, using Poisson-Voronoi tessellation model. This 31 
model corresponds to the spatial patterns that can be expected when differentiation occurs by limited gene 32 
flow induced by the presence of physical barriers such as road, rivers, mountain ranges, human activity. 33 

The parameters are inferred using MCMC iterations. The MCMC simulations are used to estimate the 34 
posterior probability that the data fit the hypothesis of K populations, P(X|K). we tested values of K 35 
ranging from 2 to 6 with 3 independent runs per test, we used no admixture model with correlated allele 36 
frequencies (Falush et al., 2003), a 100,000 step burn-in followed by 106 steps of data collection. The 37 
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admixture model also calculates the fractional probability (Q) of individuals belonging to each 1 
population. In GENELAND, we tested the number of populations K ranging from 2 to 6 as well. We used 2 
correlated allele frequencies model. The burn-in was 100,000 iterations followed by 106 additional 3 
iterations, from which every 100th observation was sampled. The posterior probability of population 4 
membership for pixels was computed for the inferred k number of populations and the number of pixels 5 
was set to 2500 pixels along both the x and y axes. Finally, the posterior probability (probability (i) for the 6 
population i) of population membership was computed for pixels and the inferred population membership 7 
of individuals to model spatially the populations. F, individual Fis and pairwise Fst statistics (Weir and 8 
Cockerham 1984) relative to inferred populations obtained also from GENELAND. The spatial studied 9 
domain was divided into a grid of 2500 pixels and GENELAND calculates the posterior probability of 10 
every pixel to belong to a cluster (population). 11 

3. 7. 2. Genetic distances 12 

Genetic diversity: 13 

 14 

ASD – Average Square Distance – (Goldstein, 1995): 15 

 16 

CP (Prevosti et al., 1975): 17 

 18 

Da(Nei et al., 1983): 19 

 20 

 21 

DC – Chord Distance – (Cavalli-Sforza, 1967): 22 

 23 

DL (Latter, 1972): 24 
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 1 

DM – Nei minimum genetic distance – (Nei, 1973): 2 

 3 

DR – ROGERS distance – (Rogers, 1972): 4 

 5 

Ds – Nei standard genetic distance – (Nei, 1972): 6 

 7 

Dsw (Schriver, 1995): 8 

 9 

FST – LATTER’S FST distance – (Latter, 1972): 10 

 11 

X2 (Sanghvi, 1953): 12 

 13 

Where: 14 

xij and yij are the frequencies of allele i at locus j for population x and y. 15 

mj is the number of alleles at locus j. 16 

r is the number of evaluated loci.  17 
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4. Results 1 

4.1. Phenotypic results 2 

4. 1. 1. Agronomy 3 

Grain yield (GY) was less diverse ranging from 2172 KG/Ha to 2529 KG/Ha. The most diverse traits for 4 
the Moroccan durum landraces were SPM2, KSPK, PL, SL and PH. For quality traits, PC was the most 5 
diverse and ranged from 19 to 36% (Table10).  6 

Table 10: Descriptive statistics of measured traits 7 

Trait Min Max Mean SD Var 

Grain Yield 2172.93 2529.68 2367.35 66.85 4469.40 

Number of spike per 

square meter 
100.00 440.00 218.88 50.34 2534.17 

Number of kernels 

per main spike 
8.00 32.00 17.79 5.61 31.48 

Thousand kernel 

weight 
30.29 47.07 39.18 4.543 20.641 

Peduncle Length 1.00 8.00 2.27 1.56 2.44 

Spike Length 4.00 9.00 6.84 1.20 1.43 

Plant Height 86.91 114.34 105.54 5.96 35.54 

Days to Heading 138.27 150.20 144.54 2.81 7.90 

Days to Maturity 167.54 178.92 173.67 3.19 10.16 

Grain Filling 

Duration 
27.82 33.82 30.67 1.27 1.62 

ASH content 2.97 3.04 3.02 0.01 0.0002 

Protein Content 19.52 36.73 25.76 2.20 4.86 

Sedimentation 2.94 5.17 3.83 0.31 0.10 

Sedimentation N 1.33 2.62 1.76 0.16 0.03 

Sedimentation Index 3.90 6.02 5.16 0.46 0.22 

Yellow pigment 3.90 6.02 5.16 0.463 0.215 

Vitreousness 93.36 94.42 94.08 0.19 0.04 

 8 

Cluster analysis differentiated two main groups at the distance of 3.5 (Figure 11). GY was tightly linked 9 

to KSPK and PL within the first group where we could also find SPM2, GFD, ASH, YP and the three 10 

sedimentation traits. The second group contained SL, TKW, PC, VIT but also PH, DH and DM. Ash 11 

content in mature kernels could provide information on the integrated photosynthetic and retranslocation 12 

processes during grain filling (Araus & Nachit., 1998). In such a way, leaf and kernel ash content have 13 

been correlated with yield in wheat (Araus et al., 1998; Merah et al., 1999, 2001; Monneveux et al., 2004) 14 

grown under different water regimes.  15 

 16 
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 1 

 2 

Figure 11: Cluster tree of GY, quality and agronomic traits 3 

 4 

Modeling GY with the three yield components (TKW, SPM2 and KSPK) using multiple regressions had 5 

an R squared of 90%. The three resulting coefficients were highly significant and had a value of 0.64, 6 

0.19 and 0.17 for TKW, SPM2 and KSPK respectively. The grain yield of durum wheat landraces reached 7 

then 90% of yield potential which is the product of kernel number by the number of kernels per square 8 

meter.  9 

The multiple regression between GY and all agronomic traits gave only 4 significant effects ASH, DH, 10 

SL and TKW and explained 63% of the GY. Latitude and longitude were significant but having 11 

coefficients having the same absolute value with opposite signs (Table 11).  12 

 13 

 14 



 72  

 

Table 11: Yield relationship with other traits (Agronomic, quality, yield, coordinates) using 1 
multiple regression 2 

 Coefficient Std Error Std Coef Tolerance t P 

CONSTANT 7511.924 1349.77 0 . 5.565 0 

ASH -1233.646 474.154 -0.232 0.774 -2.602 0.011 

DH -7.325 2.481 -0.308 0.563 -2.952 0.004 

SL -30.276 5.516 -0.541 0.63 -5.489 0 

TKW 5.101 1.711 0.347 0.453 2.981 0.004 

LAT -9.002 4.091 -0.231 0.557 -2.2 0.03 

LONG 9.758 3.689 0.279 0.549 2.645 0.01 

 3 

The residuals from modeling GY using the three yield components (TKW, SPM2 and KSPK) ranged 4 

between -67 kg/ha to 165 kg/ha. Seven landraces had low residuals from this model and were 1 from 5 

Tetouan in the North of the country, 2 from Taza, 1 from Fes, 2 from Beni Mellal inn the Atlas Mountains 6 

and one from the South in Tiznit. Modeling GY with the three yield components had large residuals in the 7 

high altitude of Rif mountain chain, extreme South of Morocco in the region of Tiznit and the Eastern 8 

part of the country (Figure 12).  9 

 10 
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 1 

Figure 12: Map interpolated residuals from multiple regression of yield on its components (GY = f 2 
(TKW, KSPK, SPM2) 3 

 4 

 5 

 6 
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Correlation between GY and TKW was negative while correlation with SPM2 and KSPK were positive. 1 
The direct effects of the three yield components on GY were positive and highest effect was of KSPK. 2 
The gain on direct effect on yield by TKW was reduced by the negative indirect effect of TKW via KSPK 3 
and SPM2. On the other hand, the gain by direct effects of SPM2 and KSPK was reduced by the indirect 4 
effect of the two traits via TKW (Table 12). Gains in KM2, however, do not translate directly in yield 5 
potential gain due to partial compensation by decreased KW (Slafer et al., 1996). The lower KW observed 6 
with increased KM2 is not only due to a lower amount of assimilates per grain but is the result of an 7 
increased number of grains with a lower weight potential. It has been shown that competition for limited 8 
resources during the spike growth period, including light and nitrogen, is the major cause of KM2 9 
potential loss (Slafer et al., 1996). 10 
 11 

Table 12: Path coefficients (direct and indirect effects) of yield components to grain yield 12 

  TKW SPM2 KSPK 

TKW 0.156 -0.071 -0.085 

SPM2 -0.059 0.128 0.016 

KSPK -0.162 0.038 0.294 

 13 

For correlations, six traits showed significant negative correlations with GY (ASH, PC, PH, DH, DM, and 14 

SL) and four traits showed positive correlations (GFD, PL, KSPK and SDSi). The highest positive 15 

correlation was founds between PH and PC and DM and DH and TKW. The highest negative correlations 16 

found between YP and SL, and DM and KSPK (Table 13). TKW was positively correlated with PC, DH, 17 

DM and SL and negatively associated with ASH, YP, SPM2, SL and KSPK. KSPK was linked positively 18 

to PL and negatively to PC, PH, DH, DM, TKW, VIT and SL.  19 
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Table 13: Pearson correlation between grain yield and agronomic, phonologic and quality traits 1 

  GY ASH PC PH DH DM GFD SDS SDSn SDSi YP TKW VIT SL SPM2 PL KSPK 

GY 1.00 -0.25 -0.22 -0.35 -0.37 -0.25 0.12 0.08 0.04 0.13 0.12 -0.06 -0.04 -0.42 0.09 0.22 0.23 

ASH -0.25 1.00 0.59 0.45 0.20 0.05 -0.27 0.04 0.20 -0.14 0.41 -0.22 0.42 -0.23 0.21 -0.14 -0.06 

PC -0.22 0.59 1.00 0.65 0.50 0.41 -0.22 -0.07 0.15 -0.29 0.08 0.36 0.45 0.17 -0.11 -0.26 -0.39 

PH -0.35 0.45 0.65 1.00 0.65 0.55 -0.13 0.26 0.39 0.11 0.11 0.38 0.44 0.22 -0.12 -0.26 -0.47 

DH -0.37 0.20 0.50 0.65 1.00 0.88 0.01 -0.18 -0.11 -0.26 0.13 0.55 0.21 0.40 -0.36 -0.38 -0.66 

DM -0.25 0.05 0.41 0.55 0.88 1.00 0.30 -0.10 -0.05 -0.14 0.00 0.67 0.21 0.42 -0.36 -0.41 -0.73 

GFD 0.12 -0.27 -0.22 -0.13 0.01 0.30 1.00 0.16 0.10 0.23 0.01 0.02 -0.24 0.04 -0.05 -0.08 -0.06 

SDS 0.08 0.04 -0.07 0.26 -0.18 -0.10 0.16 1.00 0.97 0.97 0.07 -0.11 0.32 -0.18 0.17 0.02 0.11 

SDSn 0.04 0.20 0.15 0.39 -0.11 -0.05 0.10 0.97 1.00 0.88 0.11 -0.07 0.43 -0.18 0.18 -0.02 0.06 

SDSi 0.13 -0.14 -0.29 0.11 -0.26 -0.14 0.23 0.97 0.88 1.00 0.02 -0.15 0.19 -0.19 0.16 0.08 0.16 

YP 0.12 0.41 0.08 0.11 0.13 0.00 0.01 0.07 0.11 0.02 1.00 -0.40 0.24 -0.63 0.15 0.09 0.08 

TKW -0.06 -0.22 0.36 0.38 0.55 0.67 0.02 -0.11 -0.07 -0.15 -0.40 1.00 0.26 0.58 -0.46 -0.23 -0.55 

VIT -0.04 0.42 0.45 0.44 0.21 0.21 -0.24 0.32 0.43 0.19 0.24 0.26 1.00 -0.17 0.07 -0.02 -0.25 

SL -0.42 -0.23 0.17 0.22 0.40 0.42 0.04 -0.18 -0.18 -0.19 -0.63 0.58 -0.17 1.00 -0.40 -0.20 -0.34 

SPM2 0.09 0.21 -0.11 -0.12 -0.36 -0.36 -0.05 0.17 0.18 0.16 0.15 -0.46 0.07 -0.40 1.00 0.08 0.13 

PL 0.22 -0.14 -0.26 -0.26 -0.38 -0.41 -0.08 0.02 -0.02 0.08 0.09 -0.23 -0.02 -0.20 0.08 1.00 0.42 

KSPK 0.23 -0.06 -0.39 -0.47 -0.66 -0.73 -0.06 0.11 0.06 0.16 0.08 -0.55 -0.25 -0.34 0.13 0.42 1.00 

 2 
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Positive direct effect DE was found on GY for quality traits (TKW, PC, SDS). This DE was reduced by the indirect effect IE of these traits via 1 

SDS and SL for TKW; via SDSn, SDSi and ASH for PC; and SDSn and SDSi for SDS. On the other hand, SL and VIT had a negative DE on GY 2 

(Table 14).  3 

Table 14: Path coefficients (direct in diagonal and indirect effects in column) of agronomic, phonologic and quality traits to grain yield 4 

  ASH PC PH DH DM GFD SDS SDSn SDSi YP TKW VIT SL SPM2 PL KSPK 

ASH -0.17 -0.10 -0.08 -0.04 -0.01 0.05 -0.01 -0.03 0.02 -0.07 0.04 -0.07 0.04 -0.04 0.02 0.01 

PC 0.11 0.19 0.12 0.09 0.08 -0.04 -0.01 0.03 -0.05 0.02 0.07 0.08 0.03 -0.02 -0.05 -0.07 

PH -0.09 -0.12 -0.19 -0.12 -0.10 0.03 -0.05 -0.07 -0.02 -0.02 -0.07 -0.08 -0.04 0.02 0.05 0.09 

DH -0.07 -0.17 -0.23 -0.35 -0.31 0.00 0.06 0.04 0.09 -0.05 -0.19 -0.07 -0.14 0.13 0.13 0.23 

DM 0.00 0.02 0.03 0.05 0.05 0.02 -0.01 0.00 -0.01 0.00 0.04 0.01 0.02 -0.02 -0.02 -0.04 

GFD -0.02 -0.01 -0.01 0.00 0.02 0.06 0.01 0.01 0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 

SDS 0.15 -0.27 1.09 -0.76 -0.40 0.68 4.13 4.01 4.00 0.28 -0.46 1.33 -0.76 0.71 0.10 0.46 

SDSn -0.43 -0.33 -0.85 0.24 0.10 -0.22 -2.12 -2.18 -1.92 -0.24 0.15 -0.93 0.40 -0.38 0.05 -0.12 

SDSi 0.28 0.58 -0.22 0.51 0.28 -0.46 -1.93 -1.76 -1.99 -0.05 0.30 -0.37 0.38 -0.32 -0.15 -0.32 

YP 0.05 0.01 0.01 0.02 0.00 0.00 0.01 0.01 0.00 0.12 -0.05 0.03 -0.08 0.02 0.01 0.01 

TKW -0.11 0.19 0.20 0.29 0.35 0.01 -0.06 -0.04 -0.08 -0.21 0.52 0.14 0.30 -0.24 -0.12 -0.29 

VIT -0.08 -0.08 -0.08 -0.04 -0.04 0.04 -0.06 -0.08 -0.03 -0.04 -0.05 -0.18 0.03 -0.01 0.00 0.05 

SL 0.13 -0.10 -0.13 -0.23 -0.24 -0.03 0.11 0.11 0.11 0.37 -0.33 0.10 -0.58 0.23 0.11 0.20 

SPM2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

PL -0.01 -0.02 -0.02 -0.03 -0.04 -0.01 0.00 0.00 0.01 0.01 -0.02 0.00 -0.02 0.01 0.09 0.04 

KSPK 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 
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Relationship between two traits may change across space. One method of assessing this change is to map 1 

residuals from a linear regression model. The three figures (Figure 13, 14, 15) show the spatial 2 

distribution of residuals from linear regression of GY on TKW, SPM2 and KSPK. When the residuals are 3 

very small, the regression model between GY and the other trait is strong and the two traits are highly 4 

correlated in the corresponding landrace’s collection site. Large residuals means that in the corresponding 5 

sites, the correlation between GY and the other traits is weak and that the linear regression model can’t 6 

explain the variation of GY.  7 

 8 

 9 

 10 

 11 

 12 

 13 
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 1 

Figure 13: Map of residuals from regression of yield on TKW 2 

 3 

 4 
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 1 

Figure 14: Map of residuals from regression of yield on SPM2 2 

 3 
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 1 

Figure 15: Map of residuals from regression of yield on KSPK 2 

 3 

 4 



 81  

 

4. 1. 2.Physiology 1 

Large variability was shown by the physiological traits for the Moroccan durum landraces. Most of the 2 

traits exhibited large range (Min, Max). Nevertheless, variability was small for traits with small scale 3 

(Carotene70, WI70, SAVI70…). Table 15 shows different range for measured physiological traits.  4 

Table 15: Descriptive statistics of measured physiological traits 5 

Trait Min Max Mean SD Var 

CARI70 0.965 0.970 0.969 0.001 0.000 

CAROTENE70 -0.001 -0.001 -0.001 0.000 0.000 

CHL70 0.084 0.248 0.153 0.028 0.001 

NDVI70 0.803 0.846 0.833 0.009 0.000 

WI70 1.118 1.146 1.131 0.005 0.000 

WINDVI70 1.376 1.424 1.385 0.009 0.000 

NPCI70 0.1174 0.1987 0.1526 0.0189 0.0004 

PRI70 0.0027 0.0248 0.0167 0.0050 0.0000 

SAVI70 0.2826 0.2956 0.2918 0.0028 0.0000 

SIPI70 0.8501 0.9213 0.8890 0.0154 0.0002 

SR70 17.9145 19.2565 18.4270 0.3214 0.1033 

RNVI70 2.8459 3.5687 3.2191 0.1485 0.0221 

RVSI70 4.9393 5.6794 5.2106 0.1589 0.0252 

F070 561.0000 870.0000 647.2000 58.4045 3411.0909 

F170 638.0000 1008.0000 742.3100 62.0306 3847.7918 

F270 717.0000 1162.0000 843.7300 74.6229 5568.5829 

F370 1011.0000 1680.0000 1204.2600 119.2294 14215.6489 

F470 1471.0000 2288.0000 1762.9400 171.8088 29518.2590 

F570 1858.0000 3214.0000 2701.7500 387.8195 150403.9874 

FM70 2640.0000 4083.0000 3579.1400 397.6319 158111.1317 

FVFM70 0.7070 0.8540 0.8164 0.0297 0.0009 

FV70 1883.0000 3450.0000 2931.9400 409.1796 167427.9358 

LWP70 3.4141 6.8574 5.5768 0.8103 0.6566 

AREA70 40500.0000 214000.0000 90097.0000 18751.6004 351622516.1616 

CARI45 0.6572 1.0126 0.9708 0.0474 0.0022 

CAROTENE45 -0.0025 -0.0001 -0.0011 0.0005 0.0000 

CHL45 0.0235 0.5081 0.1453 0.0685 0.0047 

NDVI45 0.3638 0.9752 0.8758 0.0888 0.0079 

NPCI45 -0.1630 0.6175 -0.0067 0.1357 0.0184 

NPQ70 0.1531 0.5113 0.3330 0.0789 0.0062 

NPQI45 -0.1035 -0.0298 -0.0612 0.0139 0.0002 

PRI45 -0.1772 0.0803 0.0447 0.0380 0.0014 



 82  

 

