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Abstract

Sovereign rating has had an increasing importance since the beginning of the

financial crisis. However, credit rating agencies opacity has been criticised by

several authors highlighting the suitability of designing more objective alter-

native methods. This paper tackles the sovereign credit rating classification

problem within an ordinal classification perspective by employing a pairwise

class distances projection to build a classification model based on standard re-

gression techniques. In this work the ε-SVR is selected as the regressor tool.

The quality of the projection is validated through the classification results ob-

tained for four performance metrics when applied to Standard & Poors, Moody’s

and Fitch sovereign rating data of U27 countries during the period 2007-2010.

This validated projection is later used for ranking visualization which might be

suitable to build a decision support system.
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1. Introduction

The sovereign rating industry is relatively new and has rapidly grown since

Standard & Poors (S&P) published the first ranking of sovereign issuers in

January 1961, followed by Moody’s in 1974 and Fitch in 1994. Rating the

creditworthiness of sovereign issuers has drawn growing attention due to the

fact that the national governments are by far the largest borrowers in capital

markets, outnumbering 60% of debt issued [1]. Sovereign ratings are a condensed

assessment of each government’s ability and willingness to service its debts in

full and on time [2], distilling a multitude of credit risk information into a

single letter on a credit quality scale. The main advantage of the sovereign

ratings is the providing of a way of comparing investment and their credit quality

to international private investors due to “the lack of consistent standards on

government accounting across borders” [1]. Furthermore, in the framework

of Basel Accords [3], they play a public function in determining the capital

requirements for banks, securities firms and insurance companies according their

assets and liabilities [3]. In this way, the role of sovereign ratings in structured

finances has been accentuated by both market and regulatory practices.

The European debt crisis is a dramatic example of sovereign rating’s role in

the today financial market functioning and their economic consequences. The

rating downgrade was focused on the so-called PIGS countries, i.e., Portugal,

Ireland, Greece and Spain, but led significant spillovers across other European

countries with solid macroeconomic and fiscal fundamentals [4]. As a result,

the Eurozone financial markets have been under the pressure of the widening of

sovereign bond and credit default swap spread, threatening the very existence

of the European Union [5].

In the face of these developments, many policymakers and commentators

have stated that Credit Rating Agencies (CRAs) precipitated the European

crisis by the timing and extent of the downgrades [1]. Their critics highlight

some of the disadvantages of the credit risk assessment process carried out by

CRAs, such as their inherent conflict of interest within their business model or
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their adequacy of performance and lack of transparency [3].

The “issuer-pays” model, which is the most common remuneration practice

among CRAs, lends to business more than two thirds of their total revenues [3].

CRAs also publish unsolicited ratings [1], being considered less reliable and less

accurate because they are based on publicly available data. Therefore, CRAs

face a moral hazard problem, in which they have an incentive to overestimate the

creditworthiness of the issuers and a restrain to avoid the loss of their credibility

with the investors.

Besides the above issue, several studies pointed out that CRAs provide dif-

ferent rating for the same entity [6] and the markets react differently to rating

changes made by each agency [4]. These disagreements are more frequent for

sovereign ratings than for corporate ones [7], between one or two notches in the

finer risk-scale [6], and may be explained by the use of varying economic and

non-economic factors and different weights on these factors, as well as the differ-

ent methodologies [8]. Even though CRAs publish their rating methodologies,

the precise models are not officially disclosed because of their business practice.

In addition, the qualitative part of the rating approach makes it harder to iden-

tify the relationship between the assessment criteria and the resulting sovereign

ratings [2], aggravating the problem of opacity in the rating process.

In order to complement or replace human or institutions decisions, many

statistical and machine learning techniques have been applied to financial and

business issues [9, 10, 11, 12]. In this sense, the sovereign rating problem is a

multiclass classification problem in which the items require to be classified into

naturally ordered classes. However, even though the ordered nature of most

of the financial classification problems, most of the solutions apply nominal

classification techniques. This paper deals with the problem of sovereign rating

within an ordinal classification framework.

Ordinal classification (also known ordinal regression) is often addressed by

the so called threshold models [13]. These methods assume that ordinal response

is a coarsely measured latent continuous variable, and model it as real intervals

in one dimension. Some examples are the Proportional Odds Model (POM) [14],
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a large margin based algorithm [15] or the Support Vector Ordinal Regression

(SVOR) [16]. Other approaches, such as the proposed by Frank and Hall [17],

tackle ordinal classification by combining several binary classifiers.

The method employed in the present work can be considered in threshold

models category, although instead of trying to learn the latent representations

of the patterns, this latent positions are imposed by a guided projection proce-

dure called Pairwise Class Distances projection (PCD). The projection is build

by considering the relative positions of the patterns in the input space regard-

ing adjacent classes, so that the ordinal structure of the data is exploited for

improving the quality of the dimensionality reduction process.

The proposal is studied and validated based on a real sovereign rating

dataset, which includes the rating assigned by the three leaders agencies to

the 27 European Union countries during the period 2007-2010. The perfor-

mance is compared to single-model state-of-the-art nominal and ordinal classi-

fiers. Experimental results demonstrate the robustness of the method by using

four ordinal classification performance metrics. In addition, the projected pre-

dicted values for unseen data are studied in the experimental section in order

to interpret the classification and within class values of several EU countries.

As a summary of our motivation, the main objectives of this paper are the

following. First, and more generally, to provide a tool that can complement the

rating provided by CRAs. Secondly, to address the sovereign rating modelling

with an ordinal perspective, this is, to apply ordinal classification methods and

ordinal performance metrics to the task of sovereign rating. Finally, to prove

the usefulness of the PCD projection which is not only able to obtain a good

classification performance, but also to place a pattern in a relative order within

its class, which brings additional information to the predicted class labels that

can be helpful for decision making tasks and data analysis.

The rest of the paper is organized as follows. Section 2 briefly presents

some related works, specifically highlighting machine learning methods applied

to credit rating. Section 3 presents the problem formulation and the goals

of ordinal classification, and also describes and analyses the PCD projection
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together with the associated classifier. In addition, the section provides basic

background in Support Vector Machines (SVM) for the regression case. In the

following section, the PCDOC algorithm is compared to other nominal and

ordinal methods, and the model is internally analysed to provide additional

information for potential decision makers. Finally, Section 5 ends with some

conclusions.

