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Abstract: The anchorage of a supported copper Schiff base complex on SBA-15 materials provides
highly efficient heterogeneous catalysts towards the solvent-free synthesis of dihydropyrimidinones
derivatives via the Biginelli condensation reaction. The novel nanocatalysts exhibited a highly
ordered mesostructure with a surface area of 346 m2g−1 and an average pore diameter of 8.6 nm.
Additionally, the supported copper nanocatalysts were reused at least ten times, remaining almost
unchanged from the initial activity. Both the mesoporous scaffold and the tridentate Schiff base
ligand contributed to the stabilization of copper species.

Keywords: copper Schiff base complex; SBA-15 dihydropyrimidinones; solvent-free reaction;
Biginelli reaction

1. Introduction

Dihydropyrimidinones (DHPMs) have received considerable attention due to their desirable
biological properties, making them useful candidates for a myriad of biomedical and clinical
applications [1–8]. Among them, a number of dihydropyrimidines molecules featuring pharmacological
activities can be observed in Figure 1. In this regard, the development of suitable synthetic protocols for
the synthesis of the mentioned molecules constitutes a significant research topic nowadays.
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Figure 1. Examples of pharmacologically active dihydropyrimidinones (DHPMs). 
Figure 1. Examples of pharmacologically active dihydropyrimidinones (DHPMs).

The conventional synthesis of DHPMs was reported as a Biginelli condensation with a
multi-component reaction of β-dicarbonyl compounds, aromatic aldehydes, and urea using very acidic
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environments [9]. Due to the distinct biological and pharmacological activity of DHPMs, synthetic
methodologies for the Biginelli condensation have recently been developed, including solvent free
synthesis [10], microwave irradiation [11], ultrasound radiation [12], visible light irradiation [13],
Bronsted and Lewis acids [14], ionic liquids [15], enzymatic catalysts [16], and solid acid catalysts [17].
However, despite considerable progress in this area, a number of these protocols still have several
limitations, including the high cost of the materials, significant amounts of generated side-products,
the use of toxic solvents, and undesired reaction conditions. Moreover, homogeneous developed
catalysts have inherent issues associated with separation or product recovery, product contamination
by residual catalyst, or metal species which hinder potential scale-up processes to industry applications.
In catalysis, the life-time (recyclability) of a given catalyst is another crucial parameter. Therefore, to
develop improved reusable catalytic systems in terms of industrial application, practical simplicity,
economic viability, and sustainability is of utmost importance for the synthesis of DHPMs. A suitable
strategy towards more sustainable processes relates to the immobilization of homogenous catalysts onto
solid supports including silica, zeolites, clays, organic polymers, and organic-inorganic mesoporous
materials. Mesoporous silica materials, especially SBA-15, are highly desirable for catalytic applications
due to the possibility of high surface areas and porosity, and narrow and uniform pore size distributions
which increase both reactivity and selectivity in catalytic reactions, together with a high stability,
the possibility to anchor functional groups with a well-established surface chemistry, no swelling
biocompatibility, and low toxicity.

In this work, a nanocatalyst based on supported copper Schiff base complex on SBA-15
(Cu@SBA-15) was employed for a three-component coupling Biginelli reaction to their corresponding
dihydropyrimidinones. The copper Schiff base complex immobilized on the mesoporous materials
displayed good performance and stability under the investigated reaction conditions. The proposed
synthetic methodology is simple, low-cost, and eco-environmentally friendly and could be easily
translated to industrial applications.

