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Abstract: This study assessed the potential of near infrared (NIR) spectroscopy as a 

non-destructive method for characterizing Protected Designation of Origin (PDO) “Vinagres 

de Montilla-Moriles” wine vinegars and for classifying them as a function of the 

manufacturing process used. Three spectrophotometers were evaluated for this purpose: two 

monochromator instruments (Foss NIRSystems 6500 SY-I and Foss NIRSystems 6500 SY-II; 

spectral range 400–2,500 nm in both cases) and a diode-array instrument (Corona  

45 VIS/NIR; spectral range 380–1,700 nm). A total of 70 samples were used to predict major 

chemical quality parameters (total acidity, fixed acidity, volatile acidity, pH, dry extract, ash, 

acetoin, methanol, total polyphenols, color (tonality and intensity), and alcohol content), and 

to construct models for the classification of vinegars as a function of the manufacturing 

method used. The results obtained indicate that this non-invasive technology can be used 

successfully by the vinegar industry and by PDO regulators for the routine analysis of 

vinegars in order to authenticate them and to detect potential fraud. Slightly better results 

were achieved with the two monochromator instruments. The findings also highlight the 
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potential of these NIR instruments for predicting the manufacturing process used, this being 

of particular value for the industrial authentication of traditional wine vinegars. 

Keywords: NIR spectroscopy; wine vinegar; quality parameters; authentication 

 

1. Introduction 

Wine vinegar is produced in most Mediterranean countries, and is widely used as a condiment, 

acidulant and food preservative. The steadily-growing diversity of commercial wine vinegars, coupled 

with increasing consumer demand, has prompted a need to characterize their major physico-chemical 

and sensory properties in order to ensure adequate quality control. Quality is governed by the raw 

material used, the acetification system and, in some cases, the system and type of wood used in the 

ageing process. Previous research into the monitoring of wine-vinegar quality has been based  

on a range of chemical and sensory techniques, including pyrolysis-mass spectrometry [1], 

gas-chromatography-olfactometry [2], atomic absorption spectrometry [3], electronic noses [1] and 

potentiometry using ion-selective electrodes [4]. 

Near-infrared reflectance spectroscopy (NIRS) is currently an ideal alternative to traditional wet 

chemistry for determining vinegar quality. In addition to being fast and precise, it is both flexible and 

versatile, applicable to multiple products and attributes. A single spectral analysis can provide 

information on a wide range of quality parameters. This technology is particularly well-suited to the 

prediction of complex parameters with a crucial influence on end-product quality, such as the ones found 

in wine vinegars, where information from across the whole spectrum is indispensable. 

Recent major advances in NIR instrumentation include an increased use of diode-array equipment 

varying—amongst other characteristics—in wavelength resolution, detector type, and electronic 

stability. This has enabled NIRS to be used, with reliable results, for hitherto limited applications; more 

particularly, it has raised the possibility of on-line use of NIRS technology, although further research is 

still required in this field. 

There has been little research into the use of this technology in vinegar; published papers to date focus 

mainly on the measurement of total soluble solid content, acidity and pH [5–9]. None of these papers 

address the comparison of different instruments, with very different specifications in terms of optical 

design, potential on-line implementation and cost. 

Moreover, no use of NIRS technology on the authentication of wine vinegars as a function of the 

manufacturing method used has been reported to date. However, this is of enormous commercial 

interest, given the marked difference in quality between traditionally-made vinegars and those obtained 

using industrial procedures. 

The present study sought to investigate the viability of using NIRS technology to evaluate quality 

parameters in wine vinegars belonging to the Protected Designation of Origin (PDO) “Vinagres de 

Montilla-Moriles” and to classify wine vinegars according to the method of manufacturing used. At the 

same time, the performance of three commercial NIRS instruments was compared: two high-end 

monochromators suitable for laboratory measurements, and a diode-array spectrophotometer suitable 

for on-line measurements. 
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2. Material and Methods 

2.1. Sampling 

A total of 70 samples of different dry wine vinegars (24 obtained by the traditional “Orleans” 

acetification procedure and 46 by the submerged culture system), from 12 wineries belonging to the 

PDO “Vinagres de Montilla-Moriles” were used for this study. Collected samples were transferred to the 

laboratory at the Bromatology and Food Technology Department, University of Cordoba (Cordoba, 

Spain), where they were kept refrigerated (2–4 °C) until NIRS spectra were captured the following day. 

Following spectrum capture, samples were sent to the Agricultural Research and Training Centre in 

Cabra (Spain) for measurement of eight physico-chemical properties (total acidity, volatile acidity, fixed 

acidity, pH, ash, dry extract, total polyphenols and color) and to the Agrofood Laboratory and Wine 

Centre at Jerez (Spain) for measurement of a further three quality parameters (alcohol, methanol and 

acetoin content). 

2.2. Analytical Measurements  

Total and fixed acidity (g acetic acid/100 mL vinegar) were measured using an automatic titrator 

(Crison Micro TT 2050, Crison, Alella, Barcelona, Spain) following the official method for Spain [10]. 

Volatile acidity (g acetic acid/100 mL vinegar) was calculated as total acidity minus fixed acidity. 