QN70 0.1727 0.4354 0.3036 0.0579 0.0033 

QP70 0.9297 0.9702 0.9530 0.0083 0.0001 

QUE70 0.1707 0.4142 0.2264 0.0464 0.0022 

RNVI45 1.2600 4.9628 3.1491 0.6471 0.4188 

RVSI45 2.1661 12.1344 4.6437 1.6217 2.6301 

SAVI45 -0.0587 0.0021 -0.0243 0.0109 0.0001 

SIPI45 0.7381 0.9692 0.8845 0.0407 0.0017 

SR45 2.1438 79.7261 19.7169 10.5879 112.1029 

TFM70 233.0000 588.0000 359.9200 55.0283 3028.1147 

WINDVI45 1.1709 2.7676 1.2857 0.2064 0.0426 

WI45 0.9801 1.2783 1.1092 0.0380 0.0014 

YPEC70 0.5888 0.7827 0.7196 0.0458 0.0021 

 1 

Cluster tree using physiological traits and GY had two groups containing both two sub-groups. We could 2 

state that the fluorescence traits were in one group. The physiological traits were in general grouped 3 

according to the Zadoc scale 45 or 70. The GY was highly linked to CHL, WI/NDVI and NPCI of both 4 

stages (Zadoc scale 45 and 70). The quenching traits were also affected to the GY group (Figure 16). 5 

Most of traits at Zadoc 70 were linked to GY.  6 

 7 

 8 

  9 
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 1 

Figure 16: Cluster tree of physiological traits with GY 2 

 3 

 4 

 5 
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Only 4 physiological traits had significant coefficients as independent variables (F070, LWP70, PRI45, 1 

YPEC70) in a multiple regression for the GY (Table 16). The model resulting had an R square of 44.5%. 2 

The physiological traits couldn’t explain more than 50% of GY while the explanation by agronomic traits 3 

reached 63%.  4 

Table 16: Yield relationship with physiological traits using multiple regression 5 

 Coefficient Std Error Std Coef Tolerance t P 

CONSTANT 1881.768 443.993 0 . 4.238 0 

F070 0.49 0.169 0.428 0.395 2.896 0.005 

LWP70 131.129 33.287 1.589 0.053 3.939 0 

PRI45 -1050.849 507.183 -0.597 0.104 -2.072 0.041 

YPEC70 -1686.297 510.509 -1.156 0.07 -3.303 0.001 

4. 1. 3. Agronomy & physiology 6 

Combining all the traits (agronomic and physiologic) in the cluster analysis differentiated two groups: the 7 
first one contains the GY, which was again tightly linked not only to KSPK and PL but also to QP, NPCI 8 
and WI/NDVI at Zadoc scale70. The second group differentiated the physiological traits into two small 9 
groups: one for Zadoc scale 45 and the other for Zadoc scale 70. All the agronomic traits belonging to the 10 
second group were clustered together. Most of the physiological traits linked to GY were measured at 11 
Zadoc scale 70.  12 

 13 
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 1 

Figure 17: Cluster tree of all measured traits 2 

 3 

Modeling GY using multiple regression and using all traits as dependent variables explained 74.9%. Only 4 

14 traits had a significant coefficients (Table 17). Only 10% more could be explained by adding the 5 

physiology to the regression model. Breeders can explain most of the GY variability using only the 6 

agronomy which is less expensive compared to physiology.  7 
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Table 17: Yield relationship with all measured traits using multiple regression 1 

 Coefficient Std Error Std Coef Tolerance t P 

CONSTANT 13762.757 4148.19 0 . 3.318 0.001 

DH -6.39 2.608 -0.269 0.45 -2.45 0.016 

TKW 7.965 2.025 0.541 0.286 3.933 0 

VIT -104.569 43.832 -0.292 0.36 -2.386 0.019 

SL -40.818 6.886 -0.73 0.357 -5.928 0 

PL 7.567 3.706 0.177 0.721 2.042 0.044 

F170 -3.958 1.302 -3.673 0.004 -3.04 0.003 

F470 0.316 0.125 0.811 0.052 2.518 0.014 

F570 0.58 0.163 3.362 0.006 3.553 0.001 

LWP70 -196.293 71.45 -2.379 0.007 -2.747 0.007 

NDVI45 -416.503 161.805 -0.553 0.117 -2.574 0.012 

NPQ70 1507.76 347.341 1.779 0.032 4.341 0 

NPQI45 713.294 416.5 0.148 0.721 1.713 0.091 

WINDVI45 -138.299 69.113 -0.427 0.119 -2.001 0.049 

SDS 377.958 135.176 12.472 0 2.796 0.006 

SDSN -1460.988 512.314 -6.731 0.001 -2.852 0.006 

SDSI -2515.868 926.265 -6.11 0.001 -2.716 0.008 

 2 

 3 

Residuals from two multiple regressions analysis, the first one regressing GY on agronomic traits and the 4 

second one regressing GY on physiological traits were correlated at 0.594 with a p-value of 0 (Figure 18). 5 

 6 
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 1 

Figure 18: Correlation between residuals resulting from multiple regression of GY on agronomic 2 
traits (AGRO) and on physiological traits (PHYSIOLOGY) 3 

 4 

 5 

As for linear regression, model found by multiple regression may change across space. Also, mapping 6 

residuals from this model can help evaluating this spatial change (Figure 19).  7 
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 1 

Figure 19: Map of residuals of multiple regression of GY on All traits (Yellow regions with the 2 
lowest residuals) 3 

 4 

 5 
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Clustering Moroccan landraces using both agronomic and physiological traits is groupping landraces 1 

according to their origins (locations of collection) or to the agro-ecological regions of adaptation (Figure 2 

20).  3 

 4 

 5 

 6 

 7 

 8 

 9 
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 1 

Figure 20: Cluster tree of Moroccan durum landraces using agronomic and physiological traits 2 
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4. 1. 4. GxE analysis 1 

The GxE analysis showed that for the agronomic traits only TKW and DM had low G.E components 2 

(30% and 27% respect.). The maximum was found for VIT (98%), GY (94%) and ASH (91%). The 3 

variance components were equally divided into two parts G and G.E for two traits (DH and GFD) (Table 4 

18). For physiology, the GxE component was very high for all traits and ranged from 100% (CHL70) to 5 

50% for (SIPI70). Nine out of the thirteen studied traits had a GxE component of more than 90% (Table 6 

18).  7 

Table 18: Variance components of genotype and genotype by environment of studied traits 8 

 G GxE Total 

ASH 8.3 91.7 100 

DH 49.4 50.6 100 

DM 72.9 27.1 100 

GFD 48.5 51.5 100 

GY 5.5 94.5 100 

PC 24.2 75.8 100 

VIT 1.6 98.4 100 

PH 35.3 64.7 100 

SDS 30.5 69.5 100 

SDSn 24.9 75.1 100 

SDSI 35.2 64.8 100 

TKW 69.1 30.9 100 

YP 35.4 64.6 100 

SIPI70 50 50 100 

NPCI70 10.1 89.9 100 

SAVI70 5.2 94.8 100 

RNVI70 23.3 76.7 100 

RVSI70 6.3 93.7 100 

CARI70 4.6 95.4 100 

CAROTENE70 2.8 97.2 100 

CHL70 0 100 100 

NDVI70 6.7 93.3 100 

PRI70 12.2 87.8 100 

SR70 2 98 100 

WI70 9.7 90.3 100 

WI/NDVI70 2.5 97.5 100 

The variance components showed that the GxE effect was high and positive for landraces originated from 9 

the Eastern (Oujda, Figuig, Errachidia and Ouarzezate) part of Morocco and from the ‘Moyen Atlas’ 10 
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region of Meknes, Fes, Ifrane and Khenifra. The map of the GxE effect by landrace shows a spatial 1 

pattern across Morocco from the East (Positive effect) to the West (Negative effect). The extreme values 2 

of effects recorded as a minimum at landraces from Eljadida, Settat and Alhoceima; and as a maximum 3 

values at landraces from Errachidia, Boulmane and Figuig. The null value of the GxE effect by landrace 4 

was remarked at Marrakech, Essaouira, Agadir, Taza, Taouenate and Beni Mellal (Figure 21).  5 

 6 
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 1 

Figure 21: Map of mean sensitivity of a landrace to environment 2 

 3 

For GY, the most stable Moroccan landraces were mainly from Errachidia, Ouarzazete, Taza, Tiznit. 4 

Using the non-parametric stability, the results were the same according to the mean rank over all 5 
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environments and the variance of rank. Landraces DW043 from Errachidia, DW103 from Ouarzazete and 1 

DW046 from Errachidia are the most stable for GY. Using the coefficient of variation of (Francis and 2 

Kanenberg), a landrace is stable when its coefficient is high and the most stable landraces were the ones 3 

originated from high altitudes of Atlas and Rif mountainous chains.  4 

 5 

 6 
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 1 

Figure 22: Map of coefficient of variation (Francis and Kanenberg) of Moroccan durum landraces 2 
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4. 1. 5. Spatial analysis of phenotypic data 1 

4. 1. 5. 1. Spatial networks 2 

The graphs (Figure 23) shows different spatial connectivity networks for the Moroccan wheat landraces. 3 
The fact that two landraces are spatially connected depends not only on the distance separating them but 4 
also on the method used for constructing the spatial network. Spatial analysis (spatial autocorrelation, 5 
Spatial PCA, spatial multiple analysis) depends a lot on the choice of the spatial connectivity networks. In 6 
this study, the six spatial networks were used to study the spatial phenomena of durum landraces. In most 7 
of the cases results were similar.  8 

 9 
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 1 

Figure 23: Examples of different spatial connectivity network of Moroccan durum landraces 2 

4. 1. 5. 2. Spatial autocorrelation 3 

We computed the spatial autocorrelation of traits/Variables using three different spatial connectivity 4 
networks; nearest neighbors with 3 and 5 neighbors, Gabriel graph and minimum spanning tree. The 5 
results were similar for all of them. Only 8 of the 18 studied agronomic traits had a significant SAU. The 6 
maximum found for DM (0.375) and minimum for PC (0.129). The G.E by landraces effect had also a 7 
significant positive SAU. These results showed that those variables had a global pattern over Morocco 8 
and that the agronomic traits cannot distinguish between neighboring landraces. This result is applicable 9 
for the G.E by landrace, which match with the results showed by the map generated by the G.E effect in 10 
the ‘GxE section’ (Table 19). 11 
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Four of the five variables generated by the stability of yield analysis had a significant positive SAU (V-1 

FK with 0.21, CV-FK with 0.14, B-FW with 0.21 and R2 with 0.18). Using the rank, only the rank of 2 

GY04 and GY07. The average and the variance of rank over the four years didn’t show any significant 3 

SAU. As for the agronomy, the SAU was positive or null for all the 44 physiological traits but only 4 

significant for 14 and 13 of them were of the Zadoc scale 70. The values ranged from 0.365 for SAVI70 5 

to 0.126 for F270. Moran’I values from PCA-AGRO were no significant.  6 

Table 19: Significant spatial autocorrelation of mean traits 7 

Trait I Prob(I) 

DM 0.375 0.000 

DH 0.327 0.000 

KSPK 0.271 0.000 

TKW 0.250 0.000 

GFD 0.197 0.003 

VIT 0.153 0.018 

GxE by LA 0.152 0.014 

PH 0.140 0.029 

PC 0.129 0.045 

SAVI70 0.365 0.000 

WI70 0.365 0.000 

RVSI70 0.299 0.000 

SR70 0.277 0.000 

NDVI70 0.261 0.000 

PRI70 0.251 0.000 

NPCI70 0.179 0.006 

RNVI70 0.169 0.010 

CAROTENE70 0.148 0.021 

QN70 0.146 0.024 

RVSI45 0.145 0.021 

WI/NDVI70 0.143 0.022 

NPQ70 0.134 0.038 

F270 0.126 0.043 

 8 

The SA for grain yield changed significantly from year to year and ranged from 0.39 to 0.03 (where it 9 

was not significant) (Table 20). The same result was found for PH and PC. For traits showed reasonable 10 

constant SA across evaluation years: DH (3 years), DM (2 years) and KSPK (2 years) and TKW (5 years).  11 

 12 



 99  

 

 1 

Table 20: Significant spatial autocorrelation of measured traits in different years 2 

  I Prob(I) 

DH 0.298 0.000 

DH04 0.325 0.000 

DH05 0.402 0.000 

DM 0.410 0.000 

DM05 0.279 0.000 

GY04 0.393 0.000 

GY05 0.033 0.531 

GY06 0.176 0.007 

GY07 0.246 0.000 

KSPK 0.178 0.007 

KSPK07 0.271 0.000 

PC 0.116 0.072 

PC04 0.269 0.000 

PC05 0.240 0.000 

PC06 0.053 0.368 

PC07 0.088 0.160 

PH 0.144 0.025 

PH05 0.077 0.203 

PH06 0.247 0.000 

PH07 0.446 0.000 

TKW 0.185 0.005 

TKW04 0.311 0.000 

TKW05 0.196 0.003 

TKW06 0.229 0.001 

TKW07 0.207 0.002 

 3 

Multispati-PCA applied on agronomic traits found 17 Eigen values from which 7 were positive. The 4 

multivariate spatial autocorrelation test using Monte Carlo and 106 iterations showed almost a null non-5 

significant value. So no spatial pattern revealed by the agronomic traits. Also SAU of the kept axes by 6 

Multispati-PCA had no significant Moran’I values which match with the non-significance of the SAU of 7 

PCA-AGRO.  8 

4. 1. 5. 3. Spatial clustering 9 

When SA is not significant, we cannot reject absolutely the Null hypothesis. Also, when SA has a 10 
significant p-value (Table 20), we are sure that the spatial distribution of a trait is clustered and there is 11 
very little chance that this cluster can be a result of random process. General G analysis of Getis-Ord 12 
gives an idea about which part of our data is clustered; low values for low clustering or high value for 13 
high cluster. This analysis confirms some of the results of SA. Most of the traits with non-significant SA 14 
have a random clustering according the z-score of general G (GY, ASH, SDS, SDSN, SNSi and VIT). 15 
Other traits with non-significant SA showed high or low clustering but the pattern is not significant (PC, 16 
SPM2 and YP). On the other hands, some traits showed a very significant high (PH, DH, DM, TKW and 17 
SL) and low (KSPK) clustering (Table 21).  18 
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Table 21: High and low clusters using Getis-Ord General G 1 

Trait z-score p-value Cluster 

GY -1.196 0.232 Random 

ASH -0.786 0.432 Random 

PC 1.664 0.096 High 

PH 2.750 0.006 High 

DH 4.241 0.000 High 

DM 4.540 0.000 High 

GFD 0.618 0.536 Random 

SDS -0.765 0.444 Random 

SDSN -0.583 0.560 Random 

SDSI -0.834 0.405 Random 

YP -1.672 0.095 Low 

TKW 4.527 0.000 High 

VIT -0.010 0.992 Random 

SL 2.796 0.005 High 

SPM2 -1.873 0.061 Low 

PL -1.670 0.095 Low 

KSPK -2.932 0.003 Low 

 2 

Now that we know which traits are clustered and how, we can push the study further and check where 3 

these trait ‘values cluster across Morocco. For this, we computer the Local G* of of Getis-Ord to find hot 4 

(regions with high values) and cold spots (regions with high values). Only region with of z-score superior 5 

or inferior to 2.5 standard deviation are significant at 1%. This means that in those regions (locations of 6 

durum landraces collection), there is less that % likelihood that the observed pattern is by chance.  7 

For PH (Figure 24), only one low value site was significant in the region of Errashidia. Other regions 8 

were detected to be regions of high PH especially in BeniMellal and Azilal.  9 

 10 

 11 
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 1 

Figure 24: Spatial hotspots for Plant height 2 

 3 

 4 
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For DH (Figure 25), several regions were found to be statically significant hotspots. These regions were 1 

in the high altitude of Atlas chain in the regions of Khenifra, Azilal and BeniMellal. Landraces originated 2 

from Tiznit and Guelmin were significant regions of low DH.  3 

 4 

Figure 25: Spatial hotspots for days to heading 5 
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For DM (Figure 26), almost the same pattern of DH was found mainly for hotspots. Nevertheless, some 1 

non-significant hotspots for DH were very significant hotspots for DM. Those were declared in the 2 

regions of Ifrane and Khouribga. On the other hand, the region of low spot clusters was more extended 3 

and found the regions along the Atlantic Ocean: Essaouira, Safi, Tiznit and Guemin.  4 

 5 
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 1 

Figure 26: Spatial hotspots for days to maturity 2 

 3 

 4 
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TKW showed a large region expressing hotspots (Figure 27). This region is found in the high altitude of 1 

Rif and Atlas mountain chain. The low values areas were in the Atlantic regions of Aljadida, Safi and 2 

Essaouira.  3 

 4 

 5 
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 1 

Figure 27: Spatial hotspots for thousand kernel weight 2 

 3 

 4 
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 1 

No significant hot (or low) spots were found for SL (Figure 28). While for KSPK (Figure 29), the spatial 2 

pattern of hot and low spots was almost the inverse of the one found for TKW. Landraces with high 3 

number of kernel per spike were concentrated in the Atlantic regions of Aljadida, Safi and Essaouira. Low 4 

values of KSPK were mainly focused in the high altitude of Rif and Atlas mountain chain. Low spots 5 

were not significant.  6 

 7 
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 1 

Figure 28: Spatial hotspots for spike length 2 

 3 
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 1 

Figure 29: Spatial hotspots for number of kernel per spike 2 

 3 

 4 
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4. 1. 5. 4. Spatial modeling 1 

When a trait is measured at different locations, one can use geo-statistical methods to map and predict this 2 
trait in areas where it was not measured. Kriging is the most appropriate for mapping. When the trait has 3 
no evidence of spatial pattern, the mapping (prediction) is not accurate. In our case, GY presents no 4 
significant spatial autocorrelation across Morocco. Using Variogram and Kriging techniques permitted to 5 
have a predicted map of GY across Morocco (Figure 30).  6 
 7 

 8 

Figure 30: Map of interpolated GY (High “dark” to low yield “light”) 9 

 10 

Modeling Grain yield with traits having a strong spatial autocorrelation can help refining the spatial 11 

prediction. We first run a multiple regression (Table 22)on grain yield using four traits with positive and 12 

significant SA (TKW, GFD, PH and SL). Second, we computed the predicted map of the four traits used 13 

as independent variables in the multiple regression model.  14 

 15 

 16 
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Table 22: Coefficients of multiple regression of GY on TKW, GFD, PH and SL 1 

Variable Trait Coefficients 

Dependent GY05RF  

Independent TKW05RF 66.41 

Independent GFD05RF 3.67 

Independent PH05RF -0.56 

Independent SL05RF -87.74 

Constant  329.66 

 2 

 3 

The resulting maps are more accurate since the traits have positive SA and then a global pattern across 4 

Morocco. The last step is the use the raster calculator in ArcGIS 9.2 to compute a predicted map of GY 5 

using maps of TKW, GFD, PH and SL and coefficients from multiple regression (Figure 31).  6 

 7 

 8 

Figure 31: Predicted map of GY using multiple regression coefficients and raster calculation (High 9 
“dark” to low yield “light”) 10 

 11 
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4. 1. 5. 5. Geographical barriers of traits 1 

To study the geographic barriers of any spatial phenomena, one should construct Delaunay triangulation 2 
and Voronoï tessellation. The Voronoï tessellation represents a polygonal neighborhood for each 3 
population that is constituted of those points, on the plane, that are closer to such point than to any other 4 
one. This tessellation determines which populations are neighbors, adjacent. Two points are adjacent if 5 
the corresponding Voronoï polygons have a common edge (Green in Figure 32). The corresponding 6 
Delaunay triangulation is in Black in the same figure. The sample of our points corresponding to durum 7 

landraces are labeled with a number. The blue points are the virtual points used to obtain a closed 8 
tessellation enclosing all the points. 9 

 10 

 11 

Figure 32: Voronoï tessellation and Delaunay triangulation for Moroccan durum landraces 12 

 13 

Several barriers were found for DH (Figure 33). The first one is between the Atlas Mountains and the 14 