2. Machine learning state-of-the-art for sovereign rating

This section briefly presents the related state-of-the-art works. An in-depth

study is out of the scope of the current paper, but there are several review papers

regarding statistical and machine learning techniques applied to financial and

business issues [9, 10, 11, 12].

In the accounting and finance domain, bankruptcy prediction and credit

scoring are the two major research problems [11]. More related to the current

work, sovereign debt rating issue is growing in attention of the machine learning

scientific community, although most of the methodologies have been focussing

on corporate bonds rather than on sovereign risk [18]. In the second case, to

assess the ability of a sovereign to honour its debt, some works applied statis-

tical techniques such as Discriminant Analysis (DA) [19, 20, 21]. In spite of

the ease to explain behaviour of the statistical models, the issue with applying

these methods to the bond-rating prediction problem is that the multivariate

normality assumptions for independent variables are frequently violated in fi-

nancial data sets [22], which makes these methods theoretically invalid for finite

samples [23]. This justify the use of alternative methods such as machine learn-

ing ones. The literature recognizes the unsuitability of these approaches to deal

with sovereign rating problem because they ignore the ordered nature of rat-

ings and ordered response models have been later introduced to overcome this

limitation [2, 24, 25, 26, 27].

Machine learning methods have been applied to model sovereign ratings, e.g.

Artificial Neural Networks (ANNs), which do not rely on parametric assump-
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tions of normality of data, independence of the explanatory variables, stationary

or sample-path continuity. The better performance of ANNs compared to pre-

vious statistical methods have been highlighted by Cosset and Roy [28], Cooper

[29], Yim and Mitchell [30] and Benell [18], among others. Although this ap-

proach is not without its problems, such as the risk of over-fitting, the difficulty

entailed in defining the physical structure of the network, and the tendency

to fall into local optima [31]. Support Vector Machines (SVM) [32, 33] have

being widely used for financial problems in the recent years [11], for instance

the standard SVM classifier has been applied to financial time series forecasting

[34] or to corporate credit rating prediction [35]. Later, new SVM models have

been evaluated for credit scoring, for example, weighted SVM models such as

the Least Squares SVM (LSSVM), where the hyper-parameters selection and

training are based on the Area Under receiver operating characteristics Curve

(AUC) maximization [36]. Yu et. al present a modified LSSVM to consider the

prior knowledge that different classes may have different importance for model

building so that more weight should be given to important classes [37]. Finally,

soft computing techniques have been considered for financial problems. For in-

stance, bank performance prediction were tackled with fuzzy SVM models by

Chaudhuri and De [38] or with ensemble systems by Ravi et. al [39]. In ad-

dition, hybrid machine learning approaches have been applied to credit scoring

[40] and bank rating [41].

However, most of the machine learning works deals with the problem as a

binary classification problem, because several classifiers, such as SVM, are nat-

urally designed for binary classification tasks. This would limit the applicability

to evaluate credit as ’risk’ or ’non-risk’. More recent approaches not only use

a multi-class focus, but a limited number of them also consider an ordinal per-

spective of the problem. Van Gestel et al. [42] propose a whole process model

to develop rating systems. In this work the classifier side is implemented by

adding SVM terms to the linear model of the ordinal logistic regression so that

the final model is both accurate and readable.
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3. Ordinal classification

This section presents the formulation of the ordinal classification problem,

highlighting how threshold models work and presenting some state-of-the-art

ordinal classifiers. Then, the PCD projection and the PCD based classifier

are presented. Next, for clarifying purposes, the PCD projection is explained

by using two of the input variables of one of the datasets considered in this

paper. The last subsection is devoted to present the Support Vector Machine

for regression, since this is the regressor selected for the experiments.

3.1. Problem formulation

When ordinal regression problems are tackled, the main objective is to map

an input space, X , to a finite set, C = {C1, C2, . . . , CQ}, by using a mapping

function φ : X → C. The important point is that the label set has an order

relation C1 ≺ C2 ≺ . . . ≺ CQ, where the symbol ≺ denotes the given order

between different ranks. For each label, the rank is defined as O(Cq) = q, i.e.

the position of the label in the ordinal scale. Patterns are represented by a

set where each element contains a K-dimensional feature vector x ∈ X ⊆ RK

and a class label y ∈ C. The training dataset T is composed of N patterns

T = {(xi, yi) | xi ∈ X , yi ∈ C, i = 1, . . . , N}, with xi = (xi1, xi2, . . . , xiK).

Considering the above definitions, ordinal classification is different from

nominal classification in the evaluation of the classifier performance and also

in the fact that the classifier should exploit the ordinal data disposition. For

the former, as an example, although accuracy (Acc) has been widely used in

classification tasks, it is not suitable for some type of problems, such as im-

balanced datasets [43] (very different number of patterns for each class), and

ordinal datasets [44]. Then, the performance metrics must consider the order

of the classes so that errors between adjacent classes should be considered less

important than the ones between separated classes in the ordinal scale. In our

sovereign rating example, a misclassification predicting class C3 (Strong payment

capacity) when the real class is C1 (Highest quality) should be more penalized
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than the case when the prediction is C2 (High quality). For this issue, some

specific ordinal performance measures are needed [45, 46] (see Subsection 4.2

for measures definition). On the other hand, according to Hühn and Hüllermeier

[47], the nature of the problem implies that the class order is somehow related

to the distribution of patterns in the space of attributes X , and therefore the

classifier must exploit this a priori knowledge about the input space.

Different approaches have been proposed for addressing ordinal classification.

For example, Kramer et. al [48] map the ordinal scale by assigning numerical

values. Other alternative is to transform the ordinal classification problem into

a nested binary classification problem [17, 49], and then classification predic-

tions are obtained by combining the results of the binary classifications. These

methods can be regarded as general frameworks that can adapt any generic

classifier to the ordinal classification methods. Frank et. al [17] propose A Sim-

ple Approach to Ordinal Regression (ASAOR), a general method that enables

standard classification algorithms to make the use of order information in at-

tributes. For the training process, the method transforms the Q-class ordinal

problem into Q− 1 binary class problems. More sophisticated schemes are ap-

plied in other works, for instance, Li and Lin [50, 51] derive the Extended Binary

Classification (EBC) framework and apply it to SVM, naming the method to

as EBC(SVM).