Vinegar pH was measured by potentiometry using the same automatic titrator. Dry extract and ash were 

measured following the official method for Spain [10], and results were expressed as g/L and percentage 

point of acetic acid, and g/L, respectively. Acetoin levels (mg/L) were determined by official method for 

Spain [11], using a gas chromatograph fitted with a flame ionization detector (Thermo-Finnigan Trace 

GC Ultra, Thermo-Finnigan, Austin, TX, USA). Methanol levels (mg/L) were measured using a 

Thermo-Finnigan Trace GC gas chromatograph (Thermo-Finnigan) with a capillary column; an internal 

standard was used for quantitative determination [12]. Total polyphenol content (ppm gallic acid) was 

measured following [13], using a Perkin Elmer Lambda 25 spectrophotometer (PerkinElmer, Waltham, 

MA, USA). Color measurements were made using the Sudraud method [14], in which color intensity is 

taken as the sum of absorbances at 420, 520 and 620 nm and tonality is defined as the ratio of absorbance 

at 420 nm to the absorbance at 520 nm; the same spectrophotometer was used for this purpose. Alcohol 

content (% vol.) was measured using an FTIR interferometer (Winescan FT 120, Foss Electric, Hillerød, 

Denmark) [15]. All analyses were performed in duplicate. 

2.3. Instruments and Spectrum Collection 

For collecting NIR spectra, three NIR-instruments—differing mainly in the wavelength range used 

and the measuring principle involved—were used. The main features of these instruments are shown in 

Table 1. Samples were scanned using a folded-transmission gold reflector cup, diameter 3.75 cm, with a 

pathlength of 0.1 mm, in the transflectance mode, with all three instruments tested. 
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Table 1. Basic technical characteristics of three spectrophotometers: two monochromators 

(M) and a diode-array instrument (DA). 

Properties 
Instruments 

M: FNS 6500 SY-I and FNS 6500 SY-II DA: Corona 45 VIS/NIR 

Detector type 
Silicon, 400–1,100 nm. Lead Sulphide, 

1,100–2,500 nm 
Silicon, 400–950 nm. Indium-Gallium-Arsenide 

detector, 950–1,700 nm 
Wavelength 
range (nm) 

400–2,500 380–1,700 

Spectral data rate 1.8 scans/s 20 scans/s 
Dispersion Pre Post 

Light source Full spectrum Full spectrum 
Analysis mode Reflectance Reflectance 

The FOSS-NIRSystem 6500 SY-I (FNS-I) and the SY-II (FNS-II) monochromators (Silver Spring, 

MD, USA) provide absorbance readings from 400 to 2,500 nm, in 2 nm steps. The FNS-I instrument is 

equipped with manual gain control detectors, and a spinning module was used. The later-generation 

FNS-II is equipped with autogain control, and the transport module was used for spectrum collection. In 

both cases, two spectra were collected per sample and were averaged for subsequent processing. 

Spectral data were recorded using the WinISI II software package version 1.50 (Infrasoft International, 

Port Matilda, PA, USA). 

Spectra were also collected on all samples using the Zeiss Corona portable diode-array 

spectrophotometer (model Corona 45 VIS/NIR, Carl Zeiss Inc., Thornwood, NY, USA) in the spectral 

range 380–1,700 nm, every 2 nm. The instrument was equipped with the turnstep module (revolving 

plate) containing the gold reflector cup. Two spectra were captured per sample and the average of the 

two was used in calculations. For this instrument, the signal was captured using CORA software version 

3.2.2 (Carl Zeiss Inc.), and subsequently pretreated using the Unscrambler program version 9.1 (CAMO, 

ASA, Oslo, Norway). 

2.4. Calibration Set 

Calibration models were constructed using all the samples available (n = 70) for all parameters except 

alcohol content (n = 41), since the reference method to measure alcohol content only detects values 

greater than 0.2% vol. (Table 2). 

2.5. Chemometric Data Treatment 

The WinISI software package version 1.50 (Infrasoft International.) was used for the chemometric 

treatment of data. Quantitative calibrations were developed for predicting total acidity, fixed acidity, 

volatile acidity, pH, dry extract, ash, acetoin, methanol, total polyphenols, color, and alcohol content. 

Prediction equations were obtained using Modified Partial Least Squares (MPLS) as regression method [16] 

with cross-validation; the calibration set was partitioned into six groups; each group was then validated 

using a calibration developed on the other samples; finally, validation errors were combined to obtain a 

standard error of cross-validation (SECV). 
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Table 2. Statistical analysis of calibration sample sets, i.e., data ranges, means and standard 

deviations (SD) and coefficients of variation (CV). 

Parameter N Range Mean SD CV (%)

Total acidity (g acetic acid/100 mL vinegar) 70 4.65–15.75 9.44 2.14 22.70 
Fixed acidity (g acetic acid/100 mL vinegar) 70 0.01–0.53 0.26 0.09 34.62 

Volatile acidity (g acetic acid/100 mL vinegar) 70 4.39–14.81 9.19 2.10 22.87 
pH 70 2.49–3.33 2.82 0.15 5.15 

Dry extract (g/L and percentage point of acetic acid) 70 0.72–6.71 2.36 1.15 48.81 
Ash (g/L) 70 1.40–8.25 3.32 1.42 42.68 

Acetoin (mg/L) 70 144.75–2057.17 498.51 336.15 67.43 
Methanol (mg/L) 70 12.18–122.74 49.85 21.28 42.69 

Total polyphenols (ppm gallic acid) 70 73.39–801.05 344.29 141.08 40.98 
Intensity 70 0.03–9.44 1.53 1.89 123.73 
Tonality 70 0.10–4.53 2.56 1.30 50.88 

Alcohol content (% vol.) 41 0.22–4.70 1.07 0.99 92.04 

For each analytical parameter, different mathematical treatments were evaluated for scatter 

correction, including the Standard Normal Variate (SNV) and Detrending (DT) methods. Furthermore, 

four derivate mathematical treatments were tested in the development of NIRS calibrations: 1,5,5,1; 

2,5,5,1; 1,10,5,1 and 2,10,5,1, where the first digit is the number of the derivative, the second is the gap 

over which the derivative is calculated, the third is the number of data points in a running average or 

smoothing, and the fourth is the second smoothing [16]. 

