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Aim: 

Simplification and reduction of sample treatment are very important aspects today in 

analytical chemistry, especially considering the social demand for analysing complex matrices 

and developing a greener chemistry. Two issues need to be particularly fulfilled: reducing the 

amount of organic solvents employed in analytical processes and the duration of the analysis. 

These purposes are in line with the principles of green analytical chemistry (GAC), and with 

European policy, which leads to minimize emissions of volatile organic compounds (VOCs); 

in fact, it is estimated that 25% of VOC pollution in Europe arises from the use of organic 

solvent. Moreover, the optimization of the analysis time is a key point to cut costs and to 

allow an easier transfer to routine applications. 

Over the last decade, solid-phase micro-extraction, miniaturization, auxiliary energies, and 

novel solvents (e.g., supercritical fluids and ionic liquids) have been proposed as alternatives 

to classical approaches. On this field, the use of supramolecular solvents (SUPRAS), which 

consist of nanostructured liquids generated from the self-assembly of amphiphilic 

compounds, is gaining momentum. SUPRAS, whose synthesis is a spontaneous and tailored 

process which depends on environmental conditions, have been shown, during the last years, 

to offer a great potential for reducing and simplifying sample treatment processes. 

Taking into consideration all these premises, the aim of this thesis is the development of new 

analytical methodologies aiming to detect xenobiotics and endogenous substances in 

complex biological matrices, focusing on simplifying the sample treatment by reducing 

organic solvent consumption and looking for providing new tools for veterinary, forensic, 

clinical and food quality control purposes. 

In order to accomplish this aim, protein precipitation (PPT) with acetonitrile (ACN), and 

SUPRAS-based extraction, were proposed as sample treatment techniques. 

In this context, the specific objectives of this Thesis have been as follows: 

1) Explore the use of PPT and SUPRAS for the determination of xenobiotics and 

endogenous substances in several different biological matrices (saliva, urine, plasma, milk, 

sweat, hair and fingernail). 

2) Develop analytical methodologies based on PPT and SUPRAS that may be able to resolve 

real bioanalytical problems by means of their combination with liquid chromatography 

coupled to UV-visible and tandem mass spectrometry detectors. 
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At the same time, a fundamental aim in this Thesis has been the development of a 

Formation Program for the PhD student under a joint supervision at the Universities of 

Cagliari and Sassari (Italy), and the University of Córdoba (Spain). This Program included the 

attendance and presentation of contributions to international congresses, the writing of 

scientific papers, teaching of BSC students, and the co-direction of BSC theses. 
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Content:  

The content of this PhD Thesis is divided in two parts preceded by an Introduction, where 

the need to develop new strategies for sample treatment, the analytical technique of protein 

precipitation in biological matrices, and the theoretical and practical aspects of SUPRAS are 

discussed. 

The content of the two parts are as follows: 

Part A: Determination of air and light sensitive endogenous antioxidants in serum by protein 

precipitation and high-performance liquid chromatography.  

In this part, four scientific papers are reported (chapters 1-4). They are all related to 

the use of protein precipitation (PPT) based on denaturisation by the addition of acetonitrile 

to samples that are then just vortex-shaken and centrifuged. The supernatant obtained is 

finally dried under a stream of nitrogen and injected into high-performance liquid 

chromatography with ultraviolet detection (HPLC- UV). In all cases, the method was fully 

validated following international guidelines. In Chapter 1, potential intra- and inter-specimen 

fluctuations of β-carotene and retinol are monitored in serum of Asinara (albino) and Sardo 

(grey) breed donkeys, in order to rationalize an alternative metabolic pathway to explain 

photoprotection. In Chapter 2, concentrations of α-tocopherol in serum of free ranging 

Asinara (albino) vs. Sardo (grey) donkeys are evaluated as potential markers of natural 

feedstuff selection. In Chapter 3, the α-tocopherol content in serum of stallions under a 

supplemented diet is monitored with the goal to prove a positive correlation between the 

antioxidant levels in these animals and semen quality. Finally, the importance to have an 

effective and simply tool for the determination of α-tocopherol in serum is also supported in 

Chapter 4, where baseline levels of this circulating antioxidant in free ranging and confined 

Giara horses were evaluated. 

Part B: SUPRAS-based matrix-independent platforms for quantifying multi compounds in 

biological matrices by LC-MS/MS for forensic, clinical and food quality control purposes. 

The content of the second part of this Thesis (chapters 5-7) is focused on the development 

of analytical methods based on SUPRASs, which integrate extraction and matrix clean-up. In 

Chapter 5, a universal sample treatment for simplifying the determination of amphetamine-

type stimulants (ATS) in oral fluid, urine, serum, sweat, breast milk, hair and fingernails is 

reported. Hexanol based SUPRAS were synthetized in situ and the extract was directly 
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injected into LC-MS/MS. In chapter 6, a new SUPRAS, based on a perfluorinated 

amphiphile, was investigated for the extraction of oligopeptides and aminoacids from 

aqueous matrices. This novel SUPRAS was subsequently applied for the determination of 

opiorphin levels in saliva by the direct injection of the SUPRAS into the LC-MS/MS system. 

In Chapter 7, a fast and reliable method for the determination of anthelmintic 

benzimidazoles in milk by LC-MS/MS is proposed. For this purpose, a hexanol-based 

SUPRAS with restricted access and volatile properties was applied. It should be highlighted 

that all the analytical methods described in this part were fully validated following the 

appropriate international guidelines. 
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RESUMEN DE LA TESIS DOCTORAL DE Dª FRANCESCA ACCIONI. 

1. Introducción o motivación de la tesis 

Esta Tesis Doctoral ha tenido como objeto de estudio el desarrollo y aplicación de nuevos y 

eficientes procesos de extracción de xenobioticos y substancias endógenas en matrices 

biológicas complejas, basados en química verde [1, 2]. Los métodos que se han desarrollado 

han pretendido extender la utilización tanto de la precipitación de proteínas séricas con 

acetonitrilo (PPT) [3] como de los disolventes supramoleculares (SUPRAS) [4, 5] a 

aplicaciones veterinarias, forenses, clínicas y de seguridad y calidad alimentaria. 

2. Contenido 

La Memoria de esta Tesis Doctoral se ha estructurado en dos bloques, precedidos de una 

Introducción en la que se describen las nuevas estrategias de la Química Bioanalítica para la 

reducción del consumo de disolventes orgánicos en procesos de extracción analítica de 

substancias endógenas y xenobióticos en matrices biológicas. Asimismo, se ilustran los 

aspectos teóricos y prácticos de las dos metodologías extractivas aplicadas en esta Tesis 

(precipitación de proteínas con acetonitrilo y SUPRAS). Los contenidos de los dos bloques 

se especifican a continuación: 

Bloque A: Determinación de antioxidantes endógenos, con alta sensibilidad a la luz y al aire, 

a través una metodología basada en tratamiento de muestras con precipitación de proteínas y 

cromatografía de líquidos con detección UV. 

En este bloque se describe una metodología analítica para la determinación de β-caroteno, 

retinol y α-tocoferol en suero de burros y caballos y cuatro de sus diversas aplicaciones en 

clínica veterinaria (capítulos 1, 2, 3, 4). Este tratamiento de muestra consistió en la adición de 

600 microlitros de acetonitrilo a 300 microlitros de suero, lo que resultó en la precipitación 

de las proteínas. El extracto así obtenido se secó y redisolvió en 150 microlitros de fase móvil 

para su posterior análisis mediante cromatografía de líquidos con detección UV. El método 

fue validado cumpliendo todos los requisitos internacionales requeridos. 

Bloque B: Plataformas analíticas independientes de la matriz y basadas en SUPRAS para la 

cuantificación de multicomponentes en multimatrices mediante cromatografía de líquidos 

acoplada a espectrometría de masas en tándem. 
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El objeto de las investigaciones presentadas en este bloque ha sido el desarrollo de 

metodologías innovadoras, basadas en SUPRAS, para la determinación de anfetaminas 

(capítulo 5), aminoácidos y oligopéptidos (capítulo 6) y antihelmínticos (capítulo 7) en muy 

diversas matrices biológicas. Como tratamiento de muestra se utilizaron dos SUPRAS 

diferentes: uno obtenido mediante la coacervación de disoluciones coloidales de micelas 

inversas de hexanol (capítulos 5 y 7), y un segundo formado por coacervación de ácido 

heptafluorobutírico (HFBA) en disoluciones acuosas ácidas (capítulo 6). Los dos SUPRAS 

estudiados presentaron propiedades de acceso restringido. En ambos casos se desarrollaron 

procedimientos generalizados que demostraron ser independientes de la matriz, y capaces de 

simplificar en una sola etapa todo el proceso de purificación y extracción (<35 minutos). Las 

matrices biológicas estudiadas fueron orina, suero, saliva, sudor, leche materna, pelo, uñas y 

leche de vaca para consumo humano. Todos los extractos obtenidos fueron analizados 

mediante cromatografía de líquidos acoplada a espectrometría de masas en tándem. Los tres 

métodos desarrollados fueron totalmente validados según la legislación internacional 

pertinente. 

3. Conclusiones 

Las principales conclusiones que pueden extraerse de esta tesis son: 

Bloque A: Determinación de antioxidantes endógenos, con alta sensibilidad a la luz y al aire, 

a través una metodología basada en tratamiento de muestras con precipitación de proteínas y 

cromatografía de líquidos con detección UV. 

 La metodología analítica basada en el tratamiento de muestra mediante la 

precipitación de proteínas (PPT) con acetonitrilo y posterior análisis mediante 

cromatografía de líquidos con detección UV ha demostrado una excelente capacidad 

para la determinación de antioxidantes endógenos de elevado coeficiente de partición 

(XLogP3 13.5, 10.7 and 5.7 para β-caroteno, α-tocoferol y retinol, respectivamente). 

Además, se han obtenido recuperaciones cuantitativas (70-120%) y óptimos límites 

de detección (0.036 µg mL-1), gracias al factor de pre-concentración alcanzado (x2). 

 PPT ha demostrado ser una metodología verde, adecuada para el tratamiento de 

muestras de suero. Además, la inducción de precipitación de proteínas (>90%) 

mediante una relación muestra/ACN de 1:2, la posterior evaporación de la disolución 

resultante hasta sequedad, y la redisolución del extracto en fase móvil (relación 
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muestra/solución de reconstitución de 2:1), han resultado en la eliminación del 

efecto matriz y garantizado el empleo de poco disolvente, el aumento del factor de 

pre-concentración y una óptima compatibilidad con el sistema UV. 

 El método analítico desarrollado y empleado en los capítulos 1-4 ha sido totalmente 

validado siguiendo las líneas guías internacionales, obteniéndose valores óptimos de 

linealidad, sensibilidad, precisión y exactitud. 

Bloque B: Plataformas analíticas independientes de la matriz y basadas en SUPRAS para la 

cuantificación de multicomponentes en multimatrices mediante cromatografía de líquidos 

acoplada a espectrometría de masas en tándem. 

 La extracción mediante SUPRAS basados en hexanol ha permitido obtener 

extracciones eficientes para analitos (anfetaminas y antihelmínticos) con 

características químico-físicas muy diferentes, gracias a la capacidad del SUPRAS 

de disolver solutos mediante un mecanismo mixto (interacciones de van der 

Waals, puentes de hidrógeno, interacciones polares, e interacciones π-catión). 

Además, estos SUPRAS han demostrado tener una aplicabilidad excelente (con 

eliminación de los interferentes endógenos) para numerosas matrices biológicas 

(suero, orina, saliva, sudor, leche materna, leche de vaca, pelo y uñas). Estos 

SUPRAS han demostrado ser disolventes “à la carte” que se pueden sintetizar de 

forma totalmente espontánea y directa en matrices liquidas. Además, tienen 

capacidad para actuar como materiales con propiedades de acceso restringido 

(RAM), o como agentes volátiles con propiedades de acceso restringido (RAM-

VOL-SUPRAS) si se añade al proceso una etapa de evaporación para la 

eliminación de los fosfolípidos. Gracias a esta propiedad, las moléculas de bajo 

peso molecular se solubilizan en el SUPRAS, mientras que interferentes como 

proteínas o polisacáridos están excluidos física (precipitación por THF) y/o 

químicamente (fenómenos de exclusión). Estos SUPRAS basados en hexanol han 

permitido la determinación de 5 anfetaminas en 7 matrices biológicas diferentes y 

8 benzimidazoles antihelmínticos en leche de vaca mediante cromatografía de 

líquidos acoplada a espectrometría de masas en tándem (LC-MS/MS). Los límites 

de detección encontrados están, para todos los casos, por debajo de los límites 

legislados y pertinentes para cada analito. 
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 Se ha propuesto en esta Tesis, por primera vez, un SUPRAS basado en ácido 

heptafluorobutírico (HFBA) como disolvente alternativo para la extracción de 

analitos muy polares (aminoácidos y oligopéptidos), cuya extracción en muestras 

biológicas se considera una tarea muy compleja. Esta interesante capacidad de 

extracción está relacionada con la “polaridad hidrofóbica” que presentan los 

compuestos perfluorados. Así, este SUPRAS ha sido capaz extraer de con 

elevado rendimiento (recuperaciones>80%) 20 aminoácidos y 9 oligopéptidos 

con valores de D de hasta -3. Adicionalmente, se ha llevado a cabo también la 

determinación del oligopéptido Opiorfina en saliva, por inyección directa en LC-

MS/MS del extracto del SUPRAS basado en HFBA. 

 Las metodologías analíticas de extracción/limpieza basadas en SUPRAS constan 

de una única etapa que permite tratar muestras de forma simple, en muy poco 

tiempo, y empleando poca cantidad de muestra y de disolventes orgánicos 

(tiempo 15-35 min, muestra ≤ 1 mL, disolvente orgánico <2 mL). Por estos 

motivos, estas metodologías basadas en SUPRAS pueden encuadrarse dentro de 

la química analítica verde. 

 Las tres metodologías basadas en SUPRAS han sido totalmente validadas 

siguiendo los parámetros requeridos por las respectivas guías internacionales, 

obteniéndose valores óptimos de linealidad, sensibilidad, selectividad, precisión y 

exactitud. 
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1. Bioanalytical chemistry: determination of xenobiotics and endogenous 

substances 

Bioanalytical chemistry is considered a sub-discipline of analytical chemistry, which includes 

the qualitative and quantitative analysis in biological matrices of all the compounds 

particularly involved with life and health processes (i.e. xenobiotics and endogenous 

substances). The word xenobiotic comes from the Greek xenos, meaning guest, friend, or 

foreigner. Xenobiotics can be defined as “any foreign substances or exogenous chemicals 

which the body does not recognize, such as drugs, pollutants, as well as some food additives 

and cosmetics” [1]. Or in a similar definition: “xenobiotics are chemicals found in but not 

produced by organisms or the environment. Some naturally occurring chemicals 

(endobiotics) become xenobiotics when present in the environment at excessive 

concentrations” [2]. On the other hand, endogenous substances are compounds that 

originate from within an organism; with their unnatural location or concentration reflecting 

the health status of the organism [3]. Taking into account the large number of analytes and 

biological matrices involved in this area, bioanalysis has taken an important role in fields such 

as biological sciences, health sciences, earth and environmental sciences, and physical 

sciences. 

Nowadays, as well as other areas of analytical chemistry, bioanalytical chemistry focuses on 

the development of new green methodologies to provide fast and very sensitive quantitative 

analyses, useful as routine laboratory techniques. Requirements for such effective strategies 

are linked to the increasing number of biological samples and to the decreasing target 

concentrations [4]. 

Bioanalytical methods usually involve several steps (Figure 1): sample collection, extraction 

and matrix clean-up procedures, chromatographic analysis and detection [1, 4]. 
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Figure 1. Schematic representation of a bioanalytical method. 

1.1. New sample treatments in bioanalytical chemistry: strategies to reduce the 

use of organic solvents 

During the last years, researchers have developed new reliable analytical strategies in order to 

reach a compromise between the performance parameters of the method and their impact 

on the environment [5]. Green analytical chemistry (GAC) appeared in 2000 [6] and its main 

principles are:  

 elimination or reduction of the use of chemical products (e.g., organic 

solvents) 

 reduction of energy consumption 

 reduction of waste 

 safety for the analyst. 

Furthermore, European policies lead to minimize emissions of volatile organic compounds 

(VOCs) providing guidance documents on the use of chemicals and methods which affect 

the environment and human health [7]. 

Because of the complex composition of biological matrices, sample treatment is the most 

important step aiming to provide the target analytes at a properly concentration for further 

determination and to reduce or eliminate the matrix effect coming from interferences. In 

fact, the capability of the technique to concentrate the analyte in the original biological 

matrix allows an increase in sensitivity that results in the improvement of the limits of 

quantification of the method. Moreover, matrix manipulation allows removing endogenous 
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[6] A. Gałuszka, Z. Migaszewski, J. Namieśnik, Trac.-Trend Anal. Chem., 50 (2013) 78–84. 
[7] http://ec.europa.eu/environment/archives/air/stationary/solvents/exchange.htm (last access 23 July 2018). 

http://ec.europa.eu/environment/archives/air/stationary/solvents/exchange.htm
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compounds which co-eluate with the analyte such as proteins, which affect the 

chromatographic process, and phospholipids, which cause ion suppression (loss of signal) in 

LC/MS [8]. Sample preparation in bioanalysis is commonly carried out by liquid-liquid 

extraction (LLE) and solid phase extraction (SPE) [1, 8]. 

One of the alternative sample treatments recently developed are QuEChERS (Quick, Easy, 

Cheap, Effective, Rugged and Safe), protein precipitation (PPT), supercritical fluids, ionic 

liquids and supramolecular solvents (SUPRAS) combined with miniaturized procedures [9, 

10, 11, 12, 13]. All of them, in one way or another, are considered green approaches. 

LLE is based on differences in solubility (octanol-water partition coefficient), being the 

analyte extracted by a partitioning mechanism [14]. In the case of liquid biological matrices 

(e.g., plasma), a water-immiscible solvent is directly mixed with sample and, afterwards, 

usually centrifugation, evaporation and reconstitution with an instrument-compatible solvent 

of the extract are required [15]. It presents some drawbacks such as the use of high amounts 

of sample and organic solvents, which make LLE a time-consuming and “no-green” 

procedure. Anyway, LLE is still a highly used sample treatment in bioanalytical chemistry. To 

improve the throughput of the method, a semiautomatic 96-well plate format was developed 

by L. Ramos et al. in 2000 [16], although it presented complexities due to contamination 

problems [15]. Liquid phase microextraction (LPME) was introduced in 1996 by H.H. Liu et 

al. to minimize the generation of VOCs. It is a miniaturized liquid–liquid extraction that it is 

based on the same principle of LLE, but the analyte is extracted in a very small volume of 

organic solvent. SALLE is a subtype of LLE, where salts, such as magnesium sulfate, are 

added to the matrix prior to the mixing of the organic solvent. By the presence of the salt, 

the solvent is salted-out and it forms a separated phase, where the target analytes are 
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[15] Y.Q. Tang, N. Weng, Bioanalysis, 5 (2013) 1583–1598. 

[16] L. Ramos, R. Bakhtiar, F.L. Tse, Rapid. Commun., Mass. Spectrom., 14 (2000) 740–745. 



18 
 

extracted. This technique allows to save sample, to reduce the whole amount of organic 

solvent, and provides good enough recoveries and limits of quantification [15, 17]. 

Ultrasonic assisted extraction (UAE) and microwave-assisted extraction (MAE) are also 

considered green methods based on LLE, but their application mainly involves solid or 

semisolid samples (replacing Soxhlet extraction). UAE employs acoustic vibrations which 

produce cavitation in the extraction solvent. Thus, there is an enhancement in the analyte 

extraction. Usually, filtration/centrifugation and exsiccation/reconstitution of the extract are 

required. The drawbacks of UAE are the no-uniformity of ultrasound vibrations and a very 

low selectivity. In MAE, the organic solvent is heated by the use of microwaves. The main 

advantage of MAE is its short duration and low consumption of solvent, but as well as UAE 

selectivity is very low [4]. 

Pressurized Liquid Extraction (PLE) [18] can also be considered a green sample treatment. It 

is based on solid/liquid extraction but applying high temperatures and pressures. It was 

introduced for the first time in 1995 as Accelerated Solvent Extraction Technology (ASE®). 

Authors consider this technique a valid alternative to Soxhlet and solid/liquid extraction 

because it provides similar recoveries and guarantees lower consumptions of time and 

solvents [18]. 

SPE is one of the most used techniques in fields such as environmental science, health 

science and foodstuff analysis. It allows to both: extract analytes from complexes matrices 

and clean-up the sample. The principle that rules the process is very similar to that of 

liquid/liquid extraction. It includes the partition of the analyte between the stationary 

absorbent phase and the liquid phase. It is possible to picture the whole process in fourth 

steps: conditioning, sample loading, washing and elution (Figure 2). The choice of solvent 

and stationary phase (polar phases, non-polar phases, ion exchange phases, immune-affinity 

SPE phases…) is the critical point of the method. Otherwise, the amount of organic solvents 

involved in the procedure is the key point in terms of VOC emissions [19, 20]. 
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19 
 

Solid-phase microextraction (SPME) was presented for the first time by Belardi and 

Pawliszyn in 1989, and it showed an advance in terms of VOC emission reduction and green 

chemistry. In this technique, there is a sorption of the target compounds directly from the 

matrix or in the headspace on a fused-silica fiber, while desorption is achieved thermally or 

by the use of solvents [21].  

Stir-bar sorptive extraction (SBSE) was developed in 1999 by Baltussen et al. and its principle 

is based on the interaction of analytes with a film of polydimethylsiloxane (PDMS). The step 

of desorption consists in the use of a small quantity of solvent in case of no-volatile 

compounds or thermally, when analytes are volatile or semi-volatile [22]. On-line SPE also 

focuses on saving solvent consumption [20]. 

 

Figure 2. Scheme of the four step involves in classic solid-phase extraction (SPE). 

The main advantages of all microextraction techniques (e.g. liquid-liquid microextraction, 

SPME, SBSE...) over LLE and SPE are minimal consumption of organic solvents, which 

decreases the negative impact of the procedures on the environment, and higher enrichment 

factors, which enhances the sensitivity [23]. 

QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) was developed by 

Anastassiades et al. in 2003 for the extraction of pesticides [24]. Since this moment, it has 
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become a very popular sample treatment in bioanalysis, being applied to many different types 

of biological matrices and target compounds. The methodology is based on a combination of 

SALLE and SPE. Therefore, it can be divided in two steps: a liquid/liquid extraction, 

enabled by a salting-out process; and a cleaning-up which is carried out by dispersive SPE 

[25] (Figure 3). 

 

Figure 3. QuEChERS procedure as proposed by Anastassiades et al. [24]. 

In 2007, QuEChERS was regarded by the Association of Official Analytical Chemists 

(AOAC) as one of the best effective sample preparation techniques for pesticide residue 

analysis [26, 27]. It can be considered a green technique because it involves a minimal 

amount of sample and toxic solvents [26], and since 2003 to date, many modifications have 

been proposed to improve the throughput. The most used QuEChERS-dSPE kits are sold 

for foodstuff analysis and are divided into 4 categories: for general samples, for samples with 

colored extracts, for samples which contain waxes or fats, and for samples with fats and 

pigments [27]. Although at first QuEChERS method was developed as sample treatment for 

pesticides quantification in food, recently, it is becoming a common procedure also in 

bioanalytical fields such as forensic science, clinical science and environmental science [13, 

28, 29].  
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Supercritical fluid extraction (SFE) is a sample treatment of increasing interest in 

bioanalytical chemistry. The main field of application concerns drugs detection in human 

fluids. SFE is being employed in analytical chemistry since the late 80s. It is like Soxhlet 

extraction, but it involves solvents above their critical temperatures and pressures, i.e., 

supercritical fluids (SFs). CO2 is the most used SF, because of its properties being non-toxic 

and cheap. This technique allows reducing extraction times to 20 minutes or less because of 

the high rate of penetration of supercritical CO2 into biological matrices [30]. 

More recently, Ionic liquids (ILs) have been employed as extraction solvents in sample 

treatment, since their composition can be tailored, improving their, by its very nature, 

outstanding properties and behavior as extracting solvents. ILs are mainly made of organic 

cations and inorganic or organic anions, and the properties can be very different in relation 

to the length of the alkyl chain of the cation and to the type of anion. Liquid and solid-phase 

microextraction techniques can be improved by the employment of ILs instead of 

conventional organic solvents, reducing the negative effects on the environment and 

enhancing the throughput [31, 32, 33]. 

In this thesis, two different green sample treatment methods were explored for cleaning-up 

and extraction of biological matrices for veterinary, forensic, clinical and foodstuff 

applications: ACN-based protein precipitation (PPT), and supramolecular solvents 

(SUPRASs). 

2. ACN- based treatment for protein precipitation in biological matrices (PPT) 

Protein precipitation (PPT) is a traditional plasma treatment in fields such as clinical science 

and forensic science because it is a very cheap, easy, quick, and quite effective technique and, 

in addition, no specific equipment is required. Although PPT shows some lacks (i.e., low 

selectivity and high signal-suppression in LC-MS/MS), it is considered nowadays a golden 

standard in routinely sample treatment when the target analyte concentration is quite high. 

Because of these unique features, pharmaceutical companies regularly use PPT in their 

processes. Moreover, when target analytes are sensitive to light, heat and changes in pH (e.g., 
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flavonoids or endogenous antioxidants) protein precipitation is the favorite procedure in 

sample treatment [34]. The process of “cleaning up and extraction” takes place is one easy 

step, where a water miscible organic solvent (e.g., acetonitrile, methanol or acetone) is mixed 

with an amount of sample causing the protein precipitation. Methanol is very used in protein 

precipitation because it is considered quite efficient, but precipitation achieved by acetonitrile 

is stronger than that for methanol and ethanol, that is, acetonitrile extracts contain lower 

concentrations of proteins than methanol extracts. Usually, precipitation is improved by a 

centrifugation step (Figure 4). The mechanism which causes precipitation is due to the 

interference of the organic solvent with protein structure altering intramolecular 

hydrophobic interactions and minimizing the hydration/solubility of proteins. Sometimes, 

the need to obtain a higher enrichment factor and reduce the amount of interferences leads 

to the evaporation of the extracted supernatant until dryness, and redissolution with a proper 

amount of solvent for further analysis [4, 12, 35, 36]. An important feature of PPT is that 

analytes are extracted whether they were previously bound to protein or not [34]. 

 

Figure 4. PPT procedure in plasma treatment. 

To improve the throughput, aqueous precipitant solutions containing ammonium sulfate 

(saturated at room temperature), aluminum chloride (5%, w/v), m-phosphoric acid (5%, 

w/v), trichloroacetic acid (10%, w/v), zinc sulfate heptahydrate (10%, w/v) and 0.5 M 

sodium hydroxide, has also been employed instead of traditional organic solvents. Agent/ 

sample ratios are essential for obtaining a satisfactory precipitation (removal of proteins 

>98%). Acid/plasma ratios are usually in the range of 0.2–0.5:1.0 (v/v), while for organic 

solvents/plasma the range is 1.0–4.0:1.0 (v/v) (Figures 5, 6) [35]. 

                                                           
[34] J.H. Oh, Y.J. Lee, Phytochem. Anal., 25 (2014) 314–330. 
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Figure 5. Graphical representation of the activity of organic solvents in protein precipitation. 

 

Figure 6. Graphical representation of the activity of acids in protein precipitation. 

The automatization of PPT was achieved by J. Ma et al. in 2008 by means of a 96-well plate 

format followed by LC-MS/MS for application in pharmacokinetic and pharmacodynamic 

studies. In this work, on-deck plate shakers, centrifuges, plate sealers, and plate seal piercing 

stations were employed to totally avoid the handling work of the operator [37]. 

In this thesis a cheap, simply, rapid, and green ACN-based treatment for protein 

precipitation in plasma was employed for the detection of light and air sensitive compounds 

such β-carotene, retinol and α- tocopherol for clinical and veterinary applications. 
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3. Supramolecular solvents (SUPRAS) 

Supramoleculecular solvents (SUPRAS) are nanostructured liquids generated from a 

spontaneous process of self-assembly and coacervation. 

The process of coacervation, which allows SUPRAS formation, was described by the 

colloidal scientists Bungenberg de Jong and Kruyt in 1929 [38]. In analytical chemistry, it was 

firstly introduced as cloud point extraction (CP) by Watanabe and Tanaka [39]. 

Coacervation consists in a separation process where colloidal systems are separated in two 

liquid phases, where one of them is very rich in colloid, and the other one is an equilibrium 

solution. These systems have been studied in deep, and even new synthesis approaches are 

proposed everyday by researchers belonging to very different fields such colloid, polymer, 

physicochemical, and pharmaceutical sciences [40]. 

The main SUPRAS feature for analytical applications is that they can be tailor-made in regard 

to their physicochemical properties by changing the initial synthesis/self-assembly conditions 

(type of amphiphiles and environment). It is possible to synthetize an “a´ la carte” SUPRAS 

for a specific cleaning-up/extraction by considering the properties of the target analyte and 

the complexity of the matrix. 

The amphiphilic character of SUPRAS is a fundamental point for sample treatment and 

analyte extraction. The nano-systems, which form the internal structure in SUPRAS, show 

two different polarity regions. In this way, several types of interaction coexist, which allow 

the solubilization / extraction of analytes showing a wide polarity range. Moreover, due to 

the high concentration of amphiphiles in SUPRAS (0.1-1 mg μL-1), the number of binding 

sites for the target compound in also very high, rendering quantitative recoveries for a lot of 

different compounds [40, 41]. 

One of the main problems when quantifying and analyte in a biological matrix is its usually 

very low concentration, especially when compared with the interferences. SUPRAS are able 

to preconcentrate the target analyte up to 500 times the initial concentration (typically 100-

500) and, additionally, to exclude interferences, since some of them can act as restricted 
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access materials (RAM). For all these reasons, SUPRAS are classified as a green sample 

treatment technique [40]. 

3.1. Synthesis of Supramolecular Solvents; Self-Assembly and Coacervation 

The synthesis of SUPRAS is a very simply process carried out by a spontaneous process of 

self-assembly and coacervation. A colloidal solution of tri-dimensional aggregates is formed 

by an amphiphile solution above the critical aggregation concentration. In order to induce 

the coacervation process, an environmental change is required (e.g., a change of pH, 

temperature, addition of salt or a poor-solvent for the amphiphiles, etc.). Afterwards, 

aggregates grow in size, become bigger, and form the coacervate droplets, which associate 

with each other in conglomerates. In this way, creaming and phase separation are achieved 

and SUPRAS are formed. Coacervate droplets, which stay in equilibrium with the bulk 

solution at the critical aggregation concentration, continue to keep their initial integrity and 

characteristics in the SUPRAS (Figure 7) [41]. 

 

Figure 7. General syntheses of SUPRAS. A change in an environmental condition induces 

the coacervation process. 

Self-assembly is defined as a spontaneous and totally reversible process, which ends with the 

formation of ordered structures. The setting of these structures depends on the features of 

the monomers and the environmental conditions involved in the self-assembly. Among 

others, the most important factors are the size of the polar head group and the length of the 
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lipophilic chain of the amphiphilic molecules. Thus, the morphology of the aggregates can be 

defined by calculating the packing factor (g) proposed by Israelachvili et al. in 1976 [42]: 

 

where V is the volume of the hydrophobic chain, a0 is the mean cross-sectional area of the 

head group and lc is the length of the entirely extended chain. Figure 8 reports the different 

several morphologies that can be predicted by the packing factor [41]. 

 

Figure 8. Several morphologies predicted by the packing factor of amphiphiles. 

Attractive and repulsive forces have a fundamental role during the process. They arise from 

non-covalent and reversible interactions with energy values of 2-300 kJ/mol (e.g., coulomb, 

van der Waals, π-π and π-cation interactions, hydrogen bonding and dispersion) [43]. If the 

environment changes, the system adapts to the new conditions, being this the key why 

SUPRAS are tailor-made solvents [44]. The gateway of the process is aggregation and, 
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typically, solvophobicity promotes SUPRAS formation, while the repulsion forces of the 

hydrophilic heads terminate it [45]. 

Micelles, vesicles and reverse micelles represent three possible morphologies for the ordered 

structures. The physicochemical properties of the amphiphiles, the environmental conditions 

and the nature of solvents drive for one among these three morphologies. Anyway, in 

aqueous colloidal solutions micelles and vesicles are preferentially formed, while in non-

aqueous colloidal solutions reverse micelles are preferred (Figure 9) [41]. 

 

Figure 9. Different types of ordered structures in colloidal solution. 

After these colloidal solutions are formed, aggregates must become bigger to overcome the 

repulsion forces which stop aggregation. To obtain coacervate droplets, an environmental 

change is necessary, being the approach different if the amphiphile is neutral or ionic. [40]. 

Coacervation is achieved in ionic systems by the addition of coacervating agents, or by 

changing the pH of the solution. In case of nonionic colloidal system, coacervation can be 

carried out by modifying the temperature of the solution or by the addition of a poor solvent 

for the amphiphilic molecules; these two procedures reduce solvation and promote the 

formation of coacervate droplets [40, 46]. 

When a new SUPRAS is synthetized or applied for the first time to a matrix, all these 

experimental conditions are evaluated by the construction of phase diagrams, where the 

amphiphile is reported as function of the coacervating agent. 

Following, all the strategies for inducing coacervation are reported in deep. 
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Temperature is a very helpful coacervating agent for nonionic, zwitterionic, and mixtures of 

nonionic and nonionic/ionic systems. The temperature which induces turbidity and 

aggregation in colloidal solutions is called cloud point (CP) [47, 48]. Phase diagrams obtained 

for Triton X-114, and for 3-(nonyldimethylammonium) propyl sulfate (C9-APSO4), both in 

aqueous solutions, are shown in Figure 10 [40]. 

 

Figure 10. Phase diagrams of a nonionic system (A) and a zwitterionic system (B) in function 

of the temperature. 

The principle which allows obtaining SUPRAS from nonionic surfactants (alkyl and 

alkylphenol ethoxylated) is desolvation of the area which surrounds the polar groups. In this 

way, the polar heads are reduced in size, and interactions among the neighbor micelles are 

facilitated. These interactions cause micellar growth and promote SUPRAS formation. 

CP is inversely proportional to the hydrocarbon chain length and directly proportional to the 

number of oxyethylene groups of the surfactant [49, 50]. CP is also inversely proportional to 

the amount and the type of electrolyte (e.g., PO4
-3> SO4

-2 >Br-), which can be employed to 

enhance the process. CP is increased by the addition of nonpolar organic compounds which 

are solubilized in the micellar core, but it is negative affected by polar compounds, which are 

solubilized in the surface of the micelle [51, 52].  
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When a SUPRAS is made up of more than one non-ionic surfactant, it is possible to 

calculate the CP as the average of the CPs of each surfactant; however, when the mixture 

consists of nonionic/ionic surfactants, CPs values are higher than those for the individual 

solutions because of the repulsion forces of the ionic heads [53, 54]. 

As showed in Figure 10.B, SUPRAS formation regions for zwitterionic surfactants are below 

a critical value of temperature. In fact, the presence of polar groups does not influence the 

CP as in ionic surfactants because electrostatic interactions of zwitterionic compounds are 

negligible. [48]. 

Water is a very commonly used coacervating agent for water-insoluble nonionic surfactants. 

The procedure consists in solubilizing the amphiphile in a proper organic solvent and 

afterwards, adding water, which promotes coacervation. This technique has been employed 

for carboxylic acids-based and alkanols-based SUPRAS. Furthermore, because the amount of 

water in liquid biological matrices is very high, this approach allows synthetizing the 

SUPRAS in situ with excellent throughputs [12, 55]. 

There are several organic solvents that can be used for solubilizing the amphiphiles, e.g., 

dioxane, tetrahydrofuran (THF), acetone, acetonitrile, ethanol, methanol, propanol, ethylene 

glycol, dimethylformamide, etc. [55]. The SUPRAS formation region is proportional to the 

dielectric constant of the solvent and the length of the hydrophobic chain of the surfactant. 

An example of this behavior is reported in Figure 11, where the formation region of a 

decanoic acid-based SUPRAS is shown to be much smaller in ethanol (A) than in 

tetrahydrofuran (B). Water-induced SUPRAS are not affected by changes in temperature or 

by the presence of electrolytes. All their outstanding properties depend on the initial 

synthesis composition of the properly selected ternary mixture [40]. 
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Figure 11. Phase diagrams of mixtures of decanoic acid/ethanol/water (A) and decanoic 

acid/tetrahydrofuran/water (B). 