Other approaches are the commonly called threshold models. The current

work relies in this kind of models. These methods assume that ordinal response

is a coarsely measured latent continuous variable, and model it as real intervals

in one dimension. Based on this assumption, the algorithms seek a direction in

which the samples are projected and a set of thresholds that divide the direction

into consecutive intervals representing ordinal categories. This approach is the

most widely used for ordinal classification [13]. From a statistical background,

one of the firstly proposed threshold methods is the Proportional Odds Model

(POM), specifically designed for ordinal regression [14].

Gaussian Processes for Ordinal Regression (GPOR) [52] presents a prob-

abilistic approach to ordinal regression based on Gaussian processes where a
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threshold model that generalizes the probit function is used as the likelihood

function for ordinal variables. SVM have also been adapted to fit into this

generic form of threshold models. Chu et. al. [16], proposes two new support

vector approaches for ordinal regression, Support Vector Ordinal Regression

(SVOR) where multiple thresholds are optimized in order to define parallel dis-

criminant hyperplanes for the ordinal scales. Two approaches are presented:

SVOR-EX when the inequality constraints are explicitly added to the opti-

mization problem, and SVOR with implicit constraints or SVOR-IM where

the samples from different categories are allowed to contribute errors for each

threshold.

In this article, rather than learning the latent variable, direct hints are pro-

vided to the threshold model via a dimensionality reduction process that exploits

the a priori knowledge of an ordinal space distribution of patterns in the input

space. For each class, the distances of the patterns belonging to that class and

to the adjacent classes are used. This projection is named to as Pairwise Class

Distances (PCD), and the associated classifier using PCD is called PCD Ordinal

Classifier (PCDOC). Here, PCDOC is implemented by using ε-SVR [33, 53, 54]

as the base regressor.

3.2. Threshold models

Threshold models consider the ordinal scale as the result of coarse measure-

ments of a continuous variable, which is assumed to be difficult or impossible

to be measured [13]. A threshold model is based on the following equation:

f(x,b) =



C1, if g(x) ≤ b1,

C2, if b1 < g(x) ≤ b2,
...

CQ, if g(x) > bQ−1,

(1)

where g : X → R is the function that projects data space into the 1-dimensional

latent space L ⊆ R and b1 < . . . < bQ−1 are the thresholds that divide the space

into ordered intervals corresponding to the classes.
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In the PCDOC proposal it is assumed that a model φ : X → L can be found

that links data items x ∈ X with their latent space representation φ(x) ∈ L.

For simplicity, b are fixed in opposition to other models such as POM. Instead

of paying attention to the thressholds, the keys of the method are the projection

procedure, which exploits the ordinal structure of the space X , and the explicit

compression that the projection does on the margins between classes in L (see

Section 3.5).

3.3. Pairwise Class Distances projection

This section explains the proposed guided projection and how it is used to

train a generic regressor for performing ordinal classification.

To describe the Pairwise Class Distance (PCD) projection, first, we define

a measure wx(q) of “how well” a pattern x(q)1 is placed within all the instances

of class Cq. The goodness of its position is given by a function of the Euclidean

distance between the evaluated pattern and the patterns in adjacent classes.

On the assumption of an ordinal input space, patterns of adjacent classes may

be closer than patterns of non-adjacent classes. The minimum distance from a

pattern x
(q)
i to patterns in the previous class (δp) is:

δp

(
x
(q)
i

)
= min

x
(q−1)
j

{
||x(q)

i − x
(q−1)
j ||

}
, 1 ≤ j ≤ nq−1, (2)

where ||x−x′|| is the Euclidean distance between x and x′ and nq−1 represents

the number of patterns of class Cq−1. And similarly, the minimum distance

from a pattern x
(q)
i to patterns in the next class (δn) is:

δn

(
x
(q)
i

)
= min

x
(q+1)
j

{
||x(q)

i − x
(q+1)
j ||

}
, 1 ≤ j ≤ nq+1. (3)

Then, the measure of “goodness” of a pattern x
(q)
i is defined as:

1The notation x(q) will be used to indicate that pattern x belongs to class Cq
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class 1
class 2
class 3

Figure 1: General idea about how the “goodness” measure is obtained. For each pattern
of class C2, δp and δn are represented using lines. As an example, value wx(2) of x(2) is

calculated by using x(1) and x(3).

w
x
(q)
i

=
δp

(
x
(q)
i

)
+ δn

(
x
(q)
i

)
max

x
(q)
j

{
δp

(
x
(q)
j

)
+ δn

(
x
(q)
j

)} , 1 ≤ j ≤ nq, (4)

where nq represents the number of patterns of class Cq and we set δp

(
x
(1)
i

)
= 0

and δn

(
x
(Q)
i

)
= 0 to keep into account the extreme classes. In this way, the

sum of the minimum distances of a pattern with respect to adjacent classes is

normalized across all patterns of the class, so that w
x
(q)
i

has a maximum value

of 1 for the best positioned pattern.

Figure 1 shows the idea of minimum distances for each pattern with respect

to the patterns of the adjacent classes, considering patterns of the second class.

As an example, the wx(2) value is obtained for the pattern x(2) (marked with a

circle).

These values, w
x
(q)
i

, are used to derive a latent variable li ∈ L. But, first of

all, thresholds need to be fixed so the intervals on L which correspond to each

class are delimited, and the calculated values for li may be correctly positioned.

