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Abstract: Faba bean have been grown in Portugal for a long time and locally adapted populations are
still maintained on farm. The genetic diversity of four Portuguese faba bean populations that are still
cultivated in some regions of the country was evaluated using the Inter Retrotransposons Amplified
Polymorphism (IRAP) technique. It was shown that molecular markers based on retrotransposons
previously identified in other species can be efficiently used in the genetic variability assessment
of Vicia faba. The IRAP experiment targeting Athila yielded the most informative banding patterns.
Cluster analysis using the neighbor-joining algorithm generated a dendrogram that clearly shows the
distribution pattern of V. faba samples. The four equina accessions are separated from each other and
form two distinct clades while the two major faba bean accessions are not unequivocally separated
by the IRAP. Fluorescent In Situ Hybridization (FISH) analysis of sequences amplified by IRAP
Athila revealed a wide distribution throughout V. faba chromosomes, confirming the whole-genome
coverage of this molecular marker. Morphological characteristics were also assessed through cluster
analysis of seed characters using the unweighted pair group method arithmetic average (UPGMA)
and principal component analysis (PCA), showing a clear discrimination between faba bean major
and equina groups. It was also found that the seed character most relevant to distinguish accessions
was 100 seed weight. Seed morphological traits and IRAP evaluation give similar results supporting
the potential of IRAP analysis for genetic diversity studies.
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1. Introduction

Faba bean (Vicia faba L.) is an important grain legume for human and animal consumption since
their seeds are an important source of protein. It is an ancient crop only represented by cultivated
forms in germplasm collections. Thus, these biodiversity “assets” represent key sources of traits and
are indispensable for future crop improvement and food security, especially since the modernization
of agriculture reduces genetic diversity [1]. Faba bean is an entomogamous, partially allogamous crop
that has recently been considered a candidate for low input and organic agriculture [2]. Based on
differences in seed weight, shape, size and leaflet density, four botanical varieties have been recognized:
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V. faba paucijuga (very small seed and leaflet size and number), V. faba minor (small seed), V. faba equina
(intermediate seed) and V. faba major (with flattened and large seed), [3–5]. Equina and major botanical
groups consist of the richest groups in genetic variability [4].

Through the process of domestication, the faba bean crop has been subjected to natural selection
and human selection, which resulted in cultivars specifically adapted to different sets of environmental
combinations. Both human use and geographical factors played major and interdependent roles
in determining the diversity of Spanish major and equina landraces, the former being the most
important [6]. The main trait discerning between these botanical groups is seed weight and differences
in this trait are mainly due to different uses. Progress in assessing local genetic diversity has been
explicitly designated as a research priority at the European Innovation Partnership (EIP)-Focus Group
on “Genetic Resources: Cooperation Models” in order to strengthen the development of cultivars and
breeds particularly adapted to specific regions [7].

In Portugal, the most important types are major and equina. However, there is insufficient
knowledge on both types and the existing diversity in local landraces needs to be identified
and quantified.

V. faba was cultivated in the Iberian Peninsula before 4000 BC [8] and carbonized seeds of faba
bean minor from the Early Bronze Age were found in Portugal [9]. In the last decades, faba bean has
been widely grown in Portugal but its area of cultivation is decreasing due to its low and unstable yield,
farmers aging and land abandonment [10]. Presently, faba bean cropping area is restricted to 675 ha
with a production of 5973 tons in 2012 [11,12]. Nowadays, locally adapted faba bean populations,
mainly of the major type, are grown for human consumption and maintained on farm in some regions of
the country, namely in the Oeste and the Algarve [13] and also in the Azores islands [14]. Portuguese
germplasm collection has been identified as a key collection for its uniqueness in the context of the
global faba bean gene-pools [15]. Recently, a V. faba ex situ collection mainly composed of Portuguese
landraces [1] was regenerated and morphologically characterized [16] A great diversity of seed size and
coat color was observed, particularly among the populations from the Madeira Islands [17]. Duplicates
of the regenerated accessions were sent to the Svalbard Global Seed Vault, Norway and to the Centro
de Recursos Fitogenéticos, Madrid, Spain.