Acid-induced SUPRAS are based on processes where the change of pH of ionizable 

amphiphile in aqueous solution triggers the coacervation. The ternary mixture can be 

composed by alkyl sulfates, sulfonates, or sulfosuccinates mixed with HCl and water. Figure 

12 shows the phase diagram of a SUPRAS made up of sodium dodecane sulfonate (SDoS) in 

acid aqueous solution [56, 57]. 

 

Figure 12. Phase diagram of a SUPRAS made up of sodium dodecane sulfonate (SDoS) in 

acid aqueous solution. 

Colloidal solutions of ionic amphiphiles can be also coacervated by the addition of 

counterions. Sulfate and chloride are commonly used for this purpose. They trigger micellar 
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growth by reducing the repulsion forces of the polar heads (Figure 13). Vesicles of mixtures 

of carboxylic acids and carboxylates (1:1 w/w) in aqueous solutions coacervate efficiently by 

the addition of tetrabutylammonium counterions as shown in the phase diagram in Figure 

13.B [58, 59, 60, 61]. 

 

Figure 13. Phase diagram of tricaprylyl methylammonium chloride (Aliquat-336) in function 

of sodium sulfate (A), and phase diagram obtained from mixtures of decanoic acid: 

decanoate in the presence of tetrabutylammonium counterions (B). 

3.2. Extracting properties of supramolecular solvents: solubilization and 
concentration factors 

The main property of SUPRAS being able to solubilize several types of solutes is due to two 

factors: the mixed mode mechanism by means of which SUPRAS interacts, and the high 

concentration of amphiphiles in the solvent (0.1-1 mg μL-1), which offers a large number of 

binding sites to the target analytes. Ionic interactions, hydrogen bonding, dipole-dipole 

interactions, and dispersion, are the typical interactions which are involved in SUPRAS 

extraction. The mixed mode mechanism is consequence of the coexistence of regions with 

different polarity in the ordered structure. Figure 14 shows an example of a hexagonal 

aggregate of reverse micelles from mixtures of hexanol/THF/water, where the polar-

nonpolar regions are easily distinguished [12, 40]. 
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Figure 14 Polar/nonpolar regions of a Hexanol-based SUPRAS. 

The efficiency of the extraction depends on octanol/water constants for nonpolar analytes 

and, in the case of amphiphilic analytes, in their ability to form co-aggregates [40]. Polar 

analytes are extracted trough ionic interactions, hydrogen bonding, π-cation interactions, and 

π-π interactions. Nevertheless, the extraction of very polar compounds is problematic. For 

example, alkyl sulfates and cetrimide, which are coacervated by the addition of HCl and 

NaCl, respectively, are not able to extract ionic solutes, because their nonionic behavior. 

Moreover, in the extraction of polar compounds, the length of the chain of the amphiphile 

and the CP are extremely important for obtaining quantitative yields [40]. 

SUPRAS are able to yield high enrichment factors (typically, 100-500). This property is a 

direct consequence of the volume of SUPRAS formed. In general, when the composition of 

SUPRAS is kept constant, the amount of solvent produced shows a linear dependency with 

the content of amphiphile in the bulk solution, for concentrations below 4% [62]. 

Two factors drive to final concentration of amphiphiles in SUPRAS: the molecular structure 

of the amphiphiles and the environmental sphere. Usually, concentration is inversely 

proportional to the length of the lipophilic chain (e.g., decanoic > dodecanoic > 

tetradecanoic in vesicles formed by alkylcarboxylic acid/tetrabutylammonium 

alkylcarboxylates). Moreover, when the surfactant is an ethoxylated molecule, also the 

number of oxyethylene groups influences the concentration, decreasing it [63]. 
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Differences between operating conditions and CPs in nonionic surfactants also induce more 

compact structures, which result in lower water contents and SUPRAS volumes [64, 65, 66]. 

Anyway, the final volume of SUPRAS formed can be calculated a priori by means of general 

equations, which can be obtained from experimental studies. Regretfully, they are specific for 

a particular SUPRAS [40]. 

The environmental sphere not only promotes SUPRAS formation, but it also influences in 

the final solvent composition. The addition of salts decreases the CP (e.g., Na+ > K+ > Cs+ 

> NH4
+, and OH− > F− > Cl− > Br−), but it increase salting-out (e.g., PO4

3−> SO4
2− > 

monovalent anions) in nonionic micelles. Triton X-405 switches between CPs, from 115 °C 

to 45 °C or 85 °C by the addition of 0.4 M K3PO4 and 2.4 M KBr, respectively [52, 67]. In 

general, salts modify both CP and SUPRAS composition in a concentration-dependent way. 

In fact, SCN−, I−, Ag+ and divalent cations increase the CP and therefore, the water content 

[52]. Furthermore, the addition of bases, acids, polymers, alcohols and organic compounds to 

the synthesis condition, can influence the CPs [68, 69]. 

3.3. SUPRAS extraction formats and compatibility with separation and detection 
techniques. 

SUPRAS extraction procedure can be carried out by in situ synthesis or ex situ synthesis. In 

the first case, taking advantage of the high amount of water usually present in biological 

liquid samples, the process of self-assembly and coacervation for the formation of SUPRAS 

is directly obtained in matrix by the addition of the amphiphile solution (0.1-2%), and using 

proper environmental conditions. Stirring and centrifugation are subsequently employed 

(Figure 15). In this way, analytes are directly extracted and cleaned-up from a complex matrix 

by an easy single step. Sometimes, to further eliminate matrix interferences and/or the 

presence of water, an evaporation step is required [40, 41]. Ionic surfactants-, carboxylic acid- 

and alkanol-based SUPRAS are typically formed in the upper layer, and their separation is 

very simple [40]. 
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Figure 15. In situ SUPRAS synthesis procedure. 

When the matrix is a solid (0.1-1 g), in situ or ex situ syntheses can be employed (Figure 16). 

In the in situ format, the extraction process is achieved in the same way as it has been 

explained above for liquid samples. Analytes are extracted as a result of an equilibrium 

among the three phases. Thus, nonpolar compounds, which are very soluble in the solvent 

and not in water, are efficiently extracted [40, 41]. The ex situ procedure was developed as a 

way to improve the throughput of the process, especially for polar compounds. The strategy 

consists in previous synthesis of the SUPRAS that, afterwards, is added to the solid sample. 

This format has allowed to obtain quantitative recoveries for herbicides in soils, and for 

polycyclic aromatic hydrocarbons (PAHs) in foodstuff [70, 71]. 
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Figure 16. SUPRAS extraction for solid samples: in situ SUPRAS synthesis (a) and ex situ 

SUPRAS synthesis (b). 

Another approach for SUPRAS extraction is single-drop microextraction (SDME). This 

format has been employed for the determination of chlorophenols in environmental waters. 

For this purpose, alkylcarboxylic acid-based SUPRAS were employed (Figure 17) [72]. 

 

Figure 17. SUPRAS extraction as single-drop microextraction. 

An on-line SUPRAS extraction/flow injection analysis (FIA) methodology has been 

proposed as an automatized procedure for the determination of PAHs by LC. The sample is 

mixed with surfactants and salts (for salting-out) and a collection column, made up of cotton 
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and where SUPRAS is entrapped, is used. Subsequently, the elution step is achieved by an 

organic solvent. Lower enrichment factor than initially calculated theoretical values were 

obtained due to the dispersion of the analytes during elution [73]. 

During the years, the compatibility of SUPRAS with different separation and detection 

techniques has been demonstrated. Liquid chromatography followed by UV–vis, 

fluorescence and mass spectrometric systems has been mainly used. SUPRAS can be directly 

injected in LC, since aggregates disassemble in the mobile phase and do not affect the 

expected behavior of the analytes within the chromatographic system. When the mobile 

phase consists of an amount of water >40%, SUPRAS disassembly is slower and micelles 

can work as a pseudophase, which induces variations in the chromatographic behavior. To 

overcome this problem, SUPRAS can be diluted with a small quantity of organic solvent 

prior to their injection. The nature of the surfactant forming the SUPRAS is the key point for 

obtaining good results in separation and quantification. For instance, polyoxyethylene (n) 

tert-octylphenyl ethers (Triton X series) and polyoxyethylene (n) nonyl phenyl ethers 

(PONPE series), which are nonionic surfactants, induce signals in UV and fluorescence 

systems and, moreover, they can co-elute with polar or mid-polar analytes. These 

compounds can be easily extracted by SUPRAS which are formed by non-aromatic ionic or 

zwitterionic surfactants which overcome these difficulties. 

For mass spectrometric systems, it is recommended to avoid the introduction of the 

SUPRAS into the detector, thus avoiding source contamination and SUPRAS related matrix 

effects [40]. 

Different strategies have been developed to coupled SUPRAS with gas chromatography. The 

main strategy consists in the removal of the solvent prior to the chromatographic injection. 

Triton X-114 is the surfactant usually employed in these methods and its removal is achieved 

by the use of single cation exchange, silica gel and Fluorisil columns or by the assistance of 

microwave or ultrasonic techniques for analyte back-extraction in a water-immiscible solvent 

[74, 75, 76, 77, 78, 79, 80]. A relatively new strategy to employ SUPRAS approach in gas 
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chromatography, avoiding the separation step, is based on post-extraction derivatization of 

the surfactant before the injection into the system. N,O-bis(trimethylsilyl)trifluoroacetamide 

was proposed as derivatizing agent [81]. 

In spite of surfactants being usually employed in micellar electrokinetic chromatography 

(MEKC), the coupling of capillary electrophoresis (CE) and SUPRAS techniques has limited 

applications, even though supramolecular solvents are also well-matched with capillary 

electrochromatography (CEC) background electrolytes. The drawback of SUPRAS/CE 

methodologies is the clogging of the capillary. To avoid this issue, a post-extraction/dilution 

with an organic solvent is needed, but pseudo stationary phase formation keeps existing, 

which results in no reproducible migration times [82, 83]. In capillary zone electrophoresis 

(CZE), water can induce absorption of the surfactant onto the wall of the capillary. To 

overcome this problem, non-aqueous media can be employed (NACE) when combining 

SUPRAS-based extractions with CZE [84, 85]. 

SUPRAS extractions can be also coupled to MEKC. A dilution step of the SUPRAS extract 

with an organic solvent is needed for reducing the viscosity [86, 87, 88]. As for gas 

chromatography, a good strategy is to remove the amphiphile before injection in the CE 

instrument [89, 90, 91]. 

3.4. SUPRAS applications in analytical chemistry 

During the last decade, supramolecular solvents have been employed for the extraction of 

organic compounds and metals in environmental, food and biological matrices. 
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3.4.1. Aqueous micelle-based SUPRAS 

 
Taking into consideration the nature of the surfactant which forms the structure, SUPRAS 

made up by aqueous micelles can be subdivided in three subtypes: 

 Non-ionic micelles-based SUPRAS 

 Ionic micelles-based SUPRAS 

 Mixed micelles-based SUPRAS 

SUPRAS formed by nonionic surfactants and obtained by an increase of temperature have 

been the most employed SUPRAS in sample extraction over the last decade. This wide use 

seems to be related to the limited efforts to develop new strategies on SUPRAS 

methodology. The most used surfactants for these applications have been Triton X-114, 

Triton X-100 and Genapol X-080, at working concentrations around 1%, or around 3-10% 

for the extraction of bioactive compounds in biological matrices. The pre-concentration 

factors which can be reached with this type of SUPRASs are quite low (1-10), although it is 

possible to increase them by changing the environmental conditions (e.g., addition of salts). 

Thus, pre-concentration factors up to 73-152 have been achieved for the extraction of 

hormones with Triton X-114 (0.25%) with the addition of a salt (0.4M Na2SO4) at 45 ºC [92]. 

Among SUPRAS formed by ionic micelles, acid medium-based ones have proved their 

suitability for the extraction of cations, even under extreme experimental conditions (e.g. 3–4 

M HCl or 4 g NaCl) in solid samples such as soil, sludge and sediments [93]. Moreover, 

SUPRAS obtained by the use of acid media have shown high pre-concentration factors in 

aqueous matrices at low surfactant concentrations (e.g., 140 for 0.1% of dodecane sulphonic 

acid) [94]. An interesting aspect for LC-MS/MS applications is that anionic surfactants can 

be purchased as single homologues that show a single peak at low retention times in LC [40]. 

SUPRASs formed by cationic surfactants has been used with great results for the 

determination of chlorophenols in environmental water [95]. 

Mixed micelles-based SUPRASs are formed by nonionic and ionic surfactants, and they have 

been successfully employed for the extraction of charged analytes. Usually, the mixture is 

composed by Triton X-114 and Cetyl trimethylammonium bromide (CTAB) and Sodium 
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dodecyl sulfate (SDS) for extracting anionic and cationic analytes (e.g., pesticides, dyes, 

humic and fulvic acids), respectively [96, 97, 98]. Mixed micelles-based SUPRAS formed by 

mixtures of two non-ionic amphiphiles have been used for the extraction of PAHs. Despite 

the high working temperature (78 °C), authors claimed some advantages when compared to 

single surfactant and/or ionic-nonionic mixtures. To name a few: higher surface activity, co-

stabilizing and co-sensitizing features, and relatively better selectivity [99, 100]. 

3.4.2. Vesicle-based SUPRAS 

SUPRASs formed by vesicles of carboxylic acid are very rich in amphiphiles (1 g mL-1), 

which results in better performances and higher pre-concentration factors (e.g. >700). They 

have showed great capability for the extraction of pesticides in food samples and endocrine 

disruptors, pesticides and phenols in environmental water samples [101, 102, 103, 104]. Their 

excellent performance is due to the high number of interactions (i.e., ionic, hydrogen 

bonding, π –cation and hydrophobic) with which analytes are solubilized. Moreover, the 

presence of strong cohesive forces among their molecules allows their application in drop 

microextractions formats [40]. 

3.4.3. SUPRAS with restricted access properties (RAM-SUPRAS) 

A common feature shown by all supramolecular solvents is that the process of self-assembly 

and coacervation is spontaneous and reversible. Environmental changes trigger the process 

by stopping the repulsion forces among the head groups, so aggregates become bigger and 

coacervate is formed. The size of aggregates depends on the balance between repulsion 

forces among the polar heads and attraction forces among lipophilic chains. Thus, the size of 

aggregates can be tailored with the consequence that structures with selected properties can 

be properly designed for specific applications (functional SUPRAS). In this context, 

SUPRAS with restricted access properties (RAM-SUPRASs) were first proposed by A. 
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Ballesteros-Gómez et al. [105]. These solvents are made up of alkanols (C6-C14) and THF, 

and coacervation is induced by the addition of water. They are formed by inverted hexagonal 

aggregates, where the hydrophilic heads surround the aqueous cavities, while the lipophilic 

chains are solved in THF (Figure 18). 

 

Figure 18 Schematic representation of structure, environmental responsive, and restricted 

access properties of alkanol-based SUPRAS. 

The size of the aqueous cavity depends on the THF/water ratio, and it is a key point for the 

restricted access material activity, and for the extraction of polar compounds [105]. RAM-

SUPRAS are able to extract solutes with low molecular weight and exclude, trough chemical 

(THF and alkanol protein precipitation) and physical (size exclusion of polysaccharides) 

mechanisms, big molecules such as the usual interferences in complex biological matrices 

(e.g. proteins, carbohydrates, humic acids etc.) [12, 106, 107]. In order to eliminate 

phospholipids, other common interference in biological matrices, an additional step of 
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evaporation of the extracts prior to the injection in LC-MS/MS system may be applied 

(RAM-VOL-SUPRAS). Solutes are extracted by a synergism of interactions with a mix mode 

mechanism which consists both in polar and hydrogen bond interactions with alcohol heads, 

and dispersion interactions with the lipophilic chains. 

Alkyl carboxylic acids (C8-C16 and C18) have been also employed for the synthesis of RAM-

SUPRAS in a wide range of solvents (e.g., ethylene glycol, methanol, ethanol, 1-propanol, 

tetrahydrofuran, N,N-dimethylformamide, acetonitrile, acetone and dioxane), and with water 

as coacervating agent. Since carboxylic acids must be protonated to coacervate as SUPRAS 

(pKa R-COOH= 4.8 ± 0.2), acidic conditions are required for the synthesis, being the 

extraction carried out at pH<4 [103]. Acid- based SUPRASs with restricted access properties 

have been successfully proposed for the extraction of a wide range of compounds in food, 

environmental and clinical applications [12].
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Blood serum retinol levels in Asinara white donkeys reflect 

albinism‐induced metabolic adaptation to photoperiod at 

Mediterranean latitudes 
M.G. Cappai, M.G.A. Lunesu, Francesca Accioni, M. Liscia, M. Pusceddu, L. Burrai, M. 

Nieddu, C. Dimauro, Gianpiero Boatto, W. Pinna 
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ABSTRACT 

Previous works on albinism form of Asinara white donkeys (Equus asinus) identified the 

mutation leading to the peculiar phenotype spread to all specimens of the breed. Inbreeding 

naturally occurred under geographic isolation, on Asinara Island, in the Mediterranean Sea. 

Albino individuals can be more susceptible to develop health problems when exposed to 

natural sun radiation. Alternative metabolic pathways involved in photoprotection were 

explored in this trial. Nutrition-related metabolites are believed to contribute to the 

conservation of Asinara donkeys, in which melanin, guaranteeing photoprotection, is lacking. 

Biochemical profiles with particular focus on blood serum β-carotene and retinol levels were 

monitored. Identical natural grazing conditions for both Asinara (albino) and Sardo 

(pigmented) donkey breeds were assured on same natural pastures throughout the 

experimental period. A comparative metabolic screening, with emphasis on circulating retinol 

and nutrient-related metabolites between the two breeds, was carried out over one year. 

Potential intra- and interspecimen fluctuations of metabolites involved in photoprotection 

were monitored, both during negative and positive photoperiods. Differences (p = .064) 

between blood serum concentrations of retinol from Asinara versus Sardo breed donkeys 

(0.630 vs. 0.490 μg/ml, respectively) were found. Retinol levels of blood serum turned out to 

be similar in the two groups (0.523 vs. 0.493 μg/ml, respectively, p = .051) during the 

negative photoperiod, but markedly differed during the positive one (0.738 vs. 0.486, 

respectively, p = .016). Blood serum β-carotene levels displayed to be constantly around the 

limit of sensitivity in all animals of both breeds. Variations in blood serum concentrations of 

retinol in Asinara white donkeys can reflect the need to cope with seasonal exposure to 

daylight at Mediterranean latitudes, as an alternative to the lack of melanin. These results may 

suggest that a pulsed mobilization of retinol from body stores occurs to increase circulating 

levels during positive photoperiod. 

KEYWORDS melanin, skin damage, sun radiation, vitamin A, β-carotene 
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1. INTRODUCTION 

A worldwide acknowledged unique breed of feral albino donkeys originated in Sardinia, one 

of the major islands of the Mediterranean Sea. The Asinara white donkeys (Equus asinus, 

Linnaeus, 1758, var. albino) owe their name to the Asinara Island (N 41°4′ 0.012″, E 8°16′ 

0.012″, Sardinia, Italy), established as National Park of the Autonomous Region of Sardinia, 

since 1998 (Official Gazette of Italian Republic, 1997) (Figure 1). The peculiar phenotype of 

Asinara white donkeys is characterized by a lifelong hypopigmentation of skin, hair, and eyes 

(Figure 2). The coat color has been definitely assessed [1], and the relative mutation has been 

recently elucidated [2]. 

 

Figure 1 Map of Europe and magnification of Sardinia Isle (white), one of the largest islands 

of the Mediterranean Sea. In the frame on the right, the Asinara Island is colored in yellow 

and yellow spots on Sardinia highlight the presence of Asinara white donkeys in other 

regional parks. The National Registry of Local Minor Equine Breeds accounts 94 Asinara 

white donkeys living in Sardinia in 2015. 

                                                           
[1] M.G. Cappai, M. Picciau, G. Nieddu, I. Sogos, R. Cherchi, W. Pinna, Ital. J. Anim. Sci., 14 (2015) 502–507. 
[2] V.J. Utzeri, F. Bertolini, A. Ribani, G. Schiavo, S. Dall’Olio , L. Fontanesi, Anim. Genet., 47 (2016) 120-124. 
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Figure 2 Group of donkeys in the natural park in Is Arenas. Asinara white donkey (bottom 

left) and Sardo donkeys (bottom right and in the background) stepping toward bushes of 

Mediterranean vegetation. Picture taken during positive photoperiod 

All specimens of Asinara breed display to possess an oculocutaneous form of albinism, 

classified as type 1 (OCA1). In OCA1 albinism, the phenotype can be due to the impaired 

conversion of L-tyrosine to L-3,4-dioxyphenylalanine (L-DOPA), in the early steps of the 

melanogenic process. The enzymatic inactivity [1] of tyrosinase (TYR) is now known to be 

due to the genetic mutation [2] of tyrosinase gene (Tyr). The consistency of Asinara white 

donkeys living on the Asinara Island is currently estimated to account 140 individuals. A 

lesser number of donkeys is distributed in other national parks of the Autonomous Region 

of Sardinia territory and, residually, in the rest of Italy (specimens: 294; conservation status: 

critical; records of the National Registry of Local Minor Equine Breeds, Association of 

Italian Breeders, 2016). Previous phylogenetic analyses [3, 4] suggested that the fixation of 

the mutation for albinism has been favored by geographical isolation. The autochthon origin 

of Asinara breed was supported by the molecular analyses carried out by Pinna et al. 

(1998)[4] who reported that albino donkeys seem to have branched out of the autochthon 

pigmented Sardo donkey, later studied also by Cosseddu et al. (2001) [3]. The first 

description of the Asinara white donkeys dates back to 19th century. This discovery can 

support the theory about the role exerted by geographic isolation and inbreeding 

phenomena. Inbreeding can naturally take place when genetically related individuals mate 

                                                           
[3] G. M. Cosseddu, A Fraghi, L. Mura, A. Carta, R. Cherchi, S. Pau, Ippologia, 12 (2001) 25–33. 
[4] W. Pinna, G.M. Cosseddu, G. Moniello, C. Zimdars, L’asinello bianco dell’Asinara: una razza antica o 
recente di Equus asinus? In: Poliedro (eds) L’isola dell’Asinara: l’ambiente, la storia, il parco. Sassari. Poliedro, 
(1998). 
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and offspring carry high levels of consanguinity. This may result in homozygosis for 

recessive alleles which are fixed in the next generations. The albinism of Asinara white 

donkeys has been recently identified to be due to a missense mutation in a highly conserved 

aminoacid position (G/G or D/D genotype), diverse from the pigmented phenotype (grey) 

of the Sardo donkey (C/C or C/G genotype) [2]. Inbreeding was also associated with 

isolated forms of albinism in other animal species [5, 6]. In individuals with different types of 

albino forms, the risk to develop skin cancer is reported to be higher than observed in 

pigmented individuals. In addition, this datum varies according to the type of albinism [5, 7, 

8]. Other disorders are referred to ophtalmological problems like nystagmus or epiphora 

following direct sun exposure. Asinara donkeys show pink or light blue iris and unpigmented 

ocular fundus [1, 4]. As melanin is a skin, eye (retina and iris), and hair pigment with 

photoprotection properties against UV radiation, albino individuals may be naturally prone 

to photosensitivity and related complications. A high prevalence of secondary skin or eye 

disorders is reported to be linked to the form of albinism [9, 10, 11, 12]. Despite Asinara 

donkeys display OCA1 phenotype [1], the prevalence of skin or eye diseases is not reported 

to be higher than that detectable in other pigmented feral donkeys living in the same 

environment, except for photodermatitis at the top of the ears [1] and lower resistance to 

Myiasis cutanea [13]. Against this background, Asinara white donkeys’ adaptation to the 

natural Mediterranean environment poses the question on how OCA1 does not seem to 

induce secondary diseases incompatible with life and responsible for low survival rates in 

nature, like skin cancer for instance, never reported in the literature to the best our 

knowledge. It appeared highly stimulating to understand how these albino animals 

successfully adapted to the Mediterranean climate and coped with environment and natural 

feeding stuffs. It was therefore hypothesized that endogenous factors, other than melanin, 

may play a decisive role in the natural metabolic adaptation of Asinara white donkeys. In the 

                                                           
[5] J. Prado-Martinez, I. Hernando-Herraez, B. Lorente-Galdos, M. Dabad, O. Ramirez, C. Baeza-Delgado, C. 
Morcillo-Suarez, C. Alkan, F. Hormozdiari, E. Raineri, J. Estellé, BMC Genomics, 14 (2013) 363–370. 
[6] M.E. Protas, C. Hersey, D. Kochanek, Y. Zhou, H. Wilkens, W.R. Jeffery, L.I. Zon, R. Borowsky, C.J. 
Tabin, Nature Genet., 38 (2006) 107–111. 
[7] K. Grønskov, J. Ek, K. Brondum-Nielsen, Orpèhanet J. Rare Dis., 2 (2007) 43–51. 
[8] J. Okulicz, R. Shah, R. Schwartz, C. Janninger, J.Eur. Acad. Dermatol. Venereol., 17 (2003) 251–256. 
[9] W.S. Oetting, Pigment Cell Res., 13 (2000) 320–325. 
[10] W. Oetting, M.H. Brilliant, R.A. King, Mol. Med. Today, 2 (1996) 330–335. 
[11] S.B. Potterf, M. Furumura, E.V. Sviderskaya, C. Santis, D.C. Bennett, V.J. Hearing, Exp. Cell Res., 244 
(1998) 319–326. 
[12] C.J. Jr Witkop, Albinism. In: H. Harris, K. Hirschhorn (eds) Advances in Human Genetics. Springer, 
(1971). 
[13] W. Pinna, G.M. Vacca, G. M. Cubeddu, G. Pintori, G. Garippa, Salvaguardia degli asinelli bianchi 
dell’Asinara: risultati di un controllo delle parassitosi. Atti del Convegno Nazionale: Ecopatologia della Fauna 
Selvatica, (1994) 105–110. 
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present work, we investigated whether variations in circulating retinol, as a biological 

measure to overcome the lack of pigment in skin, eye, and hair of Asinara white donkeys 

could be detected. Carotenoids consumed with the natural diet seem to be linked to 

circulating levels and distribution of metabolically active derivates in tissues of fish, birds, 

and mammals, and retinol may be one of these. In general, carotenoids may serve different 

purposes in the animal body, with different evolutionary meanings [14]. Dietary carotenoids 

display to possess diverse chemical structures. To date, over 600 known carotenoids 

compose this heterogeneous group of pigments, of which about 50 are useful substances for 

plants and animals. Carotenoids can be synthesized by plants, algae, and fungi, but mammals 

are incapable of de novo synthesis [15]. The diverse chemistry can be used to explain how 

different carotenoids enter diverse biochemical pathways. As a consequence, different 

physiological activities can lead to diverse biological effects of carotenoids after ingestion 

[15]. Due to their widespread presence in nature, carotenoids were the first phytochemicals 

studied for their ubiquitous functional roles [16]. Carotenoids can be classified into carotenes 

(hydrocarbons, likewise β-carotene and lycopene) and their oxidation products, known as 

xanthophylls. With regard to xanthophylls, they are known to contribute to the plumage of 

birds and coloration of fish. In particular, seasonal variations (nonmolt and molt, for 

instance) were observed in finches differently supplemented with dietary carotenoids [14]. To 

such an extent, the involvement of carotenoids in different aspects of life appears to be a 

common trait both for animals and plants. Vegetables and fruits are major sources of 

carotenoids for terrestrial mammals; however, other carotenoids (astaxanthin, for istance) 

can be synthesized by krill [17], thus being naturally available in the diet of marine animals 

and aquatic birds, like flamingos [18]. Natural pigments in the plant kingdom are associated 

with photosynthetic processes, as well as to dissipate energy excesses under light stress. The 

latter condition is mediated by a particular group of carotenoids [19, 20, 21]. Carotenes from 

plants, in particular β-carotene, display to possess pro-vitaminic properties for mammals. 

Vitamin A, or retinol, is synthesized starting from β-carotene in the small intestine and liver 

of animals. Vitamin A is known to take part, among other biological activities, in the visual 
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[15] B. R. Jr Hammond, L.M. Renzi, Adv. Nutr., 4 (2013) 474–476. 
[16] C.H. Eugster, History: 175 years of carotenoid chemistry. In: G. Britton, S. Liaeen-Jensen, H. Pfander (eds) 
Carotenoids. Birkhäuser1, (1995). 
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function following light exposure. Vitamin A behaves as a strong antioxidant, capable to 

preserve cell membrane integrity. The role of retinol and β-carotene was explored by Wolf et 

al. (2000) in white recessive canaries, but no albino forms were associated in these birds. 

Thus, a comparative trial between Asinara white and pigmented Sardo donkeys, kept under 

same natural conditions and equally exposed to different intensities and duration of natural 

daylight, was carried out, with the attempt to clarify whether retinol might take part in 

photoprotection of albino specimens. Thus, this investigation was carried out over one year, 

to explore the metabolic adaptation to Mediterranean climate of albino specimens during 

different photoperiods. 

2. MATERIALS AND METHODS 

2.1 Animals and care 

The investigation involved 11 stallions and 12 jennies, of which six of Asinara white and 17 

of Sardo breed. All animals were individually recorded in the Official Register of the white 

donkey of Asinara (Ministerial Decree 27/7/1990) and of Sardo breed, respectively. The 

proportion of specimens from each breed enrolled in the trial is representative of the 

consistency of Asinara and Sardo donkeys, namely hundreds and thousands, respectively. All 

the experimental procedures presented in this study comply with recommendations of 

European Union directive 86/609/EEC and Italian law 116/92 concerning animal care. 

2.2 Animals and farming conditions 

All donkeys enrolled in the trial live altogether in the natural reserve of Is Arenas, in the 

south-western coast of Sardinia Island (N 41°4′0.012″, E 8°16′0.012″). Individual blood 

sampling was carried for determining overall metabolic profile, with particular regard to β-

carotene and retinol concentration, in two different periods (negative vs. positive 

photoperiod) throughout the year. Sampling periods were characterized by positive (peak in 

June, after three months of increasing light hours per day) and negative (month of October, 

after three months of decreasing light hours per day) photoperiod of the boreal hemisphere. 

All animals were individually and electronically identified by injectable transponders 

according to the EC Regulation 504/2008. Each donkey had free access to same natural 

pastures in both seasons. At each sampling, donkeys underwent the nutritional assessment 

[22] to estimate the nutritional state. Moreover, the comparative approach for the nutritional 

assessment was used to estimate any potential nutritional deficiency clinically manifest in 
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both breeds. The trial lasted 12 months, which was considered a reliable period of time for 

avoiding biases due to bioaccumulation in the body of fat soluble dietary compounds from 

earlier seasons. 

2.3 Blood sampling and laboratory analysis 

Each donkey from both breeds was sampled for whole blood through the puncture of the 

jugular vein, to screen complete biochemical profile at start (October 2013) and end of the 

trial (October 2014), during negative photoperiod. Blood samples were also collected from 

same animals in the month of June 2014 (positive photoperiod), between the two negative 

photoperiods. For this purpose, all animals were gathered together in a paddock with mobile 

fences and moved into a corridor leading to a horse stock. Individual blood samples were 

cooled down and stored in tubes of polystyrene cases in the upright position in a cooling 

bag, to assure adequate temperature during the transfer of samples to the laboratory. All 

samples were labeled with the donkey name, electronic individual code (EIC), and date of 

sampling. All laboratory procedures on whole blood were started within six hours after 

collection. In field and laboratory protocols for the collection, storage and analyses of blood 

samples were carried out in the dark, in order to avoid photo-degradation of β-carotene and 

retinol. Individual serum was screened for complete biochemical profile. Prior to chemical 

analysis of blood serum, individual blood samples were centrifuged at 1500 × g for 10 min. 

An aliquot of individual serum was stored in a sterile vial (2 ml) and frozen at −20°C, until 

further analyses. All the samples were analyzed within one week, through an automatic 

biochemical analyzer (Mindray BS-200, Alcyon, Italy) for the determination of serum 

concentration of ubiquitous intermediate metabolites, enzymes, nutrients, macro- and micro-

minerals. For the determination of β-carotene and retinol, high-pressure liquid 

chromatography coupled with an ultraviolet detector (HPLC-UV) was carried out. All 

standards and solvents were purchased from Sigma Aldrich (Milan, Italy). Stock solution (1 

mg/ml) of β-carotene and retinol were prepared in methanol and chloroform/methanol 

(50/50), respectively. For the calibration curve, standard stock solutions were diluted with 

methanol and kept frozen at −20°C, protected from light. Serum levels of β-carotene and 

retinol were simultaneously measured at 325 and 450 nm, respectively. Chromatographic 

separation was carried out on a Waters Symmetry C18 column (4.6 × 150 mm, particle size 5 

μm, Waters, Milford, Massachusetts). The injection volume was 20 μl. The mobile phases 

used were acetonitrile/methanol/Milli-Q water (64.5/33/2.5) at 1 ml/min for retinol, and 

100% methanol at 2.8 ml/ min for β-carotene. Data were acquired and processed by Breeze 
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Software (Waters, Milford, Massachusetts). The limits of sensitivity for β-carotene and retinol 

were 50 and 100 ng/ml, respectively. Samples were prepared as follows: 0.3 ml of serum was 

vortexed with 0.6 ml of acetonitrile and centrifuged at 3500 × g at 4°C for 10 min. The 

supernatant was dried under a stream of nitrogen, and the residue was reconstituted in 0.15 

ml of mobile phase [23, 24, 25, 26, 27]. 

2.4 Analysis of data and statistical methods 

Data obtained on each sampling were analyzed using the following linear model: 

 Yi,j =μ+Di +Gj +Di ×Gj +ei,j 

where Y is the dependent variable (β-carotene and retinol concentration in blood serum), μ is 

the overall mean, D is the fixed effect of the sampling time (two levels: negative and positive 

photoperiod), G is the fixed effect of the coat color (two levels: pigmented vs. albino), D*G 

is the interaction factor, and e is the random residual. All data were analyzed using SAS 9.2 

(SAS Inst. Inc. Cary, NC). The statistic significance was set for p-value < .05) were calculated 

for circulating Zn and total protein with retinol concentrations in blood serum. In both 

breeds, correlations were statistically analyzed because Zn and total protein were considered 

as nutrients related to intestinal absorption and conversion yields of β-carotene. 

3. RESULTS 

All animals involved in the trial appeared healthy. No signs of nutritional deficiency could be 

pointed out in both breeds. This finding was also supported by the optimal body condition 

score (BCS, based on a five-point scale, 1 = emaciation to 5 = obesity) recorded both in 

Asinara and Sardo donkeys (3.25 ± 0.15 vs. 3.50 ± 0.10, respectively). Biochemical profiles 

did not highlight significant differences between breeds (Table 1), as to parameters screened 

in this trial, except for retinol (Table 2). In fact, levels of retinol turned out to be significantly 

higher (+40.6% on average) in Asinara donkeys than those detected in blood serum of Sardo 

ones, during the positive photoperiod, whereas retinol concentrations (μg/ml) in blood 

serum appeared similar during negative photoperiods, in both the groups. The interaction 

between coat colour and photoperiod resulted to the limit of statistic significance (p = .051), 
                                                           
[23] H. Biesalski, H. Greiff, K. Brodda, G. Hafner, K.H. Bässler, Int. J. Vitam. Nutr. Res., 56 (1986) 319–327. 
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(1994) 547–553. 
[25] P. Gershkovich, F. Ibrahim, O. Sivak, J.W. Darlington, K.M. Wasan, Drug Dev. Ind. Pharm., 40 (2014) 
338–344. 
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as retinol blood serum concentrations in Asinara white donkeys set back to levels similar to 

those determined in Sardo donkeys during negative photoperiod. β-Carotene levels 

constantly resulted around the limit of sensitivity in all animals (50 ng/ml). Correlations 

between retinol and circulating zinc and respective total protein were not statistically 

significant in both breeds (Table 3). This datum supports the consideration of a normal 

intestinal absorption of β-carotene in both breeds. 