Moreover, in the test phase, predicted values l̂i of unseen data would be classified
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in different classes according to these thresholds (see Subsection 3.4) (which is

indeed the way all threshold models work). For the sake of simplicity, L is

limited to the interval [0, 1], and the thresholds are uniformly positioned in this

interval:

b = {b1, b2, . . . , bQ} = {1/Q, 2/Q, . . . , Q/Q = 1} . (5)

Consequently, the centres cq for L values belonging to class Cq are defined

as:

c = {c1, c2, . . . , cQ} ; c1 = 0, cQ = 1, cq =

q−1
Q + q

Q

2
, 2 ≤ q ≤ Q− 1. (6)

A very intuitive idea is now considered to construct li values for training

inputs x
(q)
i . If x

(q)
i has a high value of w

x
(q)
i

(i.e. minimum distances δp and

δn are quite similar), the li value should be closer to ci (because the pattern is

clearly well located within its class). If a low value of w
x
(q)
i

is obtained (i.e. δp

and δn are very different), this means that the pattern is closer to one of these

classes, and the resulting li value should be closer to the closest adjacent class,

q − 1 or q + 1. The following expression is reflecting this idea:

li = φ
(
x
(q)
i

)
=



c1 + (1− w
x
(1)
i

) · 1
Q , if q = 1,

cq − (1− w
x
(q)
i

) · 1
2Q , if q ∈ {2, . . . , Q− 1} and

δp(x
(q)
i ) ≤ δn(x

(q)
i ),

cq + (1− w
x
(q)
i

) · 1
2Q , if q ∈ {2, . . . , Q− 1} and

δp(x
(q)
i ) > δn(x

(q)
i ),

cQ − (1− w
x
(Q)
i

) · 1
Q , if q = Q,

(7)

where w
x
(q)
i

is defined in Eq. (4), and cq is the centre of class interval corre-

sponding to Cq (see Eq. (6)). This expression guarantees that all l values lie

in the correct class interval (the threshold vector b delimiting class intervals is
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defined in Eq. (5)). This methodology for data projection is called Pairwise

Class Distances (PCD).

3.4. PCD based ordinal classifier

Once the PCD projections have been obtained for all training inputs, this

projection can be used to construct a classifier based on any regression tool. The

regressor, g, will approximate the mapping from the input space to the PCD

projections, g : X → L. In other words, a new training set is derived changing

the target variable, T ′ = {(xi, φ (xi) = li) | (xi, yi) ∈ T}, where li is obtained

from Eq. (7). This dataset is used to construct the regressor g. For the test

phase, this regressor will be applied to obtain an estimated latent variable value,

l̂ = g(x), and using the thresholds b in Eq. (5) and the general expression of

the threshold model in Eq. (1), the predicted class label ŷ will be obtained.

It is expected that formulating the problem as a regression problem would

help the model to capture the ordinal structure of the input and output spaces,

and their relationship. In addition, due to the nature of the regression problem,

it is expected that the performance of the classification task will be improved

regarding metrics that consider the difference between the predicted and actual

ranks or the correlation between the target and predicted ranks. Experimental

results confirm this hypothesis in Section 4.4.

3.5. Analysis of the PCD projection with sovereign rating datasets

For better understanding how the PCD projection takes advantage of the

ordinal disposition of the data, two different input variables have been selected

from the sovereign rating datasets of Section 4.1. Our objective is to show

how the proposed projection works in a two dimensional representation. The

variables selected are “GDP per capita” (PC GDP) and “Government effec-

tiveness” (GV EFFECT), for years 2007-2009, their values being standardised.

This selection is done because these variables are suitable for showing the or-

dinal structure of the data in the input space, not because of feature selection

criteria, which is out of the scope of this paper. Fitch agency countries patterns
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(a) Patterns of Fitch’s dataset considering PC GDP and
GV EFFECT variables.
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(b) Example of the generated li values on the Fitch’s
dataset.

Figure 2: Illustration of the PCD projections with PC GDP and GV EFFECT variables of
Fitch’s dataset corresponding to patterns of years 2007-2009. Points of different classes are
plotted with different symbols and colours.

labelling is used for this illustration example, as can be seen in Figure 2a. The

figure shows that the data have a clear ordinal distribution through the input

space, and how a separation in classes is difficult, some of them being clearly

overlapped. It can be noticed the majority of patterns of each class are situated

in regions of the space having adjacent classes patterns in neighbour regions.

Figure 2b presents the PCD concepts applied to the patterns in Figure 2a.
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The minimum distances are illustrated with lines of the same colour than the

class. The minimum distance of a point to the next class patterns are marked

with solid lines, while the minimum distances to the previous class are marked

with dashed lines. For some example points (surrounded by a grey circle), the

value of the PCD projection using Eq. (7) is shown near the point. It can be

easily seen that the l value increases for patterns of the higher classes, and this

value varies depending on the position of the pattern x(q) in the space with

respect to the patterns x(q−1) and x(q+1) of adjacent classes.

3.6. Support Vector Machines for regression

The Support Vector Machines (SVM) [32] are perhaps the most common

kernel learning method for statistical pattern recognition. Initially formulated

for binary classification problems, they have been extended for multi-class en-

vironments [55], ordinal classification problems [16] and for standard regression

[54]. The later is explained in this section since it is the base regressor used in

our proposal to model the PCD projection in the experiments.

SVM are linear models with an optimization process that implicitly selects a

subset of patterns for building the model. These patterns are named as support

vectors. The first formulation of SVM is known as the hard-margin approach,

but it presents the overfitting problem, which severally downgrades the general-

ization performance. In contrast, the soft-margin approach is achieved with the

inclusion of slack-variables ξi in the optimization process [32], and it improves

the performance of the model.

The ε-SVR model is defined by the hyperplane given by:

f(x) = ŷ(x) = w · φ(x) + b, (8)

where φ is a mapping function which transforms the patterns representation

in the attributes or input space X to a high dimensional Reproducing Ker-

nel Hilbert Space (RKHS). The reproducing kernel function is used, defined as

k(x,x′) = 〈φ(x) · φ(x′)〉, where 〈·〉 denotes inner product in the RKHS. This
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transformation is known as the kernel trick and it allows to overcome the limi-

tations of linear models. The most common mapping function is the Gaussian

kernel, defined as:

k(x,x′) = exp−γ‖x−x
′‖2 .

where γ is a parameter associated with the width of the Gaussian kernel.