Atlantic Ocean, the second in the Southern part of the country starting from the Ocean side at Safi until 15 

the Desert in Tata. The barrier present around the Atlas chain is surrounding the hotspots found for DH 16 

earlier in this paragraph.  17 

 18 

 19 
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 1 

Figure 33: Days to heading barriers using Monmonier’s Algorithm 2 

 3 

For TKW (Figure 33), on large barrier was found in the South-East of the country. This barrier separates 4 

between hotspots in the North, Low spots in the South and the West. Another discontinuity found in the 5 

north (the Rif Mountains). The last one Overlaps as well with the regions of high values of TKW (Figure 6 

34).  7 
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 1 

Figure 34: Thousand kernel weight barriers using Monmonier’s Algorithm 2 

4. 2. Phenotypic / Climate relationships 3 

4. 2. 1. Correlation 4 

All extracted long-term climatic variables showed a large diversity in locations where Moroccan durum 5 
landraces were collected specially during the wheat cycle in Morocco (November to May/June). All 6 
monthly minimal temperatures (Tmin) had a significant negative correlation with altitude and most of 7 
maximal temperatures (Tmax) and precipitations (prec) were correlated negatively and positively with the 8 
altitude respectively. Tmin were highly positively correlated from month to month. The same pattern, but 9 
less high, of correlations was found for Tmax from month to month (Table 23).   10 

Table 23: Descriptive statistics of the extracted long-term climatic variable for Moroccan durum 11 
wheat landraces 12 

Code Variable Mean Median Max Min Var 

tmin1 Minimal temperature-January 1.91 1.65 9.60 -7.50 15.48 

tmax1 Maximal temperature-January 14.29 15.05 19.40 6.90 8.43 

prec1 Precipitation-January 56.52 52.00 153.00 3.00 1166.39 

tmin2 Minimal temperature-February 3.03 3.00 10.10 -5.90 13.73 

tmax2 Maximal temperature-February 15.73 16.45 21.60 8.60 8.84 
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prec2 Precipitation-February 55.93 51.00 144.00 3.00 1139.40 

tmin3 Minimal temperature-March 5.41 5.60 12.00 -3.80 13.81 

tmax3 Maximal temperature-March 18.21 18.50 25.00 11.20 8.93 

prec3 Precipitation-March 59.74 58.50 153.00 5.00 1151.31 

tmin4 Minimal temperature-April 7.70 7.70 13.30 -0.80 12.02 

tmax4 Maximal temperature-April 20.98 20.75 29.60 14.80 9.76 

prec4 Precipitation-April 48.03 54.00 89.00 2.00 498.23 

tmin5 Minimal temperature-May 10.25 10.15 15.70 2.00 12.49 

tmax5 Maximal temperature-May 24.13 23.60 34.20 18.20 12.13 

prec5 Precipitation-May 27.57 30.50 59.00 2.00 181.50 

tmin6 Minimal temperature-June 13.76 14.40 20.10 6.30 10.58 

tmax6 Maximal temperature-June 28.53 28.30 39.60 21.30 13.62 

prec6 Precipitation-June 10.03 10.00 29.00 1.00 34.94 

tmin7 Minimal temperature-July 16.58 16.80 23.80 10.40 9.39 

tmax7 Maximal temperature-July 32.97 32.80 43.80 22.50 17.02 

prec7 Precipitation-July 3.00 2.00 13.00 0.00 7.31 

tmin8 Minimal temperature-August 17.07 17.50 23.80 10.60 8.83 

tmax8 Maximal temperature-August 32.75 32.40 42.40 22.60 14.38 

prec8 Precipitation-August 4.66 4.00 14.00 0.00 10.23 

tmin9 Minimal temperature-September 14.15 14.65 19.40 6.40 9.74 

tmax9 Maximal temperature-September 28.64 28.50 35.90 22.90 7.80 

prec9 Precipitation-September 16.24 15.00 34.00 5.00 52.53 

tmin10 Minimal temperature-October 10.64 10.90 15.90 2.20 11.74 

tmax10 Maximal temperature-October 23.42 23.25 29.70 16.40 8.74 

prec10 Precipitation-October 39.43 40.00 79.00 10.00 239.58 

tmin11 Minimal temperature-November 6.49 6.60 13.10 -2.80 14.32 

tmax11 Maximal temperature-November 18.43 18.75 24.10 10.70 8.59 

prec11 Precipitation-November 57.95 57.00 117.00 13.00 707.16 

tmin12 Minimal temperature-December 3.40 3.10 10.70 -5.60 14.46 

tmax12 Maximal temperature-December 14.89 15.80 19.60 7.00 9.57 

prec12 Precipitation-December 67.52 66.00 155.00 7.00 1269.73 

bio1 Annual Mean Temperature  15.97 16.40 21.74 8.97 7.67 

bio2 Mean Monthly Temperature Range  13.55 14.06 17.32 6.37 7.42 

bio3 Isothermality (V2/V7) (* 100)  43.55 43.99 49.68 38.05 7.00 

bio4 Temperature Seasonality (STD * 100)  606.05 622.63 818.34 245.60 15178.32 

bio5 Max Temperature of Warmest Month  33.10 32.80 43.80 22.90 16.31 

bio6 Min Temperature of Coldest Month  1.90 1.65 9.60 -7.50 15.48 

bio7 Temperature Annual Range (V5-V6)  31.20 33.40 41.10 13.30 39.38 

bio8 Mean Temperature of Wettest Quarter  10.85 11.41 21.57 3.67 12.02 

bio9 Mean Temperature of Driest Quarter  23.34 23.13 29.48 11.80 8.23 

bio10 Mean Temperature of Warmest Quarter  23.80 23.45 32.20 18.75 8.45 

bio11 Mean Temperature of Coldest Quarter  8.87 8.99 14.35 0.58 10.43 

bio12 Annual Precipitation  446.62 476.00 874.00 63.00 44356.08 

bio13 Precipitation of Wettest Month  70.56 66.50 155.00 15.00 1262.11 

bio14 Precipitation of Driest Month  2.92 2.00 13.00 0.00 7.39 

bio15 Precipitation Seasonality (CV)  66.15 66.46 88.35 40.21 131.78 

bio16 Precipitation of Wettest Quarter  190.58 184.50 450.00 35.00 10004.87 

bio17 Precipitation of Driest Quarter  17.62 15.00 49.00 3.00 120.02 
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bio18 Precipitation of Warmest Quarter  21.41 20.50 49.00 3.00 130.93 

bio19 Precipitation of Coldest Quarter  179.97 167.00 443.00 13.00 10523.83 

 1 

 2 

 3 

Figure 35: Correlations between phenotypic traits and long-term climate data of landrace’s origin 4 

 5 

As for the traits, TKW was positively correlated to precipitations in all months but negatively associated 6 

to Tmax and Tmin in most of the months during durum development cycle. The same associations were 7 

found for PH, PC, DH and DM but the correlations were of less magnitude. Opposite correlation patterns 8 

were dissected for KSPK and SPM2 (Figure 35).  9 

 10 
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4 .2. 2. GxE with genotypic covariates 1 

The long-term climatic variables (during and around the durum wheat cycle in Morocco) and the three 2 
spatial coordinates (Lat, Long and Atl) were used as genotypic co-variables in a linear mixed model to 3 
compute how much a co-variable is reducing the genotypic variance component in a GxE model.  4 

 5 

Table 24: Reduction of the genotypic effect using a long term environmental characteristic as a 6 
genotypic co-variable 7 

Environmental 

variable 

Variance 

components 

DH DM GY PC PH SDS TKW YP 

LAT G    98.5  84.7 95.8 82.4 

Cov    1.5  15.3 4.2 17.6 

TOTAL    100.0  100.0 100.0 100.0 

LONG G  99.4    60.0 88.9 84.0 

Cov  0.6    40.0 11.1 16.0 

TOTAL  100.0    100.0 100.0 100.0 

Tmin1 G 98.9 99.4    89.4   

Cov 1.1 0.6    10.6   

TOTAL 100.0 100.0    100.0   

Tmin2 G 98.7 99.3    87.7   

Cov 1.3 0.7    12.3   

TOTAL 100.0 100.0    100.0   

Tmin3 G 98.5 99.2    88.8   

Cov 1.5 0.8    11.2   

TOTAL 100.0 100.0    100.0   

Tmin4 G 97.7 99.0    85.9   

Cov 2.3 1.0    14.1   

TOTAL 100.0 100.0    100.0   

Tmin5 G 97.7 99.0   99.4 81.2   

Cov 2.3 1.0   0.6 18.8   

TOTAL 100.0 100.0   100.0 100.0   

Tmin6 G 97.1 99.2   97.7 93.3   

Cov 2.9 0.8   2.3 6.7   

TOTAL 100.0 100.0   100.0 100.0   

Tmin10 G 98.3 99.2    79.5   

Cov 1.7 0.8    20.5   

TOTAL 100.0 100.0    100.0   

Tmin11 G 98.7 99.2    91.1   

Cov 1.3 0.8    8.9   

TOTAL 100.0 100.0    100.0   

Tmin12 G 98.8 99.3    91.2   
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Cov 1.2 0.7    8.8   

TOTAL 100.0 100.0    100.0   

Tmax1 G 95.5 98.4    81.5   

Cov 4.5 1.6    18.5   

TOTAL 100.0 100.0    100.0   

Tmax2 G 94.3 98.7    78.4   

Cov 5.7 1.3    21.6   

TOTAL 100.0 100.0    100.0   

Tmax3 G 93.4 98.8   98.0 84.7   

Cov 6.6 1.2   2.0 15.3   

TOTAL 100.0 100.0   100.0 100.0   

Tmax4 G 96.0 98.9 96.7 97.8 97.7    

Cov 4.0 1.1 3.3 2.2 2.3    

TOTAL 100.0 100.0 100.0 100.0 100.0    

Tmax5 G 98.1 99.2 77.2 98.7 97.0    

Cov 1.9 0.8 22.8 0.4 3.0    

TOTAL 100.0 100.0 100.0 100.0 100.0    

Tmax6 G 98.3 98.7   98.1    

Cov 1.7 1.3   1.9    

TOTAL 100.0 100.0   100.0    

Tmax10 G 92.4 99.4   89.6    

Cov 7.6 0.6   10.4    

TOTAL 100.0 100.0   100.0    

Tmax11 G 95.6 98.7   99.6 81.1   

Cov 4.4 1.3   0.4 18.9   

TOTAL 100.0 100.0   100.0 100.0   

Tmax12 G 97.3 99.0   98.1 81.6   

Cov 2.7 1.0   1.9 18.4   

TOTAL 100.0 100.0   100.0 100.0   

Prec6 G  99.1 97.9  99.4 92.2   

Cov  0.9 2.1  0.6 7.8   

TOTAL  100.0 100.0  100.0 100.0   

Bio1 G 94.7 99.0   95.5 71.9   

Cov 5.3 1.0   4.5 28.1   

TOTAL 100.0 100.0   100.0 100.0   

Bio2 G 96.7 94.9 88.1 98.0   99.2 98.4 

Cov 3.3 5.1 11.9 2.0   0.8 1.6 

TOTAL 100.0 100.0 100.0 100.0   100.0 100.0 

Bio3 G 98.7 98.3    91.4 98.1 90.5 

Cov 1.3 1.7    8.6 1.9 9.5 

TOTAL 100.0 100.0    100.0 100.0 100.0 
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Bio5 G 98.0 98.4  98.5 98.6    

Cov 2.0 1.6  1.5 1.4    

TOTAL 100.0 100.0  100.0 100.0    

Bio6 G 98.9 99.4    89.4   

Cov 1.1 0.6    10.6   

TOTAL 100.0 100.0    100.0   

Bio7 G 98.2 98.6       

Cov 1.8 1.4       

TOTAL 100.0 100.0       

Bio8 G 98.3 99.7 99.8  99.4 93.8   

Cov 1.7 0.3 0.2  0.6 6.2   

TOTAL 100.0 100.0 100.0  100.0 100.0   

Bio9 G 94.9 98.3 89.1 98.6 97.6  99.5  

Cov 5.1 1.7 10.9 1.4 3.5  0.5  

TOTAL 100.0 100.0 100.0 100.0 100.0  100.0  

Bio10 G 95.6 98.9 92.5 98.8 96.4    

Cov 4.4 1.1 7.5 1.2 3.6    

TOTAL 100.0 100.0 100.0 100.0 100.0    

Bio11 G 98.1 99.1    82.9   

Cov 1.9 0.9    17.1   

TOTAL 100.0 100.0    100.0   

Bio14 G  99.4   99.4 97.1   

Cov  0.6   0.6 2.9   

TOTAL  100.0   100.0 100.0   

 1 

For the GY, the climatic variables reducing the genotypic variance components were Tmax5 (23%), the 2 

mean monthly temperature range BIO2 (12%), mean temperature of the driest quarter BIO9 (11%) and 3 

mean temperature of the driest quarter BIO10 (7.5%). Tmax1, Tmax2 and Tmax3 were contributing to 4 

genotypic variance of DH at around 5%. Also, BIO1 and BIO10 were reducing the DH genotypic 5 

variance. For DM, only long-term mean monthly temperature range was able to explain of the GV. Only 6 

Tmax10 and annual mean temperature BIO1 were able to explain some of the GV of PH (10% and 4.5% 7 

respectively). Most of the long-term climatic variables explained a large component of the SDS genotypic 8 

variance. The proportion of the explained variance ranged from 28% for the annual mean temperature 9 

BIO1 to 6% for the mean temperature of the wettest quarter BIO8. Latitude and longitude explained 15% 10 

and 40% of the SDS genotypic variance respectively. For TKW, only the geographic coordinates were 11 

able to explain some of the genotypic variance (4% for latitude and 11% for longitude). The geographic 12 

coordinates were also found to explain some of the genotypic variability of YP. The isothermality BIO3 13 

was also reducing the GV of YP by 9% (Table 24). This analysis showed that long-term climate profiles 14 

of the site of landrace’s collection and the geographic coordinates were able to explain a part of the 15 

genotypic variability of several traits including yield. This also can help understanding the adaptation and 16 

phenotypic variability of Moroccan landraces, and the area of traits variability using climatic variables.   17 



 120  

 

4. 2. 3. Spatial pattern of climate variables 1 

Four spatial discontinuities were computed using the long-term climatic variables of Moroccan durum 2 
landraces. Three of them were very clear and divide the Morocco in three parts: the atlas chain is 3 
explaining these barriers and concluding one part east and the other West of the chain. The third barrier is 4 
between the Haouz and Souss regions in Southern Morocco (Figure 36).  5 

 6 

 7 

Figure 36: Climatic barriers for durum landrace’s long term climate (using all climatic variables) 8 

 9 

Using only minimal temperature (Figure 37), the studied space in Morocco was divided into four parts. 10 

Two of the barriers found using Tmin were identical to the one found for maximal temperature (Figure 11 

38).  12 

 13 

 14 
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 1 

Figure 37: Climatic barriers for durum landrace’s long term climate (using Tmin) 2 

 3 

 4 
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 1 

Figure 38: Climatic barriers for durum landrace’s long term climate (using Tmax) 2 

4. 3. Genotyping results 3 

4. 3. 1. Locus description 4 

The total number of amplified alleles at the 51 microsatellites loci found for the 188 Moroccan and Syrian 5 
landraces was 1208 alleles. The number of alleles per locus ranged from 5 for gwm471 to 60 for gwm368. 6 
For the specific allele number of the Syrian and the Moroccan populations, the number of alleles per locus 7 
was higher in the Syrian landraces than in the Moroccan ones. The marker with the highest heterogeneous 8 
proportion was gwm494; and the lowest was gwm257. For the genetic diversity, the expected 9 
heterogeneity was significantly (p < 0.001) higher than the observed one, with a mean of difference of 10 
0.56. We observed 741 alleles in the Moroccan population. For the range, the highest value was scored 11 
with 34 alleles at the locus gwm610; and the lowest with 2 alleles at gwm165. The average per locus was 12 
14 alleles. Six of the studied markers were 100% homogenous (gwm357, gwm169, gwm369, gwm471, 13 
gwm165, gwm257) and 3 were higher than 80% heterogeneous (gwm493, gwm494, gwm264). Expected 14 
heterogeneity ranged from 0.99 for gwm335 and gwm644 to 0.11 for gwm257; and HE was 0.763 (Table 15 
25). He was significantly (p < 0.001) higher that Ho and with a mean difference of 0.5. 16 
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 1 

Table 25: Locus descriptive parameters for the dataset and for the Moroccan and the Syrian durum wheat landraces populations 2 

Locus name Chromosome Dataset Morocco Syria 

Na ASR (bp) Na ASR (bp) H0 He F Na ASR (bp) H0 He F 

gwm2 2AS,3AS 11 110-124 5 110-124 0.01 0.16 0.94 9 112-121 0 0.77 1 

gwm6 4BL,5A 21 185-214 14 185-209 0.03 0.85 0.96 17 187-214 0.07 0.94 0.93 

 gwm33 1AS,1BL 30 105-190 20 115-190 0.11 0.87 0.87 20 105-177 0.09 0.86 0.9 

 gwm60 7AS 19 189-232 17 189-232 0.06 0.85 0.93 12 205-222 0.11 0.89 0.87 

gwm63 7A 11 246-277 10 246-277 0.13 0.84 0.84 7 255-271 0.08 0.82 0.9 

gwm99 1A 28 104-138 23 104-138 0.19 0.88 0.78 21 104-133 0.08 0.95 0.92 

gwm107 3B,4B,6B 6 185-205 5 185-205 0.01 0.32 0.97 4 186-191 0 0.33 1 

gwm114 3B 16 114-132 13 114-129 0.06 0.84 0.93 9 115-132 0.02 0.54 0.96 

gwm129 2B,5AS 17 200-237 12 200-234 0.02 0.81 0.97 9 221-237 0 0.82 1 

gwm160 4AL 23 169-209 16 169-207 0.29 0.82 0.65 22 172-209 0.2 0.87 0.77 

gwm165 4A,4BS 10 182-193 2 190-192 0 0.25 1 9 182-193 0.02 0.84 0.97 

gwm169 6AL 22 178-228 11 178-197 0 0.79 1 19 180-228 0.02 0.9 0.98 

gwm210 2A,2B 10 164-191 7 165-191 0.27 0.37 0.29 7 164-187 0.06 0.36 0.85 

gwm219 6B 28 153-190 19 153-190 0.06 0.9 0.93 19 154-182 0.11 0.74 0.85 

gwm234 5A,5BS 14 99-211 12 99-202 0.03 0.79 0.96 6 100-211 0.24 0.29 0.15 

gwm257 2B 9 191-200 3 193-196 0 0.12 1 9 191-200 0 0.78 1 

gwm260 7AS 19 134-165 15 137-164 0.03 0.82 0.96 13 134-165 0.01 0.91 0.99 

gwm264 1A,1B,3B,7B 32 102-231 27 102-212 0.86 0.89 0.04 11 161-231 0.09 0.75 0.88 

gwm268 1B 18 169-248 5 176-246 0.01 0.16 0.94 15 169-248 0.07 0.88 0.92 

gwm282 7A 19 110-194 12 110-124 0.04 0.82 0.95 16 112-194 0.02 0.9 0.98 

gwm285 3B 18 212-237 17 216-228 0.03 0.83 0.96 3 212-237 0 0.42 1 

gwm293 5A,7B 17 135-205 10 136-205 0.03 0.69 0.96 12 135-137 0.06 0.76 0.93 

gwm297 7BS 39 149-178 18 149-178 0.13 0.88 0.85 34 150-175 0.2 0.91 0.78 
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gwm311 2A,6B 14 110-168 11 117-166 0.09 0.62 0.85 9 110-168 0.06 0.47 0.88 