Table 1. Biochemical metabolic profiles of donkeys (Asinara vs. Sardo) in blood serum 

collected during negative and positive photoperiods. Analyzed parameters involved in the 

nutritional assessment and potential impact on retinol metabolism are reported. Analyzed 

metabolites drop in the physiological range in both breeds 

Breed Asinara Sardo 
Coat Albino Pigmented (gray) 
Photoperiod Positive Negative Positive Negative 
Animals  6 17 6 17 

Parameter 
Glucose (mg/dl) 38.8 ± 16.1 68 ± 7.91 53.0 ± 10.7 60.3 ± 4.84 
Total protein (g/L) 82.3 ± 21.7 69.7 ± 2.61 84.0 ± 10.6 58.2 ± 7.27 
Zinc (mg/dl) 40.6 ± 2.34 34.5 ± 2.12 44.1 ± 8.88 38.2 ± 2.19 
Triglycerides (mg/dl) 67 ± 22.1 59.5 ± 17.7 69.3 ± 23.2 60.4 ± 17.7 
Cholesterol (mg/dl) 78.8 ± 20.3 75 ± 2.82 83.6 ± 5.65  87.2 ± 7.59 
Urea (mg/dl) 42.0 ± 13.4  38.1 ± 1.27  48.8 ± 11.5 31.2 ± 9.54 
Lipase (U/L) 16.1 ± 1.31 14.5 ± 0.22 16.2 ± 4.12 18.0 ± 1.8 

 

Table 2. Retinol levels (μg/ml) in blood serum of Asinara versus Sardo donkeys during 

different photoperiods (negative vs. positive). Values are expressed as mean and pooled 

standard error (SE). Retinol concentrations in serum clearly indicate the increase of 

circulating retinol in the bloodstream of Asinara white donkeys during the positive 

photoperiod, if compared with retinol concentrations in serum from same animals during the 

negative photoperiod. By contrast, Sardo donkeys do not show any variations of circulating 

retinol levels across different photoperiods. Negative photoperiod concentrations of retinol 

from Asinara white donkeys are slightly higher than those determined in blood serum of 

Sardo donkeys 

Photoperiod  Positive Negative  
 Animals (n) 23 23  

Breed     SE 
Asinara  6 0.738a 0.522ab 0.04 

Sardo 17 0.486b 0.492b 0.03 

Values that do not share a letter are significantly different (p < .05). 



56 
 

Table 3. Correlation coefficients and p-values between circulating retinol, zinc (Zn), and 

total protein (TP) in Asinara white donkeys. No statistic significance was pointed out with 

blood serum concentrations of Zn and TP, whereas a statistically significant positive 

correlation was found between Zn and TP circulating levels 

Correlations 
p-value 

Retinol 
(μg/ml) 

Zn 
(mg/dl) 

Zn (mg/dl) −0.276  
 0.172  
TP (g/L) −0.294 0.670 
 0.137 0.000 

 

4. DISCUSSION 

Herbivores fed on natural diets cannot consume adequate amount of retinol, necessary to 

cover their nutritional requirement, but they have to operate a conversion from its pro-

vitaminic form (β-carotene) in the diet, from vegetal sources. As previously said, about 600 

different compounds can be accounted in nature, of which only 50 can be found in human 

and animal diets. In particular, carotenes are hydrocarbons, thus their chains are only 

composed by C and H. Carotenoids containing an unsubstituted β-ring and a C11 polyene 

chain are termed provitamin A, and they can display biological activities, once enzymatically 

converted in the animal body. Provitamin A carotenoids from plants are important sources 

of dietary vitamin A, or retinol, for herbivores; they can be found primarily in fresh 

vegetables and in some particular fruits. Bioaccessibility of β-carotene from fat digestion, and 

its bioavailability, following the conversion into retinol, is genetically ruled (enzyme-

dependence) [28, 29, 30]. Moreover, nutritional deficiencies of iron, zinc, and protein may 

also affect conversion rates of β-carotene into vitamin A. Therefore, the bioavailability of 

retinol depends on the genetic type of individuals and on overall nutritional-metabolic status. 

From a strict nutritional viewpoint, this is translated into a variable capability to digest, 

adsorb, and convert β-carotene into retinol. The retinol can be later acquired by organs and 

tissues and stored in liver as retinyl esters (stellate cells mainly), retina (in the conversion of 

retinol–retinal–rhodopsin and reverse, for the visual function), fat and skin [31]. Previous 

studies in epithelial cells from skin of rats have shown that dietary retinoic acid 

supplementation induces transglutaminase activity, being this enzyme involved in programed 
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cell death, and maybe involved in the inhibition of carcinogenesis [32]. Intestinal conversion 

of β-carotene to vitamin A decreases when an experimental oral dose of β-carotene increases 

[33]. This can be considered as a safe biological way to protect against the risk of the fat 

soluble vitamin A excesses, accumulated in tissues and organs, like the liver. In fact, it was 

seen that despite high intakes of β-carotene, retinol levels do not increase proportionally [33, 

34]. However, β-carotene can be converted to retinol with different efficiency rates in the 

diverse animal species [34]. To the best of our knowledge, the conversion efficiency of β-

carotene into retinol was not experimentally determined in the donkey, but our results 

suggest that this species might be an efficient converter. It is known that different cleavage 

sites of β-carotene molecule may give rise to diverse biochemical pathways, depending on 

symmetric cleavage by β-carotene-monooxygenase (β,β-carotene15,15′-monoxygenase 1, 

BCMO1), or eccentric cleavage operated by β-carotene-dioxygenase (β,β-carotene-9′,10′-

dioxygenase, BCDO2) [35]. Symmetric or eccentric cleavages give rise to a series of products 

from βcarotene molecule, with diverse biological activities [34]. Thus, it is established that β-

carotene molecule does not produce retinol only [34]. Results obtained from this trial seem 

to suggest that both Asinara white and Sardo donkeys are efficient converters of β-carotene 

into retinol. It could be argued that Asinara white donkeys may intake higher amounts of β-

carotene with the diet, by a more accurate selection of naturally available plant species. 

However, this aspect does not appear to be plausible given the nutritional status of animals 

from both breeds, which appeared similar throughout the experimental period. The intake of 

β-carotene implies the consumption of proportional dietary fat with the diet, that would have 

led to different energy intake and consequent energy storage. Additionally, body condition 

scores together with variations associated with circulating total triglycerides in the 

bloodstream would have varied accordingly, but this was not found to differ between the 

two breeds. It was therefore considered that the metabolic response in the albino donkey can 

be elicited by increasing natural daylight exposure, namely during positive photoperiod. In 

fact, circulating retinol levels resulted higher in blood serum of Asinara white donkeys when 

compared to those determined in Sardo ones, during increasing intensity and duration of 

exposure to natural light. Such finding can be related to the key biological functions of 

vitamin A (retinol) and its aldehyde (retinaldehyde) in the visual function. The whole 

                                                           
[32] C.S. Jones, L. Sly, L.C. Chen, T. Ben, M. Brugh-Collins, U. Lichti, L.M. De Luca, Nutr. Cancer, 21 (1994) 
83–93. 
[33] J.A. Novotny, D. Harrison, R. Pawlosky, V. Flanagan, E. Harrison, J. Nutr., 140 (2010) 915–918. 
[34] F. Tourniaire, E. Gouranton, J. von Lintig, J. Keijer, M.L. Bonet, J. Amengual, G. Lietz, J.F. Landrier, 
Genes Nutr., 4 (2009) 179–187. 
[35] G.P. Lobo, A. Isken, S. Hoff, D. Babino, J. von Lintig, Development, 139 (2012) 2966–2977. 
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biochemical process leading to the involvement of retinol in the formation of rhodopsin is 

not reported here, as extensively reviewed by Palczewski (2006) [36]. Despite a comparable 

allowance to dietary β-carotene from natural feeding sources available in the environment, 

Asinara white donkeys could efficiently mobilize retinol from tissue stores producing high 

circulating retinol levels in the bloodstream. This datum is supported by the circulating levels 

of retinol in Asinara donkeys during the negative photoperiod, comparable to the average 

levels observed in Sardo donkeys throughout the year. At Sardinian latitude, the month of 

June represents the culmination of the positive photoperiod with a maximum of daylight 

duration of nearly 15 hours/day. This was associated with the fact that, under comparable 

conditions of dietary β-carotene from naturally available vegetation, Asinara donkeys display 

higher levels of circulating retinol than Sardo breed donkeys do, which can, however, rely on 

melanin for photoprotection. Dietary β-carotene is consumed normally with fat compounds 

of the diet. Thus, β-carotene follows dietary fat digestion and absorption processes. In the 

herbivore, the pro-vitaminic β-carotene is absorbed with vegetal fats in the small intestine. In 

particular, the absorption of β-carotene from mixed micelles in the chymus of the small 

intestine occurs in the brush border of the enterocyte (Figure 3) 

 

Figure 3. Scheme of β-carotene fate as precursor to retinol (Vitamin A).  

The conversion is operated in the brush border of the enterocyte of the small intestine. 

Circulating β-carotene around the limit of sensitivity suggests that donkeys are efficient 

converters of the provitamin into retinol. Blood serum concentrations of retinol turned out 

to differ in Asinara versus Sardo donkeys during positive photoperiod, as an adaptive 

metabolic measure to overcome the lack of melanin in specimens of albino breed. Retinol 

                                                           
[36] K. Palczewski, Annu. Rev. Biochem., 75 (2006) 743–767. 
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levels are suggestive of a pulsed mobilization of retinol into the bloodstream from liver 

stores in Asinara white donkeys. 

β-Carotene absorption can follow two fashions, but the detailed mechanisms ruling on which 

pathway may be preferable is not elucidated to date. Indeed, the literature reports [37, 38] 

that BCOD2 rapidly metabolizes nonproteinoid carotenoids. However, it is well known that 

β-carotene is not fully converted into retinol and that the conversion is self-modulated 

according to the level of retinol already synthesized [28]. One mechanism of absorption is 

represented by the passive diffusion of β-carotene through the mucosal layer of the intestine 

into the vasum chyliferum, which conveys fatty nutrients in the lymphatic circulation. 

Alternatively, the absorption can occur through cholesterol receptors expressed on the cell 

membrane of the brush border of the enterocyte [28]. In addition, interactions with other 

nutrient levels may impair β-carotene absorption. The literature reports that nutritional 

deficiencies of iron, zinc, and protein may also affect estimates of the vitamin A equivalency 

of β-carotene [28]. As to elements, Iron deficiency disrupts retinol homeostasis and results in 

decreased mobilization of vitamin A from the liver and low serum retinol concentrations in 

rats [39]. Marginal zinc deficiency results in a significant reduction in β-carotene absorption 

in rats [40] and may also limit production of retinolbinding protein and interfere with retinol 

homeostasis. Indeed, protein deficiency too is associated with reduced intestinal conversion 

of β-carotene to vitamin A in rats [41] and may interfere with production of chylomicrons, 

lipoproteins, and retinol-binding proteins, with potential impacts on retinol metabolism [28, 

39, 40, 41]. In both breeds, no nutrients were found to be below the minimum level of the 

physiologic range. Moreover, in Asinara white donkeys, no statistically significant 

correlations with retinol levels and zinc or total protein concentrations in blood serum were 

found. The comparison between the overall conditions observed in both groups of animals 

allowed us to draw several conclusions about the nutritional assessment, supported by 

nutrition-related metabolic profiles. As a matter of fact, nutritional deficiencies with a direct 

impact on coat and skin health may involve polyunsaturated fatty acids and fat soluble 

vitamins, [31, 32]. The high concentration of retinol in the bloodstream during positive 

photoperiod can be due to the increased mobilization of retinyl esters stored in the liver. 

                                                           
[37] J. Amengual, G.P. Lobo, M. Golczak, H.N. Li, T. Klimova, C.L. Hoppel, A. Wyss, K. Palczewski, J. von 
Lintig, FASEB J., 25 (2011) 948–959. 
[38] N.A. Ford, S.K. Clinton, J. von Lintig, A. Wyss, J.W. Jr Erdmann, J Nutr, 140 (2010) 2134–2138. 
[39] J.T. Jang, J. Green, J. Beard, M. Green, J. Nutr., 130 (2000) 1291–1296. 
[40] S.K. Noh, S. Koo, J. Nutr. Biochem., 14 (2003) 147–153. 
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However, as neither intestinal nor hepatic mechanisms of retinol biosynthesis or 

mobilization were investigated in Asinara white donkeys, it is assumed that in vivo circulating 

retinol levels reflect the need to restore hematological levels in case of augmented need of 

photoprotection. The photoperiodism can strongly influence some important physiological 

functions of animals, in particular of wild and feral animals. For example, the mechanism 

behind the stimulus in relation to photoperiod and the retinal stimulation by daylight is 

capable to modulate the neuroendocrine retinal-pineal-gonadal axis. That way, cyclic 

reproduction of many animal species is influenced under seasonal control. In a similar way, 

though with different goals, retinol levels in the bloodstream of albino donkeys of Asinara 

breed can be modulated by photoperiodism, via stimulation of a more susceptible retina to 

natural light intensity and duration, in order to guarantee photoprotection of exposed tissues. 

5. CONCLUSIONS 

Higher blood serum concentrations of retinol in Asinara donkeys (albino breed) were found 

in relation to positive photoperiod, than found in blood serum from donkeys of Sardo breed 

(grey coated) involved in this trial. The concentration of this nutrient-related metabolite can 

represent an alternative way to the lack of melanin in tissues, to explain the adaptation of 

albino donkeys in the natural Mediterranean environment. In this case, retinol may be an 

adaptive metabolic key to overcome the higher susceptibility to sun radiation of albino 

animals. Surprisingly, this peculiar form of albinism extended to all individuals of Asinara 

breed appears adapted to the environment. Probably, photoprotection might be achieved 

through higher levels of available retinol in the bloodstream capable to reach peripheral 

tissues. In vivo determination of high serum concentration of retinol in the Asinara donkeys 

paves the way to further investigations on the specific pathways leading to unpigmented skin 

protection from exposure to sun radiation. 
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ABSTRACT 

Alfa-tocopherol possesses marked antioxidant properties within the group of fat soluble 

vitamin E found in plants. Free grazing herbivores can benefit from the large abundance of 

feed sources in the environment, naturally rich in α-tocopherol for antioxidant properties. 

However, the phenotype of a worldwide unique acknowledged breed of albino feral donkeys 

living in the natural reserve of Asinara Island Park (Italy) may represent a challenge for 

health maintenance. The metabolic profile was comparatively investigated, with particular 

regard to circulating α-tocopherol baseline levels in specimens of Asinara (albino) vs. Sardo 

(pigmented coat) breeds. Circulating α-tocopherol found in the bloodstream of Asinara vs. 

Sardo donkeys under free grazing conditions at the peak of the positive photoperiod turned 

out to reach similar values (2.114 vs. 1.872 µg/ml, respectively, p=0.676). Interestingly, 

significant differences were instead observed as to circulating lactate dehydrogenase (LDH, 

p=0.022) levels, in association with increased creatine phosphokinase (CPK, p=0.076), both 

higher in the totality of Asinara donkeys. In the horse, the combination of increased values in 

the bloodstream of both such enzymes can be referred to muscle damage and, if coupled 

with low dietary vitamin E, can outline syndrome from dietary vitamin E deficit. Despite all 

the donkeys appeared healthy and showed comparable aspartate aminotransferase levels 

(AST, 254±52 vs. 296±133 U/l respectively, p=0.405), a potential subclinical disorder in 

albino specimens involved in this trial may be supposed, posing the question about α-

tocopherol requirements in Asinara donkeys for antioxidant purposes. 

KEYWORDS Albinism; Mediterranean maquis; Myopathy; Sun radiation; Vitamin E 

HIGHLIGHTS 

 Feral Asinara donkeys display OCA1 albinism and sun radiation may challenge 

survival rates. 

 Natural feed rich in vitamin E maybe be preferably selected in nature for antioxidant 

properties. 
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 Similar circulating α-tocopherol levels were found in Asinara vs. Sardo (pigmented) 

donkeys. 

 Circulating CPK and LHD were above the upper limit of the normal range in 

Asinara donkeys. 

 The adequacy of α-tocopherol levels of 2 µg/ml in donkeys should be tested on 

phenotype. 

1. INTRODUCTION 

Browsing and grazing animals can intake large amounts of Vitamin E from fresh feeding 

sources available from spontaneous vegetation. Vitamin E accounts a group of fat soluble 

compounds involved in several biological processes in the animal body, important for health 

maintenance [1].Alfa-tocopherol represents one of the most  biologically active forms of 

vitamin E group [2, 3]. Isomers of vitamin E cannot be synthesized de novo in the animal 

body, thus circulating α-tocopherol determined in the bloodstream of animals derives from 

the diet. It was established that tocopherols are the most abundant isoforms of Vitamin E in 

leaves, whereas tocotrienols (among other isoforms of Vitamin E) are chiefly found in seeds 

[2]. Though tocopherols can be found in plant seeds too, γ-tocopherol is abundantly 

synthesized, whilst α-tocopherol only residually. Levels of circulating α-tocopherol in the 

bloodstream of free ranging animals may reflect leaf-based natural diets, especially for 

grazers, like equines. 

The content of natural α-tocopherol dramatically decreases during feed processing, due to 

intrinsic lability (light and heat/cold sensitive) of such chemical compound. In addition, 

vitamin E synthesis in plants broadly varies, according to plant species and season (higher 

during spring-summer than during fall-winter) [4]. The daily requirement of Vit E (1-2 mg α-

tocopherol/ kg BW in a 500 kg BW horse in light work, NRC 2007) may not be adequately 

met if the horse is fed on a hay-based diet, unless purposely supplemented. In particular, the 

biologic role of vitamin E in the horse has been recently reviewed by Finno and Valberg 

(2012) [1]. Same authors pointed to the activity of α-tocopherol, often combined with Se, 

acting as scavenger of reactive oxygen species (ROS) in support to endogenous antioxidant 

systems of the horse. In the last decades, a number of evidence based reports pointed to the 

onset of clinical symptoms due to chronic deficiency of vitamin E in the diet of stabled 
                                                           
[1] C.J. Finno, S.J., Valberg, J. Vet. Interanl. Med., 26 (2012) 1251-1266. 

[2] D. DellaPenna, B.J. Pogson, Annu. Rev. Plant Biol., 57 (2206) 711-738. 
[3] D.J. Mustacich, R.S. Bruno, M.G. Traber, Vitam. Horm., 76 (2007) 1-21. 
[4] S.E. Sattler, E.B. Cahoon, S.J. Coughlan, D. DellaPenna, Plant Physiol., 132 (2003) 2184-2195. 
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horses. Disorders may involve musculoskeletal tissues or lead to neurodegenerative 

syndromes, often depending on individual’s age and breed. Vitamin E deficiency in foals and 

adult horses, with or without chronic Selenium intakes below requirements, appeared to be 

correlated with various clinical signs [5, 6, 7, 8, 9, 10, 11, 12]. 

As to the donkey, only few contributions report detailed effects of the dietary regime on 

biochemical profile and clinical overall conditions, with emphasis on specific nutrient 

deficiencies [13, 14, 15, 16, 17, 18]. Actually, very little is known about reference intervals of 

circulating parameters for this species [16, 19, 20, 21, 22, 23, 24, 25, 26]. Baseline levels of α-

tocopherol are unavailable for the grazing donkey in the present literature, to the best of our 

knowledge. 

It was hypothesized that the donkey might be susceptible to disorders from dietary vitamin E 

deficiency, like the horse. In particular, the effect of the albino phenotype in a worldwide 

unique acknowledged breed of feral donkeys freely grazing in the National Reserve of 

Asinara Island Park appeared worthy of investigation. In view of the natural feeding habits of 

                                                           
[5] J.F. Cummings, A. de Lahunta, C. George, L. Fuhrer, B.A. Valentine, B.J. Cooper, B.A. Summers, C.R. 
Huxtable, H.O. Mohammed, Cornell Vet., 80 (1990) 357-379. 
[6] L.L. Blythe, A.M. Craig, Compend. Contin. Educ. Vet., 14 (1992) 1215-1221. 
[7] T.J. Divers, H.O. Mohammed, H.F. Hintz,A. De Lahunta Compend. Contin. Educ. Vet., 14 (1992) 1222-
1226. 
[8] C. Hahn, I.G. Mayhew, M. Shepherd, Vet. Rec., 132 (1993) 172. 
[9] B. Sustronck, P. Deprez, E. Muylle, S. Roels, H. Thoonen, Vlaams Diergeneesk Tijdschr, 62 (1993) 40-44. 
[10 ]M. Kuwamura, M. Iwaki, J. Yamate, T. Kotani, S. Sakuma, A. Yamashita, J. Vet. Med. Sci., 351 56 (1994) 
195-197. 
[11] G. Landolt, K. Feige, P. Grest, P., Tierärztliche Praxis, 25 (1997) 241-243. 
[12] C.J. Finno, A.D. Miller, S. Siso, T. Divers, G. Gianino, M.V. Barro, S.J. Valberg, J. Vet. Intern. Med., 30 
(2016) 1344-1350. 
[13] B. Chiofalo, M. Polidori, R. Costa, E. Salimeti , Ital. J. Anim. Sci., 4 (2005) 433-435. 
[14] M.G. Cappai, M. Picciau, W. Pinna, Ital. J. Anim. Sci., 12 (2013) 182-185. 
[15] M.G. Cappai, M.G.A. Lunesu, F. Accioni, M. Liscia, M. Pusceddu, L. Burrai, M. Nieddu, G. Boatto, W. 
Pinna, Ecol. Evol., 7(2017) 390-398. 
[16] A.M. Girdardi, L.C. Marques, C.Z. Pereira de Toledo, J.C. Barbosa, W. Jr. Maldonando, R.L. Nigib Jorge, 
C.A. da Silva Nogueira, Res. Vet. Sci., 64 (2013) 7-10. 
[17] E. Valle, F. Raspa, M. Giribaldi, R. Barbero, S. Bergagna, S. Antoniazzi, M. Minero, L. Cavallarin, A. 
McLean, A., PeerJ. 5 (2017) e3001. 
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feral donkeys, α-tocopherol deficiency may not be expected to involve free grazing animals 

in the wild, but the peculiar condition (albinism) of all specimens of Asinara breed at 

Mediterranean latitudes, during the peak of the positive photoperiod (the month of June in 

the boreal hemisphere) was supposed to represent a metabolic challenge. In albino donkeys, 

the excess of sun exposure could play a role in the perturbation of the homeostasis in which 

endogenous antioxidant systems may find a support in dietary biologically active compounds 

with antioxidant properties, like α-tocopherol. The skin is the largest organ of the animal 

body and is intensely exposed to the action of environmental factors. Melanin represents the 

natural pigment of skin, hair, iris and natural opens, produced by melanocytes to protect 

tegument cells from UV damage. To such an extent, albinism in wild and feral animals may 

represent a conditioning factor behind the selection of feed rich in antioxidant compounds 

while grazing under UV exposure. If this is the case, it could be argued that albino Asinara 

donkeys may prefer leafy feeding sources rich in α-tocopherol, in the attempt to overcome 

the augmented requirements of natural antioxidant compounds. 

The aim of the present study was to determine the circulating levels of α-tocopherol in the 

bloodstream of Asinara in comparison with Sardo donkeys (pigmented, grey coat), in the 

month of June, during the peak of the positive photoperiod. In addition, the metabolic 

profile in all specimens of both breeds was comparatively explored for screening organ 

functions (liver, kidney and pancreas) and overall health conditions. 

2. MATERIALS AND METHODS 

2.1. Location of the trial 

This study was carried out on Asinara island (N 41° 4’ 0.012”, E 8° 16’ 0.012”, 51.9 km2 in 

Sardinia, Italy), established as a National Park (Official Gazette of Italian Republic, 1997) and 

Marine Reserve (Official Gazette of Italian Republic, 2002) of the Autonomous Region of 

Sardinia (Italy), in the Mediterranean Sea (Figure 1). The park is extended over an area of 

51.9 km2, covered by Mediterranean maquis. Albino donkeys of Asinara owe the name of the 

breed to the island, where they live in the wild since centuries [27]. The population of 

Asinara donkeys on the island is currently estimated to account 140 individuals (Antonelli, 

2017 personal communication). A lesser number of Asinara donkeys is distributed to other 

parks and reserves of the Autonomous Region of Sardinia, while few animals are kept in the 

rest of Italy (specimens: 294; conservation status: critical; records of the National Registry of 

Local Minor Equine Breeds, Association of Italian Breeders, 2016). Asinara donkeys share 

                                                           
[27] F. Cetti., I Quadrupedi di Sardegna. In: G. Piattoli (eds) I Quadrupedi di Sardegna. G. Piattoli, 1774. 
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the territory with other wild animal species of autochthon fauna. Feral Sardo breed donkeys 

(Figure 2) live on the isle of Asinara as well and live in small groups with Asinara donkeys. 

 

Figure 1. Map of Sardinia and latitudes of Asinara island (yellow) where the National Park 

and Marine Reserve of Asinara is established. 

 

Figure 2. Jenny and foal of Asinara breed in the natural Mediterranean maquis of Asinara 

Park. 
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2.2. Animals and enrollment criteria 

The investigation involved a total of 23 adult donkeys (age: between 5 and 6 years, 

established from records of the Park), of which 11 were stallions and 12 jennies. Asinara (n= 

6) and Sardo (n= 17) breed donkeys were enrolled to achieve similar sex ratio (1:1). All 

animals were electronically identified (EID, EU Regulation 2015/262) and recorded in the 

Official Register of the albino donkey of Asinara and Sardo breeds (Ministerial Decree 

27/7/1990), respectively. The proportion of specimens from each breed was established to 

be representative of populations of Asinara and Sardo donkeys, namely hundreds and 

thousands under natural condition, respectively. Number of heads is checked and updated 

every year. Sanitary surveillance is also carried out by the Veterinary Services of the local 

District, for the control of equine infectious diseases. Wild and domestic equines undergo 

serological tests (Coggins test, mandatory for horses, donkeys, mules and hinnies). On blood 

sampling for serological analysis, one serum aliquot was used to determine basic biochemical 

profile of all donkeys enrolled. In the light of the focus of this investigation, circulating α-

tocopherol was also determined on same samples, without requiring further manipulations of 

animals. Blood sampling coincided with the peak of positive photoperiod (month of June 

2017, after three months of increasing light hours per day). Each donkey had free access to 

same natural areas. 

On blood sampling, donkeys underwent the nutritional assessment according to Cappai et al. 

(2013) [14]. 

Whole blood was collected through the puncture of the jugular vein. For this purpose, all 

animals were gathered in a paddock with mobile fences, by the personnel of the Park. 

Animals were induced to step into a corridor with the use of mobile fences, leading to a 

horse stock. All animals underwent a same protocol and were manipulated in respect of 

animal welfare, for the sole moment needed for blood sampling and EID code checking. All 

animals were immediately released, when all procedures were terminated. 

Individual tubes were covered with tin-foils to protect blood from light and classified with 

individual labels. Tubes were held in the upright position through polystyrene cases and kept 

in a refrigerated bag used to transport samples and assure adequate temperature during the 

transfer to the laboratory. 

2.3. Analytical protocols and methods 

All laboratory procedures were started within 6 hours of collection. In field and laboratory 

protocols for collection, storage and analyses of blood samples were carried out in the dark, 
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to avoid photo-degradation of α-tocopherol. Each individual serum was screened to explore 

organ function and assess overall metabolic conditions. Prior to chemical analyses, samples 

were centrifuged at 1500 g for 10 minutes. Two aliquots (2 ml) of each serum sample were 

stored in sterile vials and frozen at -20°C until further analysis. All the samples were analyzed 

within one week, through an automatic light-protected biochemical analyzer (Mindray BS 

200, Shenzhen, China). The assessment of organ function and overall health conditions 

(liver, kidney, pancreas and skeletal muscle) consisted in the determination of serum 

concentration of ubiquitous intermediate metabolites  enzymes, nutrients and macro-

minerals (alanine transaminase, ALT; aspartate aminotransferase, AST; gamma-glutamyl 

transferase, γ-GT; creatinine, CREA; Urea; total protein, TP; total cholesterol, Cho; total 

triglycerides, Tri; amylase, Amy; Lipase, LIPA; lactate dehydrogenase, LDH; creatine 

phosphokinase, CPK;  calcium, Ca; phosphorus, P). 

For the determination of α-tocopherol, high pressure liquid chromatography coupled with an 

ultraviolet detector (HPLC-UV) was carried out. All standards and solvents were purchased 

from Sigma Aldrich (Milan, Italy). Stock solution (1 mg/ml) of α-tocopherol was prepared in 

chloroform/methanol (50/50). For the calibration curve, standard stock solutions were 

diluted with methanol and kept frozen at -20°C, protected from light. Serum level of α-

tocopherol was measured at 280 nm. Chromatographic separation was carried out on a 

Waters Symmetry C18 column (4.6 x 150 mm, particle size 5 μm, Waters, Milford, 

Massachusetts). The injection volume was 20 μl. The mobile phases used were 

acetonitrile/methanol/Milli-Q water (64.5/33/2.5) at 1 ml/min. Data were acquired and 

processed by Breeze Software (Waters, Milford, Massachusetts). 

Samples were prepared as follows: 0.3 ml of serum was vortexed with 0.6 ml of acetonitrile 

and centrifuged at 3500 g at 4°C for 10 min. The supernatant was dried under a stream of 

nitrogen and the residue was reconstituted in 0.15 ml of mobile phase [28, 29, 30, 31, 32]. 

  

                                                           
[28] H. Biesalski, H. Greiff, K. Brodda, G. Hafner, K.H. Bässler, Int. J. Vitam. Nutr. Res., 56 (1986) 319–327. 
[29] D.B. Milne, J. Botnen, Clin. Chem., 32 (1986) 874–876. 
[30] C Ganière-Monteil, M.F. Kergueris, A. Pineau, B. Blanchard, C. Azoulay, C. Larousse, Ann. Biol. Clin., 52 
(1994) 547–553. 
[31] A. Levent, G. Oto, S. Ekin, I. Berber, Comb. Chem. High T. Scr., 16 (2013) 142–149. 
[32] P. Gershkovich, F. Ibrahim, O. Sivak, J.W. Darlington, K.M. Wasan, Drug Dev. Ind. Pharm., 40 (2014) 
338–344. 
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2.4. Analysis of data and statistical methods 

Circulating levels of metabolites and baseline concentrations of α-tocopherol in the blood 

serum of donkeys were analyzed and interpreted according to species-specific reference 

values available in the present literature. Data were analyzed by Student t-test, for the 

comparison of averages determined in specimens of the two breeds (Asinara vs. Sardo). The 

statistic significance was set for p-value<0.05. 

3. RESULTS 

A total of 23 serum samples was collected from 23 donkeys in the month of June. All 

animals involved in the trial appeared healthy. No specific clinical signs could be pointed out 

in specimens of both breeds, except for skin redness involving ear tips, ocular contour 

(showing signs of epiphora) and backline in all Asinara donkeys, considered as common 

findings for the breed. Adequate body condition (BCS, based on a 5-points scale, 

1=emaciation to 5=obesity) was scored in both in Asinara and Sardo donkeys (3.25±0.15 vs. 

3.50±0.10, respectively). 

Biochemical profiles of specimens enrolled in this screening trial did not point to significant 

differences between breeds. Metabolites explored for organ function dropped within the 

physiological range for the species (data not shown), except for lactate dehydrogenase (LDH 

p=0.022) and creatine phosphokinase (CPK p=0.076), as reported in Table 1. Alfa-

tocopherol concentration in the blood serum appeared similar in both breeds. Aspartate 

aminotransferase (AST) did not display to vary between breeds and values were within the 

physiological range for the species [25, 26]. Table 1 summarizes results. In Figure 3 mean 

values and SD of LDH and CPK with respective reference ranges in the two breed are 

displayed. 
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Figure 3. Reference range and average concentration of LDH and CPK in the blood of 

Asinara (albino) vs. Sardo (pigmented). 

Table 1. Biochemical metabolic profiles of donkeys (Asinara vs. Sardo) in blood serum 

collected during positive photoperiod. Analyzed metabolites depict the peculiar metabolic 

similarity of α-tocopherol levels meanwhile underlying the increased levels of LDH and CPK 

in Asinara exclusively. 

Breed Asinara Sardo  
Coat Albino Pigmented  
Photoperiod Positive Positive  
Animals 
Parameters 

6 17 Significance 
p-value 

α-tocopherol (μg/ml) 2.11±0.52 1.87±0.70 n.s. 
Triglycerides (mg/dL) 71.2±19.1 61.3±19.7 n.s. 
Cholesterol (mg/dL) 74.3±20.3 76.1±2.82 n.s. 
Lipase (U/L) 15.9±1.24 16.1±0.98 n.s. 
AST (U/L) 254±52 296±133 n.s. 
LDH (U/L) 453±122 250±34.5 0.022 
CPK (g/L) 465±274 167±30.8 0.076 

 

4. DISCUSSION 

Albinism in wild animals may represent a serious health risk under excess of sun exposure 

[33]. By contrast, the description of the presence of Asinara donkeys on the homonymous 

island dates back to the 18th century [27]. Despite the critical status of conservation, it could 

be reasonably postulated that alternative solutions to damage and oxidative stress may help 

to explain the adaptation to the Mediterranean environment. A possible strategy for albino 

                                                           
[33] J. Prado-Martinez, I. Hernando-Herraez, B. Lorente-Galdos, M. Dabad, O. Ramirez, C. Baeza-Delgado, C. 
Morcillo-Suarez, C. Alkan, F. Hormozdiari, E. Raineri, J. BMC genomics, 14 (2013) 363. 
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grazers in the wild may consist in an increased intake of feeding sources rich in natural 

antioxidants, like α-tocopherol. Both carotenoids and tocopherols are reported to be the 

most abundant groups of lipid-soluble antioxidants in chloroplasts of vegetal cells. Such 

compounds are prominently synthesized in photosynthetic tissues of the plant when oxygen 

toxicity and lipid peroxidation should be contrasted to reduce the effect oxidative stress from 

excess of light and heat. 

The comparison of α-tocopherol levels in the bloodstream of animals of the two breeds 

contributes to reinforce the hypothesis that a metabolic adaptation may be a reasonable 

strategy for the survival of Asinara donkeys in the wild Mediterranean environment. Previous 

phylogenetic analyses [34, 35] suggested that the fixation of the mutation for albinism has 

been favored by geographical isolation. The autochthon origin of Asinara breed was 

supported by the molecular analyses carried out by Pinna et al. (1998) [34] who reported a 

common ancestor for Asinara and Sardo donkeys and the possibility that albino donkeys 

branched out of the autochthon pigmented Sardo donkey. Cosseddu et al. (2001) [35] 

supported these results in later investigations. 

The rationale behind this trial moved from the results obtained in previous trials [14, 15, 36]. 

The very efficient conversion of dietary precursors and body stores into circulating retinol in 

the Asinara donkeys if compared to Sardo donkeys was pointed out in own recent 

researches. Such results pointed to a metabolic adaptation of Asinara donkeys to the natural 

environment and seasonal feeding sources, potentially driven by the oculo-cutaneous albino 

form of type 1 (OCA1). Against this background, the similar levels of circulating α-

tocopherol found may be suggestive that both breeds rely on same plant parts and may share 

feeding habits. However, the combination of increased concentrations of circulating LDH 

and CPK, may be suggestive of potential muscle damage. There is general consensus of the 

correlation between circulating values of α-tocopherol below adequacy (2 μg/ml) and higher 

risk of myopathy and neurodegenerative disorders for the horse, though a linear effect on the 

onset of clinical signs is still under debate.  

No specific health problems were found in Asinara donkeys if compared to Sardo donkeys 

under same grazing conditions. In general, wild animals are aware grazers in nature and can 

wisely select feeding sources to avoid toxic or harmful plant species. Captive animals or 

domestic livestock may be untrained to anti-pastoral or anti-nutritional traits of plants in 

                                                           
[34] W. Pinna, G.M. Cosseddu, G. Moniello, C. Zimdars, L’asinello bianco dell’Asinara: una razza antica o 
recente di Equus asinus? In: Poliedro (eds) L’isola dell’Asinara: l’ambiente, la storia, il parco. Sassari. Poliedro, 
(1998). 
[35] G. M. Cosseddu, A Fraghi, L. Mura, A. Carta, R. Cherchi, S. Pau, Ippologia, 12 (2001) 25–33. 
[36] M.G. Cappai, M. Picciau, G. Nieddu, I. Sogos, R. Cherchi, W. Pinna, Ital. J. Anim. Sci., 14 (2015) 502-507. 
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natural pastures [37]. Potential xenobiotic ingestion leading to photosensitization in Asinara 

donkeys cannot be excluded but represents a remote explanation to skin redness and the 

epiphora observed. 

The variations of circulating levels of LDH and CPK in the two breeds of donkeys are 

suggestive of homeostasis perturbation, though no syndrome from deficient vitamin E to 

adequately cover requirements in the donkey was described before. The hypothesis that 

albino donkeys may be prone to metabolic perturbation can be here supported by the 

increase of those enzymes found exclusively in apparently healthy Asinara donkeys, against 

the background of comparable circulating levels of α-tocopherol found in both breeds. 

5. CONCLUSIONS 

In the light of results obtained in this trial, similar circulating levels of α-tocopherol between 

Asinara and Sardo donkeys seem to point to similar feed selection available in the wild, 

during positive photoperiod in the National Park of Asinara at Mediterranean latitudes. 