The model training consist on finding the weight vector w that minimizes

the following regularized error function:

C

N∑
i=1

Eε(ŷ(xi)− yi)−
1

2
‖w‖2.

where ŷ(xi) is given by Eq. 8 and Eε is the ε-insensitive error function proposed

by [56]:

Eε(ŷ(x)− y) =

0, if |ŷ(x)− y| < ε

|ŷ(x)− y| − ε, otherwise.

(9)

The Eε function gives zero error if the absolute difference between the pre-

diction ŷ(x) and the actual target y is less than ε (being ε > 0) and it produces

more sparse solutions that other functions such as the quadratic error function

which is widely used in regression problems [57].

The optimization problem can be reformulated by introducing slack vari-

ables. For each point xi two slack variables are needed (ξi ≥ 0 and ξ∗i ≥ 0,

where ξi > 0 corresponds to a point for which target value yi > ŷ(xi) + ε, and

ξ∗i > 0 corresponds to a point for which yi < ŷ(xi)− ε).

A target point lies inside the ε-tube if ŷi(xi)− ε ≤ yi ≤ yi+ ε. The inclusion

of the slack variables allows points to lie outside the tube provided that the

slack variables are non-zero. The corresponding conditions are:

yi ≤ ŷi(xi) + ε+ ξi,

yi ≥ ŷi(xi)− ε− ξ∗i .
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Figure 3: Example of the influence of the ε parameter in the ε-SVR model (overfit, trade-off
and underfit situations are presented).

At this point, the error function for support vector regression can be written

as:

C

N∑
i=1

(ξi + ξ∗i ) +
1

2
‖w‖2,

which must be minimized subject to the constraints ξi ≥ 0 and ξ∗i ≥ 0. The

corresponding dual problem for minimizing this function implies using two kinds

of Lagrange multipliers (αi and α∗i ). More details can be found in [57].

Finally, predictions of new inputs can be expressed in terms of the kernel

function:

y(x) =

N∑
i=1

(αi − α∗i )k(x,xi) + b,

where αi and α∗i are the Lagrange multipliers.

To conclude this section, Figure 3 shows different ε-SVR models for several ε

values on an artificial regression dataset. The figure shows the support vectors of

the model. It can be observed how the ε simultaneously determines the suitable

fitting of the model to the data, as well as the sparseness of the model.

4. Experiments

This section presents the description of the sovereign rating dataset, the or-

dinal classification performance metrics, the dataset experimental design and re-

lated methods experiments configuration, and the comparison of these methods
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Table 1: A comparison of the rating labels from CRAs. The observations have been grouped
into broader categories in the second column.

Broader rating categories S&P Moody’s Fitch

Investment
grade

Highest quality C1 AAA Aaa AAA

High quality C2

AA+ Aa1 AA+
AA Aa2 AA
AA- Aa3 AA-

Strong payment
capacity

C3

A+ A1 A+
A A2 A
A- A3 A-

Adequate payment
capacity

C4

BBB+ Bbb1 BBB+
BBB Bbb2 BBB
BBB- Bbb3 BBB-

Speculative
grade

Likely to fulfill
obligations, ongoing
uncertainty

C5

BB+ Bb1 BB+
BB Bb2 BB
BB- Bb3 BB-

High credit risk C6

B+ B1 B+
B B2 B
B- B3 B-

Very high credit risk C7

CCC+ Caa1 CCC+
CCC Caa2 CCC
CCC- Caa3 CCC-

Near default with
possibility of recovery

C8
CC Ca CC
C C C

Default C9
SD - SD
D - D

to the proposed one. The section concludes with the analysis of the predicted

projection of the patterns for the generalization set, i.e. the 2010 year. The

datasets used in this section are available in a public website2.

4.1. Data

A set of economic descriptors of countries have been collected. The dataset

contains 108 annual observations of long-term foreign-currency sovereign credit

ratings of 27 EU sovereign borrowers during the period from 2007 to 2010. The

credit rating data is from the publicly available historical information provided

by the three leader agencies, Standard and Poor’s, Moody’s and Fitch, as of

2http://www.uco.es/grupos/ayrna/asoc-sovereign-ratings
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Table 2: Description of the input variables. Note the business cycle approach has been
considered through the inclusion of Gross Domestic Product (GDP) growth, fiscal and current
account balance, inflation and unemployment as a three years average.

Variable name Unit of measurement Rating Influence
Real GDP growth Rate Positive
GDP per capita Euros per inhabitant Positive
Government debt Percent of GDP Negative
Fiscal balance Percent of GDP Positive
External debt Percent of exports Negative
Foreign reserves Percent of imports Positive
Current account balance Percent of GDP Negative
Inflation Index (2005=100) Negative
Unemployment Rate Negative
Unit labour cost Index (2005=100) Negative
Government effectiveness Percentile Positive

December 31st of each year. The three CRAs use similar rating scales with

23-risk points (Table 1), in which the triple-A notation means the best quality

issue. The observations have been grouped into broader categories according to

Hill et al. [6], which are shown in the second column.

By using the broader rating categories of Table 1 the problem would be a 9

ordinal label classification problem. However, during the time span considered,

all the European issuers were rated into the five first categories. Consequently,

only five classes are considered for the classification problem (C1, C2, C3, C4, C5).

Many empirical studies, such as those from Cantor and Packer [7] and Bi-

ssoyondal-Beheninck [2], among others, have investigated the determinants of

sovereign ratings, showing that they are mainly driven by economic variables.

Based on them, eleven variables have been selected (see Table 2), ten economic

indicators as well as one non-economic [58]. The data were taken from Eurostat,

except Government Effectiveness indicator provided by the World Bank as well

as the External Debt figures, which were completed with information provided

by Central Banks of Cyprus, Malta, Sweden and Romania.

Notice that the methodology proposed attempts to estimate the rating pro-

vided by CRAs based on a reduced set of publicly available indicators in com-

parison with the large number criteria taken into account by CRAs. All the
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information about those criteria is accessible online into the CRA web pages,

being comparable across the rating process, but they differ in the way in which

they are classified and weighted by the firms’ analysts [59, chap. III].

Three datasets are generated, one for each of the CRAs considered (Fitch,

Moody’s and S&P). The input variables are the same for all of them, but the

rating is different depending on the CRA taken into account. The dataset for

each CRA has been split in two subsequent time period sets used as training

and generalization sets. The first set includes 81 observations, described by the

correspondent variables, from the 27 EU sovereign borrowers during the period

2007-2009, whereas, in the second one, data are from 2010.