Retrotransposons play a crucial role in genome evolution and speciation due to their dynamics
and potential mobility [18]. A positive correlation between plant genome size and retrotransposon
frequency has been reported (reviewed in [19]). In the Vicia genus, retrotransposon copy number is
directly correlated with retrotransposon diversity [20].

V. faba (2n = 2x = 12) has a very large genome size (13,000 Mbp) due to a high number
of retrotransposon copies [20,21]. Long terminal repeat (LTR) retrotransposons provide useful
markers for the analysis of genetic diversity [22–25]. Although most retrotransposons are dispersed,
they can also be clustered in the genome, allowing the utilization of the Inter-Retrotransposon
Amplification Polymorphism (IRAP) technique [26]. IRAP has been used to study diversity within
Pisum sativum [27,28], Vitis vinifera [29], Zea mays [30], Oryza sativa [31], Triticeae species [32,33],
Avena species [34] and Arabidopsis [35].

The diffusion of alien germplasm has been responsible for the fast substitution of landraces. Thus,
information on the extent of genetic diversity in the locally adapted populations has great implications
for developping a suitable strategy for the maintenance and utilization of faba bean germplasm [36].
Moreover, in times of expected climate change and ecosystem instability, the importance of landrace
conservation is paramount. The aim of this work was to assess the diversity in a selection of locally
adapted faba bean populations which are still grown in the Portuguese farmer fields using the
IRAP technique. The genetic variation assessed through IRAP was combined with morphological
characterization and the IRAP amplification mapping was examined through Fluorescent In Situ
Hybridization (FISH).
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2. Experimental Section

2.1. Plant Material and DNA Extraction

Four Portuguese accessions adapted to different agroecological conditions were studied. These
accessions represent the faba bean that is grown in the farmers´ fields at present day: two belonging to
the major botanical group and two to the equina botanical group. Two inbred lines (for at least three
generations of selfing) of the equina group were used as the control.

The faba bean accessions representing the major group were “Fava Do Algarve” (5357), which is
a traditional variety registered in the National Catalogue of Varieties in 1992 and frequently found
in farms of the Algarve and Oeste regions; and “Fava da Terra” (5362), which is a landrace from the
Azores Islands. The equina group was represented by the locally adapted population “Favel” (5356)
obtained from the National Plant Breeding Station (Elvas, Portugal); and “Fava Miúda” (2288) from
the Madeira Islands. The two inbred lines used were “Jaulon 45” and “Jaulon 58” (Table 1).

Table 1. V. faba accessions representing the two botanical groups.

Population Common
Name/Accession Number Origin/Pedigree Botanical Group

“Fava Miuda”/2288 Madeira Island (Portugal)/locally adapted population Equina
“Fava da Terra”/5362 Azores Island (Portugal)/locally adapted population Major

“Fava Do Algarve”/5357 Algarve (Portugal)/locally adapted population Major
“Favel”/5356 Elvas (Portugal)/locally adapted population Equina
“Jaulon 45” CSIC (Spain)/Inbred line Equina
“Jaulon 58” CSIC (Spain)/Inbred line Equina

Plants were grown under a pollinator-exclusion environment. Considering the mating system of
the faba bean, five randomly chosen individual plants were analyzed from each local population. For
inbred lines, three randomly chosen individual plants were used. DNA was isolated from the young
leaves of four week old plants, using the Cetyltrimethylammonium Bromide (CTAB) extraction buffer
according to [37].

2.2. IRAP

IRAP was performed and compared within distinct plants from each accession and between
different accessions. IRAP PCR was performed in a 20 µL reaction mixture as previously described [38],
using primers targeting the LTR of retrotransposons Nikita (51-CGCTCCAGCGGTACTGCC) [39], Tat-1
(51-TCCTCGTAAAACAACCACAAG), and Athila4-6 (51-AAATGGATGCTCAAAACATGC) [19]. PCR
products were separated by 1.7% agarose gel electrophoresis and detected by Ethidium Bromide
staining. In addition, 1 kb Plus DNA Ladder (Invitrogen, Carlsbad, CA, USA) was used as molecular
weight marker. Banding profiles from PCR products were registered using a BIO-Rad GEL DOC 2000
(Bio Rad, Hercules, CA, USA). The IRAP banding profiles were considered reliable when showing
identical patterns on at least three replicates.