gwm319 2B 13 169-198 11 172-198 0.1 0.82 0.88 11 169-198 0.04 0.84 0.95 

gwm344 7A,7B 45 99-124 31 99-122 0.52 0.9 0.42 26 111-124 0.9 0.8 0 

gwm335 5B 38 136-256 12 151-256 0.04 1 0.96 29 136-244 0.13 0.98 0.86 

gwm44 4A 15 173-274 9 204-274 0.01 0.67 0.98 10 173-271 0.02 0.46 0.95 

gwm357 1A 33 101-146 18 101-146 0 0.95 1 28 101-136 0.04 0.99 0.96 

gwm368 4B 60 103-131 31 107-125 0.12 0.95 0.87 45 103-131 0.18 0.94 0.81 

gwm369 3A,4B 12 232-288 9 243-268 0 0.65 1 11 232-288 0 0.85 1 

gwm376 3B 15 186-296 10 186-296 0.09 0.75 0.88 13 187-293 0.07 0.49 0.86 

gwm408 5B 27 118-145 18 136-145 0.79 0.87 0.1 17 118-145 0.9 0.82 0 

gwm410 2B,5A 11 136-190 9 136-185 0.01 0.8 0.99 11 148-190 0 0.78 1 

gwm413 1A,1B 31 234-342 20 234-341 0.1 0.9 0.89 25 234-342 0.14 0.9 0.84 

gwm448 2A 43 82-98 23 89-98 0.16 0.89 0.82 36 82-98 0.28 0.96 0.71 

gwm471 7A 5 202-247 5 204-240 0 0.48 1 3 202-247 0 0.63 1 

gwm480 3A 20 105-191 8 105-185 0.08 0.87 0.91 18 110-191 0.06 0.9 0.94 

gwm493 3B 20 172-181 13 172-181 0.88 0.82 0 18 172-174 0.82 0.88 0.07 

gwm494 1B,3A,4A,6A 45 130-176 26 138-176 0.87 0.89 0.03 37 130-176 0.88 0.92 0.04 

gwm518 6B 19 173-208 14 174-206 0.16 0.83 0.8 16 173-208 0.02 0.89 0.97 

gwm526 2A,2B 31 126-228 20 126-226 0.1 0.91 0.89 21 126-228 0.03 0.95 0.97 

gwm537 5B,7B 10 129-158 8 132-149 0.41 0.67 0.39 7 129-158 0.33 0.44 0.24 

gwm601 4A 25 202-238 17 207-229 0.09 0.88 0.9 23 202-238 0.29 0.91 0.68 

gwm610 4A 43 121-140 34 123-140 0.44 0.96 0.54 32 121-128 0.73 0.93 0.21 

gwm611 7B 12 149-186 9 149-181 0.03 0.79 0.96 10 153-186 0.01 0.88 0.99 

gwm614 2A,2B,4A 36 122-216 24 134-216 0.35 0.82 0.57 27 122-178 0.21 0.83 0.74 

gwm617 5A,6A 31 142-158 18 142-158 0.43 0.95 0.55 28 147-156 0.54 0.88 0.38 

gwm639 5A,5B 21 111-190 20 111-174 0.64 0.83 0.22 10 111-190 0.66 0.74 0.11 

gwm644 1B,3B,6B,7B 8 128-184 8 131-184 0.03 0.99 0.97 3 128-182 0 0.96 1 

gwm666 1A,3A,5A,7A 16 110-162 12 110-162 0.37 0.67 0.45 9 135-148 0.56 0.67 0.18 

Na: the number of observed alleles by loci. ASR (bp): Allele size range in base pair. Ho: Observed heterozygosity. He: Expected heterozygosity 1 
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4. 3. 2. Population structure 1 

For the STRUCTURE analysis, it separates clearly between the Moroccan and the Syrian landraces. 2 
However, 16 landraces originated from Syria and mainly from the coastal areas were grouped with the 3 
Moroccan landrace population; and one landrace (Sherieh) was assigned equally to both populations. 4 
These results indicate that durum wheat in North Africa may have been introduced from the coastal areas 5 
of the Middle East where the Phoenicians had lived and later immigrated to the South-Western 6 
Mediterranean countries. This is supported by the strong relativeness found in this study between the 7 
coastal durum wheat landraces from Syria and the Moroccan ones. On the other hand, two landraces from 8 
Morocco (ICDW20038-Tiznit, ICDW20041-Tiznit) were grouped with the Syrian population (Figure 9 
39a). In GENELAND analysis results by using 106 iterations at 85% runs, the number of populations 10 
detected was 2; and the remaining 15% runs detected 3 populations. Distinction between the two 11 
populations was very clear if we consider number of populations K=2 (Figure 39b). 12 

In this chapter we will be discussing only the Moroccan landraces population. Syrian population is 13 

discussed in our paper Kehel et al. 2013 attached to this document.  14 

GENELAND estimated six Moroccan sub-populations (Figure 40). Maps of posterior probabilities of the 15 

six subpopulations are shown in Figure 41 and were named P1M, P2M, P3M, P4M, P5M and P6M. 16 

Eleven landraces were attributed at more than 90% to subpopulation1 (P1M), 7 of them are from Tensift 17 

and two from Doukkala regions (South Casablanca-Marrakech region), region that is influenced by the 18 

Atlantic ocean, but this subpopulation contains as well 3 other landraces from the North-Eastern region of 19 

Oujda and Figuig, which is also influenced by the Mediterranean Sea. The second subpopulation (P2M) 20 

was found at 96% and contains 2 landraces originated from the irrigated areas of the South-Eastern Atlas 21 

high plateaus and 3 landraces from the highlands of Boulman and Nador regions in the eastern plateaus of 22 

Middle-Atlas and Rif Mountains. The third subpopulation (P3M) consists of 8 landraces from southern 23 

warm areas of Morocco (Tata, Tiznit, Goulmine). As for the subpopulation (P4M), it has the largest 24 

number of landraces (46). The landraces of this cluster are originated mainly from the western 25 

mountainous cold areas of the Atlas Mountains and Rif chains. Further, for most of the 14 landraces of 26 

subpopulation 5 (P5M), they were originated from the southern Atlantic lowland region of Morocco 27 

(Taroudant, Agadir and Essaouira); and 3 landraces from the northern Atlantic lowland region (Larache). 28 

These latter ones were assigned as well to P4M at 40%. The sixth subpopulation (P6M) had 15 landraces 29 

from Moroccan pre-and anti-Atlas areas (Beni Mellal, Khenifra, Errachidia and Ouarzazate) representing 30 

the continental areas of the pre-and anti-Atlas plateaus of South-East Morocco.  31 

 32 
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 1 

Figure 39: Genetic structure of the Moroccan and Syrian durum wheat landraces 2 

a) STRUCTURE chart; b) GENELAND chart: c) first principal component (Grey bars) and first spatial principal component 3 
(Green points). 4 

 5 
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 1 

Figure 40: Moroccan landraces sub-populations 2 

 3 
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 1 

Figure 41: Moroccan landraces population probability assignments on the Morocco studied area 2 

high probability: white; low probability: dark.  3 
a: P1M, b: P2M, c: P3M, d:P4M, e: P5M and f: P6M 4 
 5 

Heterogeneity, number of alleles, individuals and the geographical regions of collection of landraces 6 

composing each subpopulation are summarized in Table 26. P2M, P3M and P5M, found at the Eastern 7 

and southern parts of Morocco had the largest number of alleles per locus and large values for 8 

heterogeneity compared to P4M found in the highland areas. 9 

 10 

 11 

 12 

 13 

 14 
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Table 26: Moroccan durum populations information 1 

4. 3. 3. Spatial entity of molecular markers 2 

The SAU, under the form of Moran’s I, applied to allele frequencies showed that 30% of the alleles 3 
showed no SAU with a value of I = I0 = -0.01. Eighty alleles had a significant positive SAU with a 4 
maximum value of 0.43 observed at the allele 217 of gwm285 and a z-score of 8 (p-value =0).Allele 118 5 
of gwm375 had a very significant SAU(I=0.2, z-score=4.8, p-value =0). Figure 42 shows the spatial 6 
distribution of the allele 217 of gwm28. 7 

The high values of z-score for these two alleles indicated that the values of the alleles (0, 1 and 2) are 8 

clustered and there is less than 1% that this spatial cluster is a result of random process.  9 

 P1M P2M P3M P4M P5M P6M 

Geographical region  Safi, Eljadida, 

Elkelaa, 

Essaouira, 

Marrakech, 

Khribga, 

Figuig, Oujda 

Ouarzazat, 

Bouleman, 

Nador, 

Figuig 

Tata, 

Tiznite, 

Goulmine 

Azilal, Khmiset, 

Khnifra, 

Marrakech, Ifrane, 

Boulman, Taza, 

Tawnate, 

Housseima, 

Tetouan, Chaouen, 

Tanger 

Taroudante, 

Agadir, 

Essaouira 

Beni 

Mellal, 

Khenifra 

Errachidia, 

Ouarzazat 

Number of individuals 11 5 7 46 14 15 

Total number of Alleles 205 140 217 471 405 302 

Number of Loci with Ho=0 32 37 24 9 16 17 

Number of Loci with Ho>0.5 9 4 9 7 9 7 

Number of Loci with GD=0 1 2 0 0 0 2 

Number of Loci with He>0.5 33 44 43 41 45 43 

GD 0.564 0.727 0.716 0.656 0.775 0.685 

H0 0.184 0.102 0.17 0.187 0.223 0.182 
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 1 

Figure 42: Spatial distribution of alleles 217 of GWM285 2 

 3 

Using the Local z-score of Getis-Ord General G, we found that high values (2) for both alleles are high 4 

positive with a significant p-value at 1%. We can conclude that the high values of these two alleles 5 

(value=2) are clustered spatially (high clusters). Durum wheat landraces are homozygotes for these alleles 6 

and are collected in the same areas.  7 

Using Getis-Ord Local G, significant hot spots for allele 217 of GWM 285 (selected region in Figure 43) 8 

were found to be located in the mountains area of RIF chain and Fes-Saiss region. We consider a hotspot 9 

where a landrace has interesting value (2 for the allele in our case) but also neighboring landraces have 10 

similar significant patterns. If a landrace has high value and neighboring landraces have different values, 11 

the location is not considered as hotspot.  12 

 13 

 14 

 15 
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 1 

Figure 43: Hotspots for allele 217 of GWM285 2 

 3 

For allele 18 of GWM357 (Figure 44), the hotspot area was found in the high altitude area of Atlas (Beni 4 

Mellal, Azilal and Errachidia).  5 
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 1 

 2 

Figure 44: Hotspots for allele 118 of GWM375 3 

 4 

 5 



 133  

 

4. 3. 4. Multivariate analysis 1 

In the PCA analysis, the two first eigenvalues explained only 6% of the total variance. But plotting the 2 
first axis against the second axis and first axis against the third axis (Figures 45 and 46) gave clear 3 
evidence of the structure and of the difference between the two populations (Moroccan and Syrian) 4 
especially the first axis, which was positive for Moroccan landraces and negative for the Syrian ones 5 
(Figure 39c). Some exceptions were stated; and some of them were matched with those found in the 6 
STRUCTURE results (Figure 39c). Using the ANOVA t-test, the means of the first axis significantly 7 
differ between the two populations, Syrian and Moroccan, with a p-value of 0.  8 

 9 

 10 

Figure 45: PCA plot of Moroccan and Syrian landraces (axis1 VS axis2) 11 

 12 
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 1 

Figure 46: PCA plot of Moroccan and Syrian landraces (axis1 VS axis3) 2 

 3 

In general, in PCA each principal component is associated with an eigenvalue that quantifies the amount 4 

of variance explained by the component. The bar-plot of the eigenvalues sorted in decreasing order is the 5 

basic tool used to choose which principal components to interpret: it describes how the total genetic 6 

variance is distributed across the principal axes. 7 

In the spatial Principal component analysis sPCA, positive and negative Eigenvalues are computed and 8 

plotted (Figure 47). Positive Eigenvalues are associated with global genetic structure while negative 9 

Eigenvalues are associated with local genetic structure.  10 
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 1 

Figure 47: Histogram of sPCA eigenvalues 2 

 3 

The sPCA analysis gave similar results as the PCA analysis with approximately the same exceptions 4 

(Figure 2c). We used for sPCA a minimum distance connection network, in order to not connect Syrian 5 

and Moroccan landraces as they were spatially not linked.  6 

In this case, the sum of all Eigenvalues used has no sense (as compared with PCA). This sum can be very 7 

low if there is no genetic structure in the data or if; for example, we have similar global and local 8 

structures. A suitable method of selecting useful Eigenvalues to be interpreted is to assess score that 9 

account for large genetic variability and enough spatial structure (using spatial autocorrelation). This can 10 

be done using the plot (Figure 48) of variance against SA. 11 
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 1 

Figure 48: Plot of variance component of the sPCA Eigen values versus spatial autocorrelation 2 

 3 

The Lag vector computes for a given landraces is the mean frequency of its neighbors. Plotting the first 4 

and last components against their Lag vectors showed positive and negative regression coefficients and 5 

demonstrated the significance of the global and local patterns of the two components respectively 6 

(Figures 49and 50).  7 

 8 

 9 

Figure 49: Plot of the first component (x-axis) and its lag vector (y-axis) 10 

 11 
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 1 

 2 

Figure 50: Plot of the last component (x-axis) and its lag vector (y-axis) 3 

 4 

For the Moroccan durum landraces population, we used the matrix of allele frequencies without 5 

standardization for PCA analysis. The first three eigenvalues were 52.23, 11.75, and 4.78 and explaining 6 

respectively 30.9, 7.0, and 2.9 % of total genetic variability. The corresponding axes are symbolized PC1, 7 

PC2 and PC3 in this study. 8 

For sPCA analysis, the spatial network, we used Gabriel graph. The first and the last eigenvalues (λ1; 9 

λ97) had the strongest variance and (positive for λ1; negative for λ97) spatial autocorrelation(Figure 48). 10 

The global and local tests presented by Jombart et al. (2008) showed a significant global test (p = 0.02) 11 

and non-significant local test (p = 0.26). Therefore, only the global structure is significant and only λ1 is 12 

interpretable in the case of Moroccan landraces and the first sPCA axis sPC1 is used for evaluation 13 

analysis. The SAU of sPC1 was 0.47, for PC1 was 0.28, for PC2 was -0.02 and PC3 was 0.27, which 14 

means a global structure is given by PC1 and PC3. In addition to the positive value of SAU of PC1, 15 

mapping PC1 over the studied areas of Morocco showed a very strong spatial pattern schematized by a 16 

positive component for landraces from the high altitude (RIF and ATLAS mountains) landraces had a 17 

negative one elsewhere. The same spatial structure was found for sPC1 (Figure 51). 18 

 19 

 20 
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 1 

Figure 51: Maps of the first spatial principal (a) and principal (b) components for the Moroccan 2 
durum wheat landraces 3 

 4 

Correlation between PC1 and sPC1 coordinates was very highly significant (p< 0.001) with a coefficient 5 

of 0.87 and R2 of 75.7. A correlation with groups between the two axes and using subpopulations found 6 

by GENELAND, as factor was also highly significant (p <0.001) with a coefficient of 0.61 and R2 of 7 

37.2. The t-test (Table ??) showed that only P6M could not be differentiated by the four axes (sPC1, 8 

PC1, PC2 and PC3). sPC1 an PC1 could discriminate between 4 out of the six Moroccan sub-populations 9 

(Table 27).  10 

Table 27: T-test value for populations found for Moroccan durum landraces 11 

 PC1 PC2 PC3 sPC1 

P1M < 0.001 0.002 0.034 < 0.001 

P2M 0.221 0.751 0.763 0.321 

P3M < 0.001 0.233 0.275 < 0.001 

P4M < 0.001 0.043 0.002 < 0.001 

P5M 0.03 0.094 0.89 0.002 

P6M 0.514 0.006 < 0.001 0.186 
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Alleles 202 of GWM234, 137 of GWM 293, 114 of GWM282 and 114 GMW2 are the alleles 1 

contributing most to the global structure found by sPCA (Figure 52). This means that these alleles can 2 

reveal a big amount of the first spatial principal component. Those alleles can be used to discover global 3 

spatial genetic patterns found in durum wheat landraces as they have greatest weight in revealing genetic 4 

structure.  5 

 6 

 7 

Figure 52: Contribution of alleles to the first sPCA component 8 

 9 

On the other hand, most of the local structure discovered by the last spatial principal component was 10 

expressed by alleles 156 of GWM219, 118 of GWM 357, 119 of GWM33 and 121 of locus GWM33 11 

(Figure 53). This showed that the alleles cited above can be used to discriminate between neighboring 12 

durum landraces.  13 
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 1 

Figure 53: Contribution of alleles to the last sPCA component 2 

  3 

Using the SSRs used earlier for Bayesian and multivariate structure to study genetic discontinuities 4 

among Moroccan durum wheat landraces, a significant barrier resulted from analysis using Monmonier’s 5 

algorithm. This genetic barrier coincides mainly with the Moroccan altitude pattern and fellow the 6 

delineation of the two main mountainous chains in the country (Rif in the North and Atlas in the middle). 7 

Overlapping this barrier with the patterns found by the sPCA showed obviously that this genetic barrier 8 

distinguish between positive and negative values of the first spatial principal component (Figure 54). If 9 

we use the global structure of sPCA to study to genetic structure of the Moroccan durum landraces. We 10 

could identify easily two sub-populations: one having positive score and the other having negative score. 11 

The Monmonier barriers (or path) is delaminating these two sub-populations.  12 

 13 
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 1 

Figure 54: Moroccan durum landraces molecular barriers  2 

The squares size is the first spatial principal component 3 

 4 

In an attempt to compare between durum landraces genetic and geographic distances, we computed the 5 

spatial autocorrelation using the genetic similarity for each class of geographic distance (Figure 55). For 6 

this analysis we used 10 distance classes used for analysis. The distance classes were constructed using 7 

equal distances with unequal sample sizes. SA was computed for each distance class and the average was 8 

0.71. The minimum was observed for class 1 with SA=0.66 and the maximum for class 9 with a SA=0.78. 9 

For all classes we could notice that our markers present a global structure within the Moroccan durum 10 

landraces. This result is in accordance with what was found using multivariate or Bayesian statistics. 11 

Also, the correlation between genetic and geographic distance was of 0.2647. The probability of 12 

observing a correlation greater or equal and less or equal to 0.2647 was 0. 0009 and 1 respectively using a 13 

permutation test with number of permutation equal to 106. 14 

 15 

 16 
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 1 

Figure 55: Spatial autocorrelation in relation with distance classes 2 

 3 

4. 3. 5. Evaluation of populations 4 

According to the phenotypic data, the 6 populations found for the Moroccan landraces were very diverse. 5 
The most diverse traits were KSPK ranging from 16 to 24 and SPM2 from 196 spikes per square meter to 6 
249. For TKW, population4 had an average of 41.59 g while population3 had an average TKW of 34.21 7 
g.  8 

The mean GY, ASH content, YP and PC were not different between the populations. On the other hand, 9 

almost all the physiological traits showed diversity from population to another (Table 28).  10 

 11 

 12 

 13 

 14 

 15 

 16 
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 1 

Table 28: Agronomic and physiological traits of the Moroccan durum wheat landraces populations 2 