4.2. Ordinal classification performance metrics

In this work, four evaluation metrics have been considered which quantify

the classifier’s performance for N predicted ordinal labels in a given dataset

{ŷ1, ŷ2, . . . , ŷQ}, with respect to the true targets {y1, y2, . . . , yQ}.

The accuracy (Acc) and the Mean Absolute Error (MAE) are included since

they are typically used in the literature, and nominal and ordinal classification

methods usually optimize these metrics. The accuracy, also known as Correct

Classification Rate, or as Mean Zero-One Error when expressed as an error, is

the rate of correctly classified patterns:

Acc =
1

N

N∑
i=1

Jŷi = yiK,

where JcK is the indicator function, being equal to 1 if c is true, and to 0

otherwise. Acc values ranging from 0 to 1 represent a global performance on

the classification task.

The Mean Absolute Error (MAE) is the average deviation in absolute value

of the predicted ranks from the true ranks [44]:

MAE =
1

N

N∑
i=1

e(xi),
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where e(xi) = |O(yi)−O(ŷi)| is the distance between the true and the predicted

ranks, and, then, MAE values range from 0 to Q− 1. Acc is typically used in

the literature together with MAE since the former does not reflect the category

order in the errors consideration [16, 45, 51, 52, 60].

However, more robust performance metrics have been proposed for ordi-

nal classification. For instance, Baccianella et al. proposed the average MAE

(AMAE) [44] as a more robust alternative to MAE for imbalanced datasets,

which is very common in ordinal classification (in general, extreme classes are

usually associated to rare situations). The AMAE is defined as the mean per-

formance of the MAE across classes:

AMAE =
1

Q

Q∑
j=1

MAEj =
1

Q

Q∑
j=1

1

nj

nj∑
i=1

e(xi),

where AMAE values range from 0 to Q − 1 and nj is the number of patterns

of class j.

Finally, the Kendall’s τb is a statistic used to measure the association between

two measured quantities. τb has been recently advised as a suitable measure

for ordinal classification since it is independent of the values used to represent

classes [61]. Its robustness is achieved by working directly on the set of pairs

corresponding to different observations. Specifically, τb is a measure of rank

correlation [62]:

τb =

∑
ĉijcij√∑
c∗2ij
∑
c2ij

, i = 1, ..., N, j = 1, ..., N,

where ĉij is +1 if ŷi is greater than (in the ordinal scale) ŷj , 0 if ŷi and ŷj are

the same, and −1 if ŷi is lower than ŷj , and the same for cij . τb values range

from −1 (maximum disagreement between the prediction and the true label),

to 0 (no correlation between them) and to 1 (maximum agreement).
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4.3. Experimental design and comparison methods

The experiments have being carried out by using a hold-out experimental

design of the three datasets described at Section 4.1. The training dataset

consist on patterns belonging to years 2007-2009. The generalization or test

dataset consist on the 2010 year patterns. It must be paid attention to the

Moody’s dataset since during the period 2007-2009 (training period) there were

not ratings of class C5. However, in 2010 (test period), Greece was ranked as

C5 by this CRA. Given that all classifiers were trained for a four class dataset,

none of them was able to correctly classify Greece during the test phase.

Due to the deterministic nature of all the compared methods, only one run

of each method has been performed for each dataset and the generalization

performance for several classification metrics is reported.

The ordinal regression methods used for comparison purposes have been se-

lected according to their similarities to the proposal, and also because of the

implementation availability. The ordinal methods considered are: ASAOR with

a C4.5 base classifier (as suggested by Frank and Hall [17], ASAOR(C4.5)), EBC

with SVM as base classifier (as suggested by Li and Lin [50, 51], EBC(SVM)),

GPOR [52], SVOR-EX and SVOR-IM [16]. The reader can consult Section

3.1 for more details. In our approach, the Support Vector Regression (SVR)

algorithm is used as the base regressor, so the method is called SVR-PCDOC.

The ε-SVR implementation available in the libsvm package [63] is used. The

authors of GPOR, SVOR-EX, SVOR-IM and EBC(SVM) provide publicly avail-

able software implementations of their methods3. With respect to the ASAOR

method, the C4.5 method available in Weka [64] is used as the underlying clas-

sification algorithm since this is the one initially employed by the authors of

ASAOR. In this way, the algorithm is identified as ASAOR(C4.5).

In addition, some well known nominal algorithms have been selected in order

to compare the ordinal approaches and to check if the ordinal classifiers are tak-

3GPOR (http://www.gatsby.ucl.ac.uk/~chuwei/ordinalregression.html), SVOR-EX
and SVOR-IM (http://www.gatsby.ucl.ac.uk/~chuwei/svor.htm) and EBC(SVM) (http:
//home.caltech.edu/~htlin/program/libsvm/)
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ing benefit from the order information. These are C4.5, a standard multinomial

logistic regression (Mlogistic), a logistic regression based on simple regression

and variable selection (Slogistic), and the Multi-Layer Perceptron (MLP) neural

network. A detailed description of these methods can be found in the works of

Landwehr et al. [65] and Witten and Frank [66].

Model selection is an important issue and involves selecting the best hyper-

parameter combination for all the methods compared. All the kernel methods

were configured to use the Gaussian kernel. For the support vector algorithms,

i.e. EBC(SVM), SVOR-EX, SVOR-IM and ε-SVR, the corresponding hyper-

parameters (regularization parameter, C, and width of the Gaussian functions,

γ), were adjusted using a grid search over each of the training set by a 5-

fold cross-validation with the following ranges: C ∈ {103, 102, . . . , 10−3} and

γ ∈ {103, 102, . . . , 10−3}. Regarding ε-SVR, the additional ε parameter has to

be adjusted. The range consider was ε ∈ {103, 101, . . . , 100}. GPOR has no

hyper-parameters to fix, since the method optimizes the associated parameters

itself. Finally, ASAOR(C4.5), C4.5, Mlogistic and Slogistic have no hyper-

parameters. For the MLP method, the number of hidden neurons was also

adjusted by cross-validation in the training set.