2. Materials and Methods

2.1. Preparation of L1@SBA-15

SBA-15 was synthesized based on previous reports [18] and activated with 6 M HCl under reflux
conditions for 12 h. The suspension was filtered, washed with deionized water until the filtrate became
neutral, and dried under vaccum oven (Labplant UK Ltd., North Yorkshire, UK) at 60 ◦C for 10 h.
Amino functionalized SBA-15 was synthesized by refluxing of activated SBA-15 (2.0 g), dropwise
adding of N-(2-Aminoethyl)-3-(trimethoxysilyl) propylamine in 50 mL dry toluene. The mixture was
refluxed in toluene with continuous removal of water using a Dean-Stark trap for 24 h. The slurry was
filtered off, and the resulting solid, L1@SBA-15, was washed with excess amounts of hot toluene and
ethanol to remove unreacted diamino silane precursor. It was dried in the vacuum oven at 60 ◦C for
10 h to furnish L1@SBA-15 at a loading ca. 0.55 mmol·g−1 (as determined by TGA analysis).

2.2. Preparation of L2@SBA-15

One mmol (0.107 gr) of pyridine-2 carbaldehyde was added to the stirring suspension of 1.0 g
L1@SBA-15 in methanol (50 mL). The reaction mixture was refluxed for 24 h. Subsequently, the
resulting yellow-colored solid was filtered, washed with excess methanol, and dried under vacuum at
60 ◦C for 10 h to establish L2@SBA-15at a loading ca. 0.48 mmol·g−1 (as determined by TGA analysis).

2.3. Preparation of Cu@SBA-15

We added 0.145 g (0.8 mmol) of Cu(II) acetate hydrate to the stirring suspension of L1@SBA-15
(4.6 g) in methanol (50 mL), and refluxed for 24 h. The reaction mixture colour changed from yellow to
green. The resultant green-colored solid was filtered, washed with a large volume of methanol, and
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dried in an oven overnight at 60 ◦C to furnish the corresponding nanocatalyst Cu@SBA-15 at a loading
ca. 0.41 ± 0.01 mmol·g−1 (as determined by TGA analysis and atomic absorption spectroscopy (AAS)).

2.4. Preparation of 3,4-Dihydropyrimidin-2(1H)-One

In a 50-mL flask, aldehyde (5 mmol), β-dicarbonyl compound (5 mmol), urea (6 mmol), and
Cu@SBA-15 (10 mg, 0.02 mmol) was added and stirred at 100 ◦C for 5–10 min under solvent-free
conditions. Then hot ethanol was added to the mixture, and the Cu@SBA-15 nanocatalyst was
separated by filtration. To test the reusability of the catalyst, after first reaction run, Cu@SBA-15
nanocatalyst was filtered from the reaction mixture. Then, the catalyst was washed with water and
ethanol, dried in vacuum, and reused for the subsequent run.The final product was recrystallized in
ethanol. All products were characterized by NMR, IR, and melting points (the melting points and
IR spectra of the compounds were matched well with literature reported data for the corresponding
compounds) (Figures S1–S29, ESI).

For 5-(ethoxycarbonyl)-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (entry 1a): Yield 93%,
White crystal; mp 201–203 ◦C; FT-IR (KBr, cm−1) ν max 3244, 3115, 2977, 1724, 1647, 1464, 1290, 1220,
1090, 781, 698. 1H NMR (DMSO-d6): 1.2(3H, t, J = 6.9 Hz, OCH2CH3), 2.24(3H, s, CH3), 3.967 (2H, q,
J = 7.2 Hz, OCH2CH3), 5.136 (d, 1H, J = 3 Hz, –CH), 7.314(m, 5H, Ar–H), 7.68(1H, s, NH), 9.136(1H, s,
NH). 13C NMR (DMSO-d6): 14.516, 18.248, 54.436, 59.735, 99.712, 118.537, 126.721, 127.731, 128.855,
144.255, 149.204, 152.645, 165.799.

