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Abstract 

Tools for active targeted DNA demethylation are required to increase our 

knowledge about regulation and specific functions of this important epigenetic 

modification. DNA demethylation in mammals involve TET-mediated oxidation of 5-

methylcytosine (5-meC), which may promote its replication-dependent dilution and/or 

active removal through base excision repair (BER). However, it is still unclear whether 

oxidized derivatives of 5-meC are simply DNA demethylation intermediates or rather 

epigenetic marks on their own. Unlike animals, plants have evolved enzymes that 

directly excise 5-meC without previous modification. In this work we have fused the 

catalytic domain of Arabidopsis ROS1 5-meC DNA glycosylase to a CRISPR-

associated null-nuclease (dCas9) and analyzed its capacity for targeted reactivation of 

methylation-silenced genes, in comparison to other dCas9-effectors. We found that 

dCas9-ROS1, but not dCas9-TET1, is able to reactivate methylation-silenced genes and 

induce partial demethylation in a replication-independent manner. We also found that 

reactivation induced by dCas9-ROS1, as well as that achieved by two different 

CRISPR-based chromatin effectors (dCas9-VP160 and dCas9-p300), generally 

decreases with methylation density. Our results suggest that plant 5-meC DNA 

glycosylases are a valuable addition to the CRISPR-based toolbox for epigenetic 

editing.  
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Introduction 

DNA methylation (5-methylcytosine, 5-meC) is an epigenetic modification linked 

to gene repression that plays critical roles in cell differentiation, development, 

transposon silencing, genome imprinting, and X-chromosome inactivation 1; 2; 3. 

Mammalian DNA methylation primarily affects symmetric CG dinucleotide sequences 

(also known as CpG sites), although significant non-CG methylation has been detected 

in pluripotent and brain cells 4. Altered DNA methylation patterns are implicated in 

several pathological conditions, such as cancer and imprinting diseases 5; 6.  

Genomic DNA methylation patterns are dynamically controlled by antagonistic 

DNA methylation and demethylation processes 7. In mammals, DNA methylation 

patterns are stablished by the DNA methyltransferase 3 (DNMT3) family of de novo 

methyltransferases and copied in post-replicative hemimethylated DNA by the 

maintenance methyltransferase DNMT1 8. Cytosine methylation may be removed 

through either passive or active processes. Passive demethylation involves dilution of 5-

meC by DNA replication in the absence of methylation, whereas active demethylation 

requires enzymatic mechanisms for replication-independent removal of 5-meC 9. 

Despite intense efforts, the identity of the enzymes involved in DNA 

demethylation in mammals has long remained elusive, and the very existence of active 

demethylation processes in mammalian cells has been controversial 10; 11. However, 

accumulating evidence suggests that a family of alpha-ketoglutarate-dependent 

dioxygenases (Ten-Eleven Translocation, TET proteins) are implicated in mammalian 

DNA demethylation by catalyzing conversion of 5-meC to 5-hydroxymethylcytosine (5-

hmeC), 5-formylcytosine (5-fC), and 5-carboxycytosine (5-caC) by consecutive 

oxidation reactions 12; 13. Both 5-fC and 5-caC can be excised by thymine DNA 
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glycosylase (TDG), which may initiate their replacement with unmethylated cytosine in 

a base excision repair (BER) pathway 14. TET proteins may also promote passive, 

replication-dependent DNA demethylation, since 5-hmeC prevents maintenance DNA 

methylation 15. Besides a role as intermediates in active and/or passive DNA 

demethylation, oxidized 5-meC derivatives may be independent epigenetic marks on 

their own and perform specific regulatory functions, since they have been found to be 

stable 16; 17 and recognized by specific readers 18. Unlike animals, plants have evolved a 

family of unique DNA glycosylases that directly remove 5-meC without prior 

modifications through an active BER demethylation pathway 19. These enzymes, with 

no counterparts in animal cells, are typified by Arabidopsis thaliana REPRESSOR OF 

SILENCING 1 (ROS1) and its paralogs DEMETER (DME), and DEMETER-LIKE 2 

and 3 (DML2 and DML3) 20; 21; 22; 23; 24.  

Among all epigenetic modifications identified so far, DNA methylation is 

probably the best understood, but our knowledge of its specific functions is still 

incomplete 25. Pioneering work showed that in vitro methylated DNA injected in cells is 

transcriptionally inactive 26; 27, thus supporting the idea that DNA methylation is 

functionally associated to gene repression. Subsequent studies found that 5-meC may 

inhibit binding of transcription factors and/or recruit Methyl-CpG-binding proteins 

(MBP) that in turn bind co-repressors to inhibit transcription or modify chromatin 

(reviewed in 28). However, it has been found that some transcription factors show 

affinity for methylated DNA 29. Furthermore, the effect of DNA methylation on gene 

expression depends on sequence context, including density of CpG sites and their 

location in cognate recognition sites of activating or repressing factors 30.  