4.4. Experimental results

Table 3 presents the performance results of the different algorithms with the

three datasets. Nominal and ordinal classifiers are separated with a horizontal

line. In general, it should be pointed out that the performance ranking changes

for each metric. However, SVR-PCDOC is very robust when considering all the

datasets and all the metrics. It achieves the best performance for all the metrics

in the Fitch and S&P datasets. In addition, the second best method for these

datasets varies with respect to the metric considered. For example, Slogistic is

the second best one in S&P when considering Acc. In this dataset, SVOR-IM

was in the seventh position for Acc, but for metrics which consider the order

(MAE, AMAE and τb), this method is the second best one. Regarding Moody’s

dataset, SVR-PCDOC has the best results for MAE and τb, but not for Acc
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Table 3: Comparison of the proposed method to other nominal and ordinal classification
methods. The value of different metrics test results (year 2010 prediction) are reported for
each dataset. The best result is in bold face and the second best result in italics.

Accuracy MAE
Method/DataSet Fitch Moody’s S&P Fitch Moody’s S&P

C4.5 0.6296 0.6667 0.5926 0.4074 0.4074 0.4815
Mlogistic 0.4815 0.7778 0.3704 0.8889 0.3333 0.8889
MLP 0.6667 0.8519 0.6667 0.4074 0.2593 0.4444
Slogistic 0 .7407 0.7778 0 .7037 0 .2593 0.2963 0.4074

ASAOR(C4.5) 0.5926 0.6296 0 .7037 0.4815 0.4815 0.4074
EBC(SVM) 0.6667 0 .8148 0.6667 0.3333 0.2222 0.4074
GPOR 0 .7407 0.7037 0.6667 0.3704 0.4444 0.4444
SVOR-EX 0.7037 0.7778 0.5926 0.2963 0.2593 0.4444
SVOR-IM 0.6667 0 .8148 0.6296 0.3333 0.2222 0 .3704
SVR-PCDOC 0.7778 0 .8148 0.7407 0.2222 0.2222 0.2593

AMAE τb
Method/DataSet Fitch Moody’s S&P Fitch Moody’s S&P

C4.5 0.4400 0.6800 0.5111 0.7621 0.7367 0.7655
Mlogistic 1.1600 0.6467 0.9333 0.5255 0.7719 0.5121
MLP 0.5267 0.4067 0.4000 0.7972 0.8097 0.7492
Slogistic 0.2667 0.6200 0.5111 0 .8951 0.8151 0.8060

ASAOR(C4.5) 0.4533 0.7533 0.4222 0.6989 0.6655 0.7570
EBC(SVM) 0.2822 0 .5356 0.4222 0.8835 0.8590 0.8052
GPOR 0.5133 0.9200 0.6222 0.7738 0.6869 0.7807
SVOR-EX 0 .2422 0.5622 0.4444 0.8886 0.8610 0.7873
SVOR-IM 0.2756 0 .5356 0 .3556 0.8799 0.8525 0 .8370
SVR-PCDOC 0.2089 0.5467 0.2889 0.9224 0.8610 0.8849

and AMAE. This is due to the error that the classifier has for Greece pattern in

2010, since it misclassifies Greece as C3 when it a C5 pattern, and this is more

more penalized by AMAE than by MAE.

Table 4 shows the credit rating granted by the three leader CRAs and the

credit rating predicted by the SVR-PCDOC models for the 27 EU countries in

the test set (year 2010). Errors have been highlighted in bold face. The data

included in this table should be analysed together with the contingency matrices

in Figures 4, 5 and 6.

If we take into account the test set (corresponding to year 2010), the number

of patterns of each class are the following: {9, 5, 6, 5, 2} for Fitch, {9, 5, 6, 6, 1}

for Moody’s and {9, 3, 9, 3, 3} for S&P. Considering the three datasets, the total

distribution is {27, 13, 23, 14, 6}. Taking into account this distribution, a com-
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Table 4: Ratings for EU countries in the test set (2010): real ratings versus SVR-PCDOC
predicted rating.

Fitch Moody’s S&P
Pattern Acronym Rating Pred. Rating Pred. Rating Pred.
Austria AUT 1 1 1 1 1 1
Belgium BEL 2 2 2 2 2 2
Bulgaria BUL 4 5 4 4 4 4
Cyprus CHP 2 2 2 2 3 2
Czech Republic CZE 3 3 3 3 3 3
Germany DEU 1 1 1 1 1 1
Denmark DNK 1 1 1 1 1 1
Estonia EST 3 3 3 3 3 3
Finland FIN 1 1 1 1 1 1
France FRA 1 2 1 1 1 2
Great Britain GBR 1 1 1 1 1 2
Greece GRC 4 4 5 3 5 4
Hungary HUN 4 4 4 4 4 4
Ireland IRL 4 5 4 4 3 3
Italy ITA 2 2 2 2 3 3
Latvia LAT 5 5 4 4 5 4
Lithuania LIT 4 4 4 4 4 4
Luxembourg LUX 1 1 1 1 1 1
Malta MAL 3 3 3 3 3 3
Netherlands NLD 1 1 1 1 1 1
Poland POL 3 4 3 3 3 4
Portugal PRT 3 3 3 2 3 3
Romania ROM 5 5 4 4 5 5
Spain SPA 2 2 2 1 2 3
Slovakia SVK 3 4 3 4 3 3
Slovenia SVN 2 3 2 3 2 2
Sweden SWE 1 1 1 1 1 1

Errors have been highlighted in bold face.

parative analysis of per class classification error is now presented. The number

of patterns in class C1 is significantly higher than in other classes, particularly

with respect to the class C5. While the number of patterns misclassified is three

of 27 in class C1, it raised to three of six in class C5. In the case of the interme-

diate classes, the misclassification errors are lower for class C4, only two errors,

compared to classes C2 and C3, with four and six errors, respectively.