2.3. IRAP Data Analysis

The IRAP Athila4-6 banding profiles were analyzed with each amplified fragment as a unit
character and scored as a binary code 1 and 0 for presence and absence, respectively. Only the
prominent bands were scored for data reliability. In order to better visualize the relationships among the
individuals and populations, the neighbor-joining (weighted) algorithm as implemented in DARwin
software package, version 6.0.12 (CIRAD, Montpellier, France) [40] was used. The reliability of the
neighbor-joining tree topology was assessed via bootstrapping [41] over 10,000 replicates.
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2.4. Fluorescence in Situ Hybridization (FISH)

For Fluorescence In Situ Hybridization (FISH), root tips were collected from one-week-old plants,
washed, fixed in ethanol/acetic acid (3:1 vol/vol) for 24 h at room temperature and stored at ´20 ˝C
in fresh 3:1 solution until use.

FISH analysis was performed as previously described [42]. The Athila4-6 IRAP amplified
from “Fava Do Algarve” (5357) labeled with biotin-dUTP (Roche, Basel, Switzerland) was used
as probe. The probe was detected with Cy3- streptavidin conjugated (red) and chromosomes were
counterstained with 41,6-diamidino-2-phenylindole hydrochloride (DAPI, blue) in Citifluor antifade
mounting medium (AF1; Agar Scientific Stansted, UK). Samples were examined using a Zeiss
AxioImager Z1 epifluorescence microscope (Zeiss, Oberkochen, Germany). Images were obtained
using a Zeiss AxioCam HRm digital camera (Zeiss, Oberkochen, Germany) and processed using
Photoshop (Adobe Systems Mountain View, CA, USA).

2.5. Morphological Characterization

Accessions were evaluated according to the International Board for Plant Genetic Resources
and International Center for Agricultural Research in the Dry Areas (IBPGR/ICARDA) faba bean
descriptors. Three quantitative seed traits were recorded for each accession: (1) number of seeds
per pod; (2) seed length, width and thickness (in mm; analysis of twenty randomly selected seeds)
and (3) seed weight (in g; evaluation on 100 seeds). To examine the variation and to identify the most
relevant seed characters for accessions distinction, cluster analysis using the unweighted pair group
method arithmetic average (UPGMA) and principal component analysis (PCA) were performed. The
program NTSYS-pc, version 2.1 (Applied Biostatistics Inc, New York, NY, USA) was used in all of the
statistical analyses [43].

3. Results and Discussion

3.1. IRAP Analysis of Genomic Diversity

A total of 26 samples from six faba bean accessions were genotyped. The IRAP profiles were
compared using the inbred lines “Jaulon 45” and “Jaulon 58” as control lines. IRAP methodology was
used to target three distinct retrotransposable elements: Nikita (identified in barley [39]), Tat-1 [44]
and Athila4-6 [45] (the last two from A. thaliana). These retrotransposons have been previously used
to study genome diversity in other species besides the ones where they were identified [19,33,34,46].
They were selected to produce consistent banding profiles with easily distinguishable bands allowing
the assessment of faba bean genotypes.

IRAP Athila was the most informative marker revealing the highest frequency of polymorphic
bands (variable bands between genotypes, see Supplementary Figure S1 for polymorphic frequencies
and IRAP images).

The IRAP Athila banding patterns consisted of amplification products with molecular weights
varying from 200 bp to 1500 bp (Figures 1 and 2a). All V. faba genotypes were characterized by the
presence of three common fragments with 500 bp, 650 bp and 800 bp. This three band-signature will
not be addressed in the detailed IRAP profile descriptions that follow.
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Figure 1. V. faba IRAP banding profiles obtained with Athila4-6 retrotransposon LTR primer. (a) 
inbred lines “Jaulon 45” and “Jaulon 58”; (b) “Fava Do Algarve” (5357) and “Favel” (5356); (c) “Fava 
Miúda” (2288); and (d) “Fava da Terra” (5362). For control purposes, “Jaulon 45” and “Jaulon 58” 
were used as comparative profiles in each experiment. 