Advances in our understanding of the regulation and function of DNA 

methylation have been limited by the lack of appropriate tools to modify local 
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methylation levels at specific sequences. Recently, the field of targeted methylation 

editing has received strong impulse by the development of the CRISPR/Cas technology. 

Mutationally-deactivated Cas9 endonuclease (dCas9) may be used as an RNA-guided 

platform to target different types of effector proteins to specific sequences 31; 32. Several 

studies have reported targeted methylation 33; 34; 35; 36; 37; 38 or hydromethylation 33; 39; 40; 

41; 42; 43 by expression of dCas9 fused to DNA methyltransferases or TET dioxygenases, 

respectively.  

The use of TET-mediated oxidation to edit DNA methylation is problematic, since 

it generates 5-meC derivatives that are stable and may have epigenetic roles on their 

own. A feasible alternative is to directly excise 5-meC through plant 5-meC DNA 

glycosylases. It has been recently reported that overexpression of Arabidopsis DME in 

human cells induces genome-wide DNA methylation changes and significant 

modifications in the cellular phenotype 44; 45. Furthermore, targeted demethylation and 

reactivation of a methylation-silenced reporter gene in human cells has been achieved 

by fusing the catalytic domain of Arabidopsis ROS1 and the DNA binding domain of 

yeast GAL4 46. In this work we used a dCas9-ROS1 fusion protein to reactivate 

methylation-repressed genes, and compared its activity with that of different dCas9-

effectors, including dCas9-TET1. 
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Results 

Construction and expression of dCas9-effector fusion proteins 

The different dCas9-effector proteins used in this study are shown in Figure 1A. 

To generate a targeted 5-meC DNA glycosylase we fused dCas9 to the catalytic domain 

of ROS1. As a control, we generated a catalytically-inactive version containing a 

mutation in a conserved aspartate (D971 in full-length ROS1) that completely abolishes 

the enzymatic activity of the protein 22. We selected TET1 as a second type of effector 

for targeted DNA demethylation, and generated fusions of dCas9 to the wild-type 

protein 47 and to a mutant version with two substitutions (H1671Y and D1673A) that 

inactivate catalytic activity 12; 47. Additionally, we used previously described constructs 

with dCas9 fused to active and inactive versions of histone acetyltransferase p300 48, as 

well as to the transcriptional activator VP160 49. Transient expression of every fusion 

protein in HEK293 cells was verified by western blot analysis with anti-dCas9 (Figure 

1B). 

Targeted reactivation by dCas9-ROS1 of a methylation-silenced reporter gene  

We first compared the capacity of dCas9-ROS1 and dCas9-TET1 to reactivate a 

methylation-silenced luciferase reporter gene under the control of the minimal human 

herpesvirus 1 thymidylate kinase (TK) promoter 46. We performed controlled in vitro 

methylation with M. SssI DNA methyltransferase to achieve three different methylation 

levels (50, 75 and 100 %), as assessed by HpaII sensitivity (Figure S1). Six sgRNAs 

were designed to target a region spanning about 700 bp upstream the initiation codon of 

the reporter gene, including the TK promoter (Figure 1C). We co-transfected HEK293 

cells with the methylated reporter plasmid and either dCas9-ROS1 or dCas9-TET1 

effectors, together with single or multiple sgRNAs (Figure 2). We found that dCas9-
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ROS1 was able to relieve repression induced by 50 % and 75 % methylation when 

targeted by most sgRNAs, although the effect was generally higher with combined 

sgRNAs. Importantly, luciferase activity levels in cells transfected with the mutant 

ROS1 version were similar to those detected in control cells transfected with either no 

sgRNA or with an empty vector containing no effector. Therefore, reactivation induced 

by ROS1 is dependent on its enzymatic activity. However, no reactivation was detected 

when the DNA methylation level was 100 %. In comparison to dCas9-ROS1, no 

reactivation was detectable in cells expressing dCas9-TET1, irrespective of the sgRNA 

combination used and/or the level of DNA methylation. These results suggest that 

dCa9-ROS1 can be targeted to reactivate a methylation-silenced gene, but its effect is 

dependent on DNA methylation density.  