The models could classify patterns in an upper or a lower class than that

rated by the CRA. In our analysis, we will use the terms “positive error” to

mean that model classifies the pattern in upper classes and “negative error” for

lower classes compared to the real ones (the higher the class the worse the rating

is for the country). The results show that the model for CRA Fitch committed 6

positive errors across the fourth first classes, while the models for the other two
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CRA did both type of errors. The errors committed by Moody’s model were

less biased because it misclassified positively two patterns and negatively other

three, being located into the the classes C2, C3 and C5. Finally, the predicted

label in the S&P model is very close to real rating. This model committed 7

errors, 4 positive and 3 negative, across all the classes unless C4. In all cases,

the model misclassified patterns in adjacent classes to the real one.

We can distinguish several groups among the misclassified patterns. The

first group encompassed the countries that have recently joined to the European

Union (Bulgaria, Slovakia, Slovenia and Poland). For these countries, their EU

membership represents a qualitative feature that is positively valued throughout

the credit risk assessment [67]. The non-inclusion of this aspect in the set of the

explanatory variables could partly explain the negative errors committed by the

models with respect to these countries.

The second group encloses two great European powers, France and Great

Britain. The economic downturn had led distortions in some of their economic

fundamentals, bringing them closer to those countries characterized as class C2.

However, their economic, political and financial structure generate favourable

short and medium-term expectations concerning to their creditworthiness, which

allow them to gain the highest rating for their sovereign debt. The third group

comprises the PIGS countries, strongly punished by financial markets during

the sovereign debt crisis episode. Portugal, Spain and Greece are negatively

misclassified by some models. In this case, the differences between projected

and real rating is due to the negative expectations on their future economic

performance, especially those aspect related to the fiscal policy. As for Greece,

the reliability of the data employed [68] may also be the cause of its better

performance. On the other hand, Fitch model committed a positive error clas-

sifying Ireland. This error could be due to its higher fiscal deficit compared to

those patterns in classes C4 and C5.

Finally, the case to be analysed is that of Cyprus which is assigned by the

three models to class C2. Thus, the S&P model misclassified negatively this

pattern. It also seems to indicate that S&P model did not reflect the fact
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Figure 4: Predicted projection values and contingency matrix for the Fitch test set (year 2010)
by using SVR-PCDOC.
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Figure 5: Predicted projection values and contingency matrix for the Moody’s test set (year
2010) by using SVR-PCDOC.

that S&P tends to downgrade issuers when compared to the other two agencies

[8]. Indeed, S&P downgraded Cyprus from C2 to C3 at the end of 2010, while

Moody’s and Fitch did it during the first half of the following year.

4.5. Analysis of the predicted projection

This section analyses the values predicted by the regressor in the latent space

(L) for the three datasets, which are generated by the SVR-PCDOC model. Due

27



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
AUT

BEL
BUL

CHP
CZE

DEU
DNK

SPA
EST

FIN
FRA

GBR
GRC

HUN
IRL

ITA
LAT
LIT

LUX
MAL

NLD
POL

PRT
ROM

SVK
SVN

SWE
class 1
class 2
class 3
class 4
class 5

Figure 6: Predicted projection values and contingency matrix for the S&P test set (year 2010)
by using SVR-PCDOC.

the way the PCD projection is built, and the quality of the regressor model –

which is validated through its classification performance–, it makes sense to use

these predictions to provide additional information to potential decision makers.

We propose to use these predicted values as a one dimensional measure of the

overall patterns rank.

Figures 4, 5 and 6 show the predicted one dimensional projection of the SVR-

PCDOC model. This is, the value predicted by the SVR model trained with

the PCD projection. Patterns of different classes are highlighted with different

colours and symbols corresponding to the actual class. Thresholds for each

class are plotted with dashed lines so that it can be seen whether the prediction

matches the right class or not (a pattern is classified into a class depending on

how it is relatively positioned with respect to the thresholds, see Eq. (1)). Note

that for Moody’s (Figure 5) there are only three thresholds since the training

set contained patterns for only four classes.

For all the plots, the position of the patterns into the one dimensional vari-

able space should be taken into account, so that patterns close to the thresholds

are more likely to be misclassified, and it would be advisable to get an expert

revision of the final classification to complete a more robust decision support

system. This is the case of Great Britain and France rated with C1 for the Fitch
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and Moody’s datasets (see Figures 4 and 5). However, the predictions of the

models are very close to the thresholds, and these predictions are quite consis-

tent with the ones of the S&P model that definitely places Great Britain and

France in C2. On the other hand, there are some countries that are placed in

the minimum values of the first class (C1) interval (e.g. Luxembourg, Sweden,

Finland, Denmark or Austria). According to the input variables, the trained

model places this countries as “better positioned” on class one than all the other

patterns.

Together with the plots, it is included the corresponding confusion or con-

tingency matrix of the classification results. Observe that errors are aligned

through the diagonal of the matrices. As mentioned in Subsection 3.1, this is

one of the aims of the ordinal classification. The only exception is the case of

Greece in Moody’s dataset (see Figure 5), where this pattern of C5 is placed on

class C3. However, we can argue that this case is not common since the model

was trained by only considering four classes.

5. Conclusions

In this paper, we have applied the PCD projection as a suitable method-

ology for data classification and validation. The robustness of the classifier is

demonstrated using four performance metrics for comparing the PCDOC clas-

sifier to nominal and ordinal classifiers in the three main CRA’s datasets. In

most cases, the errors committed by the three models implies the misclassifica-

tion of patterns in only one upper or lower class rather than several ranks in

the ordinal rating scale. It supposes an advantage for decision making process

based on scenarios considering sovereign ratings.

On the other hand, the pattern by pattern analysis indicates that the set

of explanatory variables has to be augmented with other qualitative variables

for some countries. In this regard, the historical information about a country’s

economic performance could be completed with data on economic short and

medium-term expectations, as a result projected rating would turn into forward-
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looking evaluation of the country’s ability to honour its sovereign debt.

This study can be extended in two different ways to increase the accuracy of

the proposed models, once data comparable across countries and for periods of

less than one year are available. First, by using quarterly or monthly data that

provide more detailed information on the economic and financial developments

in the context of the high volatility and the repricing of risk in financial mar-

kets. Secondly, by including data about country banking sector’s exposures to

sovereign debt and housing bubble that finally crystallize on the government’s

balance sheet.
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