 3 

  P1M P2M P3M P4M P5M P6M 

INDIVIDUALS  11 5 7 46 14 15 

GY 2379.77 2382.88 2355.7 2364.89 2363.22 2380.75 

ASH 3.03 3.02 3.02 3.02 3.02 3.02 

PC 15.43 15.51 15.29 15.52 15.57 15.46 

PH 100.78 104.16 102.46 107.16 106.57 105.22 

DH 142.09 144.68 141.18 145.52 144.05 145.36 

DM 170.76 174.2 169.76 175.24 172.53 174.17 

GFD 30.49 30.62 31.35 30.61 30.32 31.22 

SDS 25.58 25.77 27.67 25.81 25.74 24.92 

SDSn 3.8 3.85 4.05 3.83 3.85 3.7 

SDSi 1.75 1.75 1.92 1.77 1.74 1.71 

YP 5.3 5.21 5.39 5.08 5.29 5.05 

TKW 34.74 39.31 34.21 41.59 37.99 39.44 

VIT 94.13 94.13 93.99 94.13 94.05 93.94 

SL 6 6.8 6 7.02 6.93 7.2 

SPM2 249.45 196 237.14 210.87 232.29 203.47 

PL 2.73 2 4 2 2.36 2.07 

KSPK 23.27 16 24.57 14.89 19.57 18 

Area70 85090.91 86920 109357.1 87052.17 95235.71 94113.33 

CARI45 0.956675 0.924831 0.979904 0.97382 0.976422 0.97682 

CARI70 0.967726 0.968395 0.968094 0.968788 0.968887 0.969324 

CAROTENE45 -0.00128 -0.00121 -0.00084 -0.00109 -0.00107 -0.00103 

CAROTENE70 -0.00129 -0.00126 -0.00128 -0.00125 -0.00127 -0.00126 

CHL45 0.173504 0.140872 0.13208 0.140012 0.13492 0.15304 

CHL70 0.157956 0.151317 0.155666 0.14603 0.159783 0.163767 

F070 646.6364 639 601.7143 669.6957 624.5714 623.1333 

F170 739.1818 735.6 703.7143 764.0652 723.7857 715.3333 

F270 839.5455 838.4 800.7143 867.8696 823.4286 811.2 

F370 1193.455 1203.2 1178.714 1228.152 1193.357 1159.4 

F470 1736 1768.4 1818.571 1772.739 1799.214 1704.6 

F570 2651.091 2831.8 2955.143 2661.413 2845.071 2593.467 

Fm70 3482.182 3704.8 3787.143 3553 3698.786 3548.133 

Fv/Fm70 0.810455 0.8246 0.840571 0.80887 0.829286 0.8226 
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Fv70 2835.545 3065.8 3185.429 2883.304 3074.214 2925 

LWP70 5.461384 5.812233 6.305396 5.348235 5.966078 5.691019 

NDVI45 0.838484 0.786485 0.902385 0.884677 0.89059 0.880406 

NDVI70 0.818641 0.833057 0.824749 0.836595 0.831477 0.836529 

NPCI45 0.027418 0.126779 -0.04487 -0.02179 -0.03277 0.011621 

NPCI70 0.175392 0.151468 0.16932 0.145782 0.156461 0.143835 

NPQ70 0.323666 0.311632 0.283721 0.344091 0.303297 0.378992 

NPQI45 -0.06614 -0.05226 -0.06404 -0.05971 -0.06542 -0.06015 

PRI45 0.033143 0.008558 0.05417 0.048395 0.053405 0.040645 

PRI70 0.01018 0.018058 0.011313 0.01879 0.015329 0.019 

QN70 0.297931 0.287282 0.262749 0.313868 0.280667 0.332347 

QP70 0.953987 0.955011 0.956804 0.951848 0.954967 0.952116 

Que70 0.237049 0.213276 0.190026 0.237755 0.206939 0.216095 

RNVI45 3.018173 2.690412 3.40331 3.211007 3.24962 2.993527 

RNVI70 3.204673 3.143548 3.167306 3.238294 3.239056 3.194133 

RVSI45 3.622197 4.15969 5.306875 4.883478 4.616621 4.673644 

RVSI70 5.130384 5.17638 5.103979 5.282179 5.150821 5.170597 

SAVI45 -0.03154 -0.02206 -0.02456 -0.02222 -0.02476 -0.02388 

SAVI70 0.287289 0.292446 0.289101 0.293393 0.291245 0.292487 

SIPI45 0.862551 0.873374 0.895691 0.889129 0.886794 0.884459 

SIPI70 0.880637 0.884061 0.883419 0.893251 0.886774 0.889796 

SR45 14.98961 15.18685 24.83558 21.17202 20.02593 18.24835 

SR70 18.22158 18.34366 18.14793 18.54481 18.34371 18.44833 

Tfm70 350.0909 334.8 355 359.913 380 365 

WI/NDVI45 1.305039 1.50981 1.241112 1.282083 1.254132 1.262504 

WI/NDVI70 1.398014 1.383562 1.391306 1.382095 1.385921 1.381671 

WI45 1.080534 1.088401 1.118348 1.116134 1.113886 1.10966 

WI70 1.125393 1.12958 1.128736 1.133169 1.128629 1.131372 

YPEC70 0.714691 0.735613 0.760503 0.707082 0.742246 0.718512 

 1 

The variance component of the interaction genotype and the environment G.E was diverse and explained 2 

until almost 100% of the total genetic variability for two populations 2 and 4. Two other populations 3 

(populations 1 and 3) showed also high GxE (>88%). Finally populations P5M and P6M revealed less 4 

GxE and then the landraces forming these two population are less influenced by the environment. TKW 5 

exhibited reasonable (maxi 50%) GxE across all populations but was minimum at population 5 and 1. 6 

GFD was highly affected by the environment at 4 populations but relatively less affected at 2 populations 7 

(pop 2 and 3). GxE explained more than 50% for PH at all the populations with a maximum of 84% at 8 

P4M and minimum of 48% at P6M. All of remaining traits evaluated for GxE showed very diverse GxE 9 

across populations (Table 29).  10 



 145  

 

 1 

Table 29: GxE variance components of agronomic traits per population 2 

  P1M P2M P3M P4M P5M P6M 

PC G 5.1 1 4.9 26.3 38.8 46.9 

G.E 94.9 99 95.1 73.7 61.2 53.1 

VIT G 7.2 12.1 1.4 1.0 11.3 1.0 

G.E 92.8 87.9 98.6 99.0 88.7 99.0 

TKW G 65.2 54.5 49.8 56.8 69.5 54.0 

G.E 34.8 45.5 50.2 43.2 30.5 46.0 

ASH G 24.8 1.0 6.3 1.0 30.9 41.3 

G.E 75.2 99.0 93.7 99.0 69.1 58.7 

GY G 11.2 1.0 11.8 1.0 26.0 37.2 

G.E 88.8 99.0 88.2 99.0 74.0 62.8 

SDS G 64.5 80.9 60.6 13.6 30.6 25.8 

G.E 35.5 19.1 39.4 86.4 69.4 74.2 

SDSI G 71.5 79.7 62.5 12.9 43.5 38.1 

G.E 28.5 20.3 37.5 87.1 56.5 61.9 

SDSn G 48.2 75.5 55.3 15.6 22.0 20.0 

G.E 51.8 24.5 44.7 84.4 78.0 80.0 

YP G 33.2 41.4 57.7 34.3 57.2 28.9 

G.E 66.8 58.6 42.3 65.7 42.8 71.1 

DH G 68.3 35.5 17.4 26.0 49.4 65.3 

G.E 31.7 64.5 82.6 74.0 50.6 34.7 

DM G 63.7 89.7 1.0 51.2 55.7 77.2 

G.E 36.3 10.3 99.0 48.8 44.3 22.8 

GFD G 1.0 46.5 45.2 2.8 1.0 1.0 

G.E 99.0 53.5 54.8 97.2 99.0 99.0 

PH G 40.0 38.4 25.6 16.0 42.5 52.0 

G.E 60.0 61.6 74.4 84.0 57.5 48.0 

 3 

The variability found in the posterior probability of a landrace to belong to one or the other population in 4 

Morocco was explained by the environmental factors Tmin, Tmax, Rainfall and Altitude. Genotypes were 5 

also used to check if the variability maybe explained by the genotypes themselves. The genotype factor 6 

was absent in the variance components of the first three populations. Altitude contributed at 100% to 7 

population1 and population3, and at 80% to population5. Genotype counted for 17% of the total variance 8 

of Pop5. The probability to belong to population2 is completely explained by Rainfall. The four 9 

environmental parameters Altitude, Tmax, Tmin and Rainfall contributed to probability4 with 26, 11, 31 10 

and 26 % respectively; while the genotype had only a contribution of 6% of the total variance component. 11 

The total variance component of probability6 was divided into four environmental parts (43% for 12 

Altitude, 32% for Rainfall, 15% for Tmax and 10 for Tmin). The total variance components of PC1 and 13 

sPC1 were divided between genotype, Rainfall and Tmin (Figure 56). This showed that most of the 14 

genetic variability and structure of the Moroccan durum wheat landraces can be explained by the long-15 

term climatic factors and Altitude.  16 

 17 
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 1 

 2 

Figure 56: Population assignment probabilities, the first spatial and non-spatial principal explained 3 
by the genotype and some environmental factors for Moroccan durum landraces 4 

 5 

4. 4. GIS user interface for durum landraces evaluation 6 

The graphic user interface was developed using visual Basic for applications VBA under ArcGIS. It 7 
includes two main menus: trait analysis and marker analysis (Figure 57). The GUI uses directly data 8 
stored in shape files. Some outputs are stored in the shape file itself or presented in different outputs 9 
forms: window, text or Excel file.  10 

 11 
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 1 

Figure 57: ArcGIS interface for durum wheat landraces evaluation 2 

4. 4. 1. Trait analysis 3 

This first module in the Trait analysis menu gives all descriptive statistics of a trait. The output is an 4 
ArcGIS window containing mean, average, standard deviation, variance and skewness (Figure 58).  5 

 6 



 148  

 

 1 

Figure 58: Descriptive statistics program’s window 2 

 3 

Two correlations are possible between two traits: Pearson (Figure 59) and Spearman (Figure 60) 4 

correlations. Outputs from the two programs are displayed in an ArcGIS notice window.  5 

 6 

 7 

Figure 59: Pearson correlation program’s window 8 

 9 
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 1 

Figure 60: Spearman correlation program’s window 2 

 3 

The regression module was not developed during this study but was downloaded from 4 

(http://arcscripts.esri.com/details.asp?dbid=12405). This program allows the computation of simple linear 5 

regression (bivariate) between two numeric attributes (Figure 61). The program provides: complete set of 6 

statistics in including calculated t-values and p-values for slope and intercept and correlation coefficient 7 

(Table 30), Four new fields are added in the shape file table that contain the estimated best fit line [Fit], 8 

upper [HIGH95] and lower [LOW95] confidence intervals and calculated residuals [RESIDUALS] (Table 9 

30) 10 

, and Optional automatic generation residual diagnostic plot (Figure 62). 11 

 12 

http://arcscripts.esri.com/details.asp?dbid=12405
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 1 

Figure 61: Linear regression program’s window 2 

 3 

Table 30: . Linear regression output (Table of regression parameters) 4 

 5 
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Table 31: Linear regression output (Table of regression parameters) 1 

 2 

 3 

The outputs from the regression programs stored in the shape file are potential variables for mapping and 4 

understanding the spatial explanation of relationship between two traits. The mapping of residuals gives 5 

an idea geographical spots where the regression model can clearly explain the relation or where the model 6 

is weak.  7 

 8 
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 1 

Figure 62: Linear regression output (map of residuals) 2 

 3 

The multiple regression program models a dependent variable into a linear equation using a set of 4 

independent ones. Coefficients, means, standard deviations and standardized coefficients are given in an 5 

output under the form of Excel file. Residuals can also be computed and used later in mapping.  6 

 7 

 8 

Figure 63: Multiple regression program’s window 9 
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Table 32: Multiple regression output 1 

 
Parameters Coefficients Mean 

Standard 
Deviation 

Normalized 
Coeff 

Dependent GY04RF 
 

2892.69697 681.2997682 
 

Independent DH04RF -50.81105352 147.7070707 5.934922405 -0.442624046 

Independent PRO04RF -111.0847057 13.10909091 0.734778063 -0.119804246 

Independent SDS04RF -136.592597 23.87878788 3.476953225 -0.697088261 

Independent SDSI04RF 1336.603772 1.834343434 0.26626763 0.522375516 

Independent SDSN04RF -13.57803793 3.103030303 0.51703519 -0.010304309 

Independent VIT04RF 13.87672833 90.41414141 7.205962079 0.146771191 

Independent YP04RF -82.16510999 4.875757576 0.835407942 -0.100750637 

Independent TKW04RF 28.47499842 46.46565657 6.465055576 0.270207706 

Independent ASH04RF 281.367679 2.834343434 0.094584755 0.039062237 

 
Constant -4550.632696 

   

 2 

 3 

Path program (Figure 64) of a trait using a set of other traits computes correlation (Table 33) between all 4 

traits and divides this correlations to a matrix of direct and indirect effects (Table 34) of one trait via 5 

another one.  6 

 7 
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 1 

Figure 64: Path analysis program’s windows 2 

 3 

Table 33: Path analysis output (correlation matrix and variance) 4 

 GY ASH PC PH DH DM GFD SDS 

GY 1.000 -0.250 -0.219 -0.346 -0.372 -0.251 0.124 0.084 

ASH -0.250 1.000 0.585 0.451 0.203 0.049 -0.272 0.035 

PC -0.219 0.585 1.000 0.652 0.497 0.408 -0.224 -0.066 

PH -0.346 0.451 0.652 1.000 0.647 0.551 -0.135 0.264 

DH -0.372 0.203 0.497 0.647 1.000 0.881 0.014 -0.184 

DM -0.251 0.049 0.408 0.551 0.881 1.000 0.304 -0.097 

GFD 0.124 -0.272 -0.224 -0.135 0.014 0.304 1.000 0.165 

SDS 0.084 0.035 -0.066 0.264 -0.184 -0.097 0.165 1.000 

SDSn 0.044 0.196 0.151 0.388 -0.109 -0.048 0.099 0.972 

SDSi 0.132 -0.143 -0.293 0.113 -0.258 -0.142 0.232 0.968 

YP 0.119 0.413 0.082 0.105 0.135 0.001 0.010 0.068 

TKW -0.065 -0.219 0.363 0.381 0.550 0.669 0.020 -0.112 

VIT -0.037 0.424 0.447 0.442 0.211 0.209 -0.237 0.321 

SL -0.417 -0.226 0.170 0.223 0.397 0.420 0.043 -0.184 

SPM2 0.094 0.207 -0.106 -0.125 -0.362 -0.357 -0.050 0.172 

PL 0.223 -0.140 -0.256 -0.262 -0.379 -0.410 -0.075 0.024 

KSPK 0.225 -0.057 -0.390 -0.467 -0.656 -0.726 -0.063 0.112 

 GY ASH PC PH DH DM GFD SDS 

VAR 4469.395 0.000 0.109 35.539 7.897 10.163 1.617 4.866 

 5 

 6 
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Table 34: Path analysis output (path coefficients) 1 

 ASH PC PH DH DM GFD SDS SDSn SDSi YP 

ASH -0.174 -0.102 -0.079 -0.035 -0.009 0.047 -0.006 -0.034 0.025 -0.072 

PC 0.109 0.187 0.122 0.093 0.076 -0.042 -0.012 0.028 -0.055 0.015 

PH -0.085 -0.123 -0.189 -0.122 -0.104 0.025 -0.050 -0.073 -0.021 -0.020 

DH -0.071 -0.175 -0.228 -0.352 -0.310 -0.005 0.065 0.038 0.091 -0.047 

DM 0.003 0.021 0.029 0.046 0.052 0.016 -0.005 -0.003 -0.007 0.000 

GFD -0.015 -0.013 -0.008 0.001 0.017 0.056 0.009 0.006 0.013 0.001 

SDS 0.145 -0.273 1.092 -0.759 -0.400 0.681 4.131 4.014 3.997 0.280 

SDSn -0.428 -0.328 -0.845 0.237 0.105 -0.215 -2.118 -2.180 -1.922 -0.237 

SDSi 0.285 0.584 -0.225 0.514 0.284 -0.463 -1.930 -1.759 -1.995 -0.048 

YP 0.051 0.010 0.013 0.017 0.000 0.001 0.008 0.013 0.003 0.123 

TKW -0.115 0.190 0.200 0.288 0.351 0.011 -0.059 -0.036 -0.079 -0.208 

VIT -0.076 -0.080 -0.079 -0.038 -0.037 0.042 -0.058 -0.076 -0.034 -0.044 

SL 0.131 -0.098 -0.129 -0.230 -0.243 -0.025 0.107 0.106 0.109 0.368 

SPM2 0.002 -0.001 -0.001 -0.004 -0.004 -0.001 0.002 0.002 0.002 0.002 

PL -0.012 -0.022 -0.022 -0.032 -0.035 -0.006 0.002 -0.002 0.006 0.007 

KSPK 0.000 0.003 0.004 0.005 0.006 0.000 -0.001 0.000 -0.001 -0.001 

 2 

 3 

K-mean clustering (Figure 65) programs groups, using a set of traits, individuals or landraces into groups 4 

or clusters. The number of cluster needs to be defined by the user. A variable (Table 35) containing the 5 

cluster to which each landrace is affected is added to the shape file table. This output can also be used 6 

directly to map cluster affectations of landraces and detect visually if this cluster affectation presents any 7 

spatial pattern.  8 

 9 
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 1 

Figure 65: k-mean clustering program’s window 2 

 3 

Table 35: k-mean clustering output (field of groups added to shape file) 4 

 5 

 6 

 7 
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 1 

Stability program (Figure 66) is using a shapefile containing a trait measured at different locations or/and 2 

during different years. It computes the stability of a landrace. The computed stability parameters (two in 3 

our case) can be mapped to dissect spatial pattern of landraces plasticity and further be used to compare 4 

such stability with geographic pattern of climate. The outputs from analysis (mean trait, CVFK and WR) 5 

are stored in the original shape file (Table 36).  6 

 7 

 8 

Figure 66: Stability analysis program’s window 9 

 10 

 11 

 12 
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Table 36: Stability analysis output (Field for mean, CV and WR added to shape file) 1 

 2 

 3 

PCA program can be run on both landraces and traits. Outputs from both analyses can be plotted to study 4 

the relationships between traits or landraces (Figure). The program is giving the Eigen values tables and 5 

the principal coordinates.  6 

 7 

 8 

Figure 67: PCA analysis program’s window 9 

 10 

 11 

 12 
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 1 

Figure 68: PCA analysis program’s output 2 

4. 4. 2. Marker analysis 3 

Markers analysis is very useful tools for analyzing landraces diversity and structure. Different tools were 4 
developed in this context. The program of allele frequencies and PCA (Figure 69) on individuals is using 5 
a shape file with markers data; it is computing different parameters such as number of alleles and allele’s 6 
frequencies to be used later in the principal components analysis PCA to study the genetic variability and 7 
structure of landraces.  8 

 9 
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 1 

Figure 69: Allele frequencies and PCA program’s window on individuals 2 

 3 

Different distance methods were implemented under the distance program (Figure). Most of distances 4 

methods are using coordinate (Euclidean, Gamma, Pearson), only one method is using molecular markers 5 

(Genetic Nei’s similarity). Genetic similarity can be used to further study spatial genetic structure. In the 6 

example bellow (Figure), one can compute genetic similarity between landraces and construct a map for 7 

each similarity with a particular landrace. Assuming that neighboring landraces tend to have similar 8 

genetic profile, if the map presents higher genetic similarities (Dark color) near the studied landrace 9 

(Highlighted landrace), the hypothesis is validated. If on the other hands, lower similarities are found near 10 

the studies landraces, the hypothesis is not valid or the landrace was not originated from the region or 11 

adapted to a given micro-climate.  12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 
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 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