Comparison of reactivation achieved by ROS1 and effectors not involved in DNA 

demethylation 

We next asked whether reactivation levels achieved by ROS1 are similar when 

tested with a different reporter gene and equivalent to those obtained by effectors not 

involved in a DNA demethylation pathway. We selected sgRNAs 3 and 9, either 

individually or in combination, for targeted reactivation of a TK-controlled GFP gene 

silenced by 50 % methylation, and analyzed the effects of ROS1 and TET1 in 

comparison with p300 and VP160. We found that ROS1-induced GFP reactivation 

levels were similar to those observed with the luciferase reporter, and again a higher 

effect was achieved with combined sgRNAs (Figure S2). In comparison, p300 and 

VP160 induced reactivation levels about 2.5-fold and 12-fold higher, respectively, than 

those induced by ROS1. Similarly to ROS1, VP160 was most effective when targeted 

by both sgRNAs, whereas p300 was somewhat more efficient when targeted by sgRNA 

9 alone. As previously observed with the luciferase reporter, no reactivation of GFP was 



8 
 

detectable with dCas9-TET1. Therefore, ROS1-mediated relieving of methylation-

induced repression is achieved irrespectively of the targeted gene, being less effective 

than that achieved by either p300 or VP160.  

Reactivation induced by different dCas9-effectors is methylation-density 

dependent 

As shown above, derepression induced by ROS1 is abolished at high methylation 

levels (Figure 2). We therefore asked whether reactivation exerted by VP160 and p300 

is also methylation-density dependent. We co-transfected cells with TK-Luc plasmids 

displaying different DNA methylation levels (0, 10, 30 and 90 %) and either targeted 

(sgRNAs 3+9) or non-targeted dCas9-effector proteins (Figure 3). Control transfections 

lacking either effector protein or sgRNA showed that, as expected, increased DNA 

methylation significantly decreased luciferase activity, which was reduced to 0.028-

0.037% at 90 % methylation. Expression of targeted dCas9-ROS1 decreased 

methylation-induced repression by about 2-fold in plasmids displaying either 10 % or 

30 % methylation. Interestingly, expression was also induced in the unmethylated 

plasmid, which suggests that, as previously reported, transiently transfected DNA is 

subjected to de novo methylation 50. Alternatively, ROS1 may have a DNA 

demethylation-independent  role in transcriptional activation. In fact, we have 

previously shown that ROS1 actively interrogates unmethylated DNA in search of 5-

meC 51 and therefore may facilitate access to DNA independently of its demethylating 

activity. In any case, ROS1-induced expression was abolished at 90 % methylation. As 

previously observed with GFP, dCas9-p300 achieved higher reactivation levels than 

dCas9-ROS1, but its effect was similarly reduced by increased DNA methylation levels, 

and was also virtually abrogated at 90 % methylation. In contrast, the reactivation 

pattern exerted by dCas9-VP160 was different, displaying increasing reactivation when 
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methylation increased to 30 %. Nevertheless, similarly to ROS1 and p300, VP160-

induced reactivation abruptly decreased when methylation reached 90 %. As previously 

observed, no reactivation was detectable in cells expressing dCas9-TET1, regardless the 

methylation level of the reporter plasmid. These results indicate that relief of 

methylation-induced repression by three different effectors (ROS1, p300 and V160) is 

methylation-density dependent, with ROS1 and p300 displaying similar patterns.  

Transcriptional activation achieved by different effectors has dissimilar impact on 

gene product activity 

We next examined whether changes in luciferase activity induced by the different 

effectors correlate with mRNA levels of the luciferase reporter gene (Figure 4). We co-

transfected cells with a 50 % methylated reporter plasmid and either targeted or non-

targeted dCas9-effectors, and 48 h after co-transfection we measured luciferase activity 

and isolated total RNA. Levels of the firefly luciferase transcript were then analyzed by 

quantitative real-time PCR (qRT-PCR). We found that changes in luciferase activity 

and mRNA levels were generally highly correlated, although there were some 

differences among the different effectors. Thus, fold-change values for luciferase 

activity roughly paralleled those of mRNA levels when reactivation was targeted by 

dCas9-ROS1 or dCas9-p300. In contrast, increases in mRNA levels induced by dCas9-

VP160 were about 3-5 times lower than the corresponding increments in luciferase 

activity, depending on the specific sgRNA(s) used. Finally, dCa9-TET1 induced small, 

but statistically significant increases in mRNA levels, although changes in luciferase 

activity were minimal. These results indicate that targeted transcriptional activation 

achieved by different effectors has dissimilar impact on gene product activity, which 

likely reflects their different mechanisms of action. 
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No synergistic effects are detectable between dCas9-ROS1 and other dCas9-

effectors 

We next asked whether co-recruitment of dCas9-ROS1 with different effector 

domains may synergistically enhance reactivation of a methylation-silenced gene. We 

transfected different dCas9-effector expression plasmids into HEK293 cells either 

individually or in various combinations (Figure S3). To achieve comparable transfection 

efficiencies, the total amount of dCas9-effector expression plasmid was held constant 

(62.5 ng) in all transfections. We did not observe synergistic increases in luciferase 

activity in any combination tested. In fact, combining different effectors led to 

decreased, rather than increased activity levels. Thus, wt ROS1 and wt p300 induced 

higher reactivation levels when tested individually than in combination. Reactivation 

was decreased further when co-transfections included either one or two mutant versions. 