For 3,4-dihydro-6-methyl-4-(4-nitrophenyl)-5-propionylpyrimidin-2(1H)-one (entry 2a): Yield
89%, Colorless solid; mp 210–212 ◦C; FT-IR (KBr, cm−1) ν max: 3235, 3118, 2976, 1727, 1648, 1610, 1462,
1391, 1214, 1091, 783, 697. 1H NMR (DMSO-d6): 2.061(3H, t, J = 6.9 Hz, OCH2CH3), 2.178(3H, s, CH3),
2.407(2H, q, J = 7.2 Hz, OCH2CH3), 5.275(d, 1H, J = 3.3 Hz, −CH), 7.486(2H, d, J = 7.2 Hz, Ar–H),
7.94(1H, s, NH), 8.082(2H, d, J = 8.4 Hz, Ar–H), 9.29(1H, s, NH). 13C NMR (DMSO-d6): 19.604, 31.116,
53.613, 109.925, 124.333, 128.145, 147.128, 149.628, 152.063, 152.505, 194.416.

For 5-(ethoxycarbonyl)-4-(4-chlorophenyl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one (entry 3a):
Yield 88%, yellowish powder; mp 213–215 ◦C; FT-IR (KBr, cm−1) ν max: 3242, 3116, 2979, 1723, 1647,
1489, 1291, 1220, 1088, 781, 492. 1H NMR (DMSO-d6): 1.075(3H, t, OCH2CH3), 2.459(3H, s, CH3),
3.963(2H, q, J = 6.9 Hz, OCH2CH3), 5.121(d, 1H, J = 2.7 Hz, –CH), 7.118–7.395(4H, m, Ar–H), 7.715(1H,
s, NH), 9.193(1H, s, NH). 13C NMR (DMSO-d6): 14.535, 18.278, 53.873, 59.736, 99.261, 128.661, 128.872,
132.253, 144.256, 149.217, 152.421, 165.666.

For 5-(ethoxycarbonyl)-6-methyl-4-(2-hydroxyphenyl)-3,4-dihydropyrimidin-2(1H)-one (entry
4a): Yield 76%, pale yellow powder; mp 214–215 ◦C; FT-IR (KBr, cm−1) ν max: 3342, 3241, 2986, 1667,
1460, 1233, 1091,757.

5-(Ethoxycarbonyl)-4-(Tiophen-2-yl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one (entry 5a): Yield
78%, pale yellow powder; mp 213–215 ◦C; FT-IR (KBr, cm−1) ν max: 3384, 3103, 2924, 1681, 1435, 1228,
1093, 699.

For 5-(ethoxycarbonyl)-4-(4-naphthalene-1-yl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one (entry
6a): Yield 72%, White powder; mp 245–248 ◦C; FT-IR (KBr, cm−1) ν max: 3243, 3117, 2977, 1698, 1646,
1510, 1318, 1280, 1231, 1087, 777.

For 5-(ethoxycarbonyl)-4-(1H-indol-2-yl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one (entry 7a):
Yield 91%, red powder; mp 264–266 ◦C; FT-IR (KBr, cm−1) ν max: 3070, 3001, 2802, 2718, 1713, 1583,
1545, 1463, 1429, 1326, 1282, 1213, 1103, 743. 1H NMR (DMSO-d6): 1.2(3H, t, J = 6.9 Hz, OCH2CH3),
2.24(3H, s, CH3), 3.4(2H, q, J = 7.2 Hz, OCH2CH3), 4.3(d, 1H, J = 3 Hz, –CH), 7.28–8.6(m, 6H, Ar–H and
NH), 7.65(1H, s, NH), 12.4(1H, s, NH). 13C NMR (DMSO-d6): 14.557, 61.557, 104.765, 113.673, 115.089,
120.522, 122.703, 124.104, 125.192, 136.928, 138.55, 163.652.

For 5-acetyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (entry 1b): Yield 93%, White
powder; mp 221–223 ◦C; FT-IR (KBr, cm−1) ν max: 3332, 3223, 1697, 1667, 1414, 1340, 1239, 1094, 698.
1H NMR (DMSO-d6): 2.06(3H, s, CH3), 3.32(3H, s, OCH3), 5.242(1H, s, −CH), 7.118–7.34(m, 5H, Ar–H),
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7.771(1H, s, NH), 9.127(1H, s, NH). 13CNMR (DMSO-d6): 19.412, 30.801, 30.837, 54.312, 110.096, 126.919,
127.842, 129.011, 144.732, 152.749, 194.774.