Figure 70: Distance calculation program’s window 11 

Table 37: Genetic similarity output 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

Haurani nawawi 1 0.874 0.874 0.84 0.874 0.857 0.782 0.866 0.84 0.874 0.832 0.866 0.79 0.908 0.849 0.857

Haurani 27 1 0.975 0.824 0.966 0.866 0.815 0.866 0.84 0.84 0.824 0.832 0.79 0.891 0.95 0.916

Normal haurani 1 0.824 0.966 0.866 0.815 0.866 0.84 0.84 0.824 0.832 0.79 0.891 0.941 0.916

Hamari ahmar 1 0.832 0.807 0.756 0.824 0.79 0.782 0.773 0.79 0.748 0.832 0.824 0.832

Akbash 1 0.882 0.832 0.874 0.857 0.857 0.84 0.849 0.798 0.908 0.958 0.933

Kishk 1 0.798 0.899 0.857 0.832 0.849 0.84 0.824 0.899 0.874 0.849

Baladia hamra (A) 1 0.79 0.824 0.798 0.807 0.807 0.731 0.824 0.832 0.815

Hedba 3 1 0.849 0.857 0.84 0.857 0.899 0.908 0.849 0.84

Oued zenati 368 1 0.874 0.84 0.874 0.79 0.857 0.84 0.824

Romanou 2 1 0.882 0.941 0.798 0.874 0.832 0.824

Mavragani-Iraklion 1 0.891 0.782 0.857 0.824 0.807

Moundros-2 1 0.798 0.866 0.84 0.815

Atsiki-3 1 0.832 0.773 0.765

Local Iraklion 1 0.899 0.891

Tripolino 1 0.924

Scorsonera 1
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 1 

Figure 71: Genetic similarity maps 2 

 3 

For populations, the module is giving several outputs: number of alleles per locus, number of alleles per 4 

locus per population, allele’s frequencies, heterozygosities (observed and expected), number of effective 5 

alleles, PIC, F-stat and genetic distance between populations (4 methods). A file is constructed to run a 6 

PCA and spatial PCA analysis to study to genetic structure.  7 
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 1 

Figure 72: Allele frequencies and PCA program’s window on populations 2 

 3 

Table 38: Excel output file from PCA & AF analysis (overall view) 4 

 5 
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Table 39: Excel output file from PCA & AF analysis (Alleles and number of alleles per loci) 1 

Marker Nbre of Alleles Alleles         

1 9 112 114 115 116 117 118 119 120 121 

2 17 187 191 193 194 195 196 197 198 199 

3 20 105 107 117 118 119 120 121 122 123 

4 12 205 206 207 213 215 216 217 218 219 

5 7 255 256 267 268 269 270 271   

6 21 104 105 106 107 108 109 110 112 113 

7 4 186 187 188 191      

8 9 115 117 118 119 120 121 127 130 132 

9 9 221 222 223 224 225 226 228 235 237 

10 21 172 177 178 179 180 181 182 183 185 

 2 

 3 

Table 40: Excel output file from PCA & AF analysis (number of allele per locus and per 4 
population) 5 

Pop/Locus       

1 pop1 pop2 pop3 pop4 pop5 pop6 

2 6 6 9 7 3 3 

3 7 7 11 6 5 2 

4 5 5 5 7 4 4 

5 4 3 6 7 4 1 

6 7 7 11 11 3 4 

7 2 2 3 3 2 2 

8 2 4 7 4 2 2 

9 3 3 7 4 5 3 

10 10 6 13 6 5 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 
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Table 41: Excel output file from PCA & AF analysis (locus information per population) 1 

PoP id Locus 

id 

Allele 

id 

Allele 

count 

all freq GD/He Ho F r Ne PIC 

1 1 114 4 0.142857 0.785714 0 1 0.44 4.666667 0.18258 

1 1 117 8 0.285714       

1 1 118 8 0.285714       

1 1 119 4 0.142857       

1 1 120 2 0.071429       

1 1 121 2 0.071429       

1 2 193 2 0.071429 0.910714 0.071429 0.921569 0.439252 11.2 0.084024 

1 2 194 6 0.214286       

1 2 195 4 0.142857       

1 2 196 2 0.071429       

1 2 197 3 0.107143       

1 2 206 1 0.035714       

1 3 107 1 0.035714 0.528061 0.214286 0.594203 0.205342 2.118919 0.461269 

1 3 117 1 0.035714       

1 3 118 2 0.071429       

1 3 121 19 0.678571       

1 3 123 1 0.035714       

1 3 173 1 0.035714       

1 3 175 1 0.035714       

1 4 217 4 0.142857 0.622449 0 1 0.383648 2.648649 0.342514 

1 4 218 4 0.142857       

1 4 219 16 0.571429       

1 4 220 2 0.071429       

1 4 221 2 0.071429       

 2 

 3 

Table 42: Excel output file from PCA & AF analysis (Genetic distances) 4 

  pop2 pop3 pop4 pop5 pop6 

Prevosti and al., 1975 pop1 0.479286 0.457143 0.544549 0.518571 0.56 

pop2  0.453333 0.58 0.58 0.565 

pop3   0.496491 0.485556 0.448333 

pop4    0.530526 0.474474 

pop5     0.56 

LATTER'S FST distance - (Latter, 1972) pop1 0.156781 0.118631 0.197995 0.166911 0.19637 

pop2  0.096488 0.182048 0.161506 0.174969 

pop3   0.122902 0.103613 0.0907 
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pop4    0.156905 0.15952 

pop5     0.174224 

Nei minimum genetic distance - (Nei, 

1973) 

pop1 0.123633 0.098376 0.162611 0.139133 0.162847 

pop2  0.077633 0.145722 0.133 0.1405 

pop3   0.100985 0.087438 0.07266 

pop4    0.127341 0.124551 

pop5     0.146 

DL-Latter, 1972 (-ln (1-Fst)) pop1 0.170528 0.126279 0.22064 0.182615 0.218616 

pop2  0.101466 0.200952 0.176148 0.192334 

pop3   0.131136 0.109384 0.09508 

pop4    0.170676 0.173782 

pop5     0.191432 

 1 

 2 

Table 43: Excel output file from PCA & AF analysis (Allele frequencies, PCA input) 3 

Loci Allele 1 2 3 4 5 6 MEAN SDEV 

1 112 0 0 0.055556 0 0 0 0.000617 0.022436 

1 114 0.142857 0.1 0.444444 0.052632 0.2 0.4 0.014888 0.25565 

1 115 0 0.2 0.055556 0 0 0 0.00284 0.08335 

1 116 0 0 0.111111 0 0 0 0.001235 0.044871 

1 117 0.285714 0.2 0.055556 0.184211 0 0 0.008061 0.156709 

1 118 0.285714 0.4 0.166667 0.578947 0.2 0.4 0.02257 0.345435 

1 119 0.142857 0 0.111111 0.078947 0.2 0 0.005921 0.110216 

1 120 0.071429 0 0 0.052632 0.2 0.2 0.005823 0.116885 

1 121 0.071429 0.1 0 0.026316 0.2 0 0.004419 0.093449 

2 187 0 0 0.055556 0.013158 0.2 0 0.002986 0.083375 

2 191 0 0 0 0 0 0.1 0.001111 0.040384 

2 193 0.071429 0.05 0.055556 0 0 0 0.001966 0.040857 

2 194 0.214286 0 0 0 0 0 0.002381 0.086537 

2 195 0.142857 0.2 0.111111 0 0 0 0.005044 0.106714 

2 196 0.071429 0.15 0 0.052632 0 0.2 0.005267 0.104518 

2 197 0.107143 0 0.055556 0.184211 0 0 0.003855 0.087478 

2 198 0 0 0.111111 0.302632 0 0.3 0.00793 0.174637 

2 199 0 0 0.055556 0.210526 0 0 0.002956 0.087452 

2 200 0 0 0 0.078947 0 0 0.000877 0.031882 

2 201 0 0 0 0.026316 0.1 0 0.001404 0.041533 

2 205 0 0 0.055556 0 0 0 0.000617 0.022436 

2 206 0.035714 0.25 0.055556 0 0 0 0.003792 0.10357 

 4 
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The alleles frequencies output can be used in the second stage of the program analysis to run PCA. This 1 

leads to a table of Eigen values and the variance they explain (Table) and also the projected coordinates of 2 

landraces to principal axes (Table).  3 

 4 

Table 44: Excel output file from PCA & AF analysis (Eigen values) 5 

id Eigenvalue Variance 

1 52.23560427 30.87136 

2 11.75121629 6.944996 

3 4.788937215 2.830273 

4 4.042309834 2.389014 

5 3.735338935 2.207594 

6 3.495714066 2.065975 

7 3.060215428 1.808594 

8 2.91591139 1.72331 

9 2.580944307 1.525344 

10 2.55673493 1.511036 

11 2.383630367 1.408731 

12 2.31632765 1.368955 

 6 

 7 

Table 45: Excel output file from PCA & AF analysis (PC scores) 8 

axis 1 2 3 4 5 

IND1 0.077 0.193 0.091 0.016 0.011 

IND2 0.089 0.122 -0.009 0.052 0.084 

IND3 0.041 0.031 -0.106 -0.063 0.041 

IND4 0.074 0.088 -0.012 -0.045 -0.017 

IND5 0.059 0.050 -0.177 -0.058 0.011 

IND6 0.078 0.084 -0.084 -0.047 0.069 

IND7 0.100 0.039 -0.216 -0.121 -0.041 

IND8 0.102 0.032 -0.226 -0.152 -0.026 

IND9 0.095 0.024 -0.170 -0.150 0.145 

IND10 0.085 0.216 0.065 0.077 -0.025 

IND11 0.094 0.211 0.062 0.043 -0.058 

IND12 0.054 0.031 -0.143 0.035 0.082 

IND13 0.095 0.014 -0.110 0.033 0.187 

IND14 0.088 0.194 0.061 0.048 -0.018 

IND15 0.044 0.007 -0.081 0.030 0.083 
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IND16 0.075 0.172 0.071 -0.041 0.064 

IND17 0.083 0.205 0.083 0.007 -0.042 

IND18 0.092 0.227 0.057 0.041 -0.049 

IND19 0.060 0.039 -0.159 -0.020 -0.049 

IND20 0.078 0.230 0.100 0.037 0.022 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

  17 
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Conclusions 1 

Landraces are valuable genetic resources in the hand of breeders to develop new varieties adapted to 2 
climate change, with high productivity and good quality traits. To be used in a breeding program, a 3 
landrace should be studies deeply for valuable trait or allele and also asset its adaptation. Since landraces 4 
are collected in specific geographic locations, it is a big advantage of using spatial statistics in the process 5 
of adaptation’s study. Also, landraces are characterized by different traits, molecular markers and 6 
environmental variables. This makes identifying adaptation of landraces a multi-disciplinary science and 7 
also the amount of spatial and non-spatial data generated from these studies make geographic information 8 
systems necessary to store, analyze and present data generated. In this study, we evaluated Moroccan 9 
durum wheat landraces for agronomy, physiology and genetic diversity. Several conclusions could be 10 
thrived from this evaluation.  11 

Traits showed a large diversity in Morocco specially quality traits and yield components; and 12 

physiological traits. Yield was tightly associated with Ash content and grain filling period and number of 13 

kernels and yield reached 90% of the potential yield for durum Moroccan landraces. Yield was highly 14 

linked to Chlorophyll content, ratio of Water index to normalized difference vegetation index and 15 

normalized pigment chlorophyll index of both stages (Zadoc scale 45 and 70). We could explain in this 16 

study much of the yield variation using agronomic traits. Most of traits exhibited a large genotype by 17 

environment effect except for the phenology and quality traits. We studied the long climate profiles of 18 

collection sites of Moroccan landraces. We identified in this study the climatic variables that are 19 

explaining the genotypic variation of several traits. This could be useful to identify areas of variability of 20 

a trait of interest for the Moroccan durum wheat collection.  21 

Some traits exhibited a significant SAU across the country: dates to heading, maturity, number of kernel 22 

per spike, kernel weight, grain filling duration, the effect of environment on a landrace as a stability 23 

parameter, and plant height. Multivariate analysis using space showed no significant spatial patter for 24 

phenotypic traits. Phenology and quality traits showed a very significant high clusters across Morocco 25 

which means that landraces with high values for these traits were collected in the same geographic 26 

regions. We could also identify in this study areas of Morocco where values for specific trait are 27 

significantly low or high. Several traits presented as well clear geographic discontinuities over Morocco; 28 

and these barriers were mainly driven by environmental variables.  29 

We studies genetic structure and diversity using two common methods (Bayesian and Eigen) and showed 30 

that similar spatial genetic patterns were found using the two approaches for the Moroccan population. 31 

The axis of the Eigen analysis differentiated clearly between clusters revealed by the Bayesian method. 32 

The Eigen analysis is easy to implement in any software, has no assumption on data, and can help in 33 

understanding diversity and structure of a given population. The resulting axes are continuous and can be 34 

used to correct phenotype trait and genotypic data for association studies (Price et al., 2006). This study 35 

showed clearly the geographic distribution of landraces in Morocco and Syria and confirmed that in 36 

general, landraces tended to group according not to their geographical origin (Moraguees et al., 2006), but 37 

also to their agro-ecological adaptation. The use of spatial genetic structure helped largely to understand 38 

the mechanisms of adaptation of durum wheat landraces; and that environment (topography, landscape) 39 

has a considerable effect on population structure (Coulon et al., 2006). We also analyzed genetic 40 

discontinuities through barriers using Monmonier’s algorithm and results showed similar spatial pattern 41 

found by the other two methods.  Also this genetic barrier was driven mainly by the Altitude pattern for 42 

the Moroccan country. Moroccan durum landraces showed a clear spatial pattern differentiating between 43 
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landraces originated from the mountains and oasis and landraces from lowlands. The use of explicit 1 

methods such spatial PCA, Monmonier, SAU or the spatial Bayesian genetic structure method ameliorate 2 

the precision of assessing pattern of spatially distributed phenomena like landraces diversity. 3 

These analyses techniques, aided by marker-trait association, are a powerful tool in the hand of the 4 

breeders for deciding on the choice of the parental material in a crossing program (Castillo et al., 2010, 5 

Zarkti et al., 2010). The amplified alleles found in this study were more than twice than the durum wheat 6 

elite collection population (Maccaferri et al., 2005). This may be explained that our populations consisted 7 

of diverse landraces; whereas the mentioned previous work was mainly of improved genotypes. The 8 

genetic diversity found in the Moroccan landraces was higher than the diversity found by Moraguees and 9 

colleagues for a group of Mediterranean durum landraces using low and high molecular weight loci. 10 

Moroccan durum wheat landraces hold large genetic variability and considerable number of alleles with 11 

the probability of having some of these alleles associated with stress tolerance, yield, and/or grain quality 12 

(Nachit et al., 2004, Pagnotta et al., 2004). The spatial autocorrelation (SAU) applied to an individual 13 

allele did not express, for most of the alleles, the global spatial structure we have in our data (Smouse & 14 

Peakall 1999). Some of these alleles presenting global structure in the Moroccan durum landraces showed 15 

significant regions of clustered homozygote and heterozygote landraces.  16 

Six subpopulations were detected for Moroccan landraces collection using spatial and non-spatial models 17 

of Bayesian genetic structure. Most of the probability of belonging to one or the other subpopulations was 18 

almost fully explained by the long-term climate profile. The global genetic structure was significantly 19 

higher (p=0.02) than the local one using spatial principal components analysis, consequently neighboring 20 

landraces tend to have a similar genetic profile. The identified subpopulations found were very diverse 21 

especially for quality traits, phenology and yield components. Interaction with the environments was very 22 

different from subpopulation to another for most of the traits. For GY, GxE was low for subpopulations 23 

located in dry areas and this is due most probably to the fact that the testing environment (Tel Hadya-24 

Syria) was dry and stresses in the four years of planting. The subpopulations were also very diverse in 25 

number of alleles and more alleles could be found in landraces collected in high altitude and hot regions 26 

of Morocco.  27 

At the end of this study, we developed a graphic user’s interface for ArcGIS 9.2 using VBA for 28 

evaluating phenotypically and genetically landraces. The interface is a useful tool to analyze and study 29 

phenotypic and genotypic diversity of durum wheat landraces. This GUI permits different methods of 30 

analyzing traits for multivariate analysis or GxE, population genetics statistics and some spatial statistics 31 

such as spatial autocorrelation, spatial PCA. Several outputs from analysis are stored in the spatial files 32 

and can be used further for mapping, predicting and editing thematic maps.  33 

This study supports the use of geographic information systems together with existing phenotypic data and 34 
genetic markers to assess quickly and efficiently large number of genetic resources entries held by gene-35 
banks in particular in the context of climate change. The use of climate in dissecting variations found in 36 
durum landraces can help projecting genetic diversity using modeling and future climatic scenarios under 37 
changing climate. 38 
 39 

 40 

 41 

 42 
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Glossary 1 

Allele: (Gr. allelon, of one another, mutually each other); allelomorph (adj: allelic, allelomorphic). One of 2 

a pair, or series, of variant forms of a gene that occur at a given locus in a chromosome. Alleles are 3 

symbolized with the same basic symbol (e.g., B for dominant and b for recessive); B1, B2, ..., Bn for n 4 

additive alleles at a locus). In a normal diploid cell there are two alleles of any one gene (one from each 5 

parent), which occupy the same relative position (locus) on homologous chromosomes. Within a 6 

population there may be more than two alleles of a gene. 7 

Allele frequency: The number of copies of an allele in a population, expressed as a proportion of the total 8 

number of copies of all alleles at a locus in a population. 9 

Biodiversity: 1. The variety of species (species diversity) or other taxa of animals, microorganisms and 10 

plants in a natural community or habitat, or of communities in a particular environment (ecological 11 

diversity), or of genetic variation in a species (genetic diversity, q.v.). The maintenance of a high level of 12 

biodiversity is important for the stability of ecosystems. 2. The variety of life in all its forms, levels and 13 

combinations, encompassing genetic diversity, species diversity and ecosystem diversity.  14 

Biotechnology: 1. The use of biological processes or organisms for the production of materials and 15 

services of benefit to humankind. Biotechnology includes the use of techniques for the improvement of 16 

the characteristics of economically important plants and animals and for the development of micro-17 

organisms to act on the environment. 2. The scientific manipulation of living organisms, especially at the 18 

molecular genetic level, to produce new products, such as hormones, vaccines or monoclonal antibodies. 19 

Breeding: The process of sexual reproduction and production of offspring. 20 

Centers of origin: The locations in the world where particular domesticated plants originated. These 21 

areas show the highest variation, and are rich in wild alleles. 22 

Chlorophyll: (Gr. chloros, green + phyllon, leaf) One of the two pigments responsible for the green color 23 

of most plants. It is essential in the absorption of light energy for photosynthesis. 24 

Chromosome: (Gr. chroma, color + soma, body) 1. A single DNA molecule, a tightly coiled strand of 25 

DNA, condensed into a compact structure in vivo by complexing with accessory histones or histone-like 26 

proteins. 2. A group of nuclear bodies containing genes which are largely responsible for the 27 

differentiation and activity of a eukaryotic cell; one of the bodies into which the nucleus resolves itself at 28 

the beginning of mitosis and from which it is derived at the end of mitosis. Chromosomes contain most of 29 

the cell’s DNA. Chromosomes exist in pairs in eukaryotes – one paternal (from the male parent) and one 30 

maternal (from the female parent). Each eukaryotic species has a characteristic number of chromosomes. 31 

Bacterial and viral cells contain only a single chromosome, consisting of a single or double strand of 32 