For calibration purposes, the following spectral regions were tested: (1) VIS+NIR (500–1690 nm 

Corona 45 VIS/NIR and 400–2500 nm Foss NIRSystems); (2) only NIR (1100–1690 nm Corona 45 

VIS/NIR and 1100–2500 nm Foss NIRSystems). To eliminate signal noise in the diode array instrument 

at the beginning and end of the spectrum, the wavelength ranges between 380–500 nm and 1690–1700 nm 

were discarded. 

The statistics used to select the best equations were: standard error of calibration (SEC), coefficient of 

determination of calibration (R2), standard error of cross-validation (SECV), coefficient of 

determination for cross-validation (r2), RPD or ratio of the standard deviation of the original data (SD) to 

SECV, and the coefficient of variation (CV) or ratio of the SECV to the mean value of the reference data 

for the calibration set. These latter two statistics enable SECV to be standardized, facilitating the 

comparison of the results obtained with sets of different means [17]. 

2.6. NIRS Classification Models 

The design of models to classify wine vinegar by manufacturing method, in order to evaluate the 

viability of using NIRS technology for authenticating wine vinegars, comprised two classification 

groups: traditionally-produced vinegars in which acetic fermentation takes place slowly on the surface 

of wood barrels, i.e., the traditional “Orleans” acetification process; and industrial vinegars made using 

the submerged culture process. 

The influence of potential imbalance on the development of discriminant models was also 

investigated using two different models for each of the three instruments tested: a class-balanced model 
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containing 24 samples each of traditional and submerged-culture vinegars; and a class-unbalanced 

model containing 46 submerged-culture samples and 24 traditional vinegar samples. 

Samples for balanced training sets were selected using the SELECT algorithm included in the  

WinISI II version 1.50 software package, which detects samples whose spectrum is similar to that of 

others in the population [16]. 

Discriminant models were constructed to classify wine vinegar by manufacturing method, using PLS 

discriminant analysis (PLS-DA) for supervised classification. Specifically, the PLS2 algorithm was 

applied, using the “Discriminant Equations” option in the WINISI version 1.50 software package. 

All models were constructed using six cross-validation groups (i.e., the calibration set is partitioned 

into six groups; each group is then predicted using a calibration developed on the other samples), in the 

wavelength ranges: (1) 400–2,500 nm, for the FNS-6500 instruments; and (2) 500–1,690 nm for the 

Corona 45 VIS/NIR. To eliminate signal noise in the diode array instrument at the beginning and end of 

the spectrum, the wavelength ranges between 380–500 nm and 1,690–1,700 nm were discarded. A 

combined Standard Normal Variate (SNV) and Detrending (DT) method was used for scatter correction. 

First and second-derivative treatments were tested: 1,5,5,1; 1,10,5,1; 2,5,5,1 and 2,10,5,1 [16]. The 

precision of the models obtained was evaluated using the percentage of correctly-classified samples, 

both globally and partially or by classes. 

3. Results and Discussion 

3.1. Overview of Wine Vinegar Spectra 

Typical log (1/R) spectra for wine vinegars collected using the three instruments tested, together with 

the most relevant absorption bands, are shown in Figure 1. All spectra displayed fairly similar trends. 

Figure 1. Typical log (1/R) spectra for Montilla-Moriles PDO vinegars. 

 

One peak was identified in the visible region of the spectrum, at 460 nm, which is indicative of the 

presence of red pigments (anthocyanins) [18]. 
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In the near-infrared region, all spectra displayed intense bands at 1,450 nm, related to the first O-H 

overtone, and at 1,930 nm, related to the combination of stretch and deformation of the O-H group in 

water [19]. The small absorption band at 1,670 nm might be related to the C-H3 stretch first overtone or 

C-H groups in aromatic compounds [20]. The band at 1,790 nm may be related to the C-H stretch first 

overtone, and that at 2,260 nm probably to C-H combination bands of methanol [21,22]. 

3.2. Calibration Development 

The final equations for each parameter studied were selected by statistical criteria, choosing those 

which displayed the lowest values for SECV and CV, and the highest values for r2 and RPD. Table 3 

shows the cross-validation statistics for the best equations obtained for the three instruments tested. 

Table 3. Calibration statistics for quality parameters in wine vinegars. 

Parameter Instrument Mathematic treatment Spectral range (nm) Mean 1 SD 2 SECV 3 r 2,4 RPD 5 CV 6 

Total acidity  

(g acetic acid/100 mL vinegar) 

FNS I 2,5,5,1 SNV + DT 400–2500 9.49 2.07 0.25 0.99 8.35 2.62 * 

FNS II 1,5,5,1 None 400–2500 9.50 2.08 0.26 0.98 7.95 2.76 

Corona 1,5,5,1 None 500–1690 9.39 2.17 0.29 0.98 7.44 3.12 

Fixed acidity  

(g acetic acid/100 mL vinegar) 

FNS I 1,10,5,1 SNV + DT 1100–2500 0.24 0.08 0.04 0.79 2.19 15.62 * 

FNS II 1,10,5,1 SNV + DT 1100–2500 0.25 0.09 0.04 0.78 2.15 16.70 

Corona 2,5,5,1 SNV + DT 500–1690 0.25 0.08 0.05 0.58 1.53 19.77 

Volatile acidity  

(g acetic acid/100 mL vinegar) 

FNS I 2,5,5,1 SNV + DT 400–2500 9.24 2.03 0.25 0.98 7.99 2.76 * 

FNS II 1,5,5,1 None 400–2500 9.11 2.10 0.29 0.98 7.16 3.22 

Corona 1,5,5,1 None 500–1690 9.10 2.13 0.31 0.98 6.92 3.38 

pH 

FNS I 1,5,5,1 None 1100–2500 2.82 0.14 0.05 0.85 2.60 1.85 * 

FNS II 1,5,5,1 None 400–2500 2.81 0.12 0.05 0.81 2.25 1.95 

Corona 1,5,5,1 None 500–1690 2.80 0.13 0.07 0.72 1.89 2.43 

Dry extract  

(g/L and percentage point of 

acetic acid) 