For 5-methoxycarbonyl-6-methyl-4-(4-nitrophenyl)-3,4-dihydropyrimidin-2(1H)-one (entry 2b):
Yield 89%, White powder; mp 233–235 ◦C; FT-IR (KBr, cm−1) ν max: 3368, 3235, 3109, 2946, 1689, 1617,
1348, 1228, 1095, 855, 700.

For 5-methoxycarbonyl-6-methyl-4-(4-chlorophenyl)-3,4-dihydropyrimidin-2(1H)-one (entry 3b):
Yield 88%, yellow powder; mp 154–156 ◦C; FT-IR (KBr, cm−1) ν max: 3324, 3219, 3105, 1698, 1675, 1491,
1420, 1342, 1295, 1239, 1093, 938, 700.

For 5-methoxycarbonyl-6-methyl-4-(2-hydroxyphenyl)-3,4-dihydropyrimidin-2(1H)-one (entry
4b): Yield 76%, Pale yellow powder; mp 265–268 ◦C; FT-IR (KBr, cm−1) ν max: 3441, 3351, 3250, 1690,
1660, 1458, 1086, 960, 800, 462.

For 5-methoxycarbonyl-6-methyl-4-(tiophen-2-yl)-3,4-dihydropyrimidin-2(1H)-one (entry 5b):
Yield 77%, pale yellow powder; mp 221–223 ◦C; FT-IR (KBr, cm−1) ν max: 3393, 3232, 3102, 1682, 1434,
1232, 1093, 700.

For 5-methoxycarbonyl-6-methyl-4-(4-naphthalene-1-yl)-3,4-dihydropyrimidin-2(1H)-one (entry
6b): Yield 72%, White powder; mp 268–270 ◦C; FT-IR (KBr, cm−1) ν max: 3239, 3100, 1698, 1649, 1431,
1234, 1093, 776.

For 5-methoxycarbonyl-6-methyl-4-(1H-indol-2-yl)-3,4-dihydropyrimidin-2(1H)-one (entry 7b):
Yield 88%, red powder; mp 264–266 ◦C; FT-IR (KBr, cm−1) ν max: 3294, 3104, 3073, 2995, 2800, 2724,
2630, 1722, 1600, 1464, 1418, 1331, 1222, 1110, 847, 747. 1H NMR (DMSO-d6): 1.18(3H, s, CH3), 4.05(3H,
s, OCH3), 7.5(H, s, –CH), 7.09–7.5(6H, br, Ar–H) and NH), 8.2(1H, s, NH), 8.6(H, s, NH). 13C NMR
(DMSO-d6): 52.858, 104.515, 113.795, 115.342, 120.565, 122.984, 124.298, 125.192, 138.661, 163.929.

For 5-acetyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one (entry 1c): Yield 92%, White
powder; mp 231–233 ◦C; FT-IR (KBr, cm−1) ν max: 3268, 1702, 1675, 1599, 1493, 1236, 1106, 767,
704, 571.

For 5-acetyl-6-methyl-4-(4-nitrophenyl)-3,4-dihydropyrimidin-2(1H)-one (entry 2c): Yield 89%,
White powder; mp 229–230 ◦C; FT-IR (KBr, cm−1) ν max: 3342, 3252, 3143, 1709, 1674, 1608, 1515, 1446,
1384, 1239, 1279, 1237, 1187, 1102, 862, 763, 698.

For 5-acetyl-6-methyl-4-(4-chlorophenyl)-3,4-dihydropyrimidin-2(1H)-one (entry 3c): Yield 88%,
yellow powder; mp 204–206 ◦C; FT-IR (KBr, cm−1) ν max: 3288, 3121, 2915, 1699, 1618, 1424, 1322,
1262, 1236, 1091, 837, 789, 581.