Similarly, combining wt ROS1 with either wt or mutant TET1 also led to decreased 

reactivation. On the other hand, the high reactivation levels induced by VP160 were 

reduced when combined with either wt or mutant ROS1. 

Co-recruitment of downstream BER factors does not improve dCas9-ROS1-

mediated reactivation 

We next examined whether reactivation induced by dCas9-ROS1 might be 

increased by co-recruitment of additional BER factors acting downstream the 5-meC 

excision step. Plant 5-meC DNA glycosylases are bifunctional DNA 

glycosylases/lyases that remove 5-meC and cleave the phosphodiester backbone by β- 

or β, δ-elimination, generating single nucleotide gaps with either 3´-PUA (3-phosphor-

α, β-unsaturated aldehyde ) or 3´-P (3´-phosphate) ends, respectively 22. These non-

canonical 3´ termini must be converted to 3´-OH ends before DNA polymerase and 
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ligase activities complete the BER process. In Arabidopsis, 3´-P and 3´-PUA ends are 

processed by the DNA phosphatase ZDP and the 3´-phosphodiesterase activity of 

apurinic/apyrimidinic (AP) endonuclease APE1L, respectively 52; 53. Although human 

cells are endowed with the corresponding orthologs PNK and APE1, respectively, we 

reasoned that co-recruitment of ZDP and/or APE1L to DNA demethylation sites might 

improve the reactivation process.  

We therefore constructed two additional effectors proteins by fusing dCas9 to 

ZDP and APE1L (Figure S4A) and verified their transient expression in HEK293 cells 

by western blot analysis (Figure S4B). We then transfected expression plasmids for 

dCas9-ROS1, -ZDP and -APE1L into cells either individually or in different 

combinations. As expected, in individual transfections only cells expressing dCas9-

ROS1 showed gene reactivation. However, co-expression of dCas9-ROS1 with ZDP 

and/or APE1L led to decreased reactivation levels (Figure S4C). Therefore, co-

recruitment of downstream BER factors do not improve gene reactivation induced by 

ROS1. 

Transcriptional reactivation induced by dCas9-ROS1 is concomitant with 

targeted, partial DNA demethylation 

The results reported above indicate that dCas9-ROS1 can induce transcriptional 

reactivation of a methylation-silenced reporter gene in non-replicating DNA. To 

examine whether such reactivation is accompanied of changes in DNA methylation, we 

co-transfected cells with 50 % methylated reporter plasmid and either targeted or non-

targeted dCas9-ROS1. For targeting, we used sgRNAs 3 and 9, either individually or in 

combination. As a control, we used the catalytically inactive mutant version of ROS1. 

After 48 h, we extracted plasmid DNA and performed methylation analysis by bisulfite 

DNA sequencing of a region upstream the luciferase gene, including the TK promoter 
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(Figure 5). A total of 12 CpG sites distributed over a 100-bp region were analyzed. We 

found that cells expressing catalytically-active dCas9-ROS1 exhibited a modest, but 

statistically significant, decrease of DNA methylation levels at specific CpG sites, when 

compared to those detected in cells expressing no sgRNA. Since dCas9-ROS1 is 

specifically targeted to the TK promoter of the reporter gene, partial local DNA 

demethylation may have a significant impact on transcriptional activity. The partial 

DNA demethylation detected in the recovered plasmid is the final outcome of a 

dynamic process in which targeted dCas9-ROS1 actively competes with the gene 

silencing machinery, including MBD proteins, recruited by methylated CpG sites. 

Furthermore, BER-dependent demethylation involves a DNA synthesis step, which in 

turn might facilitate access to transcription factors. 

No demethylation was detectable in cells expressing targeted dCas9-ROS1Mut, 

although DNA methylation at several CpG sites was increased when dCas9-ROS1Mut 

was co-transfected with sgRNA9, but not sgRNA3. The possibility exists that targeting 

of an inactive DNA glycosylase to specific locations may signal for recruitment of the 

de novo DNA methylation machinery. 

Interestingly, the location of sgRNA binding sites influenced the range of DNA 

demethylation. Thus, when dCas9-ROS1 was targeted by a single sgRNA, most 

demethylated CpG sites were located in a region spanning about 40 bp downstream its 

binding location. However, the demethylated area widened and covered both regions 

when targeted by both sgRNAs simultaneously. This result may explain the cooperative 

effect between sgRNAs observed in luciferase activity reactivation. On the other hand, 

since some demethylated CpG sites were located upstream the sgRNA binding location 

(e.g., CpG site 1 with sgRNA3), it is also possible that some CpG sites are more prone 

to DNA demethylation than others. In any case, these results show that transcriptional 



13 
 

reactivation induced by dCas9-ROS1 is concomitant with a targeted, partial DNA 

demethylation that is dependent on ROS1 catalytic activity.  