FNS I 2,10,5,1 SNV + DT 400–2500 2.33 1.13 0.14 0.99 8.16 5.94 

FNS II 1,5,5,1 SNV + DT 1100–2500 2.32 1.12 0.12 0.99 9.41 5.14 * 

Corona 1,5,5,1 None 1100–1690 2.10 0.75 0.18 0.94 4.14 8.65 

Ash (g/L) 

FNS I 1,5,5,1 SNV + DT 1100–2500 3.26 1.33 0.41 0.91 3.28 12.49 

FNS II 1,10,5,1 SNV + DT 1100–2500 3.28 1.37 0.30 0.95 4.59 9.10 * 

Corona 2,10,5,1 SNV + DT 500–1690 3.29 1.35 0.55 0.83 1.62 16.71 

Acetoin (mg/L) 

FNS I 2,5,5,1 SNV + DT 400–2500 439.26 237.45 127.33 0.71 1.86 28.99 * 

FNS II 1,10,5,1 SNV + DT 400–2500 436.34 239.58 158.82 0.56 1.51 36.40 

Corona 2,10,5,1 None 500–1690 459.69 244.56 155.92 0.59 1.56 33.92 

Methanol (mg/L) 

FNS I 2,10,5,1 None 1100–2500 46.94 17.04 9.85 0.67 1.73 20.98 

FNS II 1,5,5,1 SNV + DT 400–2500 46.64 17.25 7.81 0.80 2.21 16.74 * 

Corona 2,5,5,1 None 500–1690 44.35 14.67 7.93 0.71 1.85 17.87 

Total polyphenols  

(ppm gallic acid) 

FNS I 1,5,5,1 SNV + DT 400–2500 337.08 133.35 56.69 0.82 2.35 16.82 * 

FNS II 1,10,5,1 None 400–2500 337.08 133.35 58.42 0.81 2.28 17.33 

Corona 2,5,5,1 SNV + DT 500–1690 337.99 136.33 63.58 0.78 2.14 18.81 

Intensity 

FNS I 1,10,5,1 SNV + DT 400–2500 1.31 1.55 0.31 0.96 4.96 23.93 

FNS II 2,10,5,1 SNV + DT 400–2500 1.48 1.66 0.23 0.98 6.86 16.41 * 

Corona 1,5,5,1 SNV +DT 500–1690 1.31 1.56 0.27 0.97 5.88 20.32 
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Table 3. Cont. 

Parameter Instrument Mathematic treatment Spectral range (nm) Mean 1 SD 2 SECV 3 r 2,4 RPD 5 CV 6 

Tonality 

FNS I 2,10,5,1 SNV + DT 400–2500 2.54 1.31 0.49 0.86 2.68 19.30 

FNS II 2,5,5,1 None 400–2500 2.60 1.28 0.41 0.90 3.13 15.79 * 

Corona 1,5,5,1 SNV + DT 500–1690 2.67 1.25 0.30 0.94 4.19 11.14 

Alcohol content (% vol.) 

FNS I 2,5,5,1 SNV + DT 400–2500 0.98 0.81 0.06 0.99 14.42 5.71 

FNS II 2,10,5,1 None 400–2500 0.96 0.81 0.04 0.99 22.31 3.76 * 

Corona 1,5,5,1 SNV + DT 1100–1690 1.09 0.99 0.20 0.96 4.98 18.21 

Note: 1 Mean of the calibration set; 2 Standard deviation; 3 Standard error of cross-validation; 4 Coefficient of determination of 

cross-validation; 5 Ratio SD/SECV; 6 Coefficient of variation; * The best of the best equations for each parameter and instrument tested. 

3.2.1. Acidity-Related Parameters 

The best calibration models obtained using the global set (n = 70) for the prediction of total acidity, 

fixed acidity, volatile acidity and pH for the three instruments tested are shown in Table 3. 

The equation displaying the greatest predictive capacity for total acidity was that obtained using the 

FNS-I instrument over the broadest spectral range, i.e., 400–2,500 nm, and with scatter correction. 

Performance statistics were r2 = 0.99, SECV = 0.25 and RPD = 8.35. Inferior results were obtained with 

the FNS II (RPD = 7.95) and with the Corona 45 VIS/NIR (RPD = 7.44). Results for the FNS-I were 

similar to findings reported by Fan et al. [7] and by Chen et al. [6], who recorded r2 values of 0.97–0.99 

and SECV values of 0.15–0.25, respectively. 

For fixed acidity, the equation displaying the greatest predictive capacity was also obtained with the 

FNS-I over the range 1100–2,500 mm with scatter correction, yielding statistical values of r2 = 0.79, 

SECV = 0.04 and RPD = 2.19; these values were similar to those obtained with the FNS-II (RPD = 2.15) 

and higher than those yielded by the Corona 45 VIS/NIR (RPD = 1.53). This predictive capacity 

surpassed that recorded by Sáiz-Abajo et al. [5], who reported an RMSEC value of 0.79. 

The best equations for volatile acidity were also obtained using the FNS-I, which yielded 

performance statistics (r2 = 0.98; SECV = 0.25 and RPD = 7.99) similar to those recorded by 

González-Sáiz et al. [23] in onion vinegar and by Wang et al. [24] in plum vinegar, while statistics for 

pH prediction (r2 = 0.85; SECV = 0.05 and RPD = 2.60) were lower than those reported by Bao et al. [8]. 

The predictive capacity of the models constructed using the FNS-II was similar (RPD = 7.16 and 2.25 

for the two parameters tested), whilst the performance statistics for the Corona 45 VIS/NIRS were lower 

for volatile acidity (RPD = 6.92) and for pH (RPD = 1.89). 