Despite apparently healthy, the combination of increased levels of LDH and CPK enzymes 

may highlight subclinical conditions of homeostasis perturbation, related to muscular tissue 

involvement (cell membrane instability in the albino donkey?). The definition of 

physiological ranges of circulating α-tocopherol may be useful to identify reference intervals 

associated with the clinical condition of the donkey, to establish adequate or deficient dietary 

supply. In the albino feral donkey of Asinara breed, circulating α-tocopherol in the blood 

serum around 2 µg/ml appears suggestive of the strong influence of the phenotype on the 

concomitant LDH and CPK increase, not observed in the Sardo donkey. 
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ABSTRACT 

Dedicated nutritional strategies may help to improve semen quality of breeding stallions. 

However, effects from dietary α-tocopherol in association or not with selenium 

supplementation are still under debate and limited literature reports contrasting results. The 

present investigation aimed to test the effect of α-tocopherol/Se supplementation in the diet 

of breeding stallions on semen quality during negative photoperiod to maximize the diet 

effect modulation, if any. The trial involved 10 stallions serving in a same stud centre. 

Stallions were allotted to two groups, consisting of 5 horses each. On adaptation, horses 

were fed with a same diet, based on concentrate feed (Crude Protein: 14%; Crude Fibre: 

9.5%; Crude Fat:4.0% Crude ash: 7.8%; Cu: 40 mg/kg; Zn: 120 mg/kg; all rac-tocopheryl-

acetate: 40 mg/kg as fed) for horse offered up to 0.9% DM/BW/d and good quality hay for 

10 days, assuming a maximum daily DM intake of 2.5% of BW. One group (TG) switched to 

the experimental diet (additional 200 mg all rac-tocopheryl-acetate + 0.18 mg SeMeth/100 kg 

BW/d, mixed with the pelleted feed, as fed) for eight weeks, while the non-supplemented 

group (CG) continued to be fed with the same identical pelleted diet and hay. TG stallions 

ingested 204±10.4mg/100 kg BW/d of all rac tocopheryl-acetate, representing 4-folds of 

daily intake of CG stallions. Circulating levels of blood serum α-tocopherol resulted to differ 

significantly (p<0.001) in TG vs. CG stallions (3.22±0.19 vs. 1.01±0.04 µg/ml), respectively. 

Semen quality resulted to vary in relation to age. Horses younger than 15 years displayed 

better semen quality, independently from the dietary supplementation. Interestingly, a 

significant (p=0.039) reduction of the percentage of immobile spermatozoa in stallion semen 

could be observed at the interaction of high circulating α-tocopherol x high copper levels  if 

compared to low α-tocopherol x low copper levels (21.1±1.09% vs. 41.1±4.54%, 

respectively). Circulating copper was negatively and weakly correlated (ρ = -0.136; p=0.358) 

with horse age in a non significant way. α-tocopherol/Se supplementation at tested amounts 

in TG stallions below 15 years of age and with adequate levels of circulating copper appeared 

to have a positive impact on the reduction of the percentage of immobile spermatozoa. 
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ABBREVIATIONS: 

AA, Anglo-Arab; 

ADF, acid detergent fiber; 

ADG, averaged daily gain; 

ADL, acid detergent lignin; 

ANOVA, analysis of variance; 

BW, body weight; 

CASA, computer assisted sperm analysis; 

CFi, crude fiber; 

CG, control group; 

CP, crude protein; 

DM, dry matter; 

EE, ether extracts; 

EU, European Union; 

HPLC-UV, high pressure liquid chromatography coupled ultra violet; 

ICMJE, International Committee of Medical Journal Editors; 

Mil/ml, millions/milliliter; 

NDF, neutral detergent fiber; 

NfE, nitrogen free extract; 

ROS, reactive oxygen species; 

T0, T1, T2, time0, time1, time2; 

TG, treated group; 

KEYWORDS Horse; Nutrition; Semen quality; Stud centers; Vitamin E. 
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1. INTRODUCTION 

The conservation of desirable traits in sport horse breeding practices commonly accounts 

parental genealogy and body morphology predisposing to the athletic potentials of the future 

foal destined to equestrian disciplines. Enrolment of stallions in the studbook is commonly 

based on the genetic value of the horse, as well as on sport performance achieved during the 

athletic career, which not necessarily coincide with reproductive attitudes [1, 2, 3]. Several 

factors appear to contribute to maintain semen quality [4, 5] and, among such, nutritional 

strategies may play a role in improving semen quali-quantitative parameters. The individual 

management of the breeding stallion should therefore consider different goals altogether, in 

which adequate semen quality may represent an issue. It is well known that semen quality is 

not synonym of fertility [6, 7, 8, 9], but some semen characteristics may represent a reliable 

tool to estimate the reproduction potentials of the stallion. Concentration of spermatozoa 

per unit (Mil/ml) of ejaculated (gel free) may also represent a parameter for semen quality 

evaluation, potentially linked to fertility, though dramatic changes may be observed from day 

to day and not linked to nutritional management solely. In fact, despite to a lesser extent than 

what observed in mares, the stallion is susceptible to photoperiod for semen production, 

which appears to decrease during the negative one [3]. Among the quantitative and 

microscopic characteristics, the proportion between motile and immobile spermatozoa 

percentages also affects the chance for successful conception. As to motile spermatozoa, the 

“straightness” parameter is associated with higher chance for progressive movement towards 

the oocyte. At this regard, a computer-assisted sperm analysis (CASA) was developed to 

understand the movement of spermatozoa from fresh semen samples and currently diffused 

for semen quality assessment [10, 11, 12]. Note of worth, the high metabolic activity and the 

consequent energy needs of spermatozoa play a pivotal role as to survival rates outside the 

male reproduction apparatus. The relevant presence of reactive oxygen species (ROS) is 

                                                           
[1] J.J. Sullivan, P.C. Turner, L.C. Self, H.B. Gutteridge, D.E. Bartlett, Reprod. Fertil. Suppl., 23 (1975) 315-318. 
[2] L.H.A. Morris, W.R. Allen, Equine Vet. J., 34 (2002) 51-60. 
[3] A. Taras. In: Valutazione pluriennale delle caratteristiche riproduttive in stalloni impiegati in un programma 
di monitoraggio del materiale seminale. Ph D Thesis, University of Sassari, Italy (2013). 
[4] L. Johnson, T.L. Blanchard, D.D. Varner, W.L. Scrutchfield, Theriogenology, 48 (1997) 1199-216. 
[5] B.W. Picket, Factors affecting sperm production and output. In: A.O. McKinnon, J.L. Voss (eds) Equine 
Reproduction. Elsevier, (1993). 
[6] D.J Jasko, D.H. Lein, R.H. Foote, J. Am. Vet. Assoc.,197 (1990) 389-94. 

[7] C.C. Love, D.D. Varner, J.A. Thompson, J. Reprod. Fertil. Suppl., 56 (2000) 93-100. 
[8] B. Colembrander, B.M. Gadella, T.A.E. Stout, Reprod. Dom. Anim., 38 (2003) 305-311. 
[9] A Van Buiten, J. Van den Broek, Y.H. Schukken, B. Colebrander, J. Dairy Sci., 60 (1999) 13-19. 
[10] A.J Estrada, J.C. Samper, Evaluation of raw semen In: J.C. Samper, J.F. Pycock, A.O. (eds) Current 
Therapy in Equine Reproduction. Saunders, (2006). 
[11] T.Nervo, C. Semita, C. Pescarolo, Ippologia, 2 (2010) 27-34. 
[12] A. Contri, I. De Amicis, A. Molinari, M. Faustini, A. Gramenzi, D. Robbe, A. Carluccio, Theriogenology, 
75 (2011) 1319-1326. 
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reported to be among the key factors for membrane damage of the sperm cell. Arguably, 

lipid peroxidation may in fact contribute to low fertility rates of stallions due to the presence 

of high percentages of immobile spermatozoa. Oxidative stress can impair the survival rate 

of the sperm cell, in which unsaturated fatty acids content in cytoplasm is naturally high. 

Thus, it could be hypothesized that exogenous (dietary) substances may behave as scavengers 

taking part in antioxidant systems for the modulation of the oxidative status of sperm cells. 

Recently, Finno and Valberg (2012) [13] reviewed the several biological activities of vitamin 

E isoforms and report the target body systems in which α-tocopherol in particular can  take 

part. Indeed, vitamin E was acknowledged as the vitamin of fertility, but this property was 

assessed in experimental trials in rats [14]. As to exogenous antioxidant substances which 

may be involved to contrast the detrimental effects of ROS, dietary compounds may be used 

as scavengers and therefore contribute to modulate the oxidative - antioxidative status of 

active spermatozoa. Despite the literature appears plenty of contributions highlighting the 

effects of different groups of active substances directly on metabolism of spermatozoa in vitro 

for semen quality preservation of cryoconservation (including vitamin E), only few authors 

carried out experimental feeding trial for the nutritional management of stallions to test the 

diet effect modulation on semen quality. At this regard, controversial results are reported at 

present to the best of our knowledge [15, 16, 12, 17]. 

The present study aimed to test the effect of the supplementation with synthetic α-

tocopherol in association with Se in the diet of breeding stallions. It was aimed also to test 

the dietary effect during the negative photoperiod in order to maximize the effects from 

dietary supplementation on semen parameters. In this first part, result on overall quality of 

semen from supplemented breeding stallions is reported. 

2. MATERIALS AND METHODS 

2.1. Animal care 

Animal handling complied with the recommendations of European Union Directive 

2010/63/EU concerning animal care. All procedures reported in this trial belong to 

conventional clinical practices; in particular, blood and semen sampling, were carried out by 

                                                           
[13] C.J. Finno, S.J., Valberg, J. Vet. Interanl. Med., 26 (2012) 1251-1266. 
[14] H.M. Evans, K.S. Bishop, Science, 56 (1922) 650-651. 
[15] S.P. Brinsko, D.D. Varner, C.C. Love, T.L. Blanchard, B.C. Day, M.E. Wilson, Theriogenology, 63 (2005) 
1519-1523. 
[16] K. Deichsel, F. Palm, P. Koblischke, S. Budik, C. Aurich, Theriogenology, 69 (2008) 940-945. 
[17] Y. Schmid-Lausigk, C. Aurich, Theriogenology, 81 (2014) 966-971. 
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expert veterinary practitioners and trained technicians. This article complies with the 

recommendations for the conduct, reporting and publication of scholarly work in medical 

journals ICMJE/2006. 

2.2. Experimental design 

A total of 10 stallions (Anglo-Arab breed, AA; Body mass: 510-530 kg; Age: 4 to 21 years-

old) was enrolled in the trial. All animals involved in the study served as breeding stallions in 

a same stud centre, belonging to the Agency for Horse Breeding and Research of the 

Autonomous Region of Sardinia. Inclusion criteria of animals in the trial took into account: 

a) same breed; b) serving frequency during the previous stud season (three times a week, on 

alternate days); c) good health conditions and compliance with mandatory prophylactic 

measures for prevention of infectious diseases. 

The experimental period matched with the negative photoperiod of boreal hemisphere, 

during the months of October and November 2016. All animals underwent same rearing and 

feeding conditions prior to the experimental feeding. 

After an adaptation period of two weeks, in which all animals were fed a same basic diet and 

were sampled for semen every at 0, 24, 48 hours on every 3 days, the 10 stallions were 

allotted to two groups consisting of 5 stallions each. One group (TG) switched to the 

experimental diet, consisting of the supplementation with α-tocopherol and Se in granular 

form mixed with the pelleted feed and administered for 8 weeks. The other group continued 

to be fed with the basic diet and represented the control group (CG). 

2.3. Blood and semen sampling schedule 

At the beginning of the trial, (T0 phase, adaptation period), at mid-experiment (T1 phase), 

and at the end of the experimental feeding trial (T2 phase), all horses were sampled for blood 

and semen; in addition, each horse was clinically inspected and assessed for body condition 

scoring (1-9 points-scale), according to Henneke and co-workers (1983) [18]. 

2.4. Experimental phases 

Until T0 phase, the totality of horses were raised and fed under same conditions. During the 

previous stud season (mid of February-end of June 2016), all stallions served three times a 

week each, on alternate days. All the stallions involved in this trial are athlete horses retired 

from racecourses, of high genetic value and successful sport performance. 

                                                           
[18] D.R. Henneke, G.D. Potter, J.L. Kreider, B.F. Yeates, Equine Vet. J., 15 (1983) 371-372 
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2.5. Dietary regime and feeding practices 

Hay and concentrate were offered to stallions assuming a 2.5% of BW of daily DM intake, 

subdivided in 1.6% and 0.9%, respectively, like expected during stud season. Daily 

administration of hay was scheduled at 6:00 am and at 2:00 pm. The chemical composition 

of hay is reported in Table 1. Concentrate feed was a complementary pelleted feed for 

horses. Daily administration of concentrate feed was scheduled at 11:00 am and at 5:00 pm. 

Supplement in a granular form was mixed in the experimental diet of the TG with the 

pelleted feed, at the amount of 100 g /500 kg BW/horse, as fed. Such amount was mixed to 

provide additionally 200 mg all rac α-tocopherol, 18 mg Selenium/Methionine and 114 mg 

Zinc hydrate/100 kg BW/horse. The chemical composition of hay and mixed concentrate is 

reported in Table 1. During the last two weeks, daily concentrate intake was calculated by 

weighing concentrate offered and leftovers. 

Table 1. Composition of analyzed nutrients of hay and mixed concentrate administered daily 

throughout the trial 

Main nutrients (g/kg DM) 

and energy (MJ/kg DM) 

content 

Hay 

(oat, ryegrass, clover) 

Mixed concentrate 

Dry matter (g/kg, as fed) 887 880 

Crude Ash 135 7.8 

Crude protein 149 140 

Ether Extract 21.6 40.5 

Acid detergent fibre 342 214 

Neutral Detergent fibre 585 533 

α-tocopherol (mg/kg DM) 9.8 44.1 

*Supplement was added to concentrate administered to stallions of the TG, at a daily amount of 

100g/500 kg BW per horse. 

2.6. Laboratory analyses of feeds, whole blood, blood serum and semen 

Feeds and leftovers were oven-dried (103 °C) and then ground (0.5 mm); samples were 

analyzed in duplicate according to Weende analysis described by Naumann and Bassler 

(2004). The crude protein content was determined using the Dumas combustion method. 
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The ether extract was determined by the Soxhlet apparatus. Fibrous fractions were 

determined according to Van Soest method (1991) [19]. 

Blood samples were taken at each control (T0, T1, T2) for the determination of complete 

haematological and biochemical profiles. Each horse was sampled twice a day to take into 

account potential circadian biases on biochemical parameter fluctuations in the statistical 

analysis [20]. A first blood sample was scheduled at 8:00 am, 2 hours after hay administration, 

for whole blood collection through the puncture of the jugular vein. A second blood sample 

was scheduled at 7:00 p.m. Blood sample collection followed this protocol at each control 

throughout the study. Samples were cooled and tubes stored in polystyrene cases in the 

upright position into a cool bag, to grant adequate temperature during sample transfer to the 

laboratory. All samples were identified with horse’s name, electronic individual code (EIC) 

and date of sampling and processed within 6 hours from collection for haematological 

profile. From whole blood stored in ethylenediaminetetracetic acid (EDTA) containing 

tubes, hematologic profile was determined through an automatic analyzer (Mindray BC-5000 

Vet, Alcyon, Italy), with own reference intervals. Individual serum was screened for complete 

biochemical profile. Gel tubes with a clotting accelerator were used. Samples underwent 

centrifugation at 1500 g for 10 minutes. The serum was removed and stored in vial (2 ml) 

and frozen at -20 °C until analysis. Two sample aliquots were obtained in dark environment 

to preserve serum from light. In one aliquot, parameters were quantified within one week, 

through an automatic biochemical analyzer (Mindray BS-200, Alcyon, Italy) for the 

determination of serum concentration of ubiquitous intermediate metabolites and 

electrolytes (Na, K, Cl) and other elements (Mg, Zn and Cu). Reference intervals were 

adjusted for horse species and developed internally in the lab. Additionally, biochemical 

parameters obtained were compared to those reported by Kaneko and co-authors (2007) [21] 

and Latimer and co-authors (2011) [22].The other aliquot was used for the determination of 

α-tocopherol, by high pressure liquid chromatography coupled with an ultraviolet detector 

(HPLC-UV). All standards and solvents were purchased from Sigma Aldrich (Milan, Italy). 

Stock solution (1 mg/ml) of α-tocopherol was prepared in chloroform/methanol (50/50). 

For the calibration curve, standard stock solutions were diluted with methanol and kept 

                                                           
[19] P.J. Van Soest, J.B. Robertson, B.A. Lewis, J. Dairy Sci., 74 (1991) 3583-3597. 
[20] G.F. Greppi, L. Casini, D. Gatta, M. Orlandi, M. Pasquini, Equine Vet. J., 28 (1996) 350-353. 
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and some useful laboratory information. In: J.J. Kaneko, J.W. Harvey, M.L. Bruss. (eds) Clinical biochemistry of 
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[22] K.S. Latimer. In: K.S. Latimer (eds) Duncan & Prasse’s Veterinary Laboratory Medicine: Clinical 
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frozen at -20°C, protected from light. Serum levels of α-tocopherol were measured at 280 

nm. 

Chromatographic separation was carried out on a Waters Symmetry C18 column (4.6 x 150 

mm, particle size 5 µm, Waters, Milford, Massachusetts). The injection volume was 20 µl. 

The mobile phases used were acetonitrile/methanol/Milli-Q water (64.5/33/2.5) at 1 

ml/min. Data were acquired and processed by Breeze Software (Waters, Milford, 

Massachusetts). Samples were prepared as follows: 0.3 ml of serum was vortexed with 0.6 ml 

of acetonitrile and centrifuged at 3500 g at 4°C for 10 min. The supernatant was dried under 

a stream of nitrogen and the residue was reconstituted in 0.15 ml of mobile phase [23, 24, 

25]. 

Individual semen samples were collected through an artificial vagina (Colorado). After 

filtration, fresh gel-free ejaculate was checked for pH determination and inspected as colour. 

Subsequently, quantitative analysis considered sperm cell concentration and morphology, 

motility and integrity determined through the Microptic Sperm Class Analyzer® CASA 

System. Values were determined at 24 and 48 h at each scheduled sampling following the 

protocol described above. 

2.6. Analysis of data and statistical methods 

Values of investigated parameters were recorded for each horse, determined on T0, T1 and T2 

samples. 

The statistical analysis of data was carried out by using a one-way ANOVA to assess 

differences of semen parameters in relation to the dietary treatment. Confidence intervals 

and grouping were adjusted according to Tukey method. All data were analyzed using SAS 

9.2 (SAS Inst. Inc. Cary, NC). Statistical significance was set for p-value<0.05, whereas p-

value<0.10 represented a trend. 
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3. RESULTS 

All animals enrolled in the trial appeared healthy throughout the experimental period. 

TG stallions ingested 204±10.4mg/100 kg BW/d of all-rac-tocopheryl-acetate, representing 

4-folds of daily intake of CG stallions. Daily intake of α-tocopherol in CG stallions appeared 

below recommendation for stallions at maintenance (NRC, 2007) [26].Alfa-tocopherol 

concentrations displayed to differ with marked significance (p<0.0001) between blood serum 

of TG and CG (3.22±0.19 vs. 1.01±0.04 µg/ml, respectively). Biochemistry of morning vs. 

evening blood samples highlighted differences in a non-statistical way and no circadian 

biorhythmic effects could be pointed out in blood serum concentrations in horses of this 

experimental trial. 

The metabolic profile of horses turned out to display concentrations of circulating 

metabolites falling within the physiological range for this species [21, 22]. With regard to 

semen quality, no statistic difference could be pointed out as to concentration, motile and 

progressive spermatozoa between the two groups (Table 2). Among parameters for the 

quality assessment of semen apparently not affected by nutritional management, the pH 

value may be a useful indicator for the assessment of the physiological condition (ranging 

between 7.2-7.7) because correlated with cell concentration (Mil/ml) in the horse [27]. The 

pH value in semen samples of both groups did not point to significant differences, ranging 

between 7.0 and 7.5. However, stallions in both groups have shown significantly higher 

percentages (p<0.001) of motile and progressive spermatozoa, in different proportions 

according to age (under 15 years: 77.9±4.2%; over 15 years: 54.9±2.2%) independently on 

tocopherol/Se supplementation. Interestingly, a significant (p=0.039) reduction of the 

percentage of immobile spermatozoa in stallion semen could be observed at the interaction 

of high circulating α-tocopherol and high copper levels if compared to low α-tocopherol x 

low copper levels (21.1±1.09% vs. 41.1±4.54%, respectively) (Graph 1). Circulating copper 

was negatively and weakly correlated (ρ = -0.136; p=0.358) with horse age in a non-

significant way. 

Results are resumed in Table 2.  

                                                           
[26] NRC. Nutrient Requirements of horses. 6 ed. Washington, D.C.: National Research Council, (2007). 
[27] A.O. McKinnon, J.L.Voss. In: A.O. McKinnon, E.L. Squires, W.E. Vaala, D.Varner (eds) Equine 
reproduction. Williams & Wilkins, (1993). 
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Table 2. Intakes, serum concentrations of metabolites and semen parameters in horses 

enrolled 362 in the trial 

 α-tocoferolo (µg/ml blood serum)   

Semen parameters <2000 >2000 SEM p 

C.A.S.A.     

Sperm concentration (Mil/ml) 324 564 173 0.492 

Immobile % 30.9 24.9 6.47 0.931 

Straightness % 63.4 67.7 3.18 0.738 

 

 

Graph 1. The histogram represents the percentage of immobile spermatozoa from horses as they 

result from the statistical interactions between circulating levels of α-tocopherol levels (modulated 

through the diet) and circulating levels of copper (higher in horses under 15 years of age) in horses 

involved in the trial. 

4. DISCUSSION 

The objective of this trial was to test the effect of dietary supplementation of α-tocopherol 

and Se in breeding stallions, to test the hypothesis on whether improvements of semen 

quality could be modulated by the diet. Note of worth, the higher circulating level of α-

tocopherol was observed in the totality of supplemented stallions (TG) in comparison to that 

determined in horses from the CG. Alfa-tocopherol is a fat-soluble essential vitamin of 

vitamin E group characterized by lipophilic behaviour, of particular importance for stability 

and protection of cell membrane against ROS [28] at systemic level. The daily intake of α-

tocopherol differed substantially between the two groups: TG horses ingested up to 4-folds 

                                                           
[28] M. Naziroğlu, A. Karaoğlu, A. Orhan, Toxicology, 195 (2004) 221-230. 
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the amount ingested by CG. However, blood serum circulating levels did not follow a 

proportional magnification of α-tocopehrol levels between horses of TG vs. CG. The non-

supplemented stallions (CG) in this trial received a diet in which α-tocopherol was below 

NRC recommendations (2007) [26] and relative circulating levels in the bloodstream 

determined in the serum turned out to be deficient (< 1 μg/ml) [29, 30, 31]. Natural source 

of α-tocopherol is represented by fresh fodder whereas its content progressively diminishes 

in hay, due to thermo- and photolability of this fat soluble vitamin. In view of this fact, the 

introduction of α-tocopherol is of crucial importance in the diet of the stallion, commonly 

housed in individual box and fed on hay and concentrate feedstuffs as most. Against this 

background, systemic and local oxidative stresses are augmented during the stud season and 

semen production may be affected if dietary formulation does not meet nutritional and 

metabolic requirements. According to circulating levels of α-tocopherol (below or above 2 

μg/ml) determined in horses involved in this experimental feeding trial, data on semen 

quality analyzed in the statistical model did not point to a significant difference on average 

values of parameters studied for the assessment of semen quality. This finding is in 

agreement with what reported by other authors [16]. However, other authors report 

contrasting results [12, 15, 16, 17]. In this trial, a systemic metabolic approach turned out to 

be useful to explain the effects of α-tocopherol/Se supplementation. A significant decrease 

of the percentage of immobile spermatozoa in the treated stallions was observed in this 

experiment as a result of the interaction of circulating α-tocopherol with Cu levels in the 

blood serum. Copper was not additionally supplemented in the diet of stallions and the 

circulating concentrations found in the bloodstream can be considered as the outcome of the 

metabolic status of each horse. The different extents of copper found in horses was 

negatively correlated with age, in a weak and non-significant way, but biological effects on 

the reduced percentage of immobile spermatozoa is significant. In fact, circulating Cu was 

higher in younger horses and this datum could be related to the bioavailability of Cu. On the 

basis of our results, the effect of the interaction between α-tocopherol and Cu on semen 

quality may find an explanation in the endogenous enzymatic systems to counteract ROS 

damage. Among such, SOD is a Zn/Cu-dependent system and Cu circulating levels may play 

a role in the synthesis for the SOD by spermatozoa, as well as in other cells of tissues of the 

animal body. Thus, α-tocopherol/Se supplementation in the diet of stallion may potentiate 

some metabolic activities in relation to the metabolic state and age of the horse and the role 

                                                           
[29] J.K Higgins, B. Puschner, P.H. Kass, N. Pusterla, Am. J. Vet. Res., 69 (2008) 785-790. 
[30] T.L. Muirhead, J.J. Witchel, H. Stryhn, J.T. McClure, Can. Vet. J., 51 (2010) 979-985. 
[31] N. Pusterla, B. Puschner, S. Steidl, J. Collier, E. Kane, R.L. Stuart, Vet. Rec., 166 (2010) 366-368. 
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of circulating Cu could not be excluded. As recently reviewed by Finno and Valberg (2012) 

[13] and earlier studied by other authors [32], α-tocopherol possesses also modulating effects 

in terms of gene expression. Note of worth, the involvement of Cu in the effect of α-

tocopherol/Se supplementation should be investigated further to understand the effective 

role in the antioxidant mechanisms applied directly on spermatozoa metabolic activity. 

CONCLUSIONS 

Dietary supplementation of α-tocopherol/Se in breeding stallions enrolled in this trial 

pointed to define an optimal level of blood serum concentration of tocopherol to support 

the metabolic needs for semen production of the horse. The supplementation did not 

produce a significant difference per se if not associated with a favourable availability of 

circulating Cu for antioxidant purposes, potentially involved in endogenous antioxidant 

systems. In conclusion, stallions up to 15 years old displayed favourable circulating Cu levels 

than older horses in this experiment and the dietary supplementation of α-tocopherol/Se 

turns out to potentiate the effects on semen quality, by inducing lower percentages of 

immobile spermatozoa. 
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SUMMARY 

Background: Alfa-tocopherol (α-TOH) is one isoform of fat soluble vitamin E group found 

in vegetation. Diets deficient in α-TOH may cause severe disorders in the horse. Large 

variations of circulating α-TOH in horse breeds can be expected. 

Objectives: Giara horses may display breed-specific values of α-TOH in blood serum. Thus, 

baseline levels in a group of Giara horses before and after the temporary captivity in a 

wildlife rescue center were explored. 

Study design: Baseline levels of α-TOH in the blood serum after grazing (in the wild, day 0) 

vs. hay based diet (captivity in the rescue center, day 28) with selected metabolites (ALT, 

Cholesterol, Triglycerides) were determined. From the hay-based diet the daily intake of α-

TOH was calculated and used to interpret variations in circulating α- TOH and selected 

metabolites. 

Methods: 6 adult Giara horses (body weight, 163 - 170 kg) were captured from the wild. On 

the same day (0d), blood samples were collected and processed for metabolic profile and α- 

TOH. In the wildlife rescue center, all animals received a same hay based diet (ad libitum) for 

28 days. A second blood serum sample (28d) from the same individuals was processed for 

metabolic profile and α- TOH. HPLC-UV was used for α-TOH determination. 

Results: Giara horses displayed α-TOH circulating levels below adequacy (2 µg/ml) for the 

horses on d0. Apparently, no clinical signs of deficiencies were found. Initial levels markedly 

(p=0.020)  decreased after four weeks of captivity (-32.5%), when horses received a hay 

based diet. Circulating α-TOH and total cholesterol were significantly (p=0.023) and 

negatively (ρ=-0.648) correlated. Significantly, ALT levels varied with vitamin E status. 
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Main limitations: Few animals due to wildlife conditions. 

Conclusions: Circulating levels of α-TOH in the Giara horses enrolled may be useful to 

indicate the breed variance without apparent clinical vitamin E deficiency syndromes. 

KEYWORDS: antioxidant; free grazing; feral horse; relict traits; vitamin E; wildlife rescue 

center 

1. INTRODUCTION 

Alfa-tocopherol (α-TOH) is one isoform of the fat soluble vitamin E group found in 

vegetation. Mammals are incapable of de novo synthesis thus α-TOH detected in the animal 

body comes from dietary sources. The biological value of α-TOH encompasses marked 

antioxidant activities [1],as it behaves as scavenger, potentiating the endogenous antioxidant 

systems that the animal employs to contrast lipid peroxidation. Limited to insufficient 

chronic supply of α-TOH in the diet appear to be associated with disorders of skeletal and 

myocardial muscles, as well as of the nervous system, though inconsistently reported in the 

literature [2, 3, 4, 5, 6, 7, 8, 9]. Neuroaxonal dystrophy is a disorder associated with low 

circulating value of α-TOH in the cerebrospinal fluid associated with lipid peroxidation [10]. 

In view of being essential for the animal, levels of circulating tocopherol are important for 

health maintenance. Recommendation of daily intake of α-TOH is 1-2 mg/ kg BW in a 500 

kg BW of horse in light work [11].Unlike other fat soluble vitamins, α-TOH does not reach 

toxic levels, due to protection mechanisms through genetically encoded factors [12].Recently, 

α-TOH appeared to be involved in the metabolism of the hepatocyte with particular regard 

                                                           
[1] C.J. Finno, S.J., Valberg, J. Vet. Interanl. Med., 26 (2012) 1251-1266. 
[2] J.F. Cummings, A. de Lahunta, C. George, L. Fuhrer, B.A. Valentine, B.J. Cooper, B.A. Summers, C.R 
Huxtable, H.O. Mohammed, Cornell. Vet., 80 (1990) 357-379. 
[3] L.L. Blythe, A.A. Craig, Compend. Contin. Educ. Vet., 14 (1992) 1215-1221. 
[4] T.J. Divers, H.O. Mohammed, H. F. Hintz, A. De Lahunta, Compend. Contin. Educ. Vet., 14 (1992) 1222-
1226 
[5] C. Hahn, I.G. Mayhew, M. Shepherd, Vet. Rec., 132 (1993) 172. 

[6] B. Sustronck, P. Deprez, E. Muylle, S. Roels, H. Thoonen, Vlaams Diergeneesk Tijdschr, 62 (1993) 40-44. 
[7] M. Kuwamura, M. Iwaki, J. Yamate, T. Kotani, S. Sakuma, A. Yamashita, J. Vet. Med. Sci., 56 (1994) 195-

197. 

[8] G. Landolt, K. Feige, P. Grest, Tierarztliche Praxis, 25 (1997) 241-243. 
[9] C.J. Finno, A.D. Miller, S. Siso, T. Divers, G. Gianino, M.V. Barro, S.J. Valberg, Journal of Veterinary 
Internal Medicine 30 (2016) 1344-1350. 
[10] C.J. Finno, M.H. Bordbari, S.J. Valberg, D. Lee, J. Herron, K. Hines, T. Monsour, E. Scott, D.L. Bannasch, 
J.R. Mickelson, L. Xu. Free Radic. Biol. Med., 101 (2016) 261-271. 
[11] NRC. Nutrient Requirements of horses. 6 ed. Washington, D.C.: National Research Council, 2007. 
[12] D.J. Mustacich, R.S. Bruno, M.G. Traber, Vitam. Horm., 76 (2007) 1-21. 
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to the so called non alcoholic fatty liver disease. In such circumstances, circulating alanine 

aminotransferase (ALT) is used as indicator of the hepatocyte ballooning and liver damage 

13. Adequate circulating values of α-TOH in the bloodstream of an average horse (body 

weight of 500 kg) is of 2 μl/ml, whereas values below 1.5 μl/ml are considered to be 

deficient [1]. However, breed variation in terms of circulating values of α-TOH in the horse 

are also reported [1, 13]. 

Feral Giara horses live in the wild on Sardinia isle, in the Mediterranean Sea. The peculiar 

haplotype set in the lineage highlights a conserved different origin from other domestic horse 

breeds reared in Italy [14, 15]. Giara horses are small sized (body weight range: 170-200 kg; 

wither’s height: stallion, 125-130 cm; mare, 115-130 cm) [16, 17]. Such horses represent one 

of best genetically conserved breeds and display to possess relict traits and genetic variants 

that are almost totally lost in modern horse breeds [15]. Periodically, groups of feral Giara 

horses are gathered to monitor population size (Official registry of minor local breeds, 

Ministerial Decree 27/7/1990). All equines are also checked to test if positive to Equine 

Infectious Anemia (Coggins test).  

It was hypothesized that free grazing Giara horses in the Mediterranean maquis might display 

α-TOH baseline levels capable to contribute to describe the breed variance of circulating 

values of this fat soluble vitamin E form, as described in the literature [1, 13]. 

This trial aimed to add acquaintances on α-TOH levels in blood serum of Giara horses  and 

of selected metabolites considered to vary according to vitamin E status. 

2. MATERIAL AND METHODS 

All procedures reported in this trial belong to conventional practices for animal health 

assessment and wildlife monitoring; animal capture and blood sampling were carried out by 

expert veterinary personnel of the Autonomous Region of Sardinia. Animal handling 

complied with the recommendations of European Union Directive 2010/63/EU and 

                                                           
[13] H. El Hadi, R. Vettor, M. Rossato, Antioxidants, 7 (2018) 12-25. 
[14] D. DellaPenna, B.J. Pogson, Annu. Rev. Plant. Biol., 57 (2006) 711-738. 
[15] M.C. Cozzi, M.G. Strillaci, P. Valiati, B. Bighignoli, M. Cancedda, M. Zanotti, Genet. Select. Evol., 36 
(2004) 663-672. 
[16] L. Morelli, A. Useli, D. Sanna, M. Barbato, D. Contu, M. Pala, M. Cancedda, P. Francalacci, Genet. Mol. 
Res., 13 (2014) 8241-8257. 
[17] M. Cancedda,. Bol. Soc. It. Bio. Sper., 66 (1990) 1089-1096. 
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following national guidelines concerning animal care. Biochemical profile and blood serum 

baseline levels of α-TOH in a group of Giara horses were determined. This study involved 6 

Giara horses (4 mares and 2 stallions; estimated age: 3 to 4 years; body weight: 163 - 170 kg). 

All animals were captured from the wild by trained veterinary personnel, who read the 

electronic individual code number of each horse and collected individual blood sample for 

serological analyses. During the captivity period (horses were distributed in different 

paddocks, avoiding the presence of more than one stallion in each group), all animals 

received a same hay-based diet (ad libitum). Table 1 summarizes chemical and botanical 

composition of analyzed nutrients in the hay administered during the temporary captivity in 

the center. 

Animals underwent the nutritional assessment, following the method described in Cappai et 

al. (2013) [18] modified here for the Giara horse. Briefly, body condition score (1 to 5-points 

scale), skeletal development and muscular condition (1 to 5-points scale) were evaluated.  

                                                           
[18] M.G. Cappai, M. Picciau, W. Pinna, It. J. Anim. Sci., 12 (2013) 182-185. 
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Table 1. Analyzed chemical composition of hay administered during the captivity period (4 

weeks). 

Analyzed nutrients Hay 

Dry Matter (g/kg as fed) 884.2 

Crude Protein (g/kg DM) 116.6 

Crude fat (g/kg DM) 36.8 

α-tocopherol (g/kg DM) 13.6 

Crude fiber (g/kg DM) 339.3 

NDF (g/Kg DM) 699.1 

ADF (g/Kg DM) 400.1 

ADL (g/Kg DM) 53.1 

Crude ash (g/Kg DM) 115.2 

 

Two aliquots of blood serum samples (on day 0 and 28) from each horse were processed in 

the dark to prevent α-TOH degradation. Blood containing tubes were covered with tin-foils 

to protect blood from light. Samples were stored reporting individual label and date of 

sampling in polystyrene cases in the upright position in a refrigerated bag, to assure adequate 

temperature during the transfer to the laboratory. 