For 5-acetyl-6-methyl-4-(2-hydroxyphenyl)-3,4-dihydropyrimidin-2(1H)-one (entry 4c): Yield 76%,
Pale yellow powder; mp 204–208 ◦C; FT-IR (KBr, cm−1) ν max: 3240, 3096, 2982, 1682, 1603, 1584, 1503,
1173, 1113, 925, 867, 762.

For 5-acetyl-6-methyl-4-(tiophen-2-yl)-3,4-dihydropyrimidin-2(1H)-one (entry 5c): Yield 74%, pale
yellow powder; mp 231–233 ◦C; FT-IR (KBr, cm−1) ν max: 3550, 3473, 3413, 1680, 1617, 1236, 698, 617.

For 5-acetyl-6-methyl-4-(4-Naphthalene-1-yl)-3,4-dihydropyrimidin-2(1H)-one (entry 6c): Yield
70%, White powder; mp 233–236 ◦C; FT-IR (KBr, cm−1) ν max: 3328, 3212, 3110, 2917, 1693, 1607, 1415,
1381, 1321, 1230, 772.

For 4-(1-H-indole-2-yl)-3,4-dihydropyrimidin-2(1H)-one (entry 7c): Yield 90%, red powder; mp
128–130 ◦C; FT-IR (KBr, cm−1) ν max: 3439, 3109, 2933, 1762, 1598, 1505, 1472, 1433, 1328, 1234, 1129,
1055, 798, 749. 1H NMR (DMSO-d6): 1.95(s, 3H, CH3), 2.377(s, 3H, COCH3), 5.455(d, 1H, CH), 6.65 (s,
1H, NH), 6(m, 4H, ArH) and NH, 8.153(s, 1H, NH) 8.153(s, 1H, NH). 13C NMR (DMSO-d6): 112.901,
114.35, 118.597, 121.271, 122.581, 123.914, 124.561, 125,124, 137.512, 138.61, 138.965, 141,628, 160.304,
160.512, 185.449.

3. Results and Discussion

We have anchored a copper Schiff base tridentate complex immobilized on SBA-15 nanoreactors
using an easy 3-step system (Scheme 1) that takes advantage of the biologically active properties and
coordination chemistry of copper.
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Brunauer-Emmett-Teller (BET) surface area, calculated from the adsorption/desorption isotherm
and pore size distribution of Cu@SBA-15, is presented in Figure 2. Cu@SBA-15 shows a type IV
isotherm with a hysteresis typical for a mesoporous material possessing a pore diameter between 2 nm
and 50 nm.
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Figure 2. N2 adsorption-desorption isotherm of the Cu@SBA-15 nanocatalyst.

A narrow pore size distribution, calculated from desorption isotherms with the
Barrett-Joyner-Halenda (BJH) method, indicates the uniformity of the mesopores in the Cu@SBA-15
material. The measured data for the BET surface area and the total pore volume and the BJH pore
size of Cu@SBA-15 are 346 m2g−1 and 0.61 cm3g−1, respectively, with a mean pore diameter 8.6 nm.
Furthermore, the highly ordered mesostructure of the resulting material was confirmed by TEM
measurements (Figure 3).
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Figure 3. TEM image of the Cu@SBA-15 nanocatalyst.