The overall equations developed with the FNS-I for total and volatile acidity yielded a coefficient of 

determination (0.99–0.98) that enabled samples to be classed with total accuracy due to the excellent 

predictive capacity of the model. For fixed acidity and pH, the predictive capacity of the models 

developed may be considered good according to Williams [17]. 

Although the best results in terms of predictive capacity were obtained using the FNS-I instrument, 

the precision and accuracy of the models developed using the Corona 45 VIS/NIR diode-array 

instrument would amply justify their on-line use for monitoring vinegar fermentation and controlling 

volatile acidity during the fermentation process, as well as for authenticating wine vinegars, since  

the measurement of non-volatile acidity attributable to the major fixed acids in wine vinegar  

(tartaric, malic and succinic) enables them to be distinguished from alcohol vinegars. Similarly, the 
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volatile acidity/dry extract ratio can be used to determine whether the vinegar has been fermented; a low 

ratio, generally below 8, is recorded for wine vinegars, whereas synthetic, alcohol-based vinegars 

display a high ratio (10–100). 

3.2.2. Parameters Related to Fraud Detection and Vinegar Authentication 

The best calibration models obtained for predicting parameters useful for detecting fraud within the 

wine industry (dry extract, ash, acetoin and methanol content) are shown in Table 3. All three 

instruments displayed great predictive capacity for dry extract. Results for the FNS-I and FNS-II were 

very similar (r2 = 0.99, SECV = 0.14 and 0.12; RPD = 8.16 and 9.41, respectively), scanning over the 

range 400–2500 nm with the FNS-I and over the 1,100–2,500 nm range with the FNS-II, with scatter 

correction in both cases; these results were better than those obtained using the Corona 45 VIS/NIR  

(r2 = 0.94; SECV = 0.18; RPD = 4.14) over the spectral range 1100–1690 nm without scatter correction. 

Better results were reported by Sáiz-Abajo et al. [5], although they used a larger range for the calibration 

set (1.30–17.56 vs. 0.72–6.71). 

Slight differences in accuracy were noted for the ash-prediction models between all three 

instruments. The best calibration statistics for the FNS-I were r2 = 0.91, SECV = 0.41, RPD = 3.28; for 

the FNS II the best values were r2 = 0.95, SECV = 0.30, RPD = 4.59; and for the Corona 45 VIS/NIR  

r2 = 0.83, SECV = 0.55, RPD = 1.62. For the monochromators, the best calibration statistics were 

recorded using the spectral range 1,100–2,500 nm, whilst the diode-array instrument yielded the best 

statistics in the range 500–1,690 nm, with scatter correction in all cases. 

The predictive capacity of the equations obtained here for ash measurements was lower than the  

SEC = 0.21 reported by Sáiz-Abajo et al. [5]. 

The predictive capacity of the models constructed to predict acetoin using the FNS-I monochromator 

(400–2500 nm and scatter correction) (r2 = 0.71; SECV = 127.33; RPD = 1.86) may be considered good, 

whilst the models obtained using the FNS-II (400–2,500 nm and scatter correction) and the Corona 45 

VIS/NIR (500–1,690 nm and no scatter correction) would enable acetoin values for vinegars to be 

classified as high, medium, or low (r2 = 0.56–0.59; SECV = 158.82–155.92; RPD = 1.51–1.56, 

respectively), following Williams’ recommendations [17]. 

Models constructed for methanol determination using the FNS-II over the whole instrument range, 

with scatter correction, were more accurate and precise (r2 = 0.80; SECV = 7.81; RPD = 2.21) than those 

obtained with the Corona 45 VIS/NIR (RPD = 1.85) and with FNS-I (RPD = 1.73) (Table 3). 

No references have been found in the literature to the measurement of acetoin or methanol using 

NIRS technology. 

Calibrations using the two monochromators displayed excellent predictive capacity for dry extract 

and ashes; predictive capacity was excellent for dry extract and good for ashes using the diode-array 

instrument; good for acetoin using the FNS-I and fair using the FNS-II and Corona 45 VIS/NIR; and 

good for methanol using the FNS-II and the Corona 45 VIS/NIR and fair for the FNS-I [17]. This 

confirms the viability of NIRS technology for detecting vinegar frauds, using this non-destructive 

technique to increase sampling pressure, and also for on-line monitoring of these parameters; on-line 

implementation of the diode-array instrument is wholly viable and would provide the required real-time 

values for monitoring purposes. Dry extract values below the legally-established limits may be an 
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indication that the vinegar has been subjected to unacceptable (or indeed banned) by law treatments, 

including watering-down and the addition of sugars, alcohol or acetic acid, even though the initial 

degree of acidity is maintained. By contrast, dry extract values above the regulatory limits may indicate 

the presence of alcohol fermentation other than the normal acetification process, or excessive crushing 

or pressing of the grape. The addition of non-volatile substances such as glycerin would also prompt an 

increase in the figure for dry extract [25]. In the case of ash, heavy dilution of vinegar followed by the 

addition of mineral acetic acid would be reflected in an abnormally high value for ash content. The 

non-destructive determination of acetoin or acetylmethylcarbinol—a characteristic compound that 

accumulates during the acetification process—would greatly help to distinguish genuine fermented 

vinegars from artificial vinegars, in which this compound is not found [26]. 

With regard to methanol, since each product has a unique volatile composition, the volatile fraction of 

different vinegars has been used to distinguish and classify these products, thus helping to combat fraud 

and ensure the authenticity and quality of wine vinegars [27,28]. 