All the laboratory procedures on whole blood were started within 6 hours from sample 

collection. Laboratory protocols for the collection, storage and analyses of blood samples 

were carried out in the dark, in order to avoid photo-degradation of α-TOH. Individual 

serum was screened for complete biochemical profile. Prior to chemical analysis of blood 

serum, individual blood samples were centrifuged at 1500 g at 4 °C for 10 minutes. An 

aliquot of each individual serum sample was stored in a sterile vial (2 ml) and frozen at -

20°C, until further analyses. All the samples were analyzed within one week, through an 

automatic light-protected biochemical analyzer (Mindray BS-200, Shenzhen, China) for the 

determination of serum concentration of ubiquitous intermediate metabolites, enzymes, 

nutrients, macro- and micro-minerals. For the determination of α-tocopherol, high pressure 

liquid chromatography coupled with an ultraviolet detector (HPLC-UV) was carried out. All 

standards and solvents were purchased from Sigma Aldrich (Milan, Italy). Stock solution (1 

mg/ml) of α-TOH was prepared in chloroform/methanol (50/50). For the calibration curve, 

standard stock solutions were diluted with methanol and kept frozen at -20°C, protected 
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from light. Serum levels of α-TOH were measured at 280 nm. Chromatographic separation 

was carried out on a Waters Symmetry C18 column (4.6 x 150 mm, particle size 5 μm, 

Waters, Milford, Massachusetts). The injection volume was 20 μl. The mobile phases used 

were acetonitrile/methanol/Milli-Q water (64.5/33/2.5) at 1 ml/min. Data were acquired 

and processed by Breeze Software (Waters, Milford, Massachusetts). 

Samples were prepared as follows: 0.3 ml of serum was vortexed with 0.6 ml of acetonitrile 

and centrifuged at 3500 g at 4°C for 10 min. The supernatant was dried under a stream of 

nitrogen and the residue was reconstituted in 0.15 ml of mobile phase [19, 20, 21, 22]. 

On the same aliquot, 30 µl of serum from each individual were processed through 

electrophoresis to determine protein fractions on agarose gel, by means of a fully automated 

equipment (Pretty Interlab Srl., Rome). Electropherograms were scanned and interpreted 

through a dedicated soft ware (Elfolab, Interlab Srl., Rome). Serum protein fractions with 

particular regard to α2-globulins where lipoproteins are accounted were analyzed in relation to 

vitamin E status. At this regard, the vitamin E status was determined by the ratio between 

circulating α-TOH and triglycerides plus total cholesterol. 

Individual daily intake of feed was estimated on a 2% of BW, to compare recommendations 

of NRC on α-TOH daily intake (1 mg/kg BW) for a 500 kg BW horse at light work. Intakes 

were then calculated on average BW of the Giara horse. In addition, correlations between 

BCS and α-TOH levels as well as between α-TOH and selected circulating metabolites were 

carried out with Pearson’s correlation analysis. 

Data were analyzed by a general linear model (GLM) procedure of SAS 9.2 (SAS Inst. Inc. 

Cary, NC). The following model was used 

𝑦𝑖, 𝑗 =  𝜇 + 𝐷𝑖 + 𝐺𝑗 + 𝐷𝑖 ∗ 𝐺𝑗 + 𝑒𝑖, 𝑗 

where y is the dependent variable, μ is the overall mean, D and G are fixed factors (D, two 

levels: dietary regime grazing vs. captivity; G, two levels above and below 0.006) and e is the 

random error. Confidence intervals and grouping were adjusted according to Tukey method. 

All data were analyzed using Minitab software (Minitab Inc.). The statistic significance was 

set for p-value<0.05.  

                                                           
[19] H. Biesalski, H. Greiff, K. Brodda, G. Hafner, K.H. Bässler, Int. J. Vitam. Nutr. Res., 56 (1986) 319–327. 
[20] D.B. Milne, J. Botnen, Clin. Chem., 32 (1986) 874–876. 
[21] P. Gershkovich, F. Ibrahim, O. Sivak, J.W. Darlington, K.M. Wasan, Drug Dev. Ind. Pharm., 40 (2014) 
338–344. 
[22] A. Levent, G. Oto, S. Ekin, I. Berber, Comb. Chem. High T. Scr., 16 (2013) 142–149. 
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3. RESULTS 

3.1. Baseline values and animal response to captivity 

All animals monitored before and after captivity appeared clinically healthy. The average BCS 

turned out to be of 2.79±0.19. On estimation of daily feed intake, α-TOH consumption was 

considered to range between 33.6 to 39.8 mg per horse during captivity. Baseline levels of α-

TOH in blood serum significantly varied in horses before and after captivity (Δ[final-initial]α-

TOH = -32.5%), highlighting the direct effect of variation of the diet on circulating values. 

Initial and final circulating levels of α-TOH in the blood serum of all horses were non 

significantly (p=0.657) and weakly (ρ=0.248) correlated with BCS. Circulating α-TOH and 

total cholesterol were significantly (p=0.023), negatively (ρ=-0.648) correlated. Table 2 

summarizes results. Values of analyzed metabolites were found to be in the physiological 

range for horse species, except for α-tocopherol and alanine aminotransferase (ALT). 

Table 2. Circulating values of α-TOH and other metabolites of interest in Giara horses 

detected at start (diet selected in the wild) and the end (after four weeks of hay feeding) of 

temporary captivity in the wildlife rescue center. 

 Wild Captivity   

Animals (n.) 6 6 Pooled 

SD 

p-value 

α-TOH (μg/ml) 0.43 0.29 0.07 0.020 

Total Protein (g/l) 67.9 66.6 4.42 0.681 

Albumins (g/l) 32.5 23.1 12.7 0.291 

α1-globulins (%) 3.77 7.26 6.02 0.405 

α2-globulins (%) 9.57 15.2 6.87 0.216 

β-globulins (%) 12.7 13.8 11.6 0.895 

Total Triglycerides (mg/dl) 27.7 20.3 6.93 0.144 

Total Cholesterol (mg/dl) 48.0 60.1 8.41 0.056 

Alanine aminotransferase 

(U/l) 

68.1 28.1 23.9 0.032 

 

4. DISCUSSION 

This trial was conceived to contribute to shed a new light on the breed variance of circulating 

α-tocopherol, by comparing blood serum levels considered to be adequate for the domestic 

modern horse (2 μg/l of serum) with those detected in the blood serum of free grazing Giara 

horses. The rationale behind this trial resides on different key principles of animal nutrition, 

health and natural diet, in view of the interplay between animals and environment through 

selection for maintenance of antioxidant status. The biological activity of α-tocopherol, as an 
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important natural isoform of fat soluble vitamin E group, is of particular interest because of 

its essential role for the animal (incapable of de novo synthesis). Moreover, unlike other fat 

soluble vitamins (namely vitamin A or D, for instance) it circulates in the bloodstream in its 

native form transported by LDL and HDL [1] and does not need to be metabolized to be 

activated in the animal body. Thus, α-TOH may represent a marker of feed selection and 

nutrient intake, being the most biologically active compound with antioxidant properties. It is 

well known that tocopherols are most abundant in leaves whereas tocotrienols are in seeds 

[13]. Thus, the determination of circulating α-TOH may reflect the selection in the natural 

diet of leafy green sources. Though tocopherols can be found in plant seeds too, γ-

tocopherol is abundantly synthesized while α-TOH only to a lesser extent. Both carotenoids 

and tocopherols are reported to be the most abundant groups of lipid-soluble antioxidants in 

chloroplasts of plants. To such an extent, α-TOH content in plant species dramatically drops 

after drying to hay, commonly administered to ranged animals. Hay contains much lower 

amounts of α-TOH than in same plant species when green. Free grazing Giara horses in the 

wild Mediterranean maquis display peculiar circulating baseline levels of α-TOH despite 

grazing free in nature. No signs among those described to involve horses fed with vitamin E 

deficient diets could be pointed out to affect animals enrolled in this trial. As expected, initial 

values of circulating α-TOH markedly decreased when horses were fed a hay based diet after 

four weeks of captivity. Though the effect of the diet on circulating α-TOH levels in the 

bloodstream of the horse is established, it is also known that the variations due to age, sex, 

breed and physiological state of the animal may also have an impact on blood serum values 

[12]. The determination of α-TOH levels in the bloodstream of Giara horses covers several 

aspects both of nutritional and health importance. Baseline values of  circulating α-TOH 

detected in the Giara horses until free grazing in the Mediterranean maquis appeared to be 

low if compared to those identified to be adequate (>2 µg/ml), marginal (between 1.5 and 2 

µg/ml) and deficient (below 1.5 µg/ml) [1] in the domestic modern horse. Such categories 

were developed on the basis of potential disorders correlated with dietary chronic deficiency 

of vitamin E in the stabled horse, according to which dietary supplementation may be 

planned [10]. In this trial, all Giara horses appeared healthy and no signs indicating disorders 

from Vitamin E deficiency could be pointed out, despite α-TOH circulating values could be 

considered as deficient. In fact, baseline levels of circulating α-TOH detected in Giara horses 

when captured from the wild displayed to be below those associated with deficiency in the 

domestic horse, showing a relative concentration of -78.5% lower. Whether this finding 
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depends on low requirements in this old horse breed strictly adapted to environment is still 

under investigation. 

During the month of captivity, α-TOH in the bloodstream dramatically decreased to about 

one third of levels found at start. Indeed, the hay based diet did not supply the horse with 

adequate amounts of α-tocopherol. It is known that α-TOH content in fresh forage 

diminishes progressively after the cut and throughout the process of drying to hay. In fact, 

the daily supply of α-TOH (13.6 mg α-tocopherol/kg DM in hay) has meant a maximum 

estimated daily intake of 40.7 mg of α-TOH for a horse of 170 kg of live weight. If 

compared to NRC recommendations of α-TOH daily intake for the horse (2007) [11] 

ranging between 1 and 2 g of α-TOH / 500 kg BW horse in light work, the best prediction 

of α-TOH requirement for the Giara horse should be estimated according to the metabolic 

weight, for which the recommended α-TOH supply is 5 mg/kg BW0.75/d. This translates 

into 235 mg/ 170 kg BW Giara horse/d. Thus, the hay based diet turned out to supply α-

TOH below NRC (2007) recommendations [11] and, in any case, circulating levels of α-TOH 

determined at start and at the end of the captivity period should be both considered as 

deficient. The dietary supply below requirements probably led to α-TOH depletion from 

body stores (if any?), emphasized by the circulating levels found at the end of the captivity 

period [Δ(final – start) = -32.5%]. Indeed, the rapid drop of circulating values seems to 

translate into the depletion of potential body stores, though levels of circulating α-TOH at 

start already appeared to be deficient [1]. Against this background, it could be postulated that 

Giara horses can adapt successfully to lower circulating levels of α-TOH without developing 

clinical signs. Whether this finding is driven by feed selection or due to different efficiency of 

digestion and absorption is still unknown. The BCS of horses enrolled appeared to be on 

average associated with normal body weight for the breed and no significant correlations 

between fatness and circulating α-TOH were pointed out. Worth of note, total cholesterol 

levels in the bloodstream appeared significantly and negatively correlated with circulating α-

tocopherol. The literature reports the effect of α-TOH supplementation on the reduction of 

circulating HDL in human patients under therapy with statins [23]but not of LDL, thus 

decreasing the total cholesterol levels. In the same study, effects from supplementation of α-

TOH were no more evident during the wash out period of two weeks, and this may be in 

agreement with our findings. In fact, comparatively, at decreased levels of α-TOH in the 

bloodstream, total cholesterol increased. In addition, at decreased levels of α-TOH in the 

                                                           
[23] S.W. Leonard, J.D Joss, D.J. Mustacich, D.H. Blatt, Y.S. Lee, M.G.; Traber, J. Am. J. Health-System 
Pharm., 64 (2007) 2257-2266. 
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bloodstream total triglyceride decreased. The relationship between α-tocopherol, total 

cholesterol and total triglycerides in the bloodstream are known to be correlated [24, 25] and 

ratios between such metabolites are used to estimate the vitamin E status in man. The 

calculated α-tocopherol: total cholesterol + total triglycerides to assess vitamin E status of 

Giara horses before and after the captivity period turned out to be 0.0006 and 0.0003, 

respectively. Thus, the vitamin E status of Giara horses decreased to one half after one 

month of hay based diet. The variation of alanine aminotransferase (ALT) as sign of hepatic 

damage, is markedly and significantly (p=0.016) varying in relation to vitamin E status, and 

such significance is higher than the variation of ALT when the diet effect is considered 

(p=0.032).  

If health conditions are considered in view of the circulating α-TOH levels found in the 

Giara horse, then α-TOH rich diets based on free grazing in the natural Mediterranean 

maquis may point to different utilization of such compound in Giara horses from that in 

domestic modern horse breeds. Selection of particular traits in sport horses may have led to 

α-TOH increased requirements. Storage appears not to be a pivotal need for the 

maintenance of cell membrane stability of muscle masses for Giara horses, like instead 

potentially required by athlete horses undergoing to training. However, circulating levels of 

triglycerides and total cholesterol responded to blood serum concentration of α-TOH as 

expected, still within the physiological range for this species. 

Findings reported in this trial pave the way to further investigations on breed specific levels 

of circulating α-TOH in the blood serum of free grazing horses and more in general on 

breed-specific levels found in equines [26],highlighting the potential effects of genetically 

encoded factors of α-TOH metabolism. 

5. CONCLUSIONS 

Circulating values of α-TOH in the blood serum of Giara horses displayed to be deficient 

despite the potential large intakes on a daily basis from grazing in spontaneous vegetation. In 

fact, values found in Giara horses appeared to be very low if compared to α-TOH circulating 

values considered as adequate in modern horse breeds. The vitamin E status dramatically 

                                                           
[24] M.K. Horwitt, C.C. Harvey, C.H. Dahm, M.T. Scarcy, Ann. N.Y. Acad. Sci., 203 (1972) 223-236. 
[25] D.I Thurnham, J.A. Davies, B.J. Crump, R.D. Situnayake, M. Davis,. Annals Clin Biochem, 23 (1986) 514-
520. 
[26] M.G. Cappai, M.G.A. Lunesu, F. Accioni, M. Liscia, M. Pusceddu, L. Burrai, M. Nieddu, C. Dimauro, G. 
Boatto, W. Pinna, Eco. Evo., 7 (2017) 390-398. 
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decreased after four weeks of hay-based feeding during the temporary captivity in the totality 

of animals, pointing to body store depletion. The vitamin E status emphasized also the 

variation of blood serum levels of ALT in a very marked way than the sole variation 

following the feeding regime. No clinical signs from such deficient vitamin E status were 

pointed out, though ALT levels were found above the upper values of the reference range 

for the horse both at start and end of the captive period. It is necessary to underline that 

other antioxidant compounds than α-TOH can compose the diet of the grazing horse, thus 

minimizing the potential damage from lipid peroxidation. However, whether circulating 

values found in this trial should be interpreted in the light of different nutritional needs due 

to genetic relict traits of Giara horses, is difficult to state. Arguably, the mutual interplay 

between grazing animals and spontaneous vegetation may have led to the natural adaptation 

of feral Giara horses to feeding sources and relative seasonal nutrient and energy availability 

in nature, from coping ability across centuries. 
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ABSTRACT 

Monitoring of amphetamine-type stimulant (ATS) confronts clinical labs with a high number 

of samples involving a variety of biological matrices. Liquid chromatography-tandem mass 

spectrometry (LC-MS/MS), routinely used for confirmation of ATS abuse, requires of 

laborious and matrix-dependent sample treatment methods, this increasing analysis time and 

cost. In this work, a universal and single-step sample treatment, based on supramolecular 

solvents (SUPRAS), was proposed for simplifying ATS confirmation in seven biological 

matrices. The SUPRAS was synthesized in situ in the sample (900 µL of basified oral fluid, 

urine, serum, sweat or breast milk or 50 mg of digested hair or fingernails) by the addition of 

hexanol (200 µL) and tetrahydrofuran (900 µL). The mixture was vortex-shaken and 

centrifuged and the SUPRAS extract was subsequently analyzed by positive ion mode 

electrospray LC-MS/MS. The method was fully validated for amphetamine (AMP), 

methamphetamine (MA), 3,4-methylenedioxyamphetamine (MDA), N-ethyl-3,4-

methylenedioxyamphetamine (MDEA) and N-methyl-3,4-methylenedioxyamphetamine 

(MDMA). Maximum ion suppression or enhancement was 9% and 7%, respectively, and 

extraction recoveries (87-111%) and within- (0.1-6.7%) and between-day (0.3-9.7%) CVs 

were all within required values. The lower limits of quantification (LLOQ) for biological 

fluids (5 ng/mL), and hair and fingernails (100 ng/g) were all well below the cut-offs 

established by worldwide organizations. Confirmation of MDA was carried out in five urine 

samples that tested positive for ATS by immunoassay. The SUPRAS-LC-MS/MS 
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methodology succeeded in developing a hitherto unexplored and universal tool for 

quantifying ATS in a comprehensive pool of biological matrices of interest in forensic and 

clinical samples. 

KEYWORDS: amphetamines; biological samples; sample treatment; supramolecular 

solvents; liquid chromatography; tandem mass spectrometry 

1. INTRODUCTION  

The need for new methodologies that allow the determination of amphetamine and their 

derivatives (MA, MDA, MDEA and MDMA) in biological matrices is supported by the 

alarming data provided by different worldwide reports [1]. The driving force causing 

expanding abuse of amphetamine-type stimulants (ATS) is their pharmacological activity on 

the central nervous system, linked with increasing of energy, endurance and sociability [2]. 

Around 2.1 million young adults used MDMA – “ecstasy”- worldwide during 2015 while for 

AMP and MA the numbers were around 1.3 million [3]. World Drug Report 2016 shows a 

rising trend in consumption being ATS the second most consumed illicit drugs [4]. 

ATS, similarly to other illicit drugs, are determined in a variety of biological matrices with 

very different purposes, including workplace testing, Driving Under the Influence of Drugs 

(DUID) programs, drug consumer follow-up, gestational or newborn exposure, post-

mortem toxicology, drug facilitated sexual assaults, and so on [5]. Matrix selection depends 

on the purpose of the analysis as well as on the advantages and limitations that each matrix 

brings out [6, 7]. Thus, it is important to consider the required detection time window, which 

may range from hours to a few days for biological fluids and from months to years for hair 

and fingernails [8]. This broader detection window has permitted the use of hair as an 

                                                           
[1] L. Degenhardt, W. Hall, Lancet, 379 (2012) 55-70. 
[2] M. Carvalho, H. Carmo, V.M. Costa, J.P. Capela, H. Pontes, F. Remiao, F. Carvalho, M.L. Bastos Arch. 
Toxicol., 86 (2012) 1167-1231. 
[3] European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). European Drug Report. Trends 
and Developments 2016. 
http://www.emcdda.europa.eu/system/files/publications/2637/TDAT16001ENN.pdf., 2016 (Accessed 10 
December 2017). 
[4] United Nations Office on Drugs and Crime (UNODC). World Drug Report 2016. 
http://www.unodc.org/wdr2016/en/wdr2016.html, 2016 (Accessed 10 December 2017). 
[5] E.J. Cone, J. Dairy Sci., 121 (2001) 7–15. 
[6] N. Mali, M. Karpe, V. Kadam, J. Appl. Pharm. Sci., 1 (2011) 58-65. 
[7] K. Saito, R. Saito, Y. Kikuchi, Y. Iwasaki, R. Ito, H. Nakazawa, J. Health Sci., 57 (2011) 472-487. 
[8] D.L. Lin, R.M. Yin, H.C. Liu, C.Y. Wang, R.H. Liu, J. Anal. Toxicol., 28 (2004) 411-417. 

http://www.emcdda.europa.eu/system/files/publications/2637/TDAT16001ENN.pdf
http://www.unodc.org/wdr2016/en/wdr2016.html
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attractive matrix to assess gestational exposure [9]. On the other hand, sample collection 

convenience is essential for on-site drug testing. Sampling of oral fluid is preferred for 

workplace, antidoping testing and DUID programs because is non-invasive and less subject 

to adulteration than urine and, on the contrary than blood, it does not require specialized 

staff [10, 11, 12]. Correlation between drug concentration and pharmacodynamic effects is 

required for judicial settings and, in this sense, oral fluid and blood show better correlation 

with impairment performance that urine [13]. Breast milk is interesting for assessing 

newborn exposure [14] while sweat patches provide a qualitative record of drug consumption 

over the period of observation [15]. In short, clinical labs are routinely confronted with the 

analysis of a huge number of samples involving many different biological matrices. 

ATS screening is mainly based on class specific immunoassays but the lack of specific drug 

identification and cross-reactivity with unrelated medications demands for drug confirmation 

and quantitation by a more selective analytical technique [16]. Traditionally, gas 

chromatography-mass spectrometry (GC-MS) has been used for ATS determination; 

however, the need for ATS derivatization has fostered the use of LC-MS/MS [7]. A critical 

point with this technique is its susceptibility to matrix effects, which often compromises 

sensitivity and selectivity and consequently the accuracy of its application [17, 18]. As a 

result, sample treatment, which is matrix-dependent, often involves extensive, time-

consuming, non-green, and unspecific procedures and consequently, mostly of the reported 

methods have been only validated for single biological matrices [19, 20, 21, 22, 23, 24, 25, 

                                                           
[9] E. Lendoiro, E. González-Colmenero, A. Concheiro-Guisán, A. de Castro, A. Cruz, M. López-Rivadulla, M. 
Concheiro, Ther. Drug Monit., 35 (2013) 296-304. 
[10] S. Anizan, M.A. Huestis, Clin. Chem., 60 (2014) 307-322.  
[11] H. Gjerde, K. Langel, D. Favretto, A.G. Verstraete, Forensic Sci. Int., 256 (2015) 42-45. 
[12] M.A. Huestis, E.J. Cone, Ann. NY Acad. Sci., 1098 (2007) 104-21. 
[13] H. Gjerde, P.T. Normann, A.S. Christophersen, J. Mørland, Forensic Sci. Int., 210 (2011) 221-227. 
[14] A. Bartu, L.J. Dusci, K.F. Ilett, Brit. J. Clin. Pharmacol., 67 (2009) 455-459. 
[15] A.J. Barnes, B.S. De Martinis, D.A. Gorelick, R.S. Goodwin, E.A. Kolbrich, M.A. Huestis, Clin. Chem., 55 
(2009) 454-462. 
[16]United Nations Office on Drugs and Crime. Guidelines for testing drugs under international control in hair, 
sweat and oral fluid. 
https://www.unodc.org/documents/scientific/ST_NAR_30_Rev.3_Hair_Sweat_and_Oral_Fluid.pdf , 2016 
(Accessed 10 December 2017). 
[17] P. Panuwet Jr, R.E. Hunter, P.E. D'Souza, X. Chen, S.A. Radford, J.R. Cohen, M.E. Marder, K. 
Kartavenka, P.B. Ryan, D.B. Barr, Crit. Rev. Anal. Chem., 46 (2016) 93–105. 
[18] R. Dams, M.A. Huestis, W.E. Lambert, C.M. Murphy, J. Am. Soc. Mass. Spectr., 14 (2003) 1290-1294. 
[19]. Baciu, F. Borrull, C. Aguilar, M. CalullAnal. Chim. Acta, 856 (2015) 1-26. 
[20] S.K. Lee, S.H. Kim, H.J. Kim, H.H. Yoo, O.S. Kwon, M.K. In, C. Jin, D.H. Kim, J. Lee, Rapid Commun. 
Mass. Sp., 24 (2010) 3139–3145 
[21] S. Dulaurent, S. El Balkhi, L. Poncelet, J.M. Gaulier, P. Marquet, F. Saint-Marcoux, Anal. Bioanal. Chem., 
408 (2016) 1467–1474. 

[22] E. Lendoiro, C. Jiménez‐Morigosa, A. Cruz, M. Páramo, M. López‐Rivadulla, A. Castro, Drug Test. Anal., 
9 (2017) 96-105. 
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26]. Therefore, the development of a unique, simple, and fast sample treatment, integrating 

both ATS extraction and cleaning-up of matrix interferences, and applicable to the major 

types of biological matrices of interest for the control of ATS abuse by LC-MS/MS, would 

be of interest for clinical and toxicological labs. In this work, we try to succeed this aim with 

the use of supramolecular solvents (SUPRAS). 

SUPRAS are nanostructured liquids generated from colloidal solutions of amphiphiles by 

spontaneous processes of self-assembly and coacervation [27]. They are highly ordered 

systems showing well-differentiated regions. An outstanding feature is that their structure, 

composition and properties can be tailored at will by selecting the environmental conditions 

for amphiphile aggregation. In this way, water-induced SUPRAS with restricted-access 

properties (SUPRAS-RAM) have been synthesized from colloidal solutions of alkanols in 

tetrahydrofuran [28, 29] giving solvents made up of inverted hexagonal aggregates, with the 

hydrophilic alcohol heads surrounding aqueous cavities and the lipophilic chains dissolved in 

tetrahydrofuran (Figure 1). These different polarity regions imply that SUPRASs can interact 

in several ways with low-molecular weight solutes, whilst polysaccharides and proteins are 

excluded by size and precipitation, respectively [28]. Furthermore, the size of the aqueous 

cavity can be tuned controlling the initial conditions and, because of the non-covalent nature 

of their internal bindings, the tailor-made synthesis is completely reversible [28, 29]. 

SUPRAS-RAM have been used in food and environmental analysis because of their high 

capacity to clean up complex matrices, rich in interferences, and to extract the target 

compounds with optimum recoveries [30, 31, 32]. These properties have been successfully 

proved for a wide range of chemicals, from very low (e.g. vitamin E) to high (e.g. hydrazine) 

polarity, demonstrating in this way that SUPRAS composition and nature can be tailored to 

match the target analytes [27]. In view of all these facts, it is the aim of this work to develop 

and validate a universal sample treatment platform, based on SUPRAS-RAM, which may 

                                                                                                                                                                             
[23] M. Concheiro, A. de Castro, Ó. Quintela, A. Cruz, M. López-Rivadulla, Anal. Bioanal. Chem., 391 (2008) 
2329-2338. 
[24] A. El-Beqqali, L.I. Andersson, A.D. Jeppsson, M. Abdel-Rehim, J. Chromatogr. B, 1063 (2017) 130-135. 
[25] J.Y. Kim, S.H. Shin, M.K. In, Forensic Sci. Int., 194 (2010) 108-114. 
[26] B.S. De Martinis, A.J. Barnes, K.B. Scheidweiler, M.A. Huestis, J. Chromatogr. B, 852 (2007) 450–458. 
[27] A. Ballesteros-Gómez, M.D. Sicilia, S. Rubio, Anal. Chim. Acta, 677 (2010) 108-130. 
[28] A. Ballesteros-Gómez, S. Rubio, Anal. Chem., 84 (2011) 342-349. 
[29] J.A. Salatti-Dorado, N. Caballero-Casero, M.D. Sicilia, M.L. Lunar, S. Rubio, Anal. Chim. Acta, 950 (2017) 
71-79. 
[30] A. Ballesteros-Gómez, S. Rubio, D. Pérez-Bendito, J. Chromatogr. A, 1216 (2009) 530-539. 
[31] S. García-Fonseca, A. Ballesteros-Gómez, S. Rubio, Anal. Chim. Acta, 935 (2016) 129-135. 
[32] N. Caballero-Casero, H. Çabuk, G. Martínez-Sagarra, J.A. Devesa, S. Rubio, Anal. Chim. Acta, 890 (2015) 
124-133. 
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allow the determination of ATS by LC-MS/MS in human biological matrices of toxicological 

and forensic interest. 

2. MATERIAL AND METHODS 

2.1. Chemicals and reagents 

ATS standards (AMP, MA, MDA, MDEA and MDMA), the internal standard (IS) 

methamphetamine-D14 (MA-D14), methanol, acetonitrile, ammonia (25%), sodium 

hydroxide and formic acid were supplied by Sigma-Aldrich.  The reference materials (RM) 

Medidrug® DOA-I S low and Medidrug® WDT Confirm U -25% were obtained from LGC 

Ltd. The first RM is a lyophilized serum that contains 28 drugs, including the target ATS at 

25 µg/L, while the second RM is a lyophilized urine that contains 55 drugs including ATS 

(150 µg/L each) at concentrations that are -25% of the recommended cut-off by the 

European Workplace Drug Testing Society (EWDTS). The RM DHF 2/12-A HA was 

purchased from ACQ Science. This RM is a powdered hair that contains 16 illegal drugs 

including ATS at the following concentrations: AMP (1170 ng/g), MA (797 ng/g), MDA 

(428 ng/g), MDEA (589 ng/g) and MDMA (1740 ng/g). Tetrahydrofuran was obtained 

from Panreac and 1-hexanol from Merck. All solvents were LC-MS grade. Type I water was 

obtained from a purification system (Millipore). 

2.2. Solutions 

Stock solutions for ATS standards and the internal standard MA-D14 (25 µg/mL each) were 

prepared in methanol and stored at -20 °C. These solutions were proved to be stable for at 

least 2 years. Working solutions were made daily by proper dilution of the stock solutions 

with water. Their stability in the whole linear calibration range under the working 

experimental conditions (autosampler at 20 ºC) was proved to be at least 3 days. 

2.3. Sample collection and pretreatment 

Human blank biological samples were collected from volunteers in agreement with the 

“Ethics Committee of Andalusian’s Biomedical Research”, and the Declaration of Helsinki. 

Spot urine samples were collected only during early morning. For saliva sampling, 

participants were asked not to drink, eat, smoke or chew gum one hour before collection, 

which was carried out by spitting in a glass test tube. Serum samples were obtained by 

centrifugation of blood samples in EDTA-containing tubes and transferred into 

polypropylene tubes. Breast milk samples were donated by 27 to 39-year-old mothers in her 
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first month of breastfeeding. Hair was sampled following the guidelines set by the Society of 

Hair Testing [33], decontaminated following the Imbert et al. method [34], and subjected to 

milling until a particle size below 50 µm was obtained. Fingernails clipping and cleaning were 

conducted as proposed by Lin et al. [8]. Sweat was sampled by using sterile patches (3M 

Medical Sciences) attached to volunteers’ forehead, upper chest and back for 1.5 hours 

during physical activity. An additional set of five anonymized urine samples obtained from 

individuals following a rehabilitation program, which were positive to the Ecstasy assay by 

immunoassay (Dimension, Siemens), was supplied by the Toxicology Service of the 

University Campus Hospital of Granada (Spain) in accordance with the Ethics Committee of 

Andalusian’s Biomedical Research (ECABR) approval. All samples thus obtained were 

immediately analyzed and/or stored at -20°C for further analysis. 

2.4. SUPRAS-based extraction 

Taking advantage of the high proportion of water in several of the selected biological fluids 

(i.e. saliva, serum, urine, breast milk and sweat), a water-induced SUPRAS-RAM was in situ 

produced in the sample. For this purpose, 900 µL of biological fluid basified with NH3 25% 

(0.1 M) were mixed with 900 µL of tetrahydrofuran and 200 µL of 1-hexanol in a 2-mL 

Eppendorf tube. The SUPRAS spontaneously and instantaneously was formed in the bulk 

solution by self-assembly and coacervation. The mixture was vortex-shaken in a Heidolph 

Reax vortex mixer for 10 minutes and centrifuged in a MPW -350R centrifuge (MPW Med- 

Instruments) at 21125g for 5 minutes. The SUPRAS, less dense than water, separated from 

the bulk solution as an upper layer. In the case of solid biological matrices, i.e. hair and 

fingernails, the samples were previously subjected to alkaline digestion (1 mL of 1M NaOH 

per 50 mg of sample) at 80 ºC for 1 h according to reported procedures8 and then, the 

resulting solution was subjected to the procedure stated above. All SUPRAS extracts were 

fortified with MA-D14 (25 µg/L) before analysis. The stability of ATS in these extracts at 

room temperature and 4ºC was at least 3 days and 2 weeks, respectively. 

2.5. LC-MS/MS assay 

LC-MS/MS assays were run in an Agilent Technologies 1200 series LC coupled to a 6420 

triple quadrupole mass spectrometer with an electrospray ionization source (ESI). 

                                                           
[33] G.A. Cooper, R. Kronstrand, P. Kintz, Society of hair testing guidelines for drug testing in hair, Forensic. 
Sci. Int. 218 (2012) 20-24. 
[34] L. Imbert, S. Dulaurent, M. Mercerolle, J. Morichon, G. Lachâtre, J.M. Gaulier, Development and 
validation of a single LC–MS/MS assay following SPE for simultaneous hair analysis of amphetamines, opiates, 
cocaine and metabolites, Forensic. Sci. Int. 234 (2014) 132-138. 
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Chromatographic separation was carried out onto a Kromasil C18 column (4.6 X 150 mm 

i.d., particle size 5 µm from Análisis Vínicos, Spain). The mobile phase was made up of a 

0.1% formic acid aqueous solution (solvent A) and a 0.1% formic acid methanolic solution 

(solvent B). The elution gradient was as follows: 20% of B until 7.50 minutes, from 20% to 

70% of B at 10 minutes, and 20% of B from 10.50 to 15 minutes. The injection volume was 

set at 2 µL. Tandem mass spectrometry parameters were optimized by direct infusion. The 

most abundant fragments for each ATS and the internal standard MA-D14 were used as 

quantifier and qualifier (see operating settings in Table 1). ATS were quantified based on 

calibration curves constructed from solutions containing standards in water in the range 5-

250 ng/mL (25 ng/mL of MA-D14), by measuring peak-area ratios (ATS standard vs MA-

D14). Figure 2A shows the extracted ion chromatograms (EICs) obtained for aqueous 

standard solutions of ATS, at 25 ng/mL each, monitored at the respective quantification 

transitions (Table 1). 

Table 1. Mass spectrometry parameters for ATS quantificationa 

aSource settings: source gas: 50 psi of N2 at 350 °C; capillary voltage: +3500 V; and 
fragmentor voltage: 95 V. 

  

ATS Quantification transition, m/z 
(collision energy in volts) 

Confirmation transition, m/z 
(collision energy in volts) 

   
AMP 136→91 

(18) 
136→65 

(40) 
MA 150→91 

(18) 
150→65 

(40) 
MDA 180→163  

(10) 
180→105 

(10) 
MDEA 208→163  

(22) 
208→105 

(10) 
MDMA 194→163  

(26) 
194→105 

(10) 
MA-D14 164→130  

(10) 
164→98  

(22) 
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2.6. Method validation 

Calibration curves were run by spiking ten blank samples of each of the seven biological 

matrices under study with a mixture of ATS (0, 5, 10, 25, 50, 100, 250, 500 ng/mL for oral 

fluid, serum, urine, sweat and breast milk and 0, 100, 200, 500, 1000, 2000, 5000, 10000 ng/g 

for hair and fingernails) and the internal standard MA-D14 (25 ng/mL for biological fluids 

and 1000 ng/g for solid matrices). Each calibration standard was analyzed run in the LC-

MS/MS system in triplicate. Calibration curves were constructed by plotting peak-area ratios 

(ATS standard vs MA-D14) as a function of the standard concentration. Least-square 

regression was used to describe the concentration-response relationship. 

Matrix effects (ME) were assessed by the method proposed by Matuszewski et al. [35]. For 

this purpose, calibration curves (n=5) were run from standards of ATS in the range 5-250 

ng/mL, at seven different concentrations, and the corresponding slopes calculated by least-

square regression. The mean value of these slopes was compared to those obtained from the 

analysis of ten different lots (i.e. from ten different subjects) of each type of biological 

matrix, fortified with ATS after extraction with the SUPRAS-RAM. The IS MA-D14 was 

also added to both standards and SUPRAS extracts. Matrix effects, expressed as percentage, 

were calculated by dividing the mean values of sample slopes by the mean value of the neat 

standard slopes. 

Precision was evaluated by spiking pooled (n=5) blank samples with three ATS 

concentrations (5, 25 and 250 ng/mL for biological fluids and 100, 1000 and 10000 ng/g for 

hair and fingernails) and the IS MA-D14 (25 µg/L for biological fluids and 1000 ng/g for 

solid matrices). Seven aliquots of these samples were daily analyzed and the experiment was 

repeated on four different days by running the same samples. 

Accuracy was evaluated by spiking blank samples (n=10) with ATS and MA-D14 at the same 

concentrations than those used for the assessment of precision. The accuracy for diluted 

urine was also evaluated by spiking the samples with 5000 and 7500 ng/mL and diluting 

them with water by factors of 100 and 50, respectively. Concentrations of ATS in the spiked 

samples were calculated from calibration with standards in water and the accuracy was 

reported as percent of the nominal value. Likewise, three reference materials for ATS in 

urine (Medidrug® WDT Confirm U -25%), serum (Medidrug® DOA-I S low) and hair 

                                                           
[35] B.K. Matuszewski, M.L. Constanzer, C.M. Chavez-Eng, Anal. Chem., 75 (2003) 3019-3030. 
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(DHF 2/12-A HA), containing many other drugs illicit drugs, were used for assessment of 

the accuracy of the method. 