The banding profiles of “Jaulon 45” control line were identical for all plants analyzed and the 
line’s specific 450 bp fragment could be revealed. “Jaulon 58” analysis showed one variable band of, 
either 1400 bp or 1450 bp on the analyzed samples but consistent expression of the remaining three 
bands, with 1100 bp, 1300 bp, and 1500bp (Figures 1a and 2a). Contrastingly, IRAP banding profiles of 
V. faba Portuguese populations revealed marked genetic variability. “Fava Do Algarve” is the 
population depicting the simplest IRAP profiles including three individuals characterized only by 
the basic three bands-signature and two individuals with variability for bands with 1000 bp and 1300 
bp. “Fava da Terra” exhibited variability concerning fragments with 200 bp, 400 bp and 1400 bp and 
“Favel” revealed variability concerning fragments with 400 bp and 1000 bp (Figures 1b,d and 2a). In 
addition, “Favel” IRAP profiles show two bands common to all individuals (1500 bp and 200 bp), the 
former also being characteristic of both control lines (Figure 2a). “Fava Miúda” presents the highest 
number of scoring fragments (eight to 11 bands) and is the most variable population with different 
IRAP profiles for each individual (Figures 1c and 2a). Moreover, “Fava Miuda” is the only population 
with accession-specific fragments (300bp and 600 bp) (Figures 1c and 2a). The higher variability 
observed for “Fava Miúda” (equina type) relative to “Fava do Algarve” and “Fava da Terra” (both 
major type) could be related with the reduced self-fertilization described for the equina type in 
comparison with the major type [47]. However, such an assumption is not supported by the reduced 
variability observed in the equina type “Favel” (5356), possibly as a result of the breeding process. 

The neighbor-joining algorithm applied to the IRAP marker data allowed the construction of a 
dendrogram (Figure 2b) which shows a clear distribution pattern of V. faba samples. More specifically, 
the four equina accessions are separated from each other (bootstraps values higher than 50%) forming 
two distinct groups. One group is composed of the inbred line “Jaulon 45” and the local population 
“Favel” (5356) while the other group includes the inbred line “Jaulon 58” and the local population 
“Fava Miuda” (2288). While in “Jaulon 45” all the plants are identical, the same is not observed in 
“Jaulon 58”, which may suggest insufficient generations of selfing. The analysis also expresses great 
heterogeneity within the landrace “Fava Miuda” (2288). 

Figure 1. V. faba IRAP banding profiles obtained with Athila4-6 retrotransposon LTR primer. (a) inbred
lines “Jaulon 45” and “Jaulon 58”; (b) “Fava Do Algarve” (5357) and “Favel” (5356); (c) “Fava Miúda”
(2288); and (d) “Fava da Terra” (5362). For control purposes, “Jaulon 45” and “Jaulon 58” were used as
comparative profiles in each experiment.

The banding profiles of “Jaulon 45” control line were identical for all plants analyzed and the
line’s specific 450 bp fragment could be revealed. “Jaulon 58” analysis showed one variable band
of, either 1400 bp or 1450 bp on the analyzed samples but consistent expression of the remaining
three bands, with 1100 bp, 1300 bp, and 1500bp (Figures 1a and 2a). Contrastingly, IRAP banding
profiles of V. faba Portuguese populations revealed marked genetic variability. “Fava Do Algarve” is
the population depicting the simplest IRAP profiles including three individuals characterized only
by the basic three bands-signature and two individuals with variability for bands with 1000 bp and
1300 bp. “Fava da Terra” exhibited variability concerning fragments with 200 bp, 400 bp and 1400
bp and “Favel” revealed variability concerning fragments with 400 bp and 1000 bp (Figures 1b,d and
2a). In addition, “Favel” IRAP profiles show two bands common to all individuals (1500 bp and 200
bp), the former also being characteristic of both control lines (Figure 2a). “Fava Miúda” presents the
highest number of scoring fragments (eight to 11 bands) and is the most variable population with
different IRAP profiles for each individual (Figures 1c and 2a). Moreover, “Fava Miuda” is the only
population with accession-specific fragments (300bp and 600 bp) (Figures 1c and 2a). The higher
variability observed for “Fava Miúda” (equina type) relative to “Fava do Algarve” and “Fava da Terra”
(both major type) could be related with the reduced self-fertilization described for the equina type in
comparison with the major type [47]. However, such an assumption is not supported by the reduced
variability observed in the equina type “Favel” (5356), possibly as a result of the breeding process.