The catalytic activity of the supported Cu(II) nanocatalyst has been investigated in the reaction of
three-component coupling of ethyl acetoacetate, benzaldehyde, and urea as a model reaction (Scheme 2,
R1 = Ph, R2 = OEt). The effects of reaction temperature, catalyst amount, and solvent were examined
to optimize the reaction parameters (Table 1). The reaction was performed in the absence of supported
Cu(II) nanocatalyst, and poor results were obtained after 3 h at 100 ◦C (under 20% yield, Table 1,
entry 1). Initially, different amounts of supported Cu(II) nanocatalyst were studied at 100 ◦C under
solventless conditions, and the product yields increased from 48% to 94% by increasing the catalyst
loading from 4 mg to 10 mg (Table 1, entries 2–5). However, no changes in yields were observed when
the amount of increased to 12 mg (Table 1, entry 6). The reaction was then carried out in the presence
of 10 mg supported Cu(II) nanocatalyst at different temperatures. Reaction yields generally decreased,
as expected, with a temperature decrease (Table 1, entries 8–10). Polar aprotic and protic solvents
such as EtOH, DMF, CH3CN, THF, and CHCl3 resulted in low to moderate yields of the product
under reflux conditions after 10 min (Table 1, entries 12–16). Notably, it was observed that the reaction
gave the highest yield of product after 5 min in the presence of 10 mg (0.4 mol%) of the supported
Cu(II) nanocatalyst under solventless conditions (Table 1, entry 5). These were considered as optimum
conditions for this work.
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Table 1. Effects of different parameters on the Biginelli reaction of ethyl acetoacetate (5 mmol),
benzaldehyde (5 mmol), urea (6 mmol).

Entry Cu@SBA-15 (mg) Solvent Temp. (◦C) Yield (%)a

1 - - 100 <20
2 4 - 100 48
3 6 - 100 78
4 8 - 100 87
5 10 - 100 94
6 12 - 100 94
8 10 - 25 25
9 10 - 60 41
10 10 - 80 78
12 10 EtOH Reflux 73
13 10 CHCl3 Reflux 35
14 10 THF Reflux 38
15 10 DMF Reflux 75
16 10 CH3CN Reflux 65

a Isolated yield.

Having established the reaction conditions, the scope and limitations of the process were
further investigated using different aldehydes, β-dicarbonyl compounds, and urea (Table 2).
Cu@SBA-15 provided excellent yields for different substrates in all reactions. A variety of
aromatic aldehydes bearing electron donating and withdrawing groups gave corresponding
3,4-dihydropyrimidin-2(1H)-ones in moderate to high yields through the reaction with β-dicarbonyl
compounds and urea using 0.4 mol% of supported nanocatalyst under solvent free conditions.
The results are shown in Table 2. In all cases, dihydropyrimidinones were the sole products,
and no collateral compounds were observed (Table 2, entry 1a–7c). Various aromatic aldehydes,
including benzaldehyde, 4-nitro-, 4-chloro-, 2-hydroxy- benzaldehyde, thiophene-2-carbaldehyde,
1-naphthaldehyde, and indole-3-carbaldehyde using equivalents of ethylacetoacetate, methyl
acetoacetate, and acetyl acetone and an excess amount of urea and 10 mg of Cu catalyst, afforded
products 1a–7c in good to excellent yields (70–94%).

Table 2. Synthesis of dihydropyrimidinones catalyzed by Cu@SBA-15 under solvent free conditions a.

Entry Aldehyde β-Keto Ester Time (min) Yield (%) b Mp (◦C) Ref

1a
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Table 2. Cont.

Entry Aldehyde β-Keto Ester Time (min) Yield (%) b Mp (◦C) Ref

7a
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a Reaction conditions: aldehyde (5 mmol), β-dicarbonyl (5 mmol), urea (6 mmol), and Cu@SBA-15 (10 mg, 0.02 
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It seems that the presence of electron-withdrawing or electron-donating groups and their 

position on the aromatic ring of the aldehydes does not significantly influence reaction yields in 

dihydropyrimidinones synthesis. Based on the mechanism suggested by Kappe [2], a proposed 

mechanism for the formation of DHPMs is presented in Figure 4. 

The first step in the mechanism is believed to be the activation of aldehyde by the catalyst 

following condensation by urea forming the A intermediate. The next step is the formation of B 

intermediate in nucleophilic addition of β-dicarbonyl compounds onto the A intermediate. The 

reaction subsequently proceeds via cyclization to the C intermediate by elimination of water to afford 

dihydroprimidin-2(1H)-one. 
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a Reaction conditions: aldehyde (5 mmol), β-dicarbonyl (5 mmol), urea (6 mmol), and Cu@SBA-15 (10 mg, 0.02
mmol), 100 ◦C; b Isolated yield.