3.2.3. Total Polyphenols and Color 

The best prediction models for total polyphenols and color intensity and tonality were obtained over 

the VIS + NIRS wavelength range, using scatter correction (except for total polyphenols and tonality 

using the FNS-II). As Table 3 shows, the best models for predicting total polyphenol content were 

obtained with the FNS-I, whose predictive capacity may be regarded as good (r2 = 0.82; SECV = 56.69; 

RPD = 2.35) [17]; its performance was similar to that of the FNS-II (RPD = 2.28), and better than that of 

the Corona 45 VIS/NIR (RPD = 2.14). These results confirm the viability of NIRS technology for 

predicting a key parameter in the vinegar industry, since phenols are associated with organoleptic 

properties of color, flavor and astringency in vinegar [29]. Low phenol compound content, taken in 

conjunction with the results for other quality parameters, may indicate that a vinegar is of inferior quality. 

As Table 3 shows, the models best predicting color-related parameters (intensity and tonality) were 

obtained using the FNS-II instrument, (r2 = 0.98 and 0.90; SECV = 0.23 and 0.41; RPD = 6.86 and 3.13, 

respectively) with excellent predictive capacity according to Williams [17]. Poorer results were obtained 

with the FNS-I (RPD = 4.96 and 2.68) and the Corona 45 VIS/NIR (RPD = 5.88 and 4.19) for intensity 

and tonality, respectively. The tonality (hue) of a vinegar reflects the ratio of yellow to red coloring. Low 

values for tonality thus indicated that the vinegar has been made from darker wines. It should also 

important to consider that contact with wood also prompts a decrease in this value. In the case of 

intensity, higher intensity values mean that the vinegar has been made from darker wines. 

No references have been found in the literature to the prediction of total polyphenol content or color 

in vinegars using NIRS technology. 

3.2.4. Alcohol Content in Relation to the Ageing Process 

The best models for alcohol content (r2 = 0.99; SECV = 0.04; RPD = 22.31) were obtained for the 

FNS-II in the spectral range 400–2500 nm and without scatter correction (Table 3). The value obtained 

for r2 (0.99) would, according to the guidelines indicated by Williams [17], demonstrate the robustness 

and power of the calibration models. The results obtained with the FNS-I (RPD = 14.42) and Corona 45 

VIS/NIR (RPD = 4.98) confirm the accuracy and precision of the models. On-line monitoring of alcohol 
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content would enable the optimum level of residual alcohol at the end of the acetic fermentation process 

to be clearly established, since exhaustion of alcohol during fermentation is unprofitable, given that in 

the absence of alcohol substrate acetic bacteria may degrade the acetic acid produced. In traditional 

manufacturing methods, which generally involve a subsequent period of ageing in wooden casks, 

complete exhaustion of ethanol is to be avoided, since the aim is to trigger esterification reactions 

between the alcohol and the acetic acid, which improve the vinegar’s bouquet, leading to the formation 

of esters such as ethyl acetate [25]. Similar results for the prediction of alcohol content have been reported 

for rice wine by Yano et al. [21] and for onion vinegar by González-Sáiz et al. [23]. 

3.3. Discriminant Analysis 

The results obtained for the best classification models for predicting manufacturing method, using the 

PLS2-DA algorithm and the three NIRS instruments tested, are shown in Table 4, both for unbalanced 

and balanced sets. The percentage of correctly-classified samples ranged from 92.8% to 94.3% for 

unbalanced sets, and from 91.7% to 93.7% for balanced sets. 

Table 4. Percentage of Montilla-Moriles PDO vinegars classified by manufacturing method. PLS-DA. 

Qualitative groups 
Unbalanced models Balanced models 

FNS I FNS II CORONA 45 VIS/NIR FNS I FNS II CORONA 45 VIS/NIR

 A: 94.3% A: 92.8% A: 94.3% A: 91.7% A: 93.7% A: 93.7% 

 B: 8 B: 8 B: 6 B: 5 B: 6 B: 4 

 C: 1,5,5,1 C: 1,5,5,1 C: 1,5,5,1 * C: 1,5,5,1 C: 2,10,5,1 C: 2,5,5,1 

Manufacturing method       

Traditional 87.5% 91.7% 91.6% 87.5% 95.8% 91.7% 

Submerged 97.8% 93.5% 95.6% 95.8% 91.7% 95.8% 

Note: A Percentage of correctly classified training samples after cross validation; B Number of synthetic variables; C Math treatment;  

* The best of the best models for the instruments studied. 

In unbalanced sets, the most accurate models were obtained using D1 log (1/R) for all the instruments 

tested, whilst for balanced sets the best performance was recorded using D1 log (1/R) (FNS-I) and  

D2 log (1/R) (FNS-II and Corona 45 VIS/NIR). 

The FNS-I correctly classified 94.3% of vinegars in unbalanced sets and 91.7% in balanced sets, 

while correct classification rates for the FNS-II were 92.8% and 93.7% and for the Corona 45 VIS/NIR 

94.3% and 93.7%, respectively. Similar minimal differences in classification rates regardless of set size 

have also been reported by Pérez-Marín et al. [30], who note that PLS2 is less sensitive to the use of 

class-unbalanced sets. 

Although all models adequately classified wine vinegars belonging to the PDO “Vinagres de 

Montilla-Moriles” by manufacturing method—indicating that NIR spectra enable discrimination 

between traditional fermentation, addressed to the production of high-quality vinegars commanding a 

high price premium in the market, since a very long period of time is required to attain a high acetic 

degree, and the industrial submerged fermentation method where all the alcohol is turned into acid  

and a sharper-tasting vinegar is produced [31]—better results were obtained using the Corona 45 

VIS/NIR spectrophotometer. 
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D1 log (1/R) spectra for wine vinegars manufactured using the traditional and submerged culture 

systems, obtained by the Corona 45 VIS/NIR instrument, are shown in Figure 2; areas of maximum 

difference, which are useful for discrimination purposes, are also indicated. 