We also analyzed the effect of other dCas9-effectors on DNA methylation levels 

(Figure S5). No significant changes were detected in cells expressing either dCas9-

VP160 or dCas9-TET1, but, surprisingly, we detected decreased DNA methylation in 

cells transfected with dCas9-p300.  
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Discussion 

Targeted active DNA demethylation based on the CRISPR/Cas technology may 

shed light on the roles of DNA methylation and its function in regulating gene 

expression. However, mammalian demethylation mechanisms are complex and generate 

5-meC derivatives that may be epigenetic marks on their own. In comparison, plants 

possess DNA glycosylases that directly excise 5-meC and may become useful tools for 

epigenetic editing 44; 45; 46. In this work we have fused the catalytic domain of 

Arabidopsis ROS1 5-meC DNA glycosylase to dCas9. We have found that the resultant 

fusion protein specifically reactivates transcription of methylation-silenced genes in 

non-replicating DNA and that reactivation is accompanied of decreased methylation 

levels at several CpG sites of the targeted sequence. Our data show that reactivation 

induced by dCas9-ROS1 requires catalytic DNA glycosylase/lyase activity, thus 

suggesting that is associated to BER-mediated replacement of 5-meC with 

unmethylated cytosine. 

In contrast to our findings with ROS1, we did not detect significant reactivation 

when using the 5-meC dioxygenase TET1. Although previous reports have reported 

TET1-mediated reactivation of methylation-silenced genes 41; 54; 55; 56; 57; 58, evidence 

supporting the involvement of an active DNA demethylation process is scarce, since in 

most cases the experimental conditions used did not prevent DNA replication. Few 

studies have specifically addressed TET-mediated reactivation of methylated genes in 

non-replicating DNA. One of such studies reported that expression of a methylated 

reporter gene is induced about 10-fold if the harboring plasmid is TET1-oxidized in 

vitro before transfection in ESCs, and showed that such reactivation is TGD-dependent 

57. On the other hand, co-transfection of TET2CD did not significantly increased 

activity an in vitro methylated reporter plasmid, although it increased about 13-fold 
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when cells additionally overexpressed TDG 58. Thus, targeted active DNA 

demethylation using TET proteins might require the simultaneous delivery of TDG 

DNA glycosylase.  

Previous studies have shown reactivation of methylation-repressed chromosomal 

loci using dCas9-TET1. It was found that dCas9-TET1 induced BDNF expression by 

about 6-fold in embryonic postmitotic neurons 33. Although a 2-fold reduction of BDNF 

reactivation upon inhibition of the BER factor PARP was taken as evidence of active 

DNA demethylation, it is important to remember that PARP plays important additional 

roles in transcription 59. On the other hand, targeted dCas9-TET1-mediated 

demethylation of FMR1 in FX52 iPSCs was only detected 9 days after infection 60, 

arguing against an active DNA demethylation mechanism. Other reports have failed to 

find transcriptional reactivation of chromosomal loci by dCas9-TET1, although it 

enhanced the effect induced by other effectors, such as dCas9-VP64 61. Interestingly, we 

found that dCas9-TET1 increased levels of the luciferase gene reporter mRNA, but such 

changes were not accompanied by gains in luciferase activity (Figure 4). In this respect, 

it is worth noting that TET1 can catalyze formation of 5-hydroxymethylcytidine (5-

hmrC) in RNA 62, which may function as an epitranscriptomic mark modulating mRNA 

stability and translation 63. 

In addition to ROS1 and TET1, in our study we used two chromatin modifiers 

(VP160 and p300) that have different action mechanisms and are not directly involved 

in DNA demethylation pathways. VP160, which contains ten tandem copies of herpes 

simplex viral protein 16 (VP16) 49, belongs to a group of acidic activators with 

chromatin decondensation activity 64. They contain short acidic-hydrophobic peptide 

motifs that recruit chromatin-remodeling complexes and histone modifiers, including 

endogenous p300 65. Therefore, the effects induced by dCas9-p300 in chromatin may be 
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a subset of those induced by dCas9-VP160, which may explain their different 

efficiencies in restoring transcription of a methylation-silenced gene.  

Our results also show that p300 and, particularly, VP160 are more efficient than 

ROS1 in releasing methylation-induced gene silencing. DNA methylation indirectly 

promotes formation of a condensed chromatin environment by recruiting MBPs, which 

in turn recruit histone deacetylases and chromatin remodeling complexes 66. We 

speculate that p300 and VP160, but not ROS1, can directly counteract the final effects 

of DNA methylation on chromatin structure and composition. In fact, if has been 

previously reported that GAL4–VP16 can prevent the assembly of a repressive 

chromatin structure on ectopically methylated DNA injected in Xenopus oocyte nuclei 

67. Thus, dCas9 protein, which is insensitive to DNA methylation 68, may deliver 

effectors directly acting on chromatin structure and/or composition to transiently revert 

or prevent methylation-induced gene silencing. In contrast, methylation removal will 

necessarily exert a more indirect, slower effect on chromatin decondensation and, 

eventually, transcriptional activity. However, it remains to be determined whether the 

effects of DNA demethylation will be less transient than those caused by VP160 and/or 

p300.  