3. RESULTS AND DISCUSSION 

3.1. ATS SUPRAS-based extraction 

A good knowledge of the physical-chemical characteristics of both analytes and extractant is 

essential to develop efficient extraction processes. ATS are basic (pKa values in the range 

9.5-9.9) and polar (log Kow in the range 1.67-2.34), and contain aromatic rings and hydrogen 

bond donors/acceptors in their structure. The SUPRAS selected for extraction of ATS was 

made up of inverted hexagonal aggregates of hexanol, with the polar groups surrounding 

water cavities and the hydrocarbon chains dispersed in THF (Fig. 1). In this way, ATS can be 

solubilized in the SUPRAS by mixed-mode mechanisms, that is, polar and hydrogen bond 

donor/acceptor interactions with alcohol groups and dispersion interactions with the 

hydrocarbon chains. 

 

Figure 1. Photographs corresponding to the extraction of ATS from a fortified aqueous 

solution and seven biological matrices with a hexanol-based SUPRAS-RAM and schematic 

showing the structure of the SUPRAS and the mechanisms for proteins and carbohydrates 

removal. 

The ability of hexanol-based SUPRAS to extract ATS was preliminary investigated using 

fortified aqueous solutions since biological fluids and digested hair and fingernails consist 
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essentially of water. For this purpose, SUPRAS of different composition and vacuole sizes 

were in situ produced in the aqueous solution by keeping constant the proportion of hexanol 

(10%) and varying the relative proportion of water and THF [29]. The pH of the aqueous 

solution was adjusted to study the behavior of both charged (pH = 5) and neutral (0.1 M 

NH3) ATS. The synthesis of SUPRAS was carried out following the procedure specified in 

Materials and methods. 

Table 2 shows the composition of the synthetic solutions, as well as the respective 

percentages of water in the SUPRAS (calculated with a Karl Fischer coulometric titrator 

from Metrohm) and the volumes of SUPRAS produced. The proportion of water in the 

SUPRAS increased as the percentage of THF in the synthetic solution did, that increasing 

the volume of SUPRAS produced. Recoveries obtained for ATS were highly dependent on 

both the composition of the SUPRAS and the chemical form of drugs (Table 2). SUPRAS 

containing high percent of water were able to extract the neutral form of ATS from basic 

aqueous solutions efficiently (recoveries were in the range 89-102%). So, the SUPRAS 

selected as extractant was that synthesized by adding hexanol and THF to basified samples 

(0.1M NH3) at the proportions 10%, 45% and 45%, respectively. 
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Table 2. Experimental conditions for SUPRAS formation, percentage of water in the 

SUPRAS, volume of solvent produced and recoveries obtained for ATS 
a Composition of the 

synthetic solution 

Water content in 
the SUPRAS 

(%) 

Volume of 
SUPRAS produced 

(µL) 

bATS recoveries 
(%) 

Hexanol 
(%) 

THF 
(%) 

Water 
(%) 

10 5 85 1.3 252 - 

10 15 75 5.2 351 - 

10 25 65 7.4 488 8-14 

10 35 55 9.7 679 8-25 

10 45 45 27.1 945 8-34 

10 25 c65  7.4 488 74-80 

10 45 c45  27.1 945 89-102 

a
 Total volume of the synthetic solution: 2 mL 

b
 Concentration of each ATS in the aqueous solution: 100 ng/mL 

c
 Aqueous 0.1 M NH3 

Additionally, these SUPRAS have the ability to behave as restricted access liquids through 

chemical and physical mechanisms [Error! Bookmark not defined.]. Thus, proteins 

precipitate or flocculate by a combined effect of the decrease of the dielectric constant in the 

presence of THF and the formation of complexes with the amphiphile. On the other hand, 

the high polar carbohydrates are not incorporated to the aqueous cavities of the hexagonal 

aggregates by size exclusion. 

Figure 1 shows photographs of the extraction procedure of ATS from the different 

biological fluids and digested hair and fingernails using the selected SUPRAS-RAM. A large 

precipitate or flocculate of proteins was well observed for some biological samples such as 

breast milk, serum and hair, while it was quite low for urine and fingernails. No precipitate 

was found for oral fluid and sweat matrices. It is worth noting that, independent of the 

biological matrix, colorless SUPRAS extracts were always obtained. 

On the basis of these preliminary results, a general method for the quantification of ATS in 

different biological matrices, based on the combination of SUPRAS-RAM and LC-MS/MS, 

was developed and fully validated following standard guidelines [36, 37, ]. 

                                                           
[36] US Food and Drug Administration (FDA). Guidance for Industry: Bioanalytical Method Evaluation, 2017 
https://www.fda.gov/downloads/Drugs/Guidance/ucm070107.pdf. (Accessed 10 December 2017). 

https://www.fda.gov/downloads/Drugs/Guidance/ucm070107.pdf
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3.2. Method Validation 

3.2.1. Calibration model 

Calibration curves for ATS in biological samples were linear in the concentration ranges: 5-

500 ng/mL for biological fluids and 100-10.000 ng/g for hair and fingernails. Table 3 lists 

the calibration curve parameters (i.e. slopes, y-intercepts, determination coefficients and 

standard deviations of residuals) for each ATS and sample as calculated by least-square 

regression. In the case of hair and fingernails, calibration curve parameters were calculated 

from the concentration of ATS in the digested samples in order to compare the results with 

those obtained from biological fluids. Slopes for each ATS was quite independent of the type 

of biological sample, that indicating the potential of the SUPRAS-RAM to provide a matrix-

independent treatment method. The back-calculated concentrations for all calibration 

samples were within ± 15% of the nominal concentrations, which was in good agreement 

with established criteria [36, 37]. The lower limit of quantification (LLOQ) for the target 

ATS, defined as the lowest concentration of the calibration curve that can be measured with 

a coefficient of both variation and accuracy less than 20%, was 5 ng/mL for biological fluids 

and 100 ng/g for hair and fingernails. Both LLOQ values were below the most restrictive 

cut-offs proposed by the Substance Abuse and Mental Health Services Administration 

(SAMHSA) as confirmatory levels by LC-MS/MS, namely 25 ng/mL and 200 ng/g [16]. The 

extracted ion chromatograms obtained from the analysis of blank biological fluids, hair and 

fingernails, fortified with ATS at the LLOQ level, are shown in Figure 2 BC-H. 

  

                                                                                                                                                                             
[37] European Medicines Agency (EMA). Guideline on bioanalytical method validation, 2011 
http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf
., (Accessed 10 December 2017). 

http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf
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Table 3. Calibration curves parameters for ATS in different biological matrices 

  

 

ATS  Oral fluid Sweat Urine  Serum Breast milk Hair Fingernails 

AMP a(Slope ± SD)x10-2 1,83±0,01 1,80±0,01 1,80±0,01 1,93±0,01 1,97±0,01 1,90±0,01 1,87±0,01 

 y-Intercept  ± SD  -0,01±0,02 0,01±0,02 0,01±0,05 -0,01±0,08 -0,06±0,04 -0,03±0,01 -0,04±0,01 

 bR2 0,994 0,999 0,990 0,999 0,999 0,993 0,996 

 cSy.x 0,32 0,04 0,17 0,16 0,02 0,06 0,05 

MA a(Slope ± SD)x10-2 0,83±0,04 0,80±0,04 0,80±0,04 0,86±0,04 0,82±0,06 0,82±0,04 0,82±0,06 

 y-Intercept  ± SD  0,01±0,01 0,01±0,01 0,01±0,03 -0,01±0,01 -0,06±0,03 0,01±0,01 -0,03±0,01 

 bR2 0,996 0,999 0,991 0,999 0,996 0,993 0,993 

 cSy.x 0,04 0,02 0,02 0,02 0,05 0,01 0,01 

MDA a(Slope ± SD)x10-2 2,45±0,01 2,78±0,02 2,45±0,01 2,77±0,01 2,67±0,01 2,77±0,02 2,72±0,02 

 y-Intercept  ± SD  0,08±0,07 -0,01±0,01 0,01±0,09 -0,01±0,05 0,02±0,05 0,01±0,04 -0,02±0,06 

 bR2 0,993 0,999 0,999 0,999 0,998 0,997 0,996 

 cSy.x 0,03 0,02 0,04 0,06 0,06 0,06 0,07 

MDEA a(Slope ± SD)x10-2  6,65±0,01 7,13±0,01 6,70±0,01 7,33±0,01 7,04±0,01 6,79±0,01 6,75±0,01 

 y-Intercept  ± SD  0,05±0,06 -0,01±0,09 -0,06±0,04 -0,04±0,04 0,05±0,05 0,04±0,05 0,03±0,05 

 bR2 0,995 0,999 0,997 0,999 0,999 0,995 0,998 

 cSy.x 0,08 0,02 0,04 0,05 0,02 0,09 0,04 

MDMA a(Slope ± SD)x10-2 3,04±0,01 2,99±0,01 2,77±0,01 2,95±0,01 2,71±0,01 2,76±0,01 2,71±0,01 

 y-Intercept  ± SD  -0,01±0,01 0,01±0,04 -0,01±0,03 0,01±0,02 -0,01±0,03 0,01±0,03 0,01±0,04 

 bR2 0,997 0,999 0,987 0,999 0,999 0,997 0,999 

 cSy.x 0,02 0,02 0,08 0,02 0,01 0,02 0,01 

a Units are ATS/IS peak area ratio per ng/mL ATS. Number of calibration curves = 10. Slopes for hair and fingernails were calculated 
from ATS concentrations in the digested samples (see section SUPRAS-BASED EXTRACTION in Materials and Methods). 
b Coefficient of determination 
c Standard deviation of the residuals 
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Figure 2. Extracted ion chromatograms obtained for ATS from (A) a standard solution (25 

ng/mL each) and (B) oral fluid, (C) sweat, (D) urine, (E) serum, (F) breast milk, (G) hair, (H) 

and fingernails at the LLOQ (B-F 5 ng/mL; G-H 100 ng/g). (1) AMP (2) MA (3) MDA (4) 

MDMA (5) MDEA. 

3.2.2. Matrix effects 

Matrix effects for ATS in the seven biological matrices under study were all in the range 91-

107% (Table 4), indicating that the maximum ion suppression or enhancement was 9% and 

7%, respectively, and that there was absence of interfering components according to 
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standard guidelines [36, 37]. The mean slope values of the calibration curves obtained for 

each ATS from the seven biological matrices and neat standards were compared by using 

analysis of covariance, ANCOVA [38]. The values obtained for the level of significance of 

the null hypothesis (P-values) were 0.1701, 0.0810, 0.2723, 0.4191 and 0.2114 for AMP, MA, 

MDA, MDMA and MDEA, respectively. These values were above the P-value (0.05) for the 

level of confidence of 95%, so it can be concluded that significant differences did not exist 

among the slopes of each of the eight groups of calibration curves (i.e. seven biological 

matrices and neat standards), and therefore, the method was matrix-independent. Thus, 

solvent calibration can be used for the quantification of ATS in the intended matrices, that 

saving costs and increasing simplicity and sample throughput. 

  

                                                           
[38] M. Martinez-Galera, T. Lopez-Lopez, M.D. Gil-Garcia, J.L. Martinez-Vidal, D. Picon-Zamora, L. Cuadros-
Rodriguez, Anal. Bioanal. Chem., 375 (2003) 653-660. 
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Table 4. Evaluation of matrix effects (ME, %) and analytical recoveries for the 

determination of ATS in different biological matrices 

  

Sample  aATS 
Concentratio

n (bMean recovery ± SD) % (eME) % 

  AMP MA MDA MDMA MDEA AMP MA MDA MDMA MDEA 

            

Oral fluid 5 100±6 92±6 106±4 101±3 89±4      

 25 89±3 95±3 92±3 97±3 89±3      

 250 101±3 99±3 101±3 102±3 95±3      

       92 95 107 105 102 

Sweat 5 115±1 106±3 102±3 94±1 106±1      

 25 111±3 92±2 89±3 89±3 93±1      

 250 89±1 103±2 87±1 88±1 106±1      

       92 93 92 101 95 

Urine 5 103±5 87±5 88±4 110±3 90±4      

 25 88±2 89±2 90±3 89±2 97±1      

 250 100±2 101±2 102±1 100±2 96±1      

 c50 97±3 103±2 104±4 96±4 97±1      

 d150 101±5 98±3 97±4 100±3 105±1      

       98 95 91 91 92 

Serum 5 104±6 99±3 109±1 98±3 104±2      

 25 110±4 110±3 102±5 98±1 104±2      

 250 89±2 89±2 88±1 89±1 92±1      

       97 93 103 104 101 

Breast 
milk 

5 88±2 93±5 92±4 100±6 113±1      

 25 93±1 108±4 99±4 107±1 103±4      

 250 99±1 92±6 92±4 89±3 100±1      

       98 98 100 95 97 

Hair 100 85±3 99±7 95±2 105±2 88±2      

 1000 90±3 89±3 93±5 95±2 90±1      

 10000 90±1 109±2 97±2 87±1 104±2      

       95 98 102 97 94 

Fingernail 100 113±2 88±2 103±1 107±1 99±1      

 1000 94±2 101±5 89±3 91±3 94±1      

 10000 89±2 93±1 92±4 90±2 107±3      

       93 98 100 96 93 

a Concentration in samples: ng/mL for oral fluid, sweat, urine, serum and breast milk and ng/g for hair and fingernail 
b n=10 
c Dilution factor (1:100) 
d Dilution factor (1:50) 
e Calculated by dividing the mean of slopes obtained from ten different lots of each type of sample by the mean of slopes 
obtained from five neat standard calibrations. 
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3.2.3. Precision 

The within- and between-run coefficients of variation for ATS in pools of fortified biological 

samples are summarized on Table 5. Coefficients of variation for ATS were in the interval 

0.3-9.7% at the LLOQ values and they ranged from 0.1 to 9.3% at medium and high 

concentrations. These values were in good agreement with international guidelines that set 

CVs lower than 20% at LLOQ and below 15% for the rest of concentrations [36, 37]. 

3.2.4. Accuracy 

The accuracy of the method was checked by the evaluation of ATS recoveries in blank 

samples spiked at the LLOQ, medium and high concentration. Because the concentration of 

ATS in urine can be very high after oral administration (e.g. around 6000 ng/mL for MA 

[39], it was checked if sample dilution affected the accuracy of the method. Table 6 4 shows 

the results obtained for the different matrices. Recoveries were in the interval 85-115% for 

LLOQ (5 ng/mL and 100 ng/g) and 87-111% for higher concentrations. All recoveries, 

including diluted urines, resulted in acceptable ranges according to standard guidelines [36, 

37]. 

The accuracy was also assessed by analyzing available RMs for serum, urine and hair. 

Nominal values for ATS in the RMs were at low level in serum (25 ng/mL), at -25% of the 

recommended cut-off by EWDTS for a confirmation test in urine (150 ng/mL) and at 

relevant concentrations for ATS in hair (in the range 428-1740 ng/g). All RMs contained 

many other illicit drugs at relevant concentrations (e.g. 23, 50 and 10 drugs in serum, urine 

and hair, respectively). Table 7 6 shows the results obtained, expressed as the mean 

concentration and recoveries found for ATS. Recoveries were in the interval 92-113%, that 

proving the capability of the method to give accurate results in the presence of other drugs. 

  

                                                           
[39] R.J. Schepers, J.M. Oyler, R.E. Joseph, E.J. Cone, E.T. Moolchan, M.A. Huestis, Clin. Chem., 48 (2002) 
1703–1714. 
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Table 5. Within- and between-run coefficients of variation (CV%) for the determination of 

ATS in different biological matrices 

Sample  aATS concentration bWithin-run 
 

dBetween-run 

  
AMP MA MDA MDMA MDEA 

 
AMP MA MDA MDMA MDEA 

       

 

     
Oral fluid  5  1.4 5.0 3.3 4.5 1.9 

 
4.5 5.3 8.5 7.2 9.7 

  25  2.9 3.3 3.8 4.0 3.2 
 

6.6 5.5 9.3 6.1 7.2 

  250  2.4 1.2 1.7 1.3 2.6 
 

3.5 1.7 7.2 2.1 6.6 

Sweat 5  2.0 3.2 2.6 2.2 1.3 
 

1.8 1.3 2.1 1.5 0.3 

  25  2.0 1.3 2.3 1.3 0.4 
 

1.8 1.3 2.1 1.5 0.3 

  250  1.3 1.5 0.8 0.4 2.4 
 

1.1 1.3 0.7 0.4 2.8 

Urine  5  3.9 4.3 1.8 0.7 5.4 
 

5.1 4.3 2.1 0.8 5.2 

  25  2.2 1.5 1.7 0.8 1.1 
 

1.1 2.8 1.5 2.1 0.9 

  250  2.1 0.6 0.8 0.6 0.6 
 

0.6 1.9 0.8 0.8 0.6 

Serum  5  6.7 6.2 2.6 1.3 5.8 
 

7.3 5.2 2.2 1.1 4.9 

  25  4.1 2.3 4.0 1.2 1.8 
 

3.4 2.0 3.4 1.0 1.5 

  250  2.7 1.8 1.3 0.6 1.4 
 

2.3 1.5 1.1 0.5 1.2 

Breast milk  5  1.5 4.2 2.6 3.9 1.1 
 

0.6 1.9 2.4 1.1 3.0 

  25  0.5 1.8 2.7 1.0 3.0 
 

0.6 1.9 2.4 1.1 3.0 

  250  0.4 2.9 3.3 1.3 0.1 
 

0.4 3.1 3.0 1.4 0.3 

Hair  100  2.4 4.3 1.6 1.0 1.3 
 

4.0 6.1 1.6 1.6 1.7 

  1000 2.4 3.0 4.4 0.9 2.2 
 

2.8 8.8 4.8 1.1 2.9 

  10000  0.4 0.5 0.6 0.7 0.2 
 

0.8 4.0 1.7 1.1 0.3 

Fingernail  100  5.0 3.3 2.0 3.3 1.0 
 

5.7 3.4 2.0 3.2 1.6 

 
1000 1.3 3.9 1.9 2.7 0.9 

 
1.3 3.7 1.8 2.5 1.1 

 
10000  1.2 1.1 3.9 1.7 0.7  1.4 1.1 3.4 1.6 1.1 

a It refers to concentration in samples. Units are ng/mL for oral fluid, sweat, urine, serum and breast 
milk and ng/g for hair and fingernail 
b 7 replicates for each concentration  
c 7 replicates for each concentration on four different days 
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Table 6. Concentrations and recoveries (R) found for ATS, along with the respective standard 

deviations (SD), in the analysis of reference materials 

 

ATS aUrine bSerum cHair 

 dConcentration ± SD 
(ng/mL) 

R± SD (%) dConcentration ± SD 
(ng/mL) 

R±SD 
(%) 

dConcentration ± SD 
(ng/g) 

R±SD 
(%) 

AMP 142±3 95±2 24.5±0.5 98±2 1099±32 94±3 

MA 163±6 109±4 26.2±0.3 105±1 868±8 109±1 

MDA 150±4 100±3 24.3±1.5 97±6 484±5 113±1 

MDMA 159±4 106±3 24.3±0.5 97±2 1844±17 106±1 

MDEA 144±3 96±2 28.0±0.5 112±2 542±6 92±1 

a Medidrug® WDT Confirm U -25%, nominal concentration for each ATS 150 ng/mL 
b Medidrug® DOA-I S low, nominal concentration for each ATS 25 ng/mL. 
c DHF 2/12-A HA, nominal concentrations: AMP (1170 ng/g), MA (797 ng/g), MDA (428 ng/g), MDMA (1740 ng/g) and 
MDEA (589 ng/g). 
d n=5 
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3.3. Analysis of ATS positive urine samples 

The method was applied to five urine samples, which tested positive for ATS by 

immunoassay (Dimension, Siemens). This assay has cutoffs of 300, 280 and 290 ng/mL for 

MDMA, MDA and MDEA, respectively. The presence of MDA was confirmed for all 

samples at concentrations of 5.45400 ± 0.5500, 3.83800 ± 0.1100, 2.32300 ± 0.2200, 2.62600 

± 0.2200 and 4.24200 ± 0.5500 mg/Lng/mL. No other ATS were detected above the 

LLOQ. The EICs obtained for the five samples analyzed are shown in Figure 3. 

 

Figure 3. Extracted ion chromatograms (EIC) obtained for MDA quantification transition 

from a set of five anonymized ATS-positive urine samples 

4. CONCLUSION 

SUPRAS-RAM have proved here to be a suitable strategy to effectively extract ATS and 

remove matrix effects in LC-MS/MS for the quantification of these drugs in up to seven 

different biological matrices. The use of SUPRAS-RAM resulted in a truly universal, fast, 

cheap and reliable sample treatment platform for the control of ATS abuse. To the best of 
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our knowledge, this is the first matrix-independent platform able to deal with several 

biological fluids and solids in matrices of forensic and clinical interest. It is anticipated that 

this methodology could be easily extended to the bioanalysis of other drugs and 

medicaments. 
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Chapter 6 
Exploring polar hydrophobicity in organized media 

for extracting oligopeptides: application to the 

extraction of opiorphin in human saliva  



134 
 

  



135 
 

Exploring polar hydrophobicity in organized media for 
extracting oligopeptides: application to the extraction of 
opiorphin in human saliva 
Francesca Accioni, D. García-Gómez, Soledad Rubio 
To be Submitted to Analytica Chimica Acta 

 

ABSTRACT 

Supramolecular solvents are gaining momentum as extractants of compounds of interest 

from complex matrixes such as foodstuff and biological and environmental samples. 

However, their powerful extraction mechanism, based on multiligand ability for solute 

binding, fails when applied to very polar compounds, hindering their applicability to the 

extraction of metabolites. In this work, we introduce the synthesis, characterization and 

application of a new kind of SUPRASs formed by heptafluorobutyric acid (HFBA). The 

polar hydrophobicity of this perfluorinated acid results in a SUPRAS, which coacervates at 

acidic pHs, that shows a great capability to extract amino acids and oligopeptides (recoveries 

in the range 81-105%) with nonpolar alkyl, cyclic or aromatic side chain substituents  (with 

log D > -3.62). To further demonstrate the potential of this novel SUPRAS, an analytical 

methodology for the determination of opiorphin in real saliva samples was developed and 

fully validated. The HFBA-based SUPRAS was synthetized in situ from 950 µL of stabilized 

saliva, by the addition of 150 µL of HFBA and 400 µL of HCl 37% (v/v). The resulting 

SUPRAS was directly injected into a LC-MS/MS system for further quantification. 

Quantitative recoveries in the range of 87-110% were obtained with relative standard 

deviations below 20%. The HFBA-based SUPRAS is, therefore, capable of efficiently 

extracting opiorphin from saliva samples and shows a high potential for the determination of 

several amino acids and oligopeptides from biological samples. 

KEYWORDS Supramolecular solvents; amino acids; oligopeptides; opiorphin; 

heptafluorobutyric acid. 
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1. INTRODUCTION 

Polar hydrophobicity is a term related to fluorinated compounds that refers to the apparent 

discrepancy between the high polarity of the C-F bond and the pronounced compound 

hydrophobicity [1]. Polar hydrophobicity relies on two properties of C-F bonds; on the one 

hand, they are highly dipolar, so they can interact with ionic or dipolar groups by electrostatic 

(dipole-dipole or charge-dipole) interactions. On the other hand, C-F bonds are relatively 

non-polarizable, which reduces overall molecular polarizability, thus increasing compound 

lipophilicity [2]. 

Lipophilicity of organofluorine compounds has been extensively exploited in medical 

applications, where incorporation of fluorine into biologically active compounds can alter 

drug metabolism or enzyme substrate recognition and may improve drug transport across 

the blood brain barrier and oral bioavailability [3]. Likewise, it is of interest for the 

production of stain- and water-repellent surfaces [4]. 

Regarding the C-F bond, it is still a matter of debate whether it can stablish strong polar 

interactions [1, 5]. Thus, it has been proved that C-F bonds act as hydrogen bond acceptors 

in the gas phase but these interactions are of minimal importance in polar solvents such as 

alcohols, amines or water [6]. The reasons given for the different behavior of C-F bonds in 

the liquid and gas phases is that their low polarizability makes time-dependent interactions 

(e.g. dipole-induced dipole, ion-induced dipole and dispersion) not as favorable as they are 

for polar solvents [7]. On the other hand, a growing body of evidence indicates that the 

energies of electrostatic interactions of the C-F bond dipole can be substantial in the solid 

state, where C-F․․․H-C interactions have been proposed for crystal engineering design [8]. 

Likewise, the existence of C-F․․․M bonds, where M is an alkali metal cation, has been 

                                                           
[1] J.C. Biffinger, H.W. Kim, S.G. DiMagno, Chem. Bio. Chem., 5 (2004) 622-627. 
[2] V.H. Dalvi, P.J. Rossky, P. Natl. Acad. Sci., USA 107 (2010) 13603-13607. 

[3] J. Wang, M. Sa ́nchez-Roselló, J.L. Acen ̃a, C. Del Pozo, A.E. Sorochinsky, S. Fustero, V.A. Soloshonok, H. 
Liu, Chem. Rev., 114 (2014) 2432-2506. 
[4] E. Kissa, Fluorinated Surfactants and Repellents. In: E. Kissa (eds) Surfactant science series. M. Dekker, 
(2001). 
[5] C. Dalvit, C. Invernizzi, A. Vulpetti, Chem. Eur. J., 20 (2014) 11058-11068. 
[6] J.-L.M. Abboud, R. Motario, V. Botella, Hydrogen bonding in the gas phase and in solution. New 
experimental developments. In: P. Politzer, J.S. Murray (eds) Quantitative Treatments of Solute/Solvent 
Interactions. Elsevier, (1994). 
[7] I. Hyla-Kryspin,* G. Haufe, S. Grimme, Chem. Eur. J., 10 (2004) 3411-3422. 
[8] L. Mayrhofer, G. Moras, N. Mulakaluri, S. Rajagopalan, P.A. Stevens, M. Moseler, J. Am. Chem. Soc., 138 
(2016) 4018-4028. 
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demonstrated in appropriately organized systems such as macrocyclic fluorinated ligands, 

even in polar solvents [9, 10]. 

This work was intended to explore the potential of polar hydrophobicity of fluorinated 

compounds in the analytical extraction of high polar organic cations. For this purpose, the 

tailoring of a proper organized system in polar solvents was undertaken with the aim of 

maximizing C-F․․․M interactions. 

In order to design a proper organized system, a fluorinated amphiphile (i.e. 

heptafluorobutyric acid, HFBA) was selected as a model compound and self-assembly as a 

structure-directing process. Self-assembly, the phenomenon by which isolated components 

organize autonomously and spontaneously into ordered and/or functional structures [11], 

has become one of the most widespread and powerful strategies for the production of 

advanced functional supramolecular materials [12]. However, this phenomenon remains 

almost unexplored for the production of tailored solvents, although self-assembly has already 

proved an invaluable strategy for the synthesis of tailored supramolecular solvents (SUPRAS) 

that feature restricted access properties (SUPRAS-RAM) [13]. These tailored solvents have 

found multiple applications for efficient extraction of contaminants in environmental, 

biological and food samples while removing matrix effects in LC-MS/MS by chemical and 

physical mechanisms [14, 15, 16, 17, 18]. So, it was considered that fluorinated-based 

supramolecular solvents could be proper organized systems for maximizing C-F electrostatic 

interactions. 

In this paper, the synthesis and characterization of heptafluorobutyric acid-based 

supramolecular solvents were undertaken and their suitability for extracting polar organic 

cations was evaluated by studying the extraction efficiency for different oligopeptides 

                                                           
[9] H. Plenio, R. Diodone, Angew. Chem. Int. Ed. Engl., 33 (1994) 2175-2177. 
[10] H. Plenio, R. Diodone, J. Am. Chem. Soc., 118 (1996) 356-367. 
[11] K. Ariga, T. Kunitake, Molecular Self-Assembly — How to Build the Large Supermolecules. In: K. Ariga, 
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containing from 2 to 5 amino acids. Currently, more than 15000 oligopeptides from more 

than 2200 biological species are known and a large number of them (e.g. enkephalins, 

neurotensins, angiotensins, somatostantins, etc.) have a wide spectrum of functional activities 

as regulators of the nervous, endocrine and immune systems [19]. Depending on the amino 

acid residues making up the oligopeptides, they may establish ionic, ion-dipole, dipole-dipole 

and/or stacking interactions. A remarkable property of oligopeptides, compared to proteins, 

is the predominance of positively charged amino acid residues, so they are valuable models as 

polar organic cations [20]. 

In order to check the ability of the proposed approach to work in real world, it was applied 

to the extraction of opiorphin in human saliva prior to its quantification by LC-MS/MS. 

Opiorphin, a pentapeptide first isolated in 2006 from human saliva, is a natural enkephalin 

with a painkiller effect greater than morphine but with less dependence and addiction [21]. It 

has been recently found to be part not only of human saliva (76-237 ng mL-1 in basal 

conditions, 24-1091 ng mL-1 under stimulation) but also of bloodstream (0.1-3.4 ng mL-1), 

urine (1-27 ng mL-1), semen (3-31 ng mL-1), breast milk (3-23 ng mL-1) and tears (<2-1109 

ng mL-1) [22, 23]. These values were determined by a tedious and laborious method 

involving treatment with a strong chelating agent, solid-phase extraction, freeze-drying 

and/or reversed-phase chromatography cleanup and a competitive ELISA assay [24, 25]. To 

the best of our knowledge, only a LC-MS/MS method has been developed for the 

quantification of opiorphin in human samples, specifically saliva- a biofluid in which 

qualitative changes can provide diagnostic information [26]. The method is based on protein 

precipitation, freeze-drying and reversed phase chromatography-electrospray MS/MS 

quantification. However, the need for using the standard addition method for reliable 

quantification lengthens total analysis time. Therefore, a quick and easy method based on 

SUPRAS extraction would be a useful tool for further studies regarding opiorphin, especially 

because recent studies have shown that the levels of circulating opiorphin may be 
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upregulated or downregulated by different human pathological states. Below the most 

relevant results are discussed. 

2. EXPERIMENTAL 

2.1. Chemicals and reagents 

The twenty proteinogenic amino acids  (Glycine (Gly), Alanine (Ala), Valine (Val), Leucine 

(Leu), Isoleucine (Ile), Methionine (Met), Tryptophan (Trp), Phenylalanine (Phe), Proline 

(Pro), Serine (Ser), Threonine (Thr), Cysteine (Cys), Tyrosine (Tyr), Asparagine (Asn), 

Glutamine (Gln), Aspartic acid (Asp), Glutamic acid (Glu), Lysine (Lys), Arginine (Arg) and 

Histidine (His)), six dipeptides (Ala-Phe, Phe-Val, Ala-Ala, Glu-Glu, Phe-Gly hydrate and 

Ala-Tyr), and a tripeptide (Arg-Gly-Asp) were all purchased in Sigma-Aldrich (Barcelona, 

Spain). Standards of Opiorphin trifluoroacetate salt (OPI) and Arg-Phe acetate salt were 

obtained from Bachem (Bubendorf, Switzerland). Protease Inhibitor Cocktail, acetonitrile, 

formic acid, hydrochloric acid 37% (HCl) and Heptafluorobutyric acid 98% (HFBA) were 

also purchased from Sigma Aldrich. Type I water was obtained from a purification system 

(Millipore, Madrid Spain). 

Stock solutions for each compound (100 µg mL-1) were prepared in type I water and 

methanol (30:70 v/v) and kept at -20 °C. Calibration standards and working solutions were 

made daily by diluting the proper amount of stock solutions in water.  
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2.2. Instrumentation 

LC-MS/MS analyses were run in an Agilent Technologies 1200 series LC coupled to a 6420 

triple quadrupole mass spectrometer with an electrospray ionization source (ESI) 

(Waldbronn, Germany). Chromatographic separation of amino acids, dipeptides and 

tripeptides was carried out on a Luna CN 100 Å column (100 x 2 mm i.d., particle size 2 µm) 

from Phenomenex. Separation of opiorphin was performed on an InfinityLab Poroshell 120 

HILIC column (2.1 x 150 mm i.d., particle size 4 µm) from Agilent. For the synthesis of 

SUPRAS, a Reax Heidolph vortex mixer (Schwabach, Germany) and an MPW -350R 

centrifuge from MPW Med- Instruments were used (Warchaw, Poland). A Karl Fischer 

coulometric titrator from Metrohm (Herisaus, Switzerland) was used to determine SUPRAS 

composition. A digital caliper was used for measuring the volume of SUPRAS obtained 

under different experimental conditions. A light microscope Leica DM 500 B (Heerbrugg, 

Switzerland) was used to reveal the structure and the dimension of the micelles forming the 

SUPRAS. 

2.3. Procedures 

2.3.1. Extraction efficiency studies 

950 µL of water, fortified at 0.1 µg mL-1 (for each oligopeptide or amino acid), 400 µL of 

HCl 37% (v/v) and 150 µL of HFBA were added to 1.5-mL Eppendorfs, vortex-shaken for 

10 minutes and centrifuged at 21125g for 5 minutes. SUPRAS were obtained in the lower 

layer since they are denser than the aqueous equilibrium solution. HFBA-based SUPRAS was 

then extracted by means of a pipette, transferred to a vial and directly injected into the LC-

MS/MS system for further analysis. Chromatographic separation of amino acids and 

oligopeptides was achieved in the cyano column by using an isocratic mobile phase formed 

by a 0.1% formic acid aqueous solution (solvent A) and Acetonitrile (solvent B) 70:30 (v/v) 

respectively. The injection volume was set at 10 µL. 

2.3.2. Phase diagram and SUPRAS composition and volume 

A ternary phase diagram was constructed by mixing HCl 37% (v/v), HFBA and water at 

different mass percentages (w/w). The SUPRAS formation region was delimited by visual 

inspection of liquid-liquid phase separation in the mixed solution after centrifugation.  Both 

SUPRAS composition and volume was determined into the SUPRAS region at 40 different 

mass percentages of the ternary mixture. Water and, by extension, HCl contents were 

measured by the use of a Karl Fischer Coulometric titrator. The amount of HFBA was then 
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calculated by difference. The volume of SUPRAS was obtained by measuring its height in the 

1.5-mL Eppendorfs with a digital caliper. 

2.4. Determination of Opiorphin in saliva 

2.4.1. Samples collection 

Oral fluid was collected from volunteers in agreement with The Declaration of Helsinki. For 

saliva sampling, some specifics were followed: volunteers were asked not to drink, eat, smoke 

or chew gum one hour before collection. After the sampling, saliva was immediately 

stabilized, analyzed and/or stored at -20°C for further analysis. In order to prevent the rapid 

enzymatic degradation of OPI in oral fluid, a Protease Inhibitor Cocktail containing 4-(2-

Aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) at 2 mM, Aprotinin at 0.3 μM, 

Bestatin at 116 μM, E-64 at 14 μM, Leupeptin at 1 μM and EDTA at 1 mM was immediately 

added to the sample. Blank sample matrices, useful for method development, were obtained 

by the same process but skipping the inhibitor cocktail. 

2.4.2. HFBA-based SUPRAS extraction 

Taking advantage of the high amount of water in saliva, HFBA-based SUPRASs were 

synthetized in situ in the sample. For this purpose, 950 µL of stabilized saliva were added to 

150 µL of HFBA and 400 µL of HCl 37% (v/v) in 1.5-mL Eppendorfs. The mixture was 

vortex-shaken for 10 minutes and centrifuged at 21125g for 5 minutes and the SUPRAS 

(around 180 µL) was obtained in the lower layer (Figure 1). After that, a SUPRAS aliquot was 

injected into the LC-MS/MS system for quantification of opiorphin. 

 

Figure 1. Schematic representation of HFBA-based SUPRAS synthesis in saliva. 
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2.4.3. LC separation and MS/MS quantification 

For the determination of Opiorphin in saliva, the chromatographic separation was carried 

out in the HILIC column by an isocratic mobile phase formed by a 0.1% formic acid 

aqueous solution (solvent A) and Acetonitrile (solvent B) at a proportion of 30:70 (v/v), 

respectively. MS/MS parameters for all the analytes studied in this work were optimized by 

direct infusion and the most abundant collision-induced fragments were considered for 

quantification (Table S1). ESI source parameters were as follows: source gas: 50 psi of N2 at 

350 °C; capillary voltage: +4000V. Calibration curves for opiorphin were prepared by spiking 

water or stabilized saliva with Opiorphin (0, 10, 20, 50, 100, 200, 500, 1000 ng mL-1) and 

injecting the afterwards synthetized SUPRAS into the LC-MS/MS system. 