It seems that the presence of electron-withdrawing or electron-donating groups and their
position on the aromatic ring of the aldehydes does not significantly influence reaction yields in
dihydropyrimidinones synthesis. Based on the mechanism suggested by Kappe [2], a proposed
mechanism for the formation of DHPMs is presented in Figure 4.

The first step in the mechanism is believed to be the activation of aldehyde by the catalyst
following condensation by urea forming the A intermediate. The next step is the formation of B
intermediate in nucleophilic addition of β-dicarbonyl compounds onto the A intermediate. The reaction
subsequently proceeds via cyclization to the C intermediate by elimination of water to afford
dihydroprimidin-2(1H)-one.
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Figure 4. Proposed mechanism for one-pot synthesis of dihydropyrimidinones derivatives from
aldehyde, ethyl acetoacetate, and urea using Cu@SBA-15.

Recyclability is an important feature that determines the stability and reutilization of
heterogeneous catalysts in multiple subsequent runs. We studied the recyclability of Cu@SBA-15 in the
optimized model reaction. Upon completion of the first Biginelli reaction under optimized conditions,
Cu@SBA-15 was separated by simple filtration from the reaction mixture, washed with water and
ethanol, dried in vacuum, and reused for the next reaction cycle. The recovered catalyst still shows
remarkable activity for ten subsequent reactions (>90% conversion) under the same conditions as the
fresh catalyst and exhibited constant catalytic activity, indicating the outstanding reusability of this
heterogeneous catalyst.

Table 3 show a comparison of the efficiency of our nanocatalyst with others reported in the
literature for the synthesis of DHPMs. As can be seen in Table 3, our recoverable catalytic system
possesses good activity as compared to those of previously reported heterogeneous catalytic systems.

Table 3. Comparison of the efficiency of Cu@SBA-15 in the reaction of benzaldehyde, α-dicarbonyl
compounds, and urea, and the previous literature.

Entry condition/Catalyst Time Conversion (%) Ref.

1 Cu@SBA-15 5 min 94 This work
2 TiCl4/Solvent free/80 ◦C 60 s 75 [36]
3 TSILS (ionic liquids)/90 ◦C 10 min 94 [37]
4 CuS QD/MW 120 min 97 [38]
5 Zn-MOF/Solvent free/80 ◦C 110 min 94 [39]
6 ALKIT-5(10)/CH3CN/Reflux 180 min 96 [40]

7 β-Cyclodexterin (0.5 mol%)/Solvent
free/100 ◦C 180 min 85 [41]

8 Montmorillonite KSF/Toluene/100 ◦C 48 h 82 [42]

9 10 mol%
Acid/1,4-dioxane/CHCl3(8:2)/25 ◦C 3 days 96 [43]
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4. Conclusions

In summary, we have developed an eco-friendly and highly efficient copper tridentate Schiff base
complex on mesoporous SBA-15 material (Cu@SBA-15) for the one-pot Biginelli reaction coupling
of β-dicarbonyl compounds as a source of two carbon fragments, aromatic aldehydes, and urea to
afford the corresponding dihydropyrimidinones (DHPMs) under solvent free conditions at 100 ◦C.
The supported copper nanocatalyst displayed a notable stability under these conditions and could be
easily separated from the reaction mixture by simple filtration. The catalyst could be easily recycled for
ten reaction runs without any major activity loss. This novel synthetic method has several advantages,
including high yields, cost-effectiveness, practical simplicity, high selectivity, low catalyst loading, and
easy work-up. Further work is under investigation in our laboratory on the use of supported copper
nanocatalyst in other reactions, such as condensation, couplings, and oxidation reactions.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/11/
12/2458/s1, Figure S1: 1H NMR and 13C NMR spectra of 5-(ethoxycarbonyl)-6-methyl-4-phenyl-3,4-
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