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Abstract: This paper deals with the control problems of a wind turbine working in its nominal 
zone. In this region, the wind turbine speed is controlled by means of the pitch angle, which keeps 
the nominal power constant against wind fluctuations. The non-uniform profile of the wind causes 
tower displacements that must be reduced to improve the wind turbine lifetime. In this work, an 
adaptive control structure operating on the pitch angle variable is proposed for a nonlinear model 
of a wind turbine provided by FAST software. The proposed control structure is composed of a 
gain scheduling proportional–integral (PI) controller, an adaptive feedforward compensation for 
the wind speed, and an adaptive gain compensation for the tower damping. The tuning of the 
controller parameters is formulated as a Pareto optimization problem that minimizes the tower 
fore-aft displacements and the deviation of the generator speed using multi-objective genetic algo-
rithms. Three multi-criteria decision making (MCDM) methods are compared, and a satisfactory 
solution is selected. The optimal solutions for power generation and for tower fore-aft displace-
ment reduction are also obtained. The performance of these three proposed solutions is evaluated 
for a set of wind pattern conditions and compared with that achieved by a classical baseline PI 
controller.  

Keywords: multi-objective optimization; multi-criteria decision making; genetic algorithms; gain 
scheduling control; wind turbine; PI controller 
 

1. Introduction 
Wind energy has a leading role in the current great demand for renewable energy 

and is one of the sources that has experienced a greater growth in recent decades [1]. In 
order for this energy to be competitive, it is necessary to reduce its production and 
maintenance costs [2]. From a control point of view, this can be achieved by operating 
wind turbines to generate energy captured from the wind more efficiently and to reduce 
their different structural loads improving their reliability [3]. Furthermore, the control 
system design of wind turbines is even more difficult due to the fact that wind turbines 
are non-linear systems with multiple outputs to be controlled and are subjected to in-
termittent and variable disturbances such as the wind direction and wind magnitude 
[4,5].  

Traditionally, single controllers have been used in the different operating zones of 
the turbine, either to extract as much energy as possible for low wind speeds or to limit 
the generated power to its nominal value and thus avoid potential damages at high wind 
speeds [6]. Nowadays, horizontal axis variable speed and variable blade pitch (VS–VP) 
wind turbines with three blades are the most widespread because they allow the gener-
ation of optimal power at different wind speeds [7]. VS–VP wind turbines can work in 
several operational regions depending on the wind speed [8]: cut-in (I), partial load (II), 
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transition (III), full load (IV), and cut-out (V). The ideal power curve of a wind turbine is 
illustrated in Figure 1, where the potential generated power according to the wind speed 
is shown, and the different operation regions are marked. 

 
Figure 1. Operation regions of a wind turbine [9]. 

This work is focused on region IV (full load region), where the effect of the high 
wind speed has to be reduced in order to avoid damages on the system. In this case, it is 
necessary to maintain the generator power and, consequently, the generator speed, at 
their nominal values. This is performed by means of controllers that act on the blade 
pitch angle to modify the wind turbine aerodynamics limiting the energy extracted from 
the wind [10]. In this region, the generated power (Pg) depends exclusively on the gen-
erator speed (ωg) according to Equation (1), since the generator torque is kept constant at 
its rated value. 𝑃 = 𝑇 _ · 𝜔  (1) 

On the other hand, unmitigated structural loads can cause undesirable performance 
or even lead to early failure of the whole wind turbine system. The various types of these 
loads are commonly caused by the different deflection modes in the tower and rotor 
blades or vibrations in the turbine drive train. The tower structure mainly shows two 
vibration modes: fore-aft and side-to-side. The fore-aft movement is the tower rocking 
from back to front. There is a wide variety of works dealing with the mitigation of this 
vibration mode [11–13].  

Devices such as calibrated liquid column dampers (TLCDs) can be used in order to 
reduce these undesired oscillations. They can be fully passive [14] or semi-actively con-
trolled [15,16]. Another option is to use active control methods. Some commercial con-
trollers use pitch control to actively mitigate the tower fore-aft (f-a) movement when the 
wind turbine is operating at region IV. This is called Active Tower Damping Control 
(ATDC) and is usually performed adding another control loop to the basic turbine speed 
controller [17].  

Feedforward control is another strategy that can be used to decrease structural fa-
tigue and improve reference tracking of the generator speed. Traditionally, wind speed 
was measured in wind turbines through an anemometer, which was placed on the top of 
the nacelle. Nowadays, a more precise wind speed measurement can be obtained by 
means of technology based on light detection and ranging (LIDAR) [18]. LIDAR sensors 
allow a better implementation of those control strategies that take into account such 
measured variables. There is a wide variety of studies using feedforward pitch control in 
wind turbines to reduce fatigue in different parts, such as the longitudinal bending mo-
ment of the tower base [19–21]. As for the ATDC case, feedforward is usually combined 
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with a closed loop proportional-integral-derivative (PID) control to take advantage of 
both strategies. This can significantly improve the performance of the system in those 
cases in which the disturbance can be measured before affecting the controlled variable. 

Considering all the control elements discussed previously, computational intelli-
gence methods seem to be a practicable alternative to address wind turbine control 
problems. These methods such as Artificial Neural Networks (ANN) and the Genetic 
Algorithm (GA) are well known to be computational tools to improve the performance of 
control techniques [22]. As recent applications in wind turbines, in [23] the use of a neu-
ro-estimator based on neural networks is implemented, obtaining relevant improve-
ments in the performance of the wind turbine pitch control