Figure 2. D1 log (1/R) spectra for Montilla-Moriles PDO vinegars made by traditional and 

submerged methods. Corona 45 VIS/NIR spectrophotometer. Spectral range 500–1,690 nm. 

 

Absorption peaks at 504 nm (mainly linked to anthocyanins), and at 1,400 and 1,490 nm (related to 

water content and O-H combinations) appear to be especially relevant for the classification of wine 

vinegar by traditional vs. submerged methods. Similar findings were reported by Guerrero et al. [32] in a 

study using traditional analytical techniques to classify vinegars by manufacturing method. 

No references have been found in the scientific literature to NIRS-based models for classifying wine 

vinegars by manufacturing method. However Pizarro et al. [33] used a monochromator operating in the 

spectral region between 1100 and 2500 nm to classify vinegars as a function of both raw material  

(grape, wine or malt) and ageing period; 100% of samples were correctly classified. 

4. Conclusions 

The models developed here for predicting vinegar quality parameters and authenticating 

manufacturing methods highlight the potential of NIRS technology as a non-destructive tool for quality 

control and traceability testing in the vinegar industry. This technology can be used to establish whether 

a product is genuine, to determine the method by which it was made and to ensure that it meets the legal 

requirements for PDO “Vinagre de Montilla-Moriles” wine vinegars. Moreover, the results obtained 

using a latest-generation diode-array instrument were comparable to those obtained with high-end 

monochromators; the diode-array instrument has the advantage that it can be built into a production line, 

thus facilitating real-time decision-making throughout the manufacturing process. 



Sensors 2014, 14 3540 

 

 

Acknowledgments 

This research was funded by the Andalusian Regional Government under the Research Excellence 

Program (Project No. P09-AGR-5129―MEMS and NIRS-image sensors for the in situ non-destructive 

analysis of food and feed). 

Author Contributions 

This work is a collaborative development by all the authors. María-Teresa Sánchez contributed to 

the study design and collection of data, analyzed the data, and drafted the manuscript as the lead writer. 

María-José de la Haba contributed to the study design and analysis of data, and critically reviewed the 

first draft of the paper. Mar Arias and Pilar Ramírez contributed to the sampling and did the 

experimental work. Isabel López critically reviewed the first draft of the paper. All authors discussed the 

results and implications, commented on the manuscript at all stages, and approved the final version. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Anklam, E.; Lipp, M.; Radovic, B.; Chiavaro, E.; Palla, G. Characterization of Italian vinegar by 

pyrolysis-mass spectrometry and a sensor device (“electronic nose”). Food Chem. 1998, 61, 

243–248. 

2. Charles, M.; Martin, B.; Ginies, C.; Etiévant, P.; Coste, G.; Guichard, E. Potent aroma compounds 

of two red wine vinegars. J. Agric. Food Chem. 2000, 48, 70–77. 

3. Oliveira, S.R.; Oliveira, A.P.; Neto, J.A.G. Tungsten permanent chemical modifier with 

co-injection of Pd(NO3)2 + Mg(NO3)2 for direct determination of Pb in vinegar by graphite furnace 

atomic absorption spectrometry. Food Chem. 2007, 105, 236–241. 

4. Lapa, R.A.S.; Lima, J.L.F.C.; Pérez-Olmos, R.; Ruiz M.P. Simultaneous automatic potentiometric 

determination of acidity, chloride and fluoride in vinegar. Food Control 1995, 6, 155–159. 

5. Sáiz-Abajo, M.J.; González-Sáiz, J.M.; Pizarro, C. Prediction of organic acids and other quality 

parameters of wine vinegar by near-infrared spectroscopy. A feasibility study. Food Chem. 2006, 

99, 615–621. 

6. Chen, Q.; Ding, J.; Cai, J.; Zhao, J. Rapid measurement of total acid content (TAC) in vinegar using 

near infrared spectroscopy based on efficient variables selection algorithm and nonlinear regression 

tools. Food Chem. 2012, 135, 590–595. 

7. Fan, W.; Shan, Y.; Li, G.; Lv, H.; Li, H.; Liang, Y. Application of competitive adaptive reweighted 

sampling method to determine effective wavelengths for prediction of total acid of vinegar.  

Food Anal. Methods 2012, 5, 585–590. 

8. Bao, Y.; Liu, F.; Kong, W.; Sun, D.W.; He, Y.; Qiu, Z. Measurement of soluble solid contents and 

pH of white vinegars using VIS/NIR spectroscopy and least squares support vector machine.  

Food Bioprocess Technol. 2014, 7, 54–61.  



Sensors 2014, 14 3541 

 

 

9. Shi, J.; Zou, X.; Huang, X.; Zhao, J.; Li, Y.; Hao, L.; Zhang, J. Rapid detecting total acid content 

and classifying different types of vinegar based on near infrared spectroscopy and least-squares 

support vector machine. Food Chem. 2013, 138, 192–199. 

10. Ministerio de la Presidencia. Métodos Oficiales de Análisis de Aceites y Grasas, Cereales y 

Derivados, Productos Lácteos y Productos Derivados de la Uva (Spanish Official Analytical 

Methods for Oils and Fats, Cereals, Dairy Products and Enological Products); BOE num. 167,  

de 14 de julio de 1977: Madrid, España, 1977; pp. 15800–15808. (in Spanish) 

11. Ministerio de Agricultura, Pesca y Alimentación. Métodos Oficiales de Análisis (Spanish Official 

Analytical Methods); Secretaria General Técnica, Ministerio de Agricultura, Pesca y Alimentación: 

Madrid, España, 1993; Volume 2, pp. 391–392. (in Spanish) 

12. The International Organisation of Vine and Wine (OIV). Wine Vinegar: Measurement of Methanol, 

Superior Alcohols and Ethyl Acetate. Resolution OENO 70–2000. Available online: 

http://www.oiv.int/oiv/info/enquestionairemethodes?lang=en 2000. (accessed on 18 February 2014). 

13. Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic 

acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. 

14. Sudraud, P. Interpretation des courbes d’absorption des vins rouges. Ann. Technol. Agric. 1958, 7, 

203–208. 

15. Pérez-Ponce, A.; Garrigues, S.; de la Guardia, M. Vapour generation–fourier transform infrared 

direct determination of ethanol in alcoholic beverages. Analyst 1996, 121, 923–928. 

16. Shenk, J.S.; Westerhaus, M.O. Analysis of Agricultural and Food Products by Near Infrared 

Reflectance Spectroscopy; NIRSystems, Inc.: Silver Spring, MD, USA, 1995. 

17. Williams, P.C. Implementation of Near-Infrared Technology. In Near-Infrared Technology in the 

Agricultural and Food Industries; Williams, P.C., Norris, K.H., Eds.; American Association of 

Cereal Chemists, Inc.: St. Paul, MN, USA, 2001; pp. 145–169. 

18. McGlone, V.A.; Jordan, R.B.; Martinsen, P.J. Vis/NIR estimation at harvest of pre and post-storage 

quality indices for “royal gala” apple. Postharvest Biol. Technol. 2002, 25, 135–144. 

19. Osborne, B.G.; Fearn, T.; Hindle, P. Practical NIR Spectroscopy with Applications in Food and 

Beverage Analysis; Longman Scientific and Technical: London, UK, 1993. 

20. Dambergs, R.G.; Kambouris, A.; Francis, I.L.; Gishen, M. Rapid analysis of methanol in grape 

derived distillation products using near-infrared transmission spectroscopy. J. Agric. Food. Chem. 

2002, 50, 3079–3084. 

21. Yano, T.; Aimi, T.; Nakano, Y.; Tamai, M. Prediction of the concentrations of ethanol and acetic 

acid in the culture broth of a rice vinegar fermentation using near-infrared spectroscopy.  

J. Ferment. Bioeng. 1997, 84, 461–465. 

22. An, Z.; Lu, H.; Jiang, H.; Ying, Y. Prediction of marked age of mature vinegar based on fourier 

transform near infrared spectroscopy. IFIP Adv. Inf. Commun. Technol. 2011, 344, 737–743. 

23. González-Sáiz, J.M.; Estaban-Díez, I.; Sánchez-Gallardo, C.; Pizarro, C. Monitoring of substrate 

and product concentrations in acetic fermentation processes for onion vinegar production by NIR 

spectroscopy: Value addition to worthless onions. Anal. Bioanal. Chem. 2008, 391, 2937–2947. 
   



Sensors 2014, 14 3542 

 

 

24. Wang, Z.; Liu, F.; He, Y. Comparison and determination of acetic acid of plum vinegar  

using visible/near infrared spectroscopy and multivariate calibration. In Proceedings of the WRI 

World Congress on Computer Science and Information Engineering, Los Angeles, CA, USA,  

31 March 2009–2 April 2009; Volume 7, pp. 201–204. 

25. Llaguno, C.; Polo, M.C. El Vinagre de Vino (Wine Vinegar); Consejo Superior de Investigaciones 

Científicas: Madrid, España, 1991. (in Spanish) 

26. Troncoso, A.M.; Guzmán, M. Constituyentes característicos de los vinagres vínicos andaluces 

(principal components of the andalusian wine vinegars). Alimentaria 1988, 41, 49–51. (in Spanish) 

27. Casale, M.; Armanino, C.; Casolino, C.; Oliveros, C.C.; Forina, M.A. Chemometrical approach for 

vinegar classification by headspace mass spectrometry of volatile compounds. Food Sci. Technol. Res. 

2006, 12, 223–230. 

28. Durán-Guerrero, E.; Castro-Mejías, R.; Natera-Marín, R.; Palma-Lovillo, M.; García-Barroso, C.  

A new FT‐IR method combined with multivariate analysis for the classification of vinegars from 

different raw materials and production processes. J. Sci. Food Agric. 2010, 90, 712–718. 

29. Fernández de Simón, B.; Cadahía, E.; Jalocha, J. Volatile compounds in spanish red wine aged in 

barrels made of spanish, french, and american oak wood. J. Agric. Food Chem. 2003, 51, 

7671–7678. 

30. Pérez-Marín, D.; Garrido-Varo, A.; Guerrero, J.E. Optimization of discriminant partial least 

squares regression models for the detection of animal by-product meals in compound feedingstuffs 

by near-infrared spectroscopy. Appl. Spectrosc. 2006, 60, 1432–1437. 

31. Gerbi, V.; Zeppa, G.; Antonelli, A.; Carnacini, A. Sensory characterisation of wine vinegars.  

Food Qual. Prefer. 1997, 8, 24–34. 

32. Guerrero, M.I.; Heredia, F.J.; Troncoso, A.M. Characterization and differentiation of wine vinegars 

by multivariate analysis. J. Sci. Food Agric. 1994, 66, 209–212. 

33. Pizarro, C.; Esteban, I.; Sáiz-Abajo, M.J.; González-Sáiz, J.M. Caracterización y Clasificación de 

Vinagres Según Materia Prima y Proceso de Elaboración Mediante Espectroscopía de Infrarrojo 

Cercano (NIRS) (Characterization and Classification of Wine Vinegar by Raw Material and 

Manufacturing Process using Near Infrared Spectroscopy). In Proceedings of the Second 

Symposium on R + D + I for Vinegar Production, Cordoba, Spain, 26–28 April 2006; pp. 223–230. 

(in Spanish). 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