3. RESULTS AND DISCUSSION 

3.1. HFBA-based SUPRAS synthesis and characterization 

HFBA is a strong acid (pKa 0.04) [27] with high solubility in water (~214 g L-1) and one of 

the smallest micelle-forming molecules known (critical aggregation concentration, cac, 

around 1M) [28]. In order to produce HFBA-based SUPRAS in aqueous solution, the HFBA 

micellar aggregates should grow through self-assembly processes until giving liquid-liquid 

phase separation (i.e. coacervation). Aggregation of amphiphiles in solution is a start-stop 

process; usually solvophobicity drives aggregation while the stop process emanates from 

head group-head group repulsion [29]. So, decrease of the repulsion of the head groups of 

HFBA, highly ionized in aqueous solution, was tried by addition of hydrochloric acid. 

Table 1 shows the initial compositions for the ternary mixture HFBA, water and 

concentrated hydrochloric acid, expressed as mass percentages, at which SUPRAS formed. It 

should be highlighted that at least a molar ratio of 1:1 regarding HCl:HFBA was necessary to 

produce a complete coacervation of the amphiphile. On the other hand, the maximum 

concentration easily achievable for concentrated HCl (30%, w/w) was set as the upper limit 

for this component. 

According to the results obtained (Table 1), the chemical composition of the SUPRAS, 

expressed as mass percentage, kept quite constant and ranged in a much lower interval (2-5% 
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HCl, 9-27% H2O and 70-86% HFBA) compared to the composition of the synthetic 

solutions (5-30% HCl, 30-80% H2O and 10-55% HFBA). Incorporation of the amphiphile 

to the SUPRAS was quantitative (average value 107±6%) without regard to the initial ternary 

composition. This unexpected property for an amphiphile featuring a cmc of 1M is unusual 

and beneficial in relation to its extraction capability since no amphiphile is lost in the 

equilibrium solution. So, partition of analytes to the SUPRAS should be favored. 

Table 1 shows the SUPRAS main properties, including composition, for those initial 

conditions from which an unequivocal amount of SUPRAS was formed after centrifugation. 
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Table 1. Characterization of SUPRAS formed from different initial ternary mixtures 

INITIAL 
CONDITIONS 

SUPRAS COMPOSITION AND MAIN PROPERTIES 

HCl 
/ % 

HFBA 
/ % 

Water 

/ % 
Water 

/ % 
HCl 

/ % 
HFBA 

/ % 

HFBAin 
SUPRAS 

Incorporation  
/ % 

Density 
/ g/cm³ 

SUPRAS 

volume 
/ µL 

Solution/
SUPRAS 

ratio 

5 20 75 26 2 72 109 1.51 331 2.0 

10 10 80 27 3 70 116 1.50 181 3.5 

10 15 75 23 3 74 110 1.52 241 2.4 

10 20 70 22 3 75 107 1.53 309 1.7 

10 25 65 21 3 76 106 1.53 373 1.3 

10 30 60 19 3 78 109 1.54 447 1.0 

10 35 55 21 4 75 103 1.53 513 0.7 

10 40 50 14 3 83 111 1.56 562 0.6 

15 10 75 22 4 74 116 1.52 170 2.9 

15 15 70 18 4 78 114 1.54 231 1.9 

15 20 65 17 4 79 115 1.55 307 1.3 

15 25 60 15 4 81 101 1.56 328 1.1 

15 30 55 15 4 81 95 1.56 369 0.8 

15 35 50 15 5 80 104 1.55 444 0.7 

15 40 45 13 4 83 99 1.56 500 0.4 

15 45 40 12 5 83 105 1.57 592 0.2 

15 50 35 10 4 86 104 1.58 630 0.2 

15 55 30 10 5 85 101 1.57 685 0.1 

20 10 70 14 4 82 107 1.56 163 2.7 

20 15 65 14 4 82 111 1.56 214 1.8 

20 20 60 12 4 84 102 1.57 255 1.4 

20 25 55 10 4 86 100 1.58 303 1.0 

20 30 50 11 4 85 97 1.57 360 0.7 

20 35 45 18 6 76 117 1.53 413 0.5 

20 40 40 9 4 87 102 1.58 492 0.3 

25 10 65 11 4 85 116 1.57 144 2.7 

25 15 60 11 4 85 107 1.57 198 1.7 

25 20 55 10 4 86 115 1.58 278 1.1 

25 25 50 10 5 85 114 1.57 346 0.7 

30 10 60 10 5 85 112 1.57 137 2.5 

30 15 55 10 5 85 105 1.57 195 1.5 

In bold, SUPRAS selected as extractant 
Percentages are expressed as w/w 
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SUPRASs of very similar composition were obtained by increasing the concentration of 

HFBA in the synthetic solution while keeping constant that of HCl (Table 1). The volume 

for these SUPRAS progressively increased, as usual, when the concentration of HFBA did. 

On the other hand, less aqueous SUPRASs were obtained for ternary mixtures in which 

HFBA kept constant and HCl progressively increased. Solution/SUPRAS phase ratios 

ranged in the interval 0.1, corresponding to the highest concentration of HFBA tested (i.e. 

55%), and 3.5, corresponding to that mixture containing the lowest concentration of HFBA 

(10%) and HCl (10%). So the latter conditions are more favorable for extraction purposes 

and they were selected for further studies. 

Figure 2 shows the micrographs obtained by light microscopy for the SUPRAS synthesized 

from 10% HCl, 10% HFBA and 80% water. These micrographs clearly show that it consists 

of coacervate droplets that keep as individual entities. So the high superficial area of 

SUPRAS facilitates solute mass transfer in extraction processes. 

 

Figure 2. Light microscopy microphotographs of the HFBA-based SUPRAS formed by an 

initial mixture of 10% HCl, 10% HFBA and 80% water. 

3.2. HFBA-based SUPRAS extraction of oligopeptides 

In order to check the suitability of the selected HFBA-based SUPRAS for extracting 

oligopeptides, the extraction of seven dipeptides, one tripeptide and one pentapeptide 

(opiorphin), featuring different amino acid residues, was investigated in aqueous solutions 

according to the procedure specified in Section 2.3.1. As it is shown in Table 1, recoveries 

were all in the range 81-105 %, except for the dipeptide Glu-Glu and the tripeptide Arg-Gly-

Asp.  
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Table 2. Extraction of oligopeptide with HFBA-based SUPRAS 

OLIGOPEPTIDES RECOVERY / % 

PHE-VAL 105 

ALA-PHE 98 

ALA-ALA 86 

PHE-GLY 84 

ALA-TYR 81 

ARG-PHE 84 

GLU-GLU 8 

ARG-GLY-ASP 19 

GLN-ARG-PHE-SER-ARG 94 

 

Because of the large number of natural oligopeptides of interest in biology and food science, 

the extraction of the twenty standard amino acids with HFBA-based SUPRAS was 

investigated in order to shed light on the extraction behavior of the selected oligopeptides. 

Experiments were carried out according the procedure described in section 2.3.1. Table 3 

shows the recoveries obtained as well as some structural and physico-chemical characteristics 

of amino acids in order to help understanding interactions with the SUPRAS. 
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Table 3. Recoveries for amino acids extracted with HFBA-based SUPRAS and some 

structural and physico-chemical properties 

Amino acid 
abbreviation 

Recovery Side chain substituent Log D 
Residue level 

hydrophobicity 
Isoelectric 

point 

  Nonpolar aliphatic or cyclic    
Ala 81 Alkyl -3.62 1.0 6 
Val 88 Alkyl -2.75 -2.0 6 
Leu 87 Alkyl -2.27 -3.5 6 
Ile 105 Alkyl -2.26 -3.5 6 
Pro 105 Rigid cyclic structure -3.07 -4.0 6.3 
Met 86 Sulphide -2.79 -1.0 5.7 
  Aromatic    
Phe 98 Phenyl -2.79 -4.0 5.5 
Tyr 30 Phenolic -3.60 -1.5 5.7 
Trp 35 Indole -2.31 -3.0 5.9 
  Polar uncharged    
Ser 30 Hydroxyl -4.44 3.5 5.7 
Thr 38 Hydroxyl -4.07 2.0 5.6 
Gln 30 Amide -4.60 5.0 5.7 
Cys 10 Thiol -2.85 3.5 5.0 
Asn 22 Amide -4.90 6.5 5.4 
  Negatively charged    
Glu 30 Carboxylic acid -3.98 6.0 3.2 
Asp 22 Carboxylic acid -4.11 7.5 2.8 
  Positively charged    
Lys 17 Amino -4.78 5.0 9.7 
Arg 17 Guanidine -5.70 14.5 10.8 
His 22 Imidazole ring -5.34 5.0 7.6 
Gly 30 None -3.97 2.5 6 

 

As can be seen, the behavior of amino acids towards HFBA-based SUPRAS extraction can 

be grouped in two categories: those extracted with quantitative yields (>80%) and those 

featuring medium-poor yields (10-38%). Because all amino acids were positively charged at 

the experimental conditions under which extraction was undertaken (see isoelectric points 

(Table 3), the different behavior found can be rationalized according to the type substituent 

on the amino acid side chain. Thus, those amino acids with alkyl or phenyl substituents were 

all quantitatively extracted. However, neutral amino acids with side chains containing 

hydroxyl, sulfur or nonbasic nitrogen, or those positively (basic) or negatively (acidic) 

charged were extracted with medium-poor yields. The only exception to this grouping was 

Met; the side chain contains sulfur but it is quantitatively extracted. 

In an attempt to correlate the behavior of amino acids towards HFBA-based SUPRAS 

extraction with the hydrophobicity of amino acid residues, two hydrophobicity scales (log D 

and residue level hydrophobicity) were considered (Table 3).  The first one is based on the 

partition of amino acids between an oil phase and a water phase (Log D) while the second 

one allows for the depiction of the polar and non-polar moieties within each amino acid 
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residue and it is calculated by a weighted sum of the atomic hydrophobicity values [30]. It is 

clear that those amino acid residues with positive values in the residue level hydrophobicity 

scale (i.e. amino acids with none, polar uncharged, positively and negatively charged side 

chain substituents) were extracted with medium-poor yield, while those with negatively value 

were quantitatively extracted. The only exceptions to this behavior were Ala, Tyr and Trp. 

Similar conclusions can be extracted from the log D scale; in general the more negative 

values correspond to the lower extraction yields. On the whole, it seems that amino acid 

residues having in the side chain heteroatoms able to establish hydrogen bonds (O, N) with 

water, will partition less favorably to the SUPRAS. This is the most probable reason why Tyr 

and Trp were not quantitatively extracted despite their Log D and residue level 

hydrophobicity values (Table 3). 

Regarding extraction of oligopeptides, it was experimentally found that quantitative 

extraction was related to the presence into their structures of amino acid residues with 

nonpolar aliphatic, cyclic or phenyl substituents in the chain side (compare Tables 2 and 3). 

Thus, the oligopeptides containing well-extracted amino acid residues (e.g. Phe-Val, Ala-Phe, 

Ala-Ala) were quantitatively extracted, while those containing poor extracted amino acid 

residues (e.g. Glu-Glu, Arg-Gly-Asp) were poorly extracted.  On the other hand, the 

presence of the following amino acid residues (in parenthesis) seems to be essential for good 

recovery of the investigated oligopeptides; Phe-Gly (Phe) Ala-Tyr (Ala), Arg-Phe (Phe), Gly-

Arg-Phe-Ser-Arg (Phe). Keeping in mind the substantial hydrophobic regions present in 

natural oligopeptides such as neuropeptides, antimicrobial, hormones and toxins [20], it is 

expected that HFBA-based SUPRAS extraction can be widely applied in this field. 

3.3.  Determination of opiorphin in human saliva by means of HFBA-based SUPRAS 

and LC-MS/MS 

In order to show the applicability of the HFBA-based SUPRAS proposed in this work, a 

novel analytical method for the determination of opiorphin in human saliva by SUPRAS 

extraction coupled to LC-MS/MS was developed. Table 4 shows the main analytical 

characteristics of such a method. 
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149 
 

Table 4. Analytical performance of the SUPRAS-LC-MS/MS method for the determination 

of opiorphin in human saliva. 

OPIORPHIN 

Retention timea/ min 1.8 

Linear range / ng mL-1 10-2000 

S
lo

p
e

b
/

U
A

 
m

L
 

n
g

-1
 

Standard 0.49±0.02 

Saliva after 0.44±0.01 

Saliva before 0.45±0.01 

Extraction efficiencyc / % 102±3 

Matrix effectd / % 90±4 

LODe / ng mL-1  2.7 

LOQ / ng mL-1 9.0 

R
e
p

e
ti

b
il

it
y

f  

/
 R

S
D

 

10 ng mL-1 14±5 

200 ng mL-1 13±3 

2000 ng mL-1 11±2 

R
e
p

ro
d

u
c
ib

il
it

y
 

/
 R

S
D

 

10 ng mL-1 19±7 

200 ng mL-1 18±5 

2000 ng mL-1 12±4 

A
c
c
u

ra
c
y

g
 

/
 %

 

10 ng mL-1 110±20 

200 ng mL-1 87±9 

2000 ng mL-1 101±2 

a. HILIC column. Mobile phase: 30% Water and 70% Acetonitrile 
b. Calculated by linear regression from SUPRAS-extracted standards (standard) and blank saliva 

samples spiked after (saliva after) and before (saliva before) SUPRAS extraction 
c. Calculated as the ratio of saliva before and saliva after slopes 
d. Calculated as the ratio of saliva after and standard slopes 
e. LOD (limit of detection) calculated as the concentration resulting in a signal-to-noise ratio of 

3 (10 for LOQ). 
f. Calculated by the consecutive analysis of 8 saliva samples (8 samples x 3 consecutive days for 

reproducibility) 
g. Calculated as recoveries from spiked saliva samples not used for calibration 
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It should be highlighted that the extraction efficiency was ca. 100%, which confirms that the 

quantitative recoveries found for standards can also be achieved with real samples. Limits of 

detection and quantification are in the same order of magnitude of those based on other 

more tedious sample treatment techniques. It should also be noted that the matrix effect 

from other salivary compounds is almost negligible, pointing out the excellent matrix clean-

up obtained using the HFBA-based SUPRAS protocol. Regarding repeatability and 

reproducibility, values below 20% were found for low, medium and high concentrations. 

Likewise, accuracies, calculated as recoveries since no certified reference materials are 

available, were within the 80-120% range for the whole calibration interval. 

Figure 3 shows a LC-MS/MS chromatogram obtained by the analysis of unspiked human 

saliva. Opiorphin was detected and quantified in all saliva samples (n: 32), with values 

ranging from 25 to 175 ng mL-1 (Table S2), which is in good agreement with concentrations 

previously reported [22, 23]. 

 

Figure 3. LC-MS/MS chromatogram obtained from a SUPRAS extract (unspiked saliva).  
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4. CONCLUSIONS 

A new kind of SUPRASs based on perfluorocarboxylic acids has been synthetized, 

characterized and applied. This novel HFBA-based SUPRAS circumvents, thanks to its polar 

hydrophobicity, one of the main disadvantages of SUPRAS extraction: the poor recoveries 

accomplished when extracting vey polar charged compounds. It has been demonstrated that 

amino acids containing nonpolar aliphatic, cyclic and aromatic side chain substituents, in the 

log D interval -2.27 to -3.62, can be quantitatively extracted and that oligopeptides containing 

some of these amino acid residues may also be quantitatively extracted. In addition, the 

applicability of this new SUPRAS has been established by developing an analytical 

methodology for the determination of an endogenous oligopeptide in human saliva. In this 

sense, the HFBA-based SUPRAS has exhibited a great analytical performance in terms of 

accuracy, precision, sensibility and matrix clean-up and also in terms of quickness, low cost 

and ease of use, compared to previous reported methods. We hypothesize that this 

performance could be extended to several different polar cations of great importance in 

fields such as biology, food analysis and disease diagnosis. Furthermore, the applicability to 

other biological (blood, urine, plasma, etc.) and non-biological matrices (foodstuff, 

environmental samples, etc.) should be also explored. 
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SUPPORTING INFORMATION 

Table S1. MS/MS transitions, fragmentor voltages and collision energies for all the amino 
acids and oligopeptides studied. 

Amino acid / 
oligopeptide Precursor Ion Product Ion Fragmentor (V) Collision Energy (eV) 

OPI-quantitative 
OPI-qualitative 
OPI-qualitative 

347 
 [M+2H]2+ 

120 
84 
409 

100 
100 
100 

35 
40 
15 

Arg-Phe 322 70 100 30 

Ala-Phe 277 84 80 29 

Phe-Val 265 120 104 20 

Ala-Ala 161 44 80 17 

Glu-Glu 277 84 80 29 

Phe-Gly 223 120 92 12 

Arg-Gly-Asp 347 330 100 20 

Ala-Tyr 253 182 92 8 

Gly 76 30 70 5 

Ala 90 44 40 9 

Val 118 72 75 8 

Leu 86 43 130 20 

Ile 86 57 130 20 

Met 150 133 80 4 

Trp 205 188 80 5 

Phe 166 120 80 8 

Pro 116 70 80 12 

Ser 106 60 70 5 

Thr 120 74 75 10 

Cys 241 152 80 8 

Tyr 182 165 80 12 

Asn 133 87 74 5 

Gln 147 130 70 5 

Asp 134 116 80 4 
Glu 148 130 80 4 
Lys 147 84 80 16 
Arg 175 116 110 12 
His 156 110 80 15 
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Table S2. Opiorphin concentrations in human saliva (unspiked samples). 

Opiorphin concentration in saliva/ ng mL-1 

51±6 

54±6 

<LOD 

<LOD 

78±8 

81±8 

81±8 

49±5 

100±10 

81±8 

99±9 

170±20 

<LOD 

72±8 

<LOD 

25±4 

90±9 

85±9 

63±6 

83±8 

58±6 

69±7 

85±9 

74±8 

85±9 

140±10 

83±8 

40±5 

80±8 

<LOD 

150±20 

<LOD 



154 
 

  



155 
 

  

Chapter 7 
Restricted access volatile supramolecular solvents for 

single-step extraction/cleanup of benzimidazole 

anthelmintic drugs in milk prior to LC-MS/MS 



156 
 

  



157 
 

Restricted access volatile supramolecular solvents for single -step 

extraction/cleanup of benzimidazole anthelmintic drugs in milk prior to 

LC-MS/MS 

Francesca Accioni, N. Caballero-Casero, D. García-Gómez, Soledad Rubio 
Journal of Agricultural and Food Chemistry. Publication Date (Web): December 5, 2018. 

DOI:10.1021/acs.jafc.8b06003 

 

ABSTRACT 

In this work, a restricted access volatile supramolecular solvent (RAM-VOL-SUPRAS) 

directly synthesized in milk is proposed for the first time for the simultaneous extraction and 

cleanup of benzimidazole anthelmintic drugs in milk meant for human consumption. The 

RAM-VOL-SUPRAS was formed by the self-assembly and coacervation of hexanol in 

tetrahydrofuran induced by the water content in milk. Benzimidazoles legislated by the 

European Union were quantitatively extracted (80-110%)  Proteins were precipitated by the 

action of THF and the amphiphile, extraction of carbohydrates was avoided by a size 

exclusion mechanism and lipids were removed during hexanol evaporation. The analytical 

methodology was fully validated according to Commission Decision 2002/657/EC. Method 

detection limits from 0.03 to 0.14 µg L−1 were well below the maximum residue limits 

legislated in milk for these drugs, with interday precisions at maximum residue levels below 

13%. This novel methodology guarantees a rapid and reliable tool for daily and routinely 

laboratory analyses in the field of food quality control. 

KEYWORDS Supramolecular solvents; restricted access materials; anthelmintic drugs; milk; 

Commission Decision 2002/657/EC.  
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1. INTRODUCTION 

Benzimidazole compounds (BDZ) belong to a heterogeneous group of drugs routinely 

employed in agriculture and veterinary medicine as agents for the prevention and treatment 

of parasite infestations [1, 2]. Because of their growing use due to their effective 

pharmacological activity against gastrointestinal worms, which infect animals intended for 

human consumption, and against flukes that contaminate vegetables, the presence of BDZ in 

animal-derived food products is a startling phenomenon for the possible consequences on 

human health (i.e., teratogenicity, congenic malformations, anemia, necrotic 

lymphadenopathy and pulmonary edemas) [3].Thus, monitoring BDZ in animal products has 

been a priority for the European Union (EU) (Commission Regulation (EU) No 37/2010) 

[4]. Maximum residue limits (MRLs) for foodstuffs of animal origin have been set at 100 µg 

kg-1 for albendazoles (considering ABZ-SO2, ABZ-SO and ABZ-NH2-SO2 as marker 

residues, expressed as ABZ), and 10 µg kg-1 for fenbendazoles (expressed as sum of 

extractable residues which may be oxidized to oxfendazole sulfone) [4]. 

Even though many analytical methods have been developed for the detection of BDZ in 

foodstuff, the determination of these compounds in milk is still challenging. In fact, a 

detailed review of the previous works developed over the last decade for the determination 

of BDZ in milk by LC-MS/MS analysis (Table 1) shows that the key problem lies in the 

sample treatment step. In that sense, protein precipitation/ultrafiltration [5], solid phase 

extraction (SPE) coupled [6] or not [7] with liquid phase deposition, QuEChERS 

methodology [8, 9], on-line solid-phase extraction [10] and polymer monolith 

microextraction (PMME) [11], have been suggested as viable alternatives alternatives to 

classical methodologies. Recoveries (Table 1) obtained by these methods showed the highest 

yields when a SPE [6, 8, 10, 11] or QuEChERS [9] approach was employed, and the lowest 

                                                           
[1] L. B. Townsend, D.S. Wise, (1990), Parasitol. Today, 6 (1990) 107-112. 
[2] J. Quijada, C. Fryganas, H.M. Ropiak, A. Ramsay, I. Mueller-Harvey, H. Hoste, J. Agric. Food Chem., 63 
(2015) 6346-6354. 
[3] M. Danaher, H. De Ruyck, S.R. Crooks, G. Dowling, M. O’Keeffe, J. Chromatogr. B, 845 (2007) 1-37. 
[4] Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances 
and their classification regarding maximum residue limits in foodstuffs of animal origin https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32010R0037 /Accessed 12 October 2018. 
[5] J. Kang, S.J. Park, H.C. Park, M.A. Hossain, M. A. Kim, S.W. Son, C.M. Lim, T.W. Kim, B.H.. Cho, Appl. 
Biochem. Biotechnol., 182 (2017) 635-652. 
[6] H. Sun, Q.W. Yu, H.B. He, Q. Lu, Z.G. Shi, Y.Q. Feng, J. Agric. Food Chem., 64 (2015) 356-363. 
[7] X.L. Hou, G. Chen, L. Zhu, T. Yang, J. Zhao, L. Wang, Y.L. Wu, J. Chromatogr. B, 962 (2014) 20-29. 
[8] P. Jedziniak, M. Olejnik, J.C. Rola, T. Szprengier-Juszkiewicz, Bull. Vet. Inst. Pulawy, 59 (2015) 515-518. 
[9] B. Kinsella, S.J. Lehotay, K. Mastovska, A.R. Lightfield, A. Furey, M. Danaher, Anal. Chim. Acta, 637 (2009) 
196-207. 
[10] D. García-Gómez, M. García-Hernández, E. Rodríguez-Gonzalo, R. Carabias-Martínez, Anal. Bioanal. 
Chem., 404 (2012) 2909-2914. 
[11] X.Z. Hu, J.Q. Wang, Y.Q. Feng, J. Agric. Food Chem., 58 (2009) 112-119. 
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performing and the lowest performing when sample treatment was achieved by protein 

precipitation [5]. However, despite the different steps intended for interference removal, 

matrix-matched calibration or isotopically labelled internal standards are mandatory for 

reliable quantification of BDZ, that rendering methods time-consuming or expensive. 
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Supramolecular solvents (SUPRAS) are nanostructured systems generated from colloidal 

suspensions of amphiphiles [12].Their synthesis is a spontaneous process of self-assembly 

and coacervation triggered by changes in environmental conditions (e.g., pH, temperature, 

salt or poor-solvent addition). Surfactants in SUPRAS are bound together by non-covalent 

interactions, which make them tailored solvents [13]. Among SUPRAS, one of the most 

studied alternatives are alkanols-based SUPRAS, whose synthesis is a water-induced 

mechanism from colloidal suspensions of an alkanol, typically hexanol, in an organic solvent 

(e.g. THF). In alkanol-based SUPRAS, the incorporation of amphiphiles is almost 100% and, 

in general, the concentration of surfactant ranges from 0.1 to 1.0 mg µL-1 [14].These 

SUPRAS arrange themselves in inverted hexagonal aggregates in which the -OH heads 

surround aqueous cavities and the hydrocarbon chains are solved in THF. Since their 

synthesis is spontaneously triggered by the addition of water, the amphiphile aggregation has 

been directly prompted in situ in aqueous biological matrices such as urine [14]. Considering 

this fact, and due to the high content of water in milk, this in situ synthetic approach is here 

explored for the determination of BDZ in milk. 

Alkanol-based SUPRAS have outstanding properties for increasing extraction efficiency and 

simplifying and speeding up sample treatment [13]. Thus, their structure provides a high 

number of binding sites to the target analytes within regions with different polarity, which 

makes SUPRAS a great extractant for compounds with very different physico-chemical 

properties such as BDZ [12]. On the other hand, they can act as restricted access materials 

(RAM-SUPRAS) [14], in which low molecular weight solutes are extracted while 

macromolecules (e.g., interferences of complex biological matrices such as polysaccharides or 

proteins) are excluded by chemical and physical mechanisms [13]. In addition, it has been 

demonstrated that interferences such as phospholipids can be totally removed by evaporating 

the SUPRAS extract until dryness and re-dissolving in the proper solvent. SUPRAS that 

combines these two processes are known as restricted access volatile supramolecular solvents 

(RAM-VOL-SUPRAS) [14]. 

In this work, a hexanol-based RAM-VOL-SUPRAS was employed for the successful 

extraction of eight BDZ (i.e., Albendazole and Fenbendazole families) in milk for human 

                                                           
[12] A. Ballesteros-Gómez, M.D. Sicilia, S. Rubio, Anal. Chim. Acta, 677 (2010) 108-130. 
[13] A. Ballesteros-Gómez, S. Rubio, Anal Chem., 84 (2011) 342-349. 
[14] J.A. Salatti-Dorado, N. Caballero-Casero, M.D. Sicilia, M.L. Lunar, S. Rubio, Anal. Chim. Acta, 950 (2017) 
71-79. 
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consumption. Separation and detection of the target compounds was achieved using LC-

MS/MS analysis. The method was fully validated according to the Commission Decision 

2002/657/EC [15]. 

2. MATERIALS AND METHODS 

2.1. Chemicals and reagents 

Standards of albendazole (ABZ), albendazole sulfone (ABZ-SO2), albendazole sulfoxide 

(ABZ-SO), albendazole-2-aminosulfone (ABZ-NH2-SO2), fenbendazole (FBZ), 

fenbendazole sulfone (FBZ-SO2), oxfendazole (OFZ), and febantel (FBT) were purchased 

from Sigma-Aldrich (Steinheim, Germany). Methanol, acetonitrile, dimethyl sulfoxide, 

ammonium formate, citric acid and disodium hydrogen phosphate were also purchased from 

Sigma Aldrich. Tetrahydrofuran (THF) was supplied by Panreac (Barcelona, Spain). 1-

hexanol was purchased from VWR-Prolabo (Bois, France). Type I water was obtained from 

a Milli-Q purification system (Millipore MA, USA). 

Stock solutions for each compound (500 µg mL-1) were prepared in dimethyl sulfoxide and 

kept at -20 °C. Calibration standards up to 500 µg L-1 (n=11) and working solutions were 

made daily by diluting the proper amount of stock solutions in McIlvane buffer at pH 7.2 

containing 10% MeOH (v/v). 

2.2. Apparatus 

LC-MS/MS analyses were carried out in an Agilent Technologies 1200 series LC coupled to 

a 6420 triple quadrupole mass spectrometer with an electrospray ionization source (ESI) 

(Waldbronn, Germany). Chromatographic separation was carried out on a Synergi Hydro-RP 

80A column (150 x 4.60 mm, 4 µm) from Phenomenex (Torrance, CA, USA). For the 

synthesis of SUPRAS, a Reax Heidolph vortex mixer (Schwabach, Germany) and an MPW -

350R centrifuge from MPW Med- Instruments (Warchaw, Poland) were used. A sample 

evaporator/concentrator (SBHCONC/1 and SBH130D/3, Stuart, France) was used for 

evaporation of the SUPRAS extracts. SUPRAS volume was determined by measuring the 

height of the SUPRAS in Eppendorf tubes by using a digital calliper from Medid Precision, 

S.A. (Barcelona, Spain) and applying the formula for the volume of a cylinder.  

                                                           
[15] 2002/657/EC: Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC 
concerning the performance of analytical methods and the interpretation of results. 
https://publications.europa.eu/en/publication-detail/-/publication/ed928116-a955-4a84-b10a-
cf7a82bad858/language-en /Accessed 12 October 2018. 
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2.3. Microextraction/cleanup of benzimidazoles in milk by hexanol-based 

SUPRAS 

Hexanol (0.1 mL) and THF (0.9 mL) were added to 1 mL of milk in 2-mL Eppendorf tubes. 

The mixture was vortex-shaken for 5 minutes at 2300 rpm and centrifuged at 21125g for 30 

minutes at 20 ºC. The SUPRAS spontaneously formed through self-assembly and 

coacervation of hexanol and separated as a liquid phase (~ 470 µL) at the top of the solution 

that was easily separated and collected into an Eppendorf tube by means of a pipette. An 

aliquot of the SUPRAS (75 µL) was evaporated to dryness under a nitrogen stream at 60 ºC. 

The residue containing the precipitate of lipids was treated with 37.5 µL of a Mcllvane buffer 

at pH 7.2 containing 10% MeOH (v/v) and 37.5 µL of acetonitrile and shaken for 1 min by 

hand for dissolving BDZ. Then, the extract was injected into the LC-MS/MS system for 

analysis (Figure 1). 

 

Figure 1. Schematic representation of the RAM-VOL-SUPRAS method prior to LC- 

MS/MS analysis. 

2.4. LC-MS/MS analysis 

The determination of the BDZ studied was undertaken by liquid chromatography coupled 

with tandem mass spectrometry (LC-MS/MS). The mobile phase consisted of ammonium 

formate buffer (2 mM; pH 7.5; solvent A) and acetonitrile (solvent B). The elution program 

started at 10 % of B, increased to 90 % for 12 min, and then was kept constant for 0.90 min. 

Finally, the system was re-equilibrated by establishing initial conditions for 6.70 min. The 

flow rate kept constant at 0.3 mL min-1 and the column temperature at 25ºC. The injection 

volume was set at 10 µL. MS/MS parameters were optimized by direct infusion and the most 
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abundant collision-induced fragments and the ion ratios were considered for quantification, 

while the second abundant fragments were used as qualifiers, as stated by the Commission 

Decision 2002/657/EC [15] (see Table 2). ESI source parameters were as follows: source 

gas: 50 psi of N2 at 350 °C and capillary voltage: +4000V. Calibration curves were obtained 

by running calibration solutions prepared daily in McIlvane buffer at pH 7.2, containing 10% 

MeOH (v/v), at concentrations from the respective quantification limits for each analyte up 

to 500 µg L-1 (n=11, 8 replicates for each point). Peak-areas as function of concentrations 

were plotted for constructing calibration curves, and least-square regression was applied for 

calculating the concentration response correlation. 
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2.5. Samples 

Samples whole milk (n=2, fat content: 3.6%), low-fat milk (n=2, fat content: 1.6%), and 

skimmed milk (n=2, fat content: 0.3 %) were purchased at local supermarkets. They were 

kept in the original package at 4 °C until use. For SUPRAS characterization, a low-fat milk 

sample was employed. 

2.6. Method validation 

The whole method was fully validated in low-fat milk following the Commission Decision 

2002/657 [15]. Decision limits (CCα) and detection capabilities (CCβ) were calculated by 

following the Commission Regulation (EU) No 37/2010 [4] and using the formulas 

described by Verdon [16].Method detection (MDL) and quantification (MQL) limits were 

calculated from blank samples fortified at concentrations close to the MQL of each 

compound, by using a signal-to-noise ratio of 3 and 10, respectively. Matrix effects were 

evaluated by spiking SUPRAS extracts (n=3), obtained from the treatment of low-fat milk, 

with the target analytes at 5 ng mL-1 each, and subjecting the extracts at evaporation and 

reconstitution according the procedure above (section about microextraction).. Signal 

suppression or enhancement (SSE, %) was calculated taking as reference the values obtained 

for standards in McIlvane buffer at pH 7.2, containing 10% MeOH (v/v), according to the 

procedure established by Matuszewski et al. [17].Values higher than 120% and lower than 

70% were considered ion enhancement and suppression, respectively (Commission Decision 

2002/657/EC) [15]. Because of the absence of commercially available certified reference 

materials (CRM), accuracy was evaluated in terms of recoveries by spiking low-fat milk at 

concentration of 0.5xMRL, 1xMRL and 1.5xMRL for each analyte (n=11). Precision, 

expressed as relative standard deviation (RSD, %), was evaluated in terms of repeatability and 

reproducibility by spiking six samples for three consecutive days at concentrations of 

0.5xMRL, 1xMRL and 1.5xMRL for each analyte. The applicability of the method to whole, 

low-fat and skimmed milk was evaluated by analyzing both native and fortified samples at 

the MRLs. For this purpose, two different samples of each type of milk were analyzed by 

triplicate. 

  

                                                           
[16] E. Verdon, D. Hurtaud-Pessel, P. Sanders, Accredit. Qual. Assur., 11(2006) 58-62. 
[17] B.K. Matuszewski, M.L. Constanzer, C.M. Chavez-Eng, Anal. Chem., 75 (2003) 3019-3030. 
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3. RESULTS AND DISCUSSION 

3.1. Phase diagram for hexanol-THF-milk ternary mixtures 

The possibility of producing SUPRASs in milk meant for human consumption, which were 

able to simultaneously extract BDZs and remove matrix interferences, was here explored. 

For this purpose, the coacervation of hexanol in hydro-organic media was selected because 

of the high extraction efficiency and ability to remove proteins, carbohydrates and lipids of 

the SUPRASs produced [14]. The high water content of milk (~87.8%) [18], was expected to 

induce the coacervation of colloidal suspensions of hexanol in THF. 

SUPRAS formation was investigated by adding different volume percentages of hexanol 

(from 0.1 to 10%) and of THF (from 10 to 80%) to milk samples, whose percentages can be 

deduced by difference, while keeping constant the total synthetic volume (i.e., 10 mL). 

Percentages of hexanol above 10% were not considered of analytical interest because the 

volume of SUPRAS formed increases with the content of amphiphile and, therefore, the 

concentration factors for analytes, defined as the Vmilk/VSUPRAS  ratios, are expected to be very 

low. Figure 2A shows the binary phase diagram obtained for ternary mixtures of milk-

hexanol-THF as a function of THF and hexanol concentration, expressed as volume 

percentage. For the purpose of comparison, this figure also includes the binary phase 

diagram obtained for water-hexanol-THF ternary mixtures (Figure 2B). SUPRAS formation 

in milk occurred in colloidal suspensions containing at least 1% of hexanol and 10% of THF 

and the SUPRAS region was much wider compared to that obtained in water (compare 

Figures 2A and 2B). This different behavior is a consequence of the influence of matrix 

components on SUPRAS formation [19]. In the case of milk, its higher specificity gravity 

(e.g., 1.028 – 1.033 kg L-1 at 15-20 °C) compared to that of water (e.g. 0.998-0.999 at 15-20 

°C) resulted in an enhancement of SUPRAS immiscibility [14] and, accordingly, the region of 

SUPRAS formation became wider. In both cases, an isotropic solution was obtained when 

the THF content was increased above the boundaries found for SUPRAS formation. 

  

                                                           
[18] H. Hakk, N.W. Shappell, S.J. Lupton, W.L. Shelver, W. Fanaselle, D. Oryang, C.Y. Yeung, K. Hoelzer, Y. 
Ma, D. Gaalswyk, R. Pouillot, J.M. Van Doren, J. Agric. Food Chem., 64 (2016) 326-335. 
[19] C. Caballo, M.D. Sicilia, S. Rubio, Supramolecular Solvents for Green Chemistry. In: F. Pena-Pereira, M. 
Tobiszewsky (eds) The Application of Green Solvents in Separation Processes. Elsevier, (2017). 
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Figure 2. Phase diagrams for hexanol-based SUPRAS showing the region where a 

differentiated SUPRAS is formed (SUPRAS region) or not (Isotropic solution region) based 

on the proportions of THF, hexanol and milk (A) or water (B) in the synthetic solution. 

Region boundary proportions are represented (n= 3). 