The neighbor-joining algorithm applied to the IRAP marker data allowed the construction of a
dendrogram (Figure 2b) which shows a clear distribution pattern of V. faba samples. More specifically,
the four equina accessions are separated from each other (bootstraps values higher than 50%) forming
two distinct groups. One group is composed of the inbred line “Jaulon 45” and the local population
“Favel” (5356) while the other group includes the inbred line “Jaulon 58” and the local population
“Fava Miuda” (2288). While in “Jaulon 45” all the plants are identical, the same is not observed in
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“Jaulon 58”, which may suggest insufficient generations of selfing. The analysis also expresses great
heterogeneity within the landrace “Fava Miuda” (2288).
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(5362a) plant group with the equina accession 2288 (with a bootstrap value of 74%). 

Figure 2. (a) schematic representation of V. faba IRAP banding profiles obtained with Athila4-6
retrotransposon LTR primer; (b) neighbor-joining tree of 26 Vicia faba individuals based on IRAP
analysis with Athila4-6 retrotransposon LTR primer. Numbers at the branches correspond to bootstrap
values (%) out of 10,000 replications.
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Concerning the two major faba bean accessions, the analysis shows that the IRAP markers did not
allow the unequivocal separating of the two accessions. Indeed, the group containing “Fava da Terra”
(5362) also contains plants of “Fava do Algarve” (5357). Furthermore, a “Fava da Terra” (5362a) plant
group with the equina accession 2288 (with a bootstrap value of 74%).

The genetic variability detected within the faba bean accessions studied was also reported
for Greek, Sicilian and Tunisian germplasm using Inter-Simple Sequence Repeat (ISSR), Amplified
Fragment Length Polymorphism (AFLP) and Sequence Specific Amplified Polymorphism (SSAP)
markers [48–50]. A large amount of variation within faba bean landraces was also demonstrated
using Target Region Amplification Polymorphism (TRAP) [51], probably as a result of high levels of
outcrossing as previously suggested [47,48,50–52].

The IRAP amplification products obtained from “Fava Do Algarve” plants only characterized
by the basic three band-signature were used as probe in in situ hybridization. The technique shows a
widespread distribution of FISH signals throughout prophase chromosomes (Figure 3). This result
confirms that retrotransposon-related sequences are usually dispersed on plant species with large
genomes like V. faba [53] and Triticeae species [54,55] or on plants with median size genomes like
O. sativa [53] or Vitis vinifera [29], as opposed to the preferential clustering of retrotransposons in
pericentromeric domains observed in plant species with small genomes like Arabidopsis thaliana [56].
The detailed analysis of IRAP Athila FISH labelling reveals signals on DAPI-positive domains with
less condensed chromatin as well as on domains with more intense DAPI staining (heterochromatin)
(arrowhead in Figure 3b), although some of these heterochromatic domains do not present any FISH
labeling (small arrow in Figure 3c). This widespread labeling pattern was also previously observed in
the distribution of Ty1-Copia elements in V. faba [20]. Moreover, such distribution of IRAP targeted
sequences demonstrate the genome-wide evaluation of genomic variation occurrence between faba
bean genotypes evaluated using IRAP Athila. This may account for the extensive diversity unraveled
in the present study, emphasizing the relevance of this molecular tool for the characterization of
V. faba germplasm.
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Figure 3. Meristematic root-tip prophase cells from V. faba (“Fava Do Algarve”, plant 2). (a) DAPI
counterstaining (blue); (b) FISH using IRAP Athila amplification product marked with biotin and
detected with streptavidin Cy3 conjugated (red); (c) FISH signals and DAPI superimposed. In (b),
the arrow indicates FISH labels with two signals on both chromatids and the arrowhead indicates a
DAPI-condensed domain marked with IRAP FISH signal. In (b) and (c), the black arrowhead indicates
a DAPI-condensed domain negative for IRAP FISH signal.