Regardless their differences, all three effectors (ROS1, p300 and VP160) showed 

decreased reactivation capacities on DNA containing high DNA methylation levels. For 

example, reactivation by dCas9-ROS1 was detected when DNA methylation was 50% 

and 75%, but not 100%. Previous studies carried out with in vitro methylated plasmids 

have reported that transcriptional repression increases as a function of CpG methylation 

density 67; 69; 70. It has been suggested that dense methylation leads to a more stable 

binding of MBPs, such as MECP1, which would become resistant to displacement by 

activating factors 69.  
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It has been previously described that some effectors display enhanced activity 

when targeted by additional sgRNAs and/or when co-expressed with different effectors 

71; 72; 73. In agreement with previous reports 48 we did not detect such cooperative effect 

with dCas9-p300. However, we detected a cooperative effect when either dCas9-ROS1 

or VP160 were targeted by more than one sgRNA. Since our results suggest that the 

range of DNA demethylation induced by dCas9-ROS1 is partially limited by the 

sgRNA binding site, we hypothesize that additional sgRNAs may improve dCa9-ROS1 

efficiency by broadening the demethylated region.  

In contrast, we could not detect synergy between dCas9-ROS1 and other 

effectors. It is possible that cooperative effects are more likely among chromatin 

effectors acting through similar mechanisms. Thus, p300 displays a cooperative effect 

with UTX (H3K27 demethylase) and MLL4 (H3K4 methyltransferase), both of which 

are also histone modifiers 73, but not with the acidic transactivator VP64 48. On the other 

hand, we found that reactivation induced by dCas9-ROS1 was not enhanced when co-

expressed with downstream BER factors ZDP and/or APE1L. These results suggest that 

processing of DNA repair intermediates by the endogenous BER machinery is not a 

rate-limiting step during targeted ROS1-induced demethylation.  

In agreement with previous reports, we found that dCas9-VP160-induced 

reactivation is not accompanied by methylation changes. Thus, it has been previously 

reported that transient expression of TALE-VP64 induced transcriptional activation of 

OCT4 in NIH3T3 cells, but it did not altered its methylation status 74. However, we 

found that dCas9-p300-mediated transcriptional activation was accompanied of 

decreased methylation levels. To our knowledge, no methylation analyses have been 

performed in previous works reporting targeted p300-induced gene activation 48; 73; 75; 76. 

However, there are some indications that histone acetylation may facilitate DNA 
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demethylation. Thus, demethylation of an ectopically methylated reporter gene in 

HEK293 cells is increased by the histone deacetylase inhibitor TSA 77 and decreased by 

overexpression of an acetyltransferase inhibitor 78. Since TSA effects are abolished by 

transcription inhibitors, it has been proposed that acetylation-induced transcription 

facilitates DNA demethylation 79. The fact that no cooperative effect was detected 

between dCas9-ROS1 and dCas9-p300 suggests that ROS1 and p300 may function in 

the same pathway, which is consistent with the notion that histone acetylation facilitates 

DNA demethylation.  

In conclusion, our results suggest that dCas9-ROS1 may be a helpful tool to 

induce targeted DNA methylation changes in a replication-independent manner. 

Materials and methods 

Plasmid construction for expression of dCas9-effector proteins 

The constructs pAC93-pmax-dCas9VP160 (#48225 Addgene) 49, pcDNA-dCas9-

p300 Core (#61357 Addgene) 48 and pcDNA-dCas9-p300 Core (D1399Y) (#61358 

Addgene) 48 were purchased from Addgene. They encode the catalytically inactive Cas9 

(dCas9) fused to the VP160 activation domain, the catalytic core of the human 

acetyltransferase p300 and a mutant version of p300, respectively. The catalytic domain 

of human TET1 and its mutant version were amplified from construct MLM3727 

(#49961 Addgene) 47 and MLM3743 (#49962 Addgene) 47, respectively using 

Platinum™ Taq DNA Polymerase High Fidelity (Invitrogen) and primers with FseI and 

PacI sites (Table S1). Amplification products were digested and subcloned into pAC93-

pmax-dCas9VP160, replacing VP160. The catalytic domain of Arabidopsis ROS1 5-

meC DNA glycosylase was synthesized by codon-optimized for expression in human 

cells (GenScript) and subcloned into pAC93-pmax-dCas9VP160 by following the same 
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strategy described above for the TET1 constructs (Table S2). The catalytically inactive 

mutant version dCas9-ROS1Mut was generated by site-directed mutagenesis using the 

Quick-Change II XL kit (Stratagene) and specific oligonucleotides (Table S2). 