The volume of SUPRAS formed in milk was also checked. The study mainly focused on the 

SUPRAS region where higher concentration factors for BDZ are expected, that is, low 

percentages of hexanol and THF (i.e. hexanol 1-5% and THF 10-50%). It was noticed that 

the volume formed was consistent with the general prediction equation for RAM-VOL-

SUPRAS volume (VSUPRAS) proposed by Salatti et al. [14]: 

VSUPRAS = (10.7±0.3) Hexanol (0.0330±0.0007) THF 

SUPRAS volume increased linearly and exponentially with the volume percentages of 

hexanol and THF, respectively, within the intervals above specified. So, the highest 

concentration factors will be obtained at the lowest percentages of hexanol and THF. This 

equation allows us to set up the enrichment factors (defined as the ratio of analyte 

concentration in the SUPRAS to the initial concentration in the milk) to be achieved. 

As for other alkanols [13], SUPRAS composition depended on the hydro-organic medium 

(i.e. milk/THF ratio) in which it formed. Thus, as the proportion of THF in the synthesis 

solution increased, the proportion of water and THF in the composition of the SUPRAS did. 

The higher content of water in the SUPRAS resulted in an increase of the size of aqueous 

cavities, as previously reported [14], which opens the possibility of using this SUPRAS as 

restricted access material for macromolecules. 
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3.2. Optimization of SUPRAS-based benzimidazole microextraction and sample 

cleanup 

A good knowledge of the possible mechanisms of interactions between solvent and solutes is 

a requisite to establish effective extraction methodologies. Molecular structures and physico-

chemical characteristics of BDZ are shown in Table 2. BDZ present acid and basic groups 

(pKa of the acid nitrogen in the range of 3.4–6.0, pKa of the basic nitrogen in the range of 

11.1–13.3) [3], log Kow in the range of 0.7–3.8, and contain aromatic rings and hydrogen 

bond donors/acceptors in their structure [1]. The hexanol-based SUPRAS are capable of 

solubilizing solutes with the following mixed-mode mechanism: polar and hydrogen bond 

donor/acceptor interactions with alcohol groups and dispersion interactions with the 

hydrocarbon chains [14, 20]. 

Aiming to optimize BDZ extraction and sample cleanup, SUPRAS synthetic conditions were 

evaluated since, as specified in the section above, hexanol-based SUPRAS are environment 

responsive and both their composition and vacuole sizes depend on hexanol/THF/matrix 

ratios in the synthetic solution. Optimization studies were restricted to the region of 

analytical interest, i.e. to volume percentages of hexanol and THF in the intervals 3-5% and 

30-50%, respectively. No enough SUPRAS volume (< 75 µL) for LC-MS/MS analysis of the 

extract was obtained at lower volume percentages of both ingredients, considering a total 

volume for the synthetic solution of 2 mL (see Materials and methods section). On the other 

hand, the use of higher volume percentages was avoided in order to get the best possible 

concentration factors. 

The suitability of the proposed methodology for removal of matrix interferences was 

evaluated by spiking SUPRAS extracts, obtained from the extraction of blank low-fat milk, 

with BDZ (5 ng mL-1), and subjecting them to evaporation and reconstitution as reported in 

Materials and methods. Selectivity alues, calculated as the percentage of signal suppression or 

enhancement (SSE, %) are shown in Table 3. They all were in the interval 80-115%, which 

confirmed the great capability of the hexanol-based SUPRAS for eliminating matrix effects 

in milk. It can be inferred from these results that proteins were effectively precipitated, 

independently of the SUPRAS composition tested. In fact, a white solid, compatible with 

protein precipitation, was always observed under any investigated conditions [14]. On the 

other hand, the size of the vacuoles of the reversed hexagonal aggregates of the SUPRAS, 

expected to increase as the THF in the synthetic solution does, was not important for 

                                                           
[20] A. Ballesteros-Gómez, L. Lunar, M.D. Sicilia, S. Rubio, Chromatographia (2018), In press, doi: 
10.1007/s10337-018-3614-1. 



171 
 

removal of polysaccharides in milk. In fact, the carbohydrate content in milk is 

predominately lactose (a disaccharide) with trace amounts of monosaccharides and 

oligosaccharides. Therefore, the removal of oligosaccharides in this matrix was not important 

for achieving selectivity. Finally, the removal of lipids in the residue remaining after hexanol 

evaporation was also effective according the results obtained in Table 3. 

Recoveries for BDZ as a function of the solvent set for residue reconstitution after hexanol 

evaporation was also investigated by spiking SUPRAS extracts, obtained from the extraction 

of low-fat blank milk, with BDZ (5 ng mL-1). It was checked that re-extraction of analytes 

from the residue with the McIlvane buffer (pH 7.2) containing 10% MeOH (v/v) was very 

poor (e.g. 5.1±0.2, 108±11, 57±22, 17.2±0.2, 36±1, 14.3±0.7, 29±3 and 3.7±0.35.1 for 

ABZ, ABZ-SO2, ABZ-SO, ABZ-NH2-SO2, FBZ, FBZ-SO2, OFZ and FBT, respectively). 

The addition of acetonitrile to this buffer in a ratio 1:1 (v/v) increased the elution power of 

the reconstitution solution and quantitative recoveries were obtained for all BDZ while 

precipitated matrix lipids were left behind. The influence of the volumes of SUPRAS extract 

and reconstitution solution on BDZ recoveries is shown in Table 4. Quantitative recoveries 

for BDZ and a quicker evaporation of SUPRAS extracts were achieved for evaporation of 75 

µL of SUPRAS and re-dissolution in 75 µL of Buffer/ACN. The combination of 150 and 75 

µL resulted in poorer recoveries whilst 150/150 yielded no significantly different results 

when compared to 75/75 but duplicated the amount of time needed for evaporation. Thus, 

these conditions were selected and applied to further analyses. 
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Table 3. Selectivity, calculated as signal suppression or enhancement (SSE), for BDZ 

determination in low-fat  milk as a function of SUPRAS synthetic conditions. 

H= hexanol. 

SUPRAS extracts spiked with the target analytes at 5 ng mL
-
.
1
 

SD= standard deviation (n=3). 

Table 4. Recoveries obtained from different volumes of evaporated SUPRAS and 

reconstitution solution in the determination of anthelmintic benzimidazoles by LC-MS/MS 

prior to SUPRAS extraction. 

SUPRAS 
extract 
(µL) 

Reconstitution 
solvent 
(µL) 

Albendazole family R(%)±SD Fenbendazole family R(%)±SD 

ABZ 
ABZ-
SO2 

ABZ-
SO 

ABZ-
NH2-
SO2 

FBZ 
FBZ-
SO2 

OFZ FBT 

75 75 81±3 108±8 115±14 99±4 84±2 90±4 103±2 96±12 

75 150 82±4 90±4 115±6 100±4 90±6 83±4 105±5 87±4 

150 150 111±4 99±10 98±17 99±1 83±2 103±5 119±17 96±14 

150 75 51±3 54±5 90±10 43±1 45±1 84±3 51±4 57±5 

SUPRAS synthetic composition: 5 % of hexanol; 45 % of THF. 
SUPRAS extracts spiked with the target analytes at 5 ng mL-1. 
R(%)= percentage of recovery. 
SD= standard deviation (n=3).  

Synthetic conditions Albendazole family SSE(%)±SD Fenbendazole family SSE(%)±SD 

H 
(%) 

TH
F 
(%) 

Milk 
(%) ABZ 

ABZ-
SO2 

ABZ-
SO 

ABZ-
NH2-

SO2 

FBZ 
FBZ-
SO2 

OFZ FBT 

3 30 67 101±9 95±9 100±9 89±10 114±6 84±6 100±13 91±3 

3 35 62 111±3 115±13 83±9 81±1 106±2 91±2 100±3 107±4 

3 40 57 99±3 107±14 84±11 115±7 102±7 82±6 96±1 99±10 

4 30 66 99±8 101±13 103±13 111±4 96±6 83±1 97±3 106±13 

4 35 61 94±4 95±8 91±8 99±2 113±7 97±2 83±5 98±2 

4 40 56 94±5 115±2 81±1 95±1 86±8 102±10 110±13 98±1 

5 30 65 102±3 105±8 86±6 99±1 85±5 104±2 102±9 93±2 

5 35 60 101±1 112±12 96±10 99±7 90±8 101±1 93±5 95±3 

5 40 55 93±1 106±1 99±1 95±1 110±1 103±1 96±1 90±1 

5 45 50 88±2 99±2 112±3 100±4 101±5 98±2 94±2 86±2 

5 50 45 80±4 80±4 109±6 101±6 90±6 80±2 90±4 88±1 
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Extraction efficiency for BDZ in milk as a function of the type of SUPRAS was investigated 

by spiking low-fat milk samples at a concentration of 2.5 ng mL-1 before SUPRAS extraction. 

Recoveries values in the range of 70-120% were considered quantitative (Commission 

Decision 2002/657/EC) [15]. Table 5 shows the results obtained. Overall, recoveries for 

BDZ progressively increased as the percentage of hexanol or THF in the solution did. 

Quantitative recoveries were obtained for the targeted BDZ, except for ABZ-NH2-SO2 (~ 

45%), with an initial solution containing 5% of hexanol, 45% of THF and 50% of milk. Low 

absolute recoveries for ABZ-NH2-SO2 have been previously reported by extraction with 

solvents such ethyl acetate; e.g. 25% [21] and 47% [22], acetonitrile/dichloromethane [23] 

(77%) or even water [24] (not recovered) due to its higher polarity due to its higher polarity 

when compared to any other BDZ (see Table 2). Recoveries for ABZ-NH2-SO2 shown in 

Table 1 are mostly relative recoveries because the standard addition method was used for 

quantification. 

A SUPRAS volume of 472 µL was produced under the optimal experimental conditions set 

for extraction of BDZ, consistent with the theoretical equation previously obtained for 

hexanol-based SUPRAS (see equation for VSUPRAS specified above). With the aim to maximize 

yields for BDZ extraction, shaking time was checked in a range from 1 to 15 minutes. No 

major differences were found for recoveries and an intermediate time of 5 minutes was set. 

An optimum phase separation was totally achieved by 30 minutes of centrifugation (21125 

g). 

                                                           
[21] G. Dowling, H. Cantwell, M. O’Keeffe, M.R. Smyth, Anal. Chim. Acta, 529 (2005) 285-292. 
[22] G. Balizs, G. J. Chromatogr. B, 727 (1999) 167–177. 
[23] D.J. Fletorius, E.P. Papapanagiotou, D.S. Nakos, I.E. Psomas, J. Agric. Food Chem. 53 (2005) 893-898. 
[24] D.L. Brandon, K.P. Holland, J.S. Dreas, A.C. Henry, J. Agric. Food Chem., 46 (1998) 3653-3656. 
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Table 5. Recoveries for different SUPRAS initial conditions in the determination of 

anthelmintic benzimidazoles in low-fat milk by LC-MS/MS. 

H= hexanol. 
R(%)= Recovery as percentage. Milk spiked at 2.5 ng mL-1. 
SD= standard deviation (n=3). 
In bold, RAM-VOL-SUPRAS selected for further studies. 
Total volume of synthetic solution: 2 mL. 

3.3.  Method validation 

3.3.1. Linearity and sensitivity 

Instrumental linear calibration curves were obtained for BDZ for concentrations from 0.33-

0.59 to 500 µg L-1 (Table 6). Correlation coefficients ranged from 0.987 to 0.9996, confirming 

good fits for all BDZ. Decision limits (CCα) and detection capabilities (CCβ) were evaluated 

following the current legislation (Commission Decision 2002/657/EC) [15], considering 

MRLs of 25 µg L-1 for each ABZ compound and 2.5 µg L-1 for each FBZ compound. CCα 

values of 30.0, 28.2, 28.4, 27.7, 2.6, 2.7, 2.8 and 3.0 µg L-1, and CCβ values of 34.8, 31.3, 31.7, 

30.5, 2.8, 3.0, 3.1 and 3.5 µg L-1 for ABZ, ABZ-SO2, ABZ-SO, ABZ-NH2-SO2, FBZ, FBZ-

SO2, OFZ, and FBT, respectively were obtained. Method detection (MDL) and 

quantification (MQL) limits for each analyte are also reported in Table 6. It should be 

highlighted that they are well below the legislated MRLs, i.e. 10 µg kg-1 for the fenbendazole 

family and 100 µg kg-1 for the albendazole family (Commission Regulation (EU) No 

37/2010) [4]. 

Synthetic conditions 
VSUPRAS 

(µL) 

Albendazole family R(%)±SD Fenbendazole family R(%)±SD 

H 
(%) 

THF 
(%) 

Milk 
(%) 

ABZ 
ABZ-
SO2 

ABZ-
SO 

ABZ-
NH2-SO2 

FBZ 
FBZ-
SO2 

OFZ FBT 

3 30 67 173 48±8 22±4 43±7 19±3 34±6 49±8 35±6 
67±1
2 

3 35 62 204 41±3 29±2 55±4 16±1 29±2 38±3 29±2 63±5 

3 40 57 240 34±5 28±4 53±8 20±3 26±4 36±5 29±4 
68±1
0 

4 30 66 230 52±10 30±6 62±12 25±5 38±7 43±8 40±8 
79±1
5 

4 35 61 272 55±3 41±2 71±4 27±2 36±2 61±4 57±3 70±4 

4 40 56 320 56±10 40±7 69±12 35±6 44±8 67±11 50±9 
82±1
4 

5 30 65 288 60±6 37±4 59±6 33±4 47±5 55±6 62±7 69±7 

5 35 60 340 63±7 47±5 73±8 39±4 43±5 67±8 63±7 65±8 

5 40 55 401 52±1 77±1 84±1 52±1 50±1 63±1 67±1 88±1 

5 45 50 472 82±4 90±4 115±6 45±4 90±4 83±4 105±5 87±4 

5 50 45 557 62±4 110±8 95±7 46±6 68±5 69±5 95±7 69±5 
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Table 6. Linearity and sensitivity for the determination of anthelmintic benzimidazoles by 

RAM-VOL-SUPRAS extraction prior to LC-MS/MS 

 Albendazole family Fenbendazole family 

ABZ 
ABZ-
SO2 

ABZ-
SO 

ABZ-NH2-

SO2 
FBZ 

FBZ-
SO2 

OFZ FBT 

aLinear 
range 

(μg/L) 

0.35-
500 

0.51-500 0.46-500 0.59-500 0.33-500 0.43-500 0.40-500 0.36-500 

Slope± SD 190±7 46±2 31.1±0.4 66±1 174±3 64±1 97±5 446±15 

br 0.997 0.997 0.9995 0.9992 0.9996 0.987 0.990 0.997 

cLOD 

(μg/L) 
0.11 0.22 0.21 0.27 0.11 0.12 0.11 0.11 

d MDL 

(μg/L) 
0.03 0.12 0.13 0.14 0.03 0.03 0.03 0.03 

e MQL 
 (μg/L) 

0.09 0.39 0.44 0.46 0.10 0.11 0.10 0.09 

aInstrumental quantification limit calculated by using a signal-to-noise ratio of 10. 
bCorrelation coefficient. 
cInstrumental detection limit calculated by using a signal-to-noise ratio of 3. 
dMethod detection limits calculated for a signal-to-noise ratio of 3. 
eMethod quantification limits calculated for a signal-to-noise ratio of 10. 
SD: standard deviation. 

3.3.2. Accuracy 

Table 7 shows the recoveries obtained at MRL, 0.5xMRL and 1.5xMRL concentrations for 

all the analytes (considering 25 µg L-1 for each ABZ compound and 2.5 µg L-1 for each FBZ 

compound). Recoveries were quantitative for all analytes, apart from ABZ-NH2-SO2 that 

ranged from 44 to 47%. Since for this analyte recoveries are lower than the accepted limits, 

results for ABZ-NH2-SO2 in real samples were calculated as relative recoveries. (Commission 

Decision 2002/657/EC) [15]. 

3.3.3. Precision 

Relative standard deviations for BDZ were in the interval 3-13% at the MRLs, 7-19 % at 

0.5xMRL, and 3-13% at 1.5xMRL values (Table 8). These intraday and inter-day precision 

values were below the recommended limits (i.e., <20% in the range 10-100 µg kg-1) 

(Commission Decision 2002/657/EC) [15]. 
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Table 7. Absolute recoveries obtained for ABZ and FBZ families for the determination of 

BZD by RAM-VOL-SUPRAS extraction prior to LC-MS/MS. 

Compounds Recovery (%)±SD 

0.5xMRLa MRLb 1.5xMRLc 

Albendazole 
family 

ABZ 84±12 92±11 96±12 

ABZ-SO2 108±11 104±9 108±6 

ABZ-SO 100±8 103±7 109±6 

ABZ-NH2-SO2 44±4 45±3 47±2 
Fenbendazole 
family 

FBZ 86±6 79±2 84±2 

FBZ-SO2 80±5 96±7 93±6 

OFZ 81±7 110±8 105±4 

FBT 81±6 83±10 98±12 
a 0.5 times the Maximum residue level allowed in milk (ABZ family: 12.5 µg L-1 each, FBZ family: 1.25 
µg L-1 each) n=11. 
b Maximum residue level allowed in milk (ABZ family: 25 µg L-1 each, FBZ family: 2.5 µg L-1 each) 
n=11. 
c 1.5 times the Maximum residue level allowed in milk (ABZ family: 37.5 µg L-1 each, FBZ family: 3.75 

µg L-1 each) n=11. 

Table 8. Intraday and inter-day precisions for the determination of anthelmintic 

benzimidazoles by RAM-VOL-SUPRAS extraction prior to LC-MS/MS. 

a 0.5 times the Maximum residue level allowed in milk (ABZ family: 12.5 µg L-1 each, FBZ family: 1.25 
µg L-1 each) n=11. 
b Maximum residue level allowed in milk (ABZ family: 25 µg L-1 each, FBZ family: 2.5 µg L-1 each) 
n=11. 
c 1.5 times the Maximum residue level allowed in milk (ABZ family: 37.5 µg L-1 each, FBZ family: 3.75 
µg L-1 each) n=11. 

  

Compounds RSD Intraday (%) RSD Interday (%) 

0.5x 
MRLa 

MRLb 1.5x 
MRLc 

0.5x 
MRLa 

MRLb 1.5x 
MRLc 

ABZ 
family 

ABZ 17 12 12 19 13 13 
ABZ-SO2 10 8 7 11 9 10 
ABZ-SO 8 8 7 8 8 8 
ABZ-NH2-SO2 18 7 5 19 11 8 

FBZ 
family 

FBZ 8 3 3 7 8 7 
FBZ-SO2 10 7 7 12 13 12 
OFZ 9 7 3 9 8 7 

FBT 13 12 12 14 12 12 
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3.4. Determination of benzimidazole in cow milk samples 

The methodology developed was applied to six cow milk samples, which were sold for 

human consumption: whole (A-B), low-fat (C-D) and skimmed (E-F) milk. Both native and 

fortified samples, at the respective MRLs (ABZ family: 12.5 µg L-1 each, FBZ family: 1.25 µg 

L-1 each), were analyzed. Positive samples containing ABZ, FBZ-SO2, OFZ and FBT in 

supermarket-sold cow milks were found. The ratio of the quantifier to the qualifier transition 

(see Table 2) was calculated for each unknown sample and it was compared to the ion ratio 

of the respective standards. The tolerance level defined by the European Commission 

Decision 2002/657/EC was considered for compound identification. Concentrations were 

0.11-0.37 µg L-1, and 0.25-2.55 µg L-1, expressed as sum for ABZ and FBZ families, 

respectively. (Table 9 and Figure 3). All these values of BDZ residues in cow milk were 

below the legislated MRLs. (Commission Regulation (EU) No 37/2010) [4]. Quantitative 

recoveries (viz., 74-112%), obtained by spiking each sample at their respective MRLs, were 

obtained (triplicate analysis). ABZ-NH2-SO2 yields were calculated as relative recoveries. 

These results show the great applicability of the method, regardless of the milk fat content. 

In summary, RAM-VOL-SUPRAS were employed for the hitherto unexplored quick, simple 

and successful determination of eight benzimidazole drugs in milk for human consumption, 

obtaining limits much lower than the legislated MRLs and improving those obtained by other 

sample treatments (viz. PPT, SPE, QuEChERS method and PMME, see Table 1). 

Satisfactory recoveries were obtained with the proposed method, as it was found for the 

other sample treatments mentioned, with the only exception of ABZ- NH2- SO2. However, 

the SUPRAS-based sample treatment here proposed has allowed to circumvent the tedious 

and sample/solvent-consuming pre-manipulation of milk  using a lower volume of organic 

solvent per sample (i.e. 0.9 mL of THF) compared to that required by SPE8,10, (e.g. 5-11 mL) 

or QuEChERS9 (e.g. 10 mL). Nevertheless, the most outstanding advantage achieved was 

the complete removal of interferences, which allowed the use of external calibration, and 

consequently, a considerable saving of time and cost. Furthermore, the method has been 

validated as an excellent way for removing matrix effect prior to LC-MS/MS analysis, 

regardless of the milk fat content. We hypothesize that this methodology, that spreads for 

the first time the applicability of SUPRAS to milk, could be extended to the treatment of 

other foodstuff samples with high amounts of fat. 
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Figure 3. Extracted ion chromatograms obtained for ABZ (m/z 234) and OFZ (m/z 159) 

quantitation transitions from a calibration solution (red) at their respective MRLs (25 and 2.5 

µg L-1), a milk sample spiked before any treatment (green) at their respective MRLs (25 and 

2.5 µg L-1. Enrichment factor: 2.1), and an unspiked milk sample (blue, with found positive 

concentrations of 0.37 and 0.89 µg L-1 -whole milk A- and 0.15 and 1.83 µg L-1-skimmed 

milk E- for ABZ and OFZ, respectively). HPLC conditions: ammonium formate buffer (2 

mM; pH 7.5; solvent A) and acetonitrile (solvent B) from 0 min: 10 % B to12 min: 90% B.at 

0.3 mL min-1.Injection volume: 10 µL. 

ABBREVIATIONS 

BDZ, Benzimidazole drugs; EU, European Union; LC-MS/MS, liquid chromatography-

tandem mass spectrometry; PPT, protein precipitation; SPE, solid phase extraction; LPD, 

liquid phase deposition; QuEChERS, quick, easy, cheap, effective, rugged and safe 

extraction; PMME, polymer monolith microextraction; SUPRAS, supramolecular solvent; 

LC-IT-ToF/MS, liquid chromatography-ion trap-time-of-flight/mass spectrometry; HPLC-

QQQ-MS, high performance liquid chromatography- triple quadrupole- mass spectrometry; 



180 
 

UHPLC-QQQ-MS, ultra-high performance liquid chromatography- triple quadrupole- mass 

spectrometry; PBS, phosphate buffer solution; EDTA, ethylenediaminetetraacetic acid; 

ACN, acetonitrile; THF, Tetrahydrofuran; CCβ, detection capability; LOQ, quantitation 

limit; MQL, method quantitation limit; ABZ, Albendazole; ABZ-SO2, Albendazole sulfone; 

ABZ-SO, Albendazole sulfoxide; ABZ-NH2-SO2, Albendazole-2-aminosulfone; FBZ, 

Fenbendazole; FBZ-SO2, Fenbendazole sulfone; OFZ, Oxfendazole; FBT, Febantel; 

MeOH, methanol; RAM-VOL-SUPRAS, restricted access volatile supramolecular solvent; 

RP, reverse phase; MW, molecular weight; pKa, log of acid dissociation constant; logKow, 

log of octanol-water partition coefficient; H, 1-hexanol; SSE, signal 

suppression/enhancement; MDL, method detection limit; MRL, maximum residue limit; 

CCα, decision limit; R, recovery. 

Note: Authors thank the financial support provided by Spanish Ministry of Science, 

Innovation and Universities [grant number CTQ2017-83823-R]. 
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Conclusions. 

General conclusions. 

Part A: Determination of air and light sensitive endogenous antioxidants in serum by protein 

precipitation and high-performance liquid chromatography. 

1. PPT (protein precipitation) by means of ACN coupled to liquid chromatography - 

UV detection has shown a great capability for the determination of endogenous 

antioxidants with high partition coefficients (i.e., XLogP3 13.5, 10.7 and 5.7 for β-

carotene, α-tocopherol and retinol, respectively). Quantitative recoveries (viz. 70-

120%), and good enough limits of detection (above 0.036 µg mL-1) were also 

obtained thanks in part to the enrichment factor achieved (x2). 

2. PPT with ACN has been proved to be a very simple and environmentally friendly 

serum treatment. Moreover, the ratio sample/ACN of 1:2 for inducing protein 

precipitation (>90%), the subsequent evaporation of the surnatant until dryness, 

which results in the absence of matrix effect, and the redissolution of the extract into 

mobile phase (ratio sample/reconstitution solution of 2:1) guaranteed low organic 

solvent employment, a positive enrichment factor (x2), and an optimum 

compatibility with the UV system.  

3. The analytical method, which was employed in chapters 1-4, was fully validated 

following international guidelines. Suitable values for linearity, sensitivity, selectivity, 

precision and trueness were obtained. 

Part B: SUPRAS-based matrix-independent platforms for quantifying multi compounds in 

biological matrices by LC-MS/MS for forensic, clinical and food quality control purposes. 

1. Hexanol-based SUPRAS have successfully accomplished the extraction of analytes 

(i.e., amphetamines type stimulants and benzimidazole drugs) with very different 

physicochemical properties due to their ability to solubilize solutes in a mixed-mode 

mechanism (van der Waals, ionic, hydrogen bonding, polar and π- cation 

interactions). A great capability for cleaning-up several different types of biological 
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matrices (serum, urine, saliva, sweat, breast milk, cow milk, hair and finger nail) has 

been demonstrated, in all cases resulting on the removal of matrix interferents. 

Moreover, since SUPRAS are tailored solvents in which the amphiphile coacervation 

is triggered by the presence of water, they offer the possibility to be spontaneously 

and directly synthetized in liquid matrices and, prior hydrolysis, in solid samples. 

They act as restricted access material (RAM), or as volatile restricted access material 

(RAM-VOL-SUPRAS) when an evaporation step is applied for the elimination of 

phospholipids. In this way, small molecules are solubilized in the solvent, while 

interferences such proteins or polysaccharides are excluded by THF-based 

precipitation and/or formation of complexes, and size-exclusion phenomena, 

respectively. Hexanol-based SUPRAS allowed us to develop a platform for the 

determination of 5 ATS in seven different biological matrices for forensic 

applications, and to quantify 8 BDZ in cow milk regardless of fat content, by means 

of liquid chromatography coupled to tandem mass spectrometric detection (LC-

MS/MS). The limits of the detection were below the cut-offs legislated and the 

maximum residue levels (MRLs) for ATS and BDZ, respectively. 

2. An HFBA-based SUPRAS has been proposed by our group for the first time in this 

thesis as a new kind of alternative solvent for the extraction of very polar compounds 

(e.g., aminoacids and oligopeptides), which are not usually easily extracted by other 

solvents from biological matrices. The unique feature of this new SUPRAS is linked 

to the polar hydrophobicity shown by perfluorinated compounds. This SUPRAS was 

able to extract 20 aminoacids and 9 oligopeptides with negative log D values, 

achieving quantitative yields (recoveries >80%). Moreover, the incorporation of the 

amphiphile into the SUPRAS is 100%. Finally, the detection of the oligopeptide 

Opiorphin in saliva was successfully carried out by the direct injection of HFBA-

based SUPRAS extracts in LC-MS/MS. 

3. SUPRAS cleaning-up/extraction consists in a single treatment step, which guarantees 

an easy and effortless treatment with minimum time, sample and solvent 

consumption (e.g., time 15-35 min, sample ≤ 1 mL, organic solvent <2 mL). 

Therefore, this technique is in good agreement with the principles of green analytical 

chemistry. 



185 
 

4. The three analytical methods based on SUPRAS were fully validated following the 

parameters as requested by the respective international guidelines. Optimum values 

of linearity, sensitivity, selectivity, precision and trueness were achieved. 
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Specific conclusions. 

Chapter 1: Blood serum retinol levels in Asinara white donkeys reflect albinism- induced 

metabolic adaptation to photoperiod at Mediterranean latitudes. 

Protein precipitation for the simultaneously extraction and determination of β-carotene and 

retinol was successfully applied in serum of Asinara donkeys (Albino) and Sardo donkeys 

(Grey). In fact, the levels of these endogenous antioxidants determined by this method 

reflected the health state of the animals. Therefore, these antioxidants can be considered as 

markers of metabolic adaptation and photo-protection. Since the methodology involves just 

0.3 mL of serum, it reached the objective of employing small amounts of sample for the 

analysis; this aspect is essential in methods in which a complicated sampling is required, such 

in cases where feral animals and air/light sensitive analytes are involved. 

Chapter 2: Levels of LDH and CPK vary in blood serum of Asinara donkeys (albino) vs. 

Sardo 5 donkeys (pigmented) in presence of similar circulating α-tocopherol. 

Taking advantage of the analytical results obtained when PPT treatment was applied to 

serum samples of feral animals, endogenous levels of α-tocopherol among two breeds of 

donkeys (eg., Asinara and Sardo) were successfully determined. For the first time, 

physiological ranges of α-tocopherol in donkeys were established. These results may be 

helpful for the diagnosis of adequate or deficient dietary supply, predisposing to pathologic 

conditions in donkeys. 

Chapter 3: Supplementation of α-tocopherol/selenium in the diet of breeding stallions 

during negative photoperiod. Part I: effects on semen quality. 

PPT treatment with ACN was successfully employed for determining α-tocopherol in serum 

of stallions. We were able to establish a correlation between the variation of serum 

antioxidant levels in these animals and semen quality, with the final aim of developing 

dedicated nutritional strategies useful to improve semen quality of breeding stallions. 
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Chapter 4: Baseline circulating levels of α-tocopherol in blood serum of feral Giara horses 

(Equus ferus caballus Linnaeus, 1758) and vitamin E status significantly vary with ALT from 

grazing to temporary captivity 

Blood serum baseline levels of α-tocopherol in a group of Giara horses were investigated by 

employing of PPT with ACN and HPLC-UV analysis. Variations of circulating levels 

according to temporary captivity were detected. Baseline levels of α-tocopherol significantly 

decreased in horses after captivity (-32.5%), highlighting the direct effect of diet on 

circulating values after just four weeks of hay feeding. 

Chapter 5: SUPRAS extraction approach for matrix-independent determination of 

amphetamine-type stimulants by LC-MS/MS. 

A new analytical methodology has been developed for providing a truly universal, quickly, 

cheap, green and reliable sample treatment platform for monitoring the ATS expanding and 

startling abuse. The cleaning up/extraction of the 7 matrices was carried out by a SUPRAS 

made up of hexanol, tetrahydrofuran and sample, allowing the elimination of matrix effects 

due to the interferences contained in these complex matrices. Sample treatment was directly 

followed by LC/MS-MS analysis, which is considered the gold- standard in forensic field due 

its unique capabilities (i.e., reliability, sensibility and selectivity). The method was further 

applied for confirming the presence of ATS is 5 human urine samples which had resulted 

positive to immunoassay screening. The method here developed can be considered a green 

process since only low amounts of organic solvents were involved. 

Chapter 6: Exploring polar hydrophobicity in organized media for extracting oligopeptides: 

application to the extraction of opiorphin in human saliva 

A new kind of SUPRAS synthetized by the coacervation of HFBA in an acidic water solution 

was developed and characterized. Due to the presence of polar hydrophobicity due to C-F 

residues of the surfactant, this new solvent was able to quantitatively extract (viz. recoveries 

> 80%) very polar amino acids and oligopeptides with a log D value at pH 1- up to -3. Thus, 

very polar compounds, which usually are not easily extracted from complex matrices, can be 

obtained in extracts lacking matrix components, which could be useful for clinical and food 
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science applications. The methodology was further applied for quantifying the endogenous 

oligopeptide opiorphin in saliva by LC-MS/MS analysis. 

Chapter 7: Restricted access volatile supramolecular solvents for single-step 

extraction/cleanup of benzimidazole anthelmintic drugs in milk prior to LC-MS/MS. 

Volatile restricted access material Hexanol-based SUPRAS (VOL-RAM-SUPRAS) were 

efficiently applied for the extraction of 8 benzimidazole anthelminthic drugs in milk for 

human consumption. The method was proved to reduce the analysis time and to simplify the 

sample treatment (total time for sample treatment: 35 min) for the simultaneous 

determination of compounds with quite different physicochemical properties. The volatility 

of the SUPRAS allowed to obtain an excellent selectivity (SSE% above 100%), high 

sensibility (MDLs < legislated MRLs) and an excellent compatibility with LC-MS/MS 

system, by the introduction of a simple step of evaporation of the extract, which is 

subsequently redissolve, prior the injection. This methodology was applied to milks with 

different fat content and no differences in the achieved recoveries were found, confirming 

the restricted access capability of the SUPRAS. The method was further applied for the 

analysis of milks purchased in the local market. Residues of BDZ drugs below the legislated 

limits were detected. 

  



189 
 

 

  

ANNEXES 



190 
 

  



191 
 

  

ANNEX I 

Scientific publications arising from the Doctoral 

Thesis 



192 
 

 

  



193 
 

Scientific publications arising from the Doctoral Thesis  

1. Blood serum retinol levels in Asinara white donkeys reflect albinism- induced 

metabolic adaptation to photoperiod at Mediterranean latitudes 

M. G. Cappai, M. G. A. Lunesu, Francesca Accioni, M. Liscia, M. Pusceddu, L. 

Burrai, M. Nieddu, C. Dimauro, Gianpiero Boatto, W. Pinna 

Ecology and evolution 7 (2017) 390-398. 

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 

Impact factor (Journal position/total number of Journals); Areas: Ecology, 

2017(JCR): 2.34 (65/158, Q2) 

 

 

2. SUPRAS extraction approach for matrix-independent determination of 

amphetamine-type stimulants by LC-MS/MS 

Francesca Accioni, D. García-Gómez, E. Girela, Soledad Rubio (2018) 

Talanta 182 (2018) 574-582. 

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 

Impact factor (Journal position/total number of Journals); Area: Analytical 

Chemistry 2017(JCR): 4.244 (9/80, Q1) 

 

 

3. Levels of LDH and CPK vary in blood serum of Asinara donkeys (albino) vs. 

Sardo 5 donkeys (pigmented) in presence of similar circulating α-tocopherol 

M.G. Cappai, Francesca Accioni, G. P. Biggio, R. Cherchi, Gianpiero Boatto, W. 

Pinna  

Submitted to The Veterinary Journal (July 2018) 

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 

Impact factor (Journal position/total number of Journals); Areas: Agricultural and 

Biological Sciences; Animal Science and Zoology; Veterinary; Veterinary 

(miscellaneous) 2017(JCR): 1.773 (26/140, Q1) 

 

 



194 
 

4. Baseline circulating levels of α-tocopherol in blood serum of feral Giara horses 

(Equus ferus caballus Linnaeus, 1758) and vitamin E status significantly vary 

with ALT from grazing to temporary captivity 

Francesca Accioni, W. Pinna, F. Pudda, P. Wolf, Gianpiero Boatto, M.G. Cappai 

Submitted to Equine Veterinary Journal (Dicember 2018) 

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 

Impact factor (Journal position/total number of Journals); Area: Veterinary Science 

2017(JCR): 2.022 (17/140, Q1) 

 

5. Supplementation of α-tocopherol/selenium in the diet of breeding stallions 

during negative photoperiod. Part I: effects on semen quality 

M.G. Cappai, A. Taras, I. Cossu, R. Cherchi, C. Dimauro, Francesca Accioni, 

Gianpiero Boatto, D. Gatta, W. Pinna 

Submitted to Animal Feed Science and Technology (July 2018) 

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 

Impact factor (Journal position/total number of Journals); Area: Agriculture, Dairy & 

Animal Science 2017(JCR): 2.143 (6/60, Q1) 

 

 

6. Exploring polar hydrophobicity in organized media for extracting 

oligopeptides: application to the extraction of opiorphin in human saliva 

Francesca Accioni, D. García-Gómez, Soledad Rubio 

To be submitted to Analytica Chimica Acta 

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

Impact factor (Journal position/total number of Journals); Area: Chemistry 

Analytical 2017(JCR): 5.123 (8/80, Q1) 

  



195 
 

7. Restricted access volatile supramolecular solvents for single-step 

extraction/cleanup of benzimidazole anthelmintic drugs in milk prior to LC-

MS/MS 

Francesca Accioni, N. Caballero-Casero, D. García-Gómez, Soledad Rubio 

Journal of Agricultural and Food Chemistry. Publication Date (Web): December 5, 

2018. DOI: 10.1021/acs.jafc.8b06003 

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 

Impact factor (Journal position/total number of Journals); Area: Agriculture, 

multidisciplinary, Chemistry, applied, Food Science & Technology 2017(JCR): 3.412 

(2/57, Q1; 17/72, Q1; 18/133, Q1) 