3.2. Seed Morphological Characterization

Faba bean seeds present a broad range of morphological variation on phenotype traits such as
size, shape and color, probably as a result of natural and agronomic selection [9]. Since seeds are
the main edible parts of faba beans, their weight and dimensions are important traits. In the Iberian
Peninsula, large seeds are the most frequent and preferred for human consumption.

In the present study, significant differences and high variability were observed in 100 seed weight,
and in length and width traits among accessions from the major and equina types (Table S1). All
the accessions were discriminated and the cluster analysis placed major and equina accessions into
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separated groups (Figure 4a). A PCA was also performed with the original variables. Figure 4b
demonstrates the correlation between the first three principal components of this PCA.Diversity 2016, 8, 8 8 of 11 
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Figure 4. (a) dendrogram from cluster analysis of faba bean accessions using UPGMA based on seeds
morphological characteristics. The matrix correlation coefficient is 94.6. All of the accessions were
discriminated. Two main groups were identified: V. faba equina type including “Fava Miúda” (2288),
“Jaulon 45”, “Favel” (5356) and “Jaulon 58” and V. faba major type composed by “Fava Do Algarve”
(5357) and “Fava da Terra” (5362); (b) eigenvalues and total variance (%) that describe the variation of
the five morphological characters analyzed.

The first two principal components explain 94.5% of the total variation with 75% and 19.5% for
the 1st and 2nd principal components, respectively. One hundred seed weight, length, width and
thickness of the seeds were the traits contributing the most to the first principal component. The
number of seeds/pod is the main contributor to the second principal component (Figure 4b). Within
the major botanical group, distinct accessions were separated according to the number of seeds per pod.
Recently, “Fava Miúda” (2288) and “Favel” (5356) were evaluated for ten morphological characters to
estimate the phenotypic diversity, and it was concluded that the 100 seed weight and the plant height
were the eigenvectors with the highest positive loading [17]. Thus, our results are in accordance with
those of [6] who concluded that 100 seed weight is an important character to discriminate faba bean
botanical groups. Moreover, the present analysis of V. faba Portuguese landraces agrees with studies on
populations of V. faba major type from three Mediterranean countries [57], which were individualized
according with each country’s agroclimatic conditions.

Finally, the degree of correspondence observed between dendrograms based on seed morphologic
traits (Figure 4a) and IRAP banding profiles (Figure 2b) must be discussed. The correspondence
between quantitative and molecular data on the evaluation of V. faba diversity was also recently
confirmed on distinct accessions of a Sicilian major faba bean landrace [48], contrasting therefore
with previous reports suggesting no correlation between diversity assessed by molecular tools and
morphology traits [25,58]. The importance of IRAP methodology on studies of genetic diversity
was already well established for several crops like Avena sativa and A. strigosa [34], H. vulgare [38],
P. sativum [27,28], O. sativa [31], V. vinifera [29] and Z. mays [30]. The present study therefore emphasizes
the fact that the separation of the faba bean classes extends to more than just morphological seed
traits. Thus, the use of IRAP methodology is a valuable complement to the assessment of germplasm
diversity and management in V. faba.
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4. Conclusions

Faba bean is one of the most important cool-season food legumes with the potential of being a
crop able to provide a platform for connecting small scale agriculture with biodiversity tasks such as
ecological services [2]. However, the effectiveness of germplasm conservation depends on the available
knowledge of the existing genetic diversity [59] since this information is crucial to plan any on farm or
ex situ conservation strategies. To our knowledge, this is the first study on the biodiversity of faba bean
landraces from different Portuguese agroecological conditions. This study demonstrated that IRAP
fingerprints have been used successfully for assessing genetic variability of faba bean and allowed
the full discrimination of the equina type. The variability detected within Portuguese accessions is
therefore an important factor to consider in future strategies for faba bean germplasm management
and conservation, and also to guarantee appropriate breeding approaches for sustainable agriculture.

Supplementary Materials: The following are available online at www.mdpi.com/8/2/8/s1, Figure S1: V. faba
IRAP analysis targeting different retrotransposons, Table S1: Values of the seeds morphological characteristics
used to characterize V. faba accessions.
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