Arabidopsis 3´ DNA phosphatase ZDP and APE1L cDNAs were also amplified by PCR 

primers with FseI and PacI sites (Table S2) and subcloned into pAC93-pmax-

dCas9VP160, replacing VP160.  

Reporter plasmids 

The reporter plasmid TK-Luc was previously described 46. This plasmid contains 

the minimal human herpes virus 1 thymidylate kinase (TK) promoter (156 bp) upstream 

the firefly luciferase reporter gene. As an internal control, Renilla luciferase expression 

under CMV control (Promega) was used to normalize transfection efficiency in firefly 

luciferase reporter gene assays. To construct the reporter plasmid TK-eGFP, a fragment 

containing the eGFP reporter gene was obtained by HindIII- XbaI digestion of 

pCDNA3-eGFP plasmid (#13031 Addgene) and ligated into HindIII- XbaI digested TK-

Luc plasmid, replacing the luciferase reporter gene. TdTomato expression under CMV 

control (plasmid #54642 Addgene), was used to normalize transfection efficiency in 

TK-eGFP reporter gene assays.  

Reporter plasmids were in vitro methylated with CpG methylase M.SssI (New 

England Biolabs) according to the manufacturer’s instructions. Incubation at 37ºC was 

carried out at different periods of time to obtain different levels of DNA methylation, as 

indicated. DNA methylation was verified by digestion with methylation sensitive 

enzyme HpaII  (New England Biolabs). 
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sgRNAs design and expression  

sgRNA sequences to target the TK promoter (sgRNAs TK 3 to 12) were designed 

using Feng Zhang lab’s Target Finder software (http://crispr.mit.edu) or CHOPCHOP 

software (http://chopchop.cbu.uib.no/index.php). Best guides provided by both tools, 

scored by inversed likelihood of off-target binding, were selected. Expression plasmids 

for TK sgRNAs were constructed by cloning annealed oligos (Table S1) into 

pMLM3636 (#43860 Addgene) at BsmBI digestion sites.  

Cell culture and transfection 

Human embryonic kidney HEK293 cells were cultured in Dulbecco’s modified 

Eagle’s medium-high glucose (DMEM, 4,5 g/L d-glucose) (Sigma) supplemented with 

10% fetal bovine serum (FBS, Sigma) and 1% penicillin/streptomycin. 

Cells were seeded in 24-well or 6-well plates at a density of 1 x 105 or 6 x 105 

cells/well respectively, 24 h before transfection. For 24-well plates, each well was 

transfected using 1.5 µl of Lipofectamine LTXTM Reagent (Invitrogen) in 500 µl Opti-

MEM® I Reduced Serum Media (Invitrogen) with 500 ng of total plasmid DNA. The 

DNA co-transfection mix contained 250 ng of reporter plasmid, 5 ng internal control 

plasmid, 125 ng of the dCas9-effector expression plasmid and 125 ng of equimolar 

pooled or individual sgRNAs expression plasmids. All values were scaled up by a factor 

of 5 when using 6-well plates. Cells were harvested either 24 h (TK-eGFP) or 48 h (TK-

Luc) after transfection.  

Reporter assays 

Firefly and Renilla luciferase activities were measured 48 h after co-transfection 

using the Dual- Luciferase® Reporter Assay System (Promega). All readings were 

carried out in a TECAN infinite F200 PRO microplate reader and using the i-Control 
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1.7 software. Renilla luciferase was used as a reference gene for normalization. GFP 

expression was determined by flow cytometry. Cells were harvested 24 h after co-

transfection, washed and resuspended in PBS. The number of GFP+ cells was quantified 

using a LSR Fortessa SORP (BD Biosciences) flow cytometer and BD Facs Diva 

software. Data were analyzed with FlowJo software. TdTomato was used as a reference 

gene for normalization.  

Western blot analysis 

Expression of dCas9-effector fusion proteins was analyzed by standard western 

blotting 48 h after transfection. Cells were lysed in RIPA buffer (Sigma), containing 1% 

protease inhibitor cocktail set III, EDTA-free (Calbiochem). Proteins were separated by 

SDS-PAGE and transferred to a nitrocellulose membrane. Monoclonal anti-

CRISPR/Cas9-4G10 (1:2000, Diagenode) and anti-actin AC-40 (1:2.000, Sigma-

Aldrich) antibodies were used. 