DNA or, in some viruses, RNA, without histones. 33 

Co-dominance: The situation in which both alleles in a heterozygous individual are expressed, so that the 34 

phenotype of heterozygotes incorporates the phenotypic effect of each allele. For example, roan coat color 35 

in cattle results from a mixture of red hairs and white hairs, caused by heterozygosity for the red allele 36 

and the white allele. Also, protein polymorphisms and microsatellites show co-dominance: heterozygotes 37 

have two bands, whereas homozygotes have only one band. 38 

Co-dominant alleles: Alleles that produce independent effects when in the heterozygous condition. 39 

Correlation: A statistical association between variables. 40 
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Cultivar: (from cultivated + variety) (abbr: cv.) A category of plants that are, firstly, below the level of a 1 

sub-species taxonomically, and, secondly, found only in cultivation. It is an international term denoting 2 

certain cultivated plants that are clearly distinguishable from others by stated characteristics and that 3 

retain their distinguishing characters when reproduced under specific conditions. 4 

Database: One or more structured sets of persistent data, managed and stored as a unit and generally 5 

associated with software to update and query the data. A simple database might be a single file with many 6 

records, each of which references the same set of fields. A GIS database includes data about the spatial 7 

locations and shapes of geographic features recorded as points, lines, areas, pixels, grid cells, or TINs, as 8 

well as their attributes. 9 

DEM (Digital Elevation Model): Represents a topographic surface using a continuous array of elevation 10 

values, referenced to a common datum. DEMs are used typically to represent terrain relief. 11 

Diploid: (Gr. diploos, double + oides, like) 1. The status of having two complete sets of chromosomes, 12 

most commonly one set of paternal origin and the other of maternal origin. 2. An organism or cell with a 13 

double set (2n) of chromosomes (most commonly one of paternal origin, and the other of maternal 14 

origin), or referring to an individual containing a double set of chromosomes per cell. Somatic tissues of 15 

higher plants and animals are ordinarily diploid in chromosome constitution, in contrast with the haploid 16 

gametes. 17 

DNA: (deoxyribonucleic acid; formerly spelt desoxyribonucleic acid) The long chain of molecules in 18 

most cells that carries the genetic message and controls all cellular functions in most forms of life. The 19 

information-carrying genetic material that comprises the genes. DNA is a macro-molecule composed of a 20 

long chain of deoxyribonucleotides joined by phospho-diester linkages. Each deoxyribonucleotide 21 

contains a phosphate group, the fivecarbon sugar 2-deoxribose, and a nitrogen-containing base. The 22 

genetic material of most organisms and organelles so far examined is double-stranded DNA; a number of 23 

viral genomes consist of single-stranded DNA or single-or double-stranded RNA. In double-stranded 24 

DNA, the two strands run in opposite (anti-parallel) directions and are coiled round one another in a 25 

double helix. Purine bases on one strand specifically hydrogen bond with pyrimidine bases on the other 26 

strand, according to the Watson-Crick rules (A pairs with T; G pairs with C). Hence a constant width for 27 

the double helix of 20 Å (2.0 nm) is maintained. In the B-form, DNA adopts a right-handed helical 28 

conformation, with each chain making a complete turn every 34 Å (3.4 nm), or once every ten bases.  29 

Dominant: 1. Describing an allele whose effect with respect to a particular trait is the same in 30 

heterozygotes as in homozygotes. The opposite is recessive. 2. Describing the most conspicuously 31 

abundant and characteristic species of a community. 3. Describing an animal that is allowed priority in 32 

access to food, mates, etc., by others of its species because of its success in previous aggressive 33 

encounters. 34 

Environment: The aggregate of all the external conditions and influences affecting the life and 35 

development of an organism. 36 

Epistasis: Interaction between genes at different loci, e.g., one gene suppresses the effect of another gene 37 

that is situated at a different locus. Suppressed genes are said to be hypostatic. Dominance is associated 38 

with members of allelic pairs, whereas epistasis is interaction among products of non-alleles. 39 

ESRI (Environmental Systems Research Institute): The largest GIS software company, and the maker 40 

of ArcView 3.x, ArcINFO and ArcGIS. 41 
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GIS (Geographic Information Systems): A computer system for capturing, storing, checking, 1 

integrating, manipulating, analyzing and displaying data related to positions on the Earth’s surface. 2 

Typically, a Geographical Information System (or Spatial Information System) is used for handling maps 3 

of one kind or another. These might be represented as several different layers where each layer holds data 4 

about a particular kind of feature. Each feature is linked to a position on the graphical image of a map.  5 

Geostatistics: A class of statistics used to analyze and predict the values associated with spatial or spatio-6 

temporal phenomena. Geostatistics provides a means of exploring spatial data and generating continuous 7 

surfaces from selected sampled data points. 8 

Gene bank: 1. The physical location where collections of genetic material in the form of seeds, tissues or 9 

reproductive cells of plants or animals are stored. 2. Field gene bank: A facility established for the ex situ 10 

storage and maintenance, using horticultural techniques, of individual plants. Used for species whose 11 

seeds are recalcitrant, or for clonally propagated species of agricultural importance, e.g. apple varieties. 3. 12 

A collection of cloned DNA fragments from a single genome. Ideally the bank should contain cloned 13 

representatives of all the DNA sequences in the genome.  14 

Gene conservation; genetic resources conservation: The conservation of species, populations, 15 

individuals or parts of individuals, by in situ or ex situ methods, to provide a diversity of genetic materials 16 

for present and future generations. 17 

Gene flow: The spread of genes from one breeding population to another (usually) related populations by 18 

migration, possibly to changes in allele frequency. 19 

Gene pool: 1. The total genetic information in all the genes in a breeding population at a given time. 2. In 20 

PGR: Use is made of the concept of primary, secondary and tertiary gene pools. In general, members of a 21 

primary gene pool are inter-fertile; those of the secondary gene pool can cross with the primary gene pool 22 

under special circumstances; with the tertiary gene pool, extreme techniques are required to achieve 23 

crossing. 24 

Genetic distance: A measure of the genetic similarity between any pair of populations. Such distance 25 

may be based on phenotypic traits, allele frequencies or DNA sequences. For example, genetic distance 26 

between two populations having the same allele frequencies at a particular locus, and based solely on that 27 

locus, is zero. The distance for one locus is maximum when the two populations are fixed for different 28 

alleles. When allele frequencies are estimated for many loci, the genetic distance is obtained by averaging 29 

over these loci.  30 

Genetic diversity: The heritable variation within and among populations which is created, enhanced or 31 

maintained by evolutionary forces.  32 

Genetic drift: Change in allele frequency from one generation to another within a population, due to the 33 

sampling of finite numbers of genes that is inevitable in all real (finite) populations. The smaller the 34 

population, the greater is the genetic drift. Sooner or later (depending on the size of the population), 35 

genetic drift results in loss of alleles from a population, and hence leads to a loss of genetic variation. 36 

Because of this, the minimization of genetic drift is an important consideration for conservation of genetic 37 

resources.  38 

Genetic heterogeneity: The situation in which different mutant genes produce the same phenotype. 39 

Genetic mapping: Determining the linear order of genes and/or DNA markers along a chromosome. 40 
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Genetic marker: A DNA sequence used to “mark” or track a particular location (locus) on a particular 1 

chromosome.  2 

Genetic variation: Differences between individuals attributable to differences in genotypes. 3 

Genome: 1. The entire complement of genetic material (genes + noncoding sequences) present in each 4 

cell of an organism, or in a virus or organelle. 2. A complete set of chromosomes (hence of genes) 5 

inherited as a (haploid) unit from one parent. 6 

Genotype: (from gene + type) 1. The genetic constitution (gene makeup) of an organism. 2. The pair of 7 

alleles at a particular locus, e.g., Aa or aa. 3. The sum total of all pairs of alleles at all loci that contribute 8 

to the expression of a quantitative trait. 9 

Germplasm: 1. The genetic material that forms the physical basis of hereditary and which is transmitted 10 

from one generation to the next by means of the germ cells. 2. An individual or clone representing a type, 11 

species or culture that may be held in a repository for agronomic, historic or other reasons. 12 

Gluten: A mixture of two seed storage protein classes, gliadin and glutenin, found in the endosperm of 13 

cereal (particularly wheat) grain. High levels of gluten impart elasticity to dough, and thus the 14 

composition of wheat glutens largely determines whether a specific flour is suitable for biscuit or bread 15 

making. Sensitivity of the lining of the intestine to gluten in some humans results in coeliac disease, a 16 

condition that requires a gluten-free diet. 17 

Haplotype: 1. A group of alleles, each from a different locus in the same region of a chromosome, that 18 

exist in the same double helix. 19 

Hardy-Weinberg equilibrium: The frequencies of genotypes at a locus resulting from random mating at 20 

that locus; for two alleles, A1 and A2, with respective frequencies p and q, the Hardy-Weinberg 21 

equilibrium frequencies are p2 A1A1, 2pq A1A2, q2 A2A2. Despite the simplifying assumptions required 22 

to predict these frequencies, most loci in most populations are in Hardy- Weinberg equilibrium. Thus the 23 

Hardy-Weinberg law, which predicts these frequencies, is one of the great unifying themes of biology. 24 

Heritability: In the narrow sense: 1. the proportion of phenotypic superiority of parents that is seen in 25 

their offspring; 2. the proportion of the total phenotypic variation due to variation in breeding values. In 26 

the broad sense: the proportion of the total phenotypic variation due to genetic variation. The degree to 27 

which a given trait is controlled by inheritance. 28 

Heterozygote: (adj: heterozygous) (Gr. heteros, different + zygon, yoke) An individual that has different 29 

alleles at the same locus in its two homologous chromosomes. 30 

Homozygote: An individual that has two copies of the same allele for a given gene on its two 31 

homologous chromosomes. The condition is termed “homozygous”. Opposite: heterozygote. 32 

Linkage: The tendency of non-allelic genes to be inherited together more than would be expected if they 33 

were assorting independently. Linkage exists between two loci when they are located sufficiently close on 34 

the same chromosome that some gametes are produced without crossing-over occurring between the two 35 

loci. 36 

Maps: Graphic representation of the physical features (natural, artificial, or both) of a part or the whole of 37 

the Earth’s surface, by means of signs and symbols or photographic imagery, at an established scale, on a 38 

specified projection, and with the means of orientation indicated. 39 

Marker: An identifiable DNA sequence that facilitates the study of inheritance of a trait or a gene. Such 40 

markers are used in mapping the order of genes along chromosomes and in following the inheritance of 41 
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particular genes: genes closely linked to the marker will generally be inherited with it. Markers must be 1 

readily identifiable in the phenotype, for instance by controlling an easily observable feature (such as eye 2 

color) or by being readily detectable by molecular means, e.g., microsatellite markers. 3 

Marker-assisted selection (MAS): The use of DNA markers to increase the response to selection in a 4 

population. The markers will be closely linked to one or more quantitative trait loci. 5 

Mean: In statistics, the arithmetic average; the sum of all measurements or values in a sample divided by 6 

the sample size. 7 

Median: In a set of measurements, the central value above and below which there are an equal number of 8 

measurements. 9 

Mendelian population: A natural, interbreeding unit of sexually reproducing plants or animals sharing a 10 

common gene pool. 11 

Mendelism: The theory of heredity that forms the basis of classical genetics, proposed by Gregor Mendel 12 

in 1866 and formulated in two laws. 13 

Mendel’s Laws: Two laws summarizing Gregor Mendel’s theory of inheritance. The Law of Segregation 14 

states that each hereditary characteristic is controlled by two ‘factors’ (now called alleles), segregate and 15 

pass into separate germ cells. The Law of Independent Assortment states that pairs of ‘factors’ segregate 16 

independently of each other when germ cells are formed. 17 

Microsatellite: Segment of DNA characterized by the occurrence of a variable number of copies (from a 18 

few up to 30 or so) of a sequence of around 5 or fewer bases (called a repeat unit). A typical microsatellite 19 

is the repeat unit AC, which occurs at approximately 100 000 different sites in a typical mammalian 20 

genome. At any one site (locus), there are usually several different “alleles,” each identifiable according 21 

to the number of repeat units. These alleles can be detected by PCR, using primers designed from the 22 

unique sequence that is located on either side of the microsatellite. When the PCR product is run on an 23 

electrophoretic gel, alleles are seen to differ in length in units equal to the size of the repeat unit. 24 

Microsatellites have been the standard DNA marker: they are easily detectable by PCR, and they tend to 25 

be evenly located throughout the genome. Thousands have been mapped in many different species.  26 

Molecular biology: The area of knowledge concerned with the molecular aspects of organisms and their 27 

cells.  28 

Molecular genetics: The area of knowledge concerned with the genetic aspects of molecular biology, 29 

especially with DNA, RNA and protein molecules.  30 

Multiple alleles: The existence of more than two alleles at a locus in a population.  31 

Phenotype: (Gr. phaneros, showing + type). The visible appearance or set of traits of an organism 32 

resulting from the combined action of genotype and environment. 33 

Plant genetic resources (PGR): Defined in the International Undertaking on Plant Genetic Resources 34 

(FAO, 1983) to mean the reproductive or vegetative propagating material of the following categories of 35 

plants: (i) cultivated varieties (cultivars) in current use and newly developed varieties; (ii) obsolete 36 

cultivars; (iii) primitive cultivars (landraces); (iv) wild and weed species, near relatives of cultivated 37 

varieties; and (v) special genetic stocks (including elite and current breeder’s lines and mutants). 38 

Population genetics: The branch of genetics that deals with frequencies of alleles and genotypes in 39 

breeding populations. 40 
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Quantitative genetics: The area of genetics concerned with the inheritance of continuously-varying 1 

traits. Most practical improvement programs involve the application of quantitative genetics. 2 

Quantitative trait: A measurable trait that shows continuous variation; a trait that can not be classified 3 

into a few discrete classes. 4 

Quantitative trait locus (QTL) : A locus that affects a quantitative trait. The plural form (quantitative 5 

trait loci) is also abbreviated as QTL. 6 

Spatial data: Any information about the location and shape of, and relationships among, geographic 7 

features. This includes remotely sensed data as well as map data. 8 

Spike: (L. spica, an ear of grain) An inflorescence in which the main axis is elongated and the flowers are 9 

sessile. 10 

Spikelet: (L. spica, an ear of grain + diminutive ending -let) The unit of inflorescence in grasses; a small 11 

group of grass flowers. 12 

Standard deviation: A statistical measure of variability in a population of individuals or in a set of data; 13 

the square root of the variance. 14 

Standard error: A statistical measure of variation in a population of means, used to indicate how well 15 

sample estimates represent population parameters. 16 

Shapefile: A vector file format for storing the location, shape, and attributes of geographic features. 17 

Stress: Non-optimal conditions for growth. Stresses may be imposed by biotic (pathogens, pests) or 18 

abiotic (environment, such as heat, drought etc.) factors. 19 

Tetraploid: An organism whose cells contain four haploid (4x) sets of chromosomes. 20 

Variety: A naturally occurring subdivision of a species, with distinct morphological characters and given 21 

a Latin name according to the rules of the International Code of Nomenclature. A taxonomic variety is 22 

known by the first validly published name applied to it so that nomenclature tends to be stable.  23 

 24 

Suplementary table: Landraces information 25 

Name Collection site Origin Type Collection 

date 

province Altitude Longitude Latitude 

ICDW20036 Guelmine MAR LA 1985/05/03 Tiznit 200 W10 04 N28 56 

ICDW20037 Near Asrir MAR LA 1985/05/03 Tiznit 200 W010 00 N28 55 

41 

ICDW20038 5 km S of Guelmine MAR LA 1985/05/03 Tiznit 200 W10 04 N28 55 

ICDW20039 Tata main oasis MAR LA 1985/05/05 Tiznit 700 W08 00 N29 46 

ICDW20041 Kasba-ej-Joua, village 

stack 

MAR LA 1985/05/05 Tiznit 600 W07 38 N29 50 

ICDW20042 Tanskit MAR LA 1985/05/07 Ouarzazate 850 W006 12 

02 

N30 41 

33 

ICDW20043 Just W of Tinejdad MAR LA 1985/05/08 Er 

Rachidia 

900 W005 00 

54 

N31 30 

54 

ICDW20045 Mellah MAR LA 1985/05/08 Beni 

Mellal 

800 W006 48 

51 

N31 58 

48 

ICDW20046 Fezna MAR LA 1985/05/08 Er 

Rachidia 

740 W04 28 N31 32 

ICDW20047 3 km S of Aoufouss; MAR LA 1985/05/09 Er 750 W04 10 N31 39 
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outside main oasis Rachidia 

ICDW20048 5 km E of Boulaouane MAR CV 1985/05/12 El Jadida 150 W08 03 N32 59 

ICDW20050 15 km W of Sidi Bennour MAR CV 1985/05/12 El Jadida 100 W08 25 N32 59 

ICDW20052 Akermould MAR LA 1985/05/13 Agadir 1 W09 37 N31 40 

ICDW20053 Ain-el-Hajer, near 

Akermoud 

MAR LA 1985/05/13 Agadir 1 W09 37 N31 40 

ICDW20054 Ain-el-Hajer, near 

Akermoud 

MAR LA 1985/05/13 Agadir 1 W09 37 N31 40 

ICDW20055 2 km E of Smimou MAR LA 1985/05/13 Tiznit 300 W09 07 33 N30 47 

05 

ICDW20056 Tnine Sidi el Yamani MAR LA 1985/05/13 Tetouan 400 W05 56 N35 23 

ICDW20057 Tnine Sidi el Yamani MAR LA 1985/05/13 Tetouan 300 W005 47 

29 

N35 22 

ICDW20058 Ounara MAR LA 1985/05/13 Agadir 150 W009 43 

06 

N31 20 

47 

ICDW20059 15 km N of Chichaoua MAR LA 1985/05/14 Marrakech 200 W008 46 

53 

N31 33 

04 

ICDW20060 30 km S of Chemaia MAR LA 1985/05/14 Agadir 200 W08 37 N31 49 

ICDW20061 Chemaia MAR LA 1985/05/14 Agadir 300 W08 38 N32 05 

ICDW20062 10 km W of Ben Guerir MAR LA 1985/05/14 Marrakech 400 W07 59 N32 19 

ICDW20063 50 km S of Borouj MAR LA 1985/05/14 Marrakech 300 W 07 10 N32 30 

ICDW20064 20 km N of Oued Zem MAR LA 1985/05/14 Khouribga 750 W06 33 N32 55 

ICDW20065 El-Kbab MAR LA 1985/05/15 Khenifra 900 W05 31 N32 44 

ICDW20066 Mengoub MAR LA 1985/05/16 Bouarfa 900 W02 21 N32 15 

ICDW20067 Figuig oasis MAR LA 1985/05/16 Bouarfa 800 W01 15 N32 10 

ICDW20068 Ahfir MAR LA 1985/05/17 Oujda 200 W02 14 18 N35 03 

59 

ICDW20069 Zaio MAR CV 1985/05/17 Oujda 150 W02 44 N34 57 

ICDW20070 Oulda Berrehil; just W of 

Aoulouz 

MAR LA 1985/07/06 Tiznit 500 W008 09 

20 

N30 42 

06 

ICDW20071 Oulda Berrehil; just W of 

Aoulouz 

MAR LA 1985/07/06 Tiznit 500 W008 09 

20 

N30 42 

06 

ICDW20072 Oulda Berrehil; just W of 

Aoulouz 

MAR LA 1985/07/06 Tiznit 500 W008 09 

20 

N30 42 

06 

ICDW20073 Tessouert; 10 km SW of 

Ijoukak 

MAR LA 1985/07/06 Marrakech 1400 W08 06 N30 58 

ICDW20074 Ait Barka near Toufilat MAR LA 1985/07/07 Tiznit 1400 W09 09 N30 07 

ICDW20075 15 km N of Tedders MAR LA 1985/07/07 Meknes 1400 W06 17 N33 42 

ICDW20076 15 km N of Tedders MAR LA 1985/07/07 Meknes 1400 W06 17 N33 42 

ICDW20077 Tizouggart; 10 km N of 

Tedders 

MAR LA 1985/07/07 Meknes 1500 W06 17 N33 40 

ICDW20078 Aguelmous near Agoudal MAR LA 1985/07/07 Khenifra 2200 W007 22 

48 

N31 15 

36 

ICDW20079 Isfoutelil Oasis; 7 km NW 

of Ourzazat 

MAR LA 1985/07/07 Ouarzazate 1300 W06 51 N30 58 

ICDW20080 5 km S of Ait Hani MAR LA 1985/07/08 Er 

Rachidia 

1900 W005 29 

53 

N31 45 

09 

ICDW20081 Ait Hani; flat MAR LA 1985/07/08 Er 

Rachidia 

2000 W05 30 N31 48 

ICDW20082 16 km N of Imilchil MAR LA 1985/07/08 Beni 2000 W05 40 N32 14 
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Mellal 