DNA methylation analysis 

For DNA methylation analysis of reporter genes, plasmid DNA was extracted as 

previously described 46 and bisulfite-converted with EZ DNA Methylation-Gold Kit 

(Zymo Research). Bisulfite-converted DNA was amplified with Inmolase DNA 

Polymerase (Bioline) using specific primers (Table S3). DNA pyrosequencing was 

performed in a PyroMark Q24 instrument (Qiagen) according to the manufacturer’s 

guidelines and methylation analysis was determined using PyroMark Q24 Software 

(Qiagen).  

Quantitative Real-time PCR 

Total RNA was isolated using the RNeasy Mini Kit (Qiagen). 1 µg RNA was 

treated DNAse I, RNase-free (Thermo Scientific) and used for cDNA synthesis using 
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the qSCRIPTTM cDNA Synthesis Kit (Quanta Biosciences). cDNA was used as 

template in quantitative PCR reactions with NZY qPCR Green master mix (NZYTech) 

and specific primers (Table S3). All reactions were carried out on a CFX Connect™ 

Real Time System (Bio-Rad) and data were analyzed using the CFX Manager Software 

(Bio-Rad). Data were normalized using GAPDH and fold-increase in gene expression 

compared with controls was calculated with the formula 2-∆∆Ct 80.  
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Figure legends 

Figure 1. Structure of dCas9-effectors and reporter constructs. (A) Schematic 

diagrams of dCas9-effectors used in this study. (B) Transient expression of dCas9-

effector proteins in HEK293 cells. Western-blot analysis with an anti-Cas9 antibody 

was performed in cell extracts (80 µg) prepared 48 h after transfection. Actin was used 

as an input control. (C) Reporter constructs contained the TK promoter fused to firefly 

luciferase or Green Fluorescent Protein (GFP) genes. Arrows indicate targeting sites of 

sgRNAs. Numbers indicate positions relative to ATG.  

Figure 2. Targeted reactivation by dCas9-ROS1 of a methylation-repressed 

luciferase reporter gene. A TK-luciferase reporter plasmid with different average 

methylation levels was co-transfected with dCas9-ROS1 or dCas9-TET1 effectors and 

single or multiple sgRNAs. Luciferase activity was determined 48 h after co-

transfection and normalized to that detected with an empty vector (no effector). Values 

are means ± SE (error bars) from three independent transfection experiments. Asterisks 

indicate statistically significant differences (*: P < 0.05; **: P < 0.01; ***: P < 0.001; 

Student’s unpaired t-test). 

Figure 3. Effect of methylation density on targeted reactivation induced by 

different dCas9-effector proteins. A TK-luciferase reporter plasmid with different 

average methylation levels (0, 10, 30 or 90%) was co-transfected with dCas9-effectors 

and two combined sgRNAs. Luciferase activity, determined 48 h after co-transfection, 

is shown in relative light units (RLU). Values are means ± SE (error bars) from two 

independent transfection experiments. Asterisks indicate statistically significant 

differences (*: P < 0.05; **: P < 0.01; ***: P < 0.001; Student’s unpaired t-test). 
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Figure 4. Transcriptional reactivation induced by different dCas9-effector 

proteins. A TK-luciferase reporter plasmid with 50 % average methylation was co-

transfected with different dCas9-effectors and single or combined sgRNAs. Luciferase 

activity (top panels) and mRNA levels (bottom panels) were determined 48 h after co-

transfection and normalized to those detected with an empty vector (no effector). Values 

are means ± SE (error bars) from two independent transfection experiments. Asterisks 

indicate statistically significant differences (*: P < 0.05; **: P < 0.01; ***: P < 0.001; 

Student’s unpaired t-test). 

Figure 5. DNA demethylation induced by dCas9-ROS1 on a methylated 

reporter gene. A TK-luciferase reporter plasmid with 50 % average methylation was 

co-transfected with dCas9-ROS1 or its mutant version and single or combined sgRNAs. 

Plasmid DNA was re-isolated 48 h after co-transfection, bisulfite-treated, PCR-

amplified, and pyrosequenced. Graphs show methylation at different positions 

normalized to that detected after co-transfection with no sgRNA. Values are means ± 

SE (error bars) from two independent transfection experiments. Asterisks indicate 

statistically significant differences (*: P < 0.05; ***: P < 0.001; Student’s t-test). 
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Research Highlights 

 

• Active DNA demethylation in mammals requires TET-mediated 5-meC 
oxidation, whereas plant-specific DNA glycosylases such as ROS1 directly 
excise 5-meC 

• dCas9-ROS1, but not dCas9-TET1, reactivates methylation-silenced genes and 
induce partial DNA demethylation in a replication-independent manner 

• Reactivation induced by functionally different effector proteins (dCas9-ROS1, 
dCas9-VP160 and dCas9-p300) decreases with DNA methylation density 

• Plant 5-meC DNA glycosylases are a valuable addition to the CRISPR-based 
toolbox for epigenetic editing 

 

 

 