ICDW20083 near Imilchil, in protected 

forest area, by stream 

MAR LA 1985/07/08 Er 

Rachidia 

1900 W05 40 N32 08 

ICDW20084 ca. 5 km N of site 154 MAR LA 1985/07/08 Er 

Rachidia 

1600 W005 38 

53 

N32 16 

23 

ICDW20085 Arhbala MAR LA 1985/07/08 Beni 

Mellal 

1700 W05 39 N32 29 

ICDW20086 ca. 20 km W of Arhbala, 

in clearing in oak forest 

MAR LA 1985/07/08 Beni 

Mellal 

1700 W05 45 N32 29 

ICDW20087 El-Ksiba MAR LA 1985/07/08 Tanger 1400 W05 56 N35 41 

ICDW20088 near Ouaouizarht MAR LA 1985/07/09 Beni 

Mellal 

1300 W06 21 02 N32 09 

59 

ICDW20089 Just S of Ouaouizarht MAR LA 1985/07/09 Beni 

Mellal 

1000 W06 21 02 N32 09 

59 

ICDW20090 S of Ouaouizarht (S of site 

161) 

MAR LA 1985/07/09 Beni 

Mellal 

1000 W06 21 02 N32 09 

59 

ICDW20091 Ait Simour MAR LA 1985/07/09 Marrakech 1650 W09 13 N31 22 

ICDW20092 25 km N of Tilouguitte MAR LA 1985/07/09 Beni 

Mellal 

1850 W005 39 

36 

N32 16 

12 

ICDW20093 Tilouguit MAR LA 1985/07/09 Beni 

Mellal 

1400 W06 13 N32 02 

ICDW20094 10 km N of Zaouia 

Ahansal 

MAR LA 1985/07/09 Beni 

Mellal 

1200 W06 07 N31 57 

ICDW20095 2 km W of Zaouia 

Ahansal 

MAR LA 1985/07/09 Beni 

Mellal 

1300 W06 08 N31 51 

ICDW20096 Just N of Zaouia MAR LA 1985/07/09 Tetouan 1600 W005 05 

28 

N35 16 

59 

ICDW20097 Zaouia MAR LA 1985/07/09 Tetouan 1500 W005 05 

32 

N35 16 

59 

ICDW20098 near Azilal MAR LA 1985/07/10 Beni 

Mellal 

1400 W06 35 N31 59 

ICDW20099 AitTagelou MAR LA 1985/07/10 Ouarzazate 1200 W05 20 N30 37 

ICDW20100 Ouzoud MAR LA 1985/07/10 Beni 

Mellal 

900 W06 47 N32 02 

ICDW20101 Just E of Tanannt MAR LA 1985/07/10 Marrakech 1200 W06 52 N31 50 

ICDW20102 Ait-Ourir MAR LA 1985/07/10 Marrakech 700 W07 38 N31 33 

ICDW20103 Jamait Agoumat MAR LA 1985/07/10 Ouarzazate 1000 W06 35 N31 01 

ICDW20104 Ouriki; Marrakech oasis MAR LA 1985/07/10 Marrakech 900 W08 00 N31 49 

ICDW20105 Sidi Abbou MAR LA 1985/07/13 Meknes 800 W06 14 N33 28 

ICDW20106 Ouelmes (Oulmes) MAR LA 1985/07/13 Meknes 1100 W005 59 

52 

N33 25 

48 

ICDW20107 Ouelmes (Oulmes) MAR LA 1985/07/13 Meknes 1100 W005 59 

52 

N33 25 

48 

ICDW20108 Aguelmous; 30 km SE of 

Ouelmes 

MAR LA 1985/07/13 Meknes 1200 W05 57 N33 25 

ICDW20110 ca. 25 km E of Khenifra MAR LA 1985/07/13 Khenifra 1400 W05 58 N33 00 

ICDW20111 Ain Roubea; 2-3 km E of 

Khenifra 

MAR LA 1985/07/13 Khenifra 1400 W05 39 N33 00 

ICDW20112 just past Agouelmane 

springs 

MAR LA 1985/07/13 Tetouan 1500 W05 24 N35 24 

ICDW20113 15 km S of Ain Leuh MAR LA 1985/07/13 Khenifra 1700 W05 23 N33 09 

ICDW20114 Boulemane MAR LA 1985/07/14 Fes 1700 W04 45 N33 22 
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ICDW20115 Ifrane MAR LA 1985/07/14 Khenifra 1750 W05 10 N33 31 

ICDW20116 Ait Makhlouf MAR LA 1985/07/14 Fes 1400 W04 20 N33 26 

ICDW20118 Teggour oasis; S of 

Moyen Atlas 

MAR LA 1985/07/14 Taza 800 W03 50 N33 10 

ICDW20119 Taddint Oasis; 25 km SW 

of Ouled El-Haj 

MAR LA 1985/07/14 Ouarzazate 700 W06 02 N30 14 

ICDW20120 Tarileet; 20 km SW of 

Midar 

MAR LA 1985/07/15 Oujda 1000 W03 30 N34 55 

ICDW20121 Tizi Ousli MAR LA 1985/07/15 Taza 1300 W03 47 N34 46 

ICDW20122 Tizi Ousli MAR LA 1985/07/15 Taza 1300 W003 47 

23 

N34 45 

55 

ICDW20123 Just N of Aknoul MAR LA 1985/07/15 Taza 1200 W03 49 N34 43 

ICDW20124 Aknoul MAR LA 1985/07/15 Taza 1200 W03 49 N34 43 

ICDW20125 near Boured MAR LA 1985/07/15 Taza 1400 W04 06 N34 45 

ICDW20126 Nahnach; between Boured 

& Tahar Souk 

MAR LA 1985/07/15 Taza 1100 W04 06 N34 45 

ICDW20127 between Boured and 

Taher Souk 

MAR LA 1985/07/15 Taza 1100 W04 06 N34 45 

ICDW20128 Ain al Beida; near Tahar 

Souk 

MAR LA 1985/07/15 Taza 1100 W04 08 N34 26 

ICDW20129 Ain lemn; 10 km W of 

Taher Souk 

MAR LA 1985/07/15 Taza 500 W04 09 N34 22 

ICDW20130 15 km W of Taher Souk MAR LA 1985/07/15 Taza 500 W04 12 N34 21 

ICDW20131 Imarzen; 5 km N of 

Taounate 

MAR LA 1985/07/16 Fes 600 W004 37 

58 

N34 26 

ICDW20132 30 km SE of El-Jebha MAR LA 1985/07/16 Al 

Hoceima 

1400 W04 29 N34 57 

ICDW20133 Bou Ahmed, river flood 

plain 

MAR LA 1985/05/08 Tetouan 1 W04 58 N35 19 

ICDW20134 near Sebta Beni Zarfet, 

hill by sea 

MAR LA 1985/07/17 Tetouan 100 W05 50 09 N35 15 

58 

ICDW20135 10 km W of Sebt Beni 

Zerfet 

MAR LA 1985/07/17 Tetouan 200 W005 51 

31 

N35 15 

34 

ICDW20136 Ksar Sghir MAR LA 1985/07/17 Tetouan 1 W05 34 N35 50 

ICDW20137 10 km E of Tinejdad MAR LA 1985/05/08 Er 

Rachidia 

900 W004 57 N31 31 

48 

ICDW20138 Iguirene Brahim ou 

Brahim 

MAR LA 1985/07/17 Tiznit 800 W10 05 N29 17 

ICDW20139 Oulda Berrehil; just W of 

Aoulouz 

MAR LA 1985/07/06 Tiznit 500 W008 09 

20 

N30 42 

06 

ICDW20140 S of Ouaouizarht (S of site 

161) 

MAR LA 1985/07/09 Beni 

Mellal 

1000 W06 21 02 N32 09 

59 

ICDW20141 Almis de Marmoucha MAR LA 1985/07/14 Fes 1700 W04 08 47 N33 20 

05 

Sourie 6 km W Al Hafa SYR LA 1987/06/05 Lattakia 90 E35 57 50 N35 33 

15 

Sourie 

haririe 

8 km W Silifreh SYR LA 1987/06/05 Lattakia 880 E36 06 22 N35 35 

37 

Souedie El Morioniaet SYR LA 1987/06/05 Lattakia 640 E36 07 N35 42 

Sourie Al Hamam SYR LA 1987/06/05 Hama 330 E36 15 N35 34 

Souedie Jabal Al Ghab SYR LA 1987/06/05 Hama 700 E36 14 N35 33 

Souedie 5 km down Jeb Ahmar SYR LA 1987/06/05 Hama 730 E036 13 25 N35 37 
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04 

Ahmar Kasab SYR LA 1987/06/05 Lattakia 650 E35 59 00 N35 55 

45 

Souedie Al Meshrefe SYR LA 1987/06/05 Lattakia 310 E035 54 36 N35 52 

48 

Souedie Zghreirien SYR LA 1987/06/05 Lattakia 40 E35 53 58 N35 44 

00 

Baladi Shabat Lieh SYR LA 1987/06/05 Lattakia 80 E35 49 45 N35 41 

30 

Tunsie Burj El-Kasab SYR LA 1987/06/05 Lattakia 30 E35 47 00 N35 36 

25 

Souedie Bahlulieh SYR LA 1987/06/05 Lattakia 45 E35 57 30 N35 38 

00 

Tunsie Khan Zaarur SYR LA 1987/06/05 Lattakia 60 E36 02 13 N35 40 

05 

Haririe Awienat SYR LA 1987/06/05 Lattakia 150 E36 05 35 N35 43 

10 

Haririe 1 km E Bdama SYR LA 1987/06/05 Idlib 360 E36 12 20 N35 48 

15 

Hamari 2 km S Jisr El Shughour SYR LA 1987/06/05 Idlib 475 E36 18 44 N35 47 

24 

Souedie 2 km S Jisr El Shughour SYR LA 1987/06/05 Idlib 475 E36 18 44 N35 47 

24 

Biadi Sha'ieraat SYR LA 1987/06/05 Homs 800 E37 00 N34 29 

Biadi 30 km SE Ka'a Luly SYR LA 1987/06/05 Homs 520 E39 15 51 N34 34 

40 

Biadi Palmyra; 30 km SE 

Sukhnah 

SYR LA 1987/06/05 Homs 450 E39 03 N34 43 

Biadi Palmyra; 21 km SE 

Sukhnah 

SYR LA 1987/06/05 Homs 530 E39 02 00 N34 45 

20 

ID318 6 km East Palmyra SYR LA 1987/06/05 Homs 460 E38 20 13 N34 34 

01 

Biadi Hamam SYR LA 1987/06/05 Raqqa 320 E38 46 30 N35 54 

10 

Biadi Mansura; 12 km South SYR LA 1987/06/05 Raqqa 330 E38 44 30 N35 50 

35 

Hamari Safsafeh SYR LA 1987/06/05 Tartous 160 E36 03 25 N34 44 

00 

Baladi Karfas SYR LA 1987/06/05 Tartous 510 E36 07 20 N34 57 

20 

Baladi Dahr Al Mahshleh SYR LA 1987/06/05 Tartous 380 E36 03 00 N34 54 

45 

Baladi akraa Askabouli SYR LA 1987/06/05 Tartous 190 E35 56 10 N34 54 

50 

Baladi 

hreidini 

souri 

Brmaneh Road SYR LA 1987/06/05 Tartous 520 E36 08 45 N35 00 

00 

Hamari Ram Al Aoz SYR LA 1987/06/05 Homs 610 E36 31 05 N34 44 

Biadi Jnan SYR LA 1987/06/05 Hama 350 E36 50 10 N35 04 

45 

Sherieh Al Swireh SYR LA 1987/06/05 Homs 670 E36 28 00 N34 44 

55 

Hamari 

abasie 

Al Swireh SYR LA 1987/06/05 Homs 670 E36 28 00 N34 44 

55 
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Abasie Arqayah SYR LA 1987/06/05 Homs 560 E36 28 40 N34 48 

50 

Souedi Fahel SYR LA 1987/06/05 Homs 590 E36 24 25 N34 50 

50 

Souedi Tall Douw SYR LA 1987/06/05 Homs 410 E36 31 30 N34 52 

40 

Souedi 

abasie 

Tall Douw SYR LA 1987/06/05 Homs 410 E36 31 30 N34 52 

40 

Biadi 

hamari 

Kafr Nan SYR LA 1987/06/05 Homs 450 E36 38 30 N34 53 

15 

Baladi Tall Hasan Basha SYR LA 1987/06/05 Homs 550 E37 04 15 N34 54 

45 

Baladi Tall Jadid SYR LA 1987/06/05 Homs 640 E37 15 00 N34 55 

45 

Baladi Tall Al Tot SYR LA 1987/06/05 Hama 550 E37 08 56 N34 59 

01 

Biadi Moshrefe SYR LA 1987/06/05 Homs 520 E36 51 55 N34 50 

00 

Souedi Al Mentar SYR LA 1987/06/05 Idlib 350 E036 26 24 N36 08 

42 

Souedi Frikeh SYR LA 1987/06/05 Idlib 300 E36 21 50 N35 45 

30 

Chamie Baglied SYR LA 1987/06/05 Idlib 280 E36 28 N36 08 

Souedie Armanaz SYR LA 1987/06/05 Idlib 260 E36 30 10 N36 05 

00 

Souedi Hafasraja SYR LA 1987/06/05 Idlib 500 E36 31 30 N36 01 

00 

Haurani Al Ra'i SYR LA 1987/06/05 Aleppo 610 E37 26 55 N36 37 

00 

Haurani Susnabat SYR LA 1987/06/05 Aleppo 540 E37 28 55 N36 28 

50 

Jori abiad Deir Qaq SYR LA 1987/06/05 Aleppo 470 E37 26 52 N36 18 

50 

Baladi biadi Mare' SYR LA 1987/06/05 Aleppo 490 E37 12 00 N36 29 

20 

Hamari Azaz SYR LA 1987/06/05 Aleppo 590 E37 03 21 N36 35 

08 

Hamari Katmeh SYR LA 1987/06/05 Aleppo 600 E36 57 15 N36 35 

25 

Baladi Abbeen SYR LA 1987/06/05 Aleppo 490 E36 59 30 N36 28 

15 

Baladi Kifin SYR LA 1987/06/05 Aleppo 480 E37 01 50 N36 24 

50 

Souedie Barisha SYR LA 1987/06/05 Idlib 610 E36 38 00 N36 11 

00 

Souedie Sarmada SYR LA 1987/06/05 Idlib 440 E36 42 48 N36 11 

27 

Baladi Tall Hasil SYR LA 1987/06/05 Aleppo  E37 18 22 N36 08 

05 

Baladi Rasm Al Sheikh SYR LA 1987/06/05 Aleppo 540 E37 14 40 N36 01 

45 

Biadi Blass SYR LA 1987/06/05 Aleppo 440 E37 09 40 N36 00 

20 

Baladi Shukidleh SYR LA 1987/06/05 Aleppo 420 E37 05 20 N36 01 
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20 

Shihani Tall Nasri SYR LA 1987/06/05 Al 

Hasakah 

410 E40 21 56 N36 37 

03 

Shihani Rehikeh SYR LA 1987/06/05 Al 

Hasakah 

540 E40 46 N37 04 

Sin al jamal Karam Koq SYR LA 1987/06/05 Al 

Hasakah 

560 E40 49 34 N37 06 

19 

Shihani Salam Alek SYR LA 1987/06/05 Al 

Hasakah 

560 E40 33 00 N37 01 

09 

Biadi Al Asadia village SYR LA 1987/06/05 Al 

Hasakah 

520 E40 20 20 N36 56 

00 

Shihani Kherbet Al Jamal SYR LA 1987/06/05 Al 

Hasakah 

420 E40 51 06 N36 45 

03 

Sin al jamal Tall Khas SYR LA 1987/06/05 Al 

Hasakah 

490 E40 37 15 N36 57 

55 

Shihani Ghweitly SYR LA 1987/06/05 Al 

Hasakah 

460 E40 40 N36 55 

Halabi Tall Bedar village SYR LA 1987/06/05 Al 

Hasakah 

420 E40 34 56 N36 44 

12 

Shihani 

kandahari 

Tall Bedar village SYR LA 1987/06/05 Al 

Hasakah 

420 E40 34 56 N36 44 

12 

Jouda Salu Regional Research 

Station 

SYR LA 1987/06/05 Der Ezzor 230 E40 20 19 N35 08 

35 

Mouserieh Salu Regional Research 

Station 

SYR LA 1987/06/05 Der Ezzor 230 E40 20 19 N35 08 

35 

Biadi Salu Regional Research 

Station 

SYR LA 1987/06/05 Der Ezzor 230 E40 20 19 N35 08 

35 

Haurani Kamuneh SYR LA 1987/06/05 Damascus 750 E36 14 40 N33 14 

30 

Haurani 

Salamie 

Moadamieh SYR LA 1987/06/05 Damascus 860 E36 38 15 N33 44 

25 

Haurani Al Hakef SYR LA 1987/06/05 Sweida 870 E36 42 25 N33 00 

05 

Haurani Al Sura Al Kubra; 11 km 

E the village 

SYR LA 1987/06/05 Sweida 750 E36 39 N33 08 

Haurani Nawa village SYR LA 1987/06/05 Dar'a 670 E36 02 30 N32 53 

35 

Haurani Ghabagheb SYR LA 1987/06/05 Dar'a 780 E36 14 00 N33 10 

15 

Haurani Trunje SYR LA 1987/06/05 Qunaytirah 1060 E35 51 00 N33 13 

55 

Haurani Danun; 6 km south SYR LA 1987/06/05 Damascus 800 E36 13 40 N33 16 

40 

Haurani Jeb Al Safa SYR LA 1987/06/05 Damascus 750 E36 18 30 N33 14 

00 

Haurani Jadal SYR LA 1987/06/05 Sweida 780 E36 22 40 N32 58 

20 

Haurani Orika SYR LA 1987/06/05 Dar'a 850 E36 28 N32 23 

Haurani Bosra SYR LA 1987/06/05 Dar'a 950 E36 29 36 N32 31 

16 

Haurani Bosra; 6 km east SYR LA 1987/06/05 Sweida 780 E36 33 16 N32 30 

36 

Haurani Welgha SYR LA 1987/06/05 Sweida 930 E36 31 15 N32 44 

40 
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Haurani Breeka village SYR LA 1987/06/05 Sweida 990 E36 34 10 N32 50 

30 

Zaraa Rudimma SYR LA 1987/06/05 Sweida 840 E36 34 35 N33 01 

15 
 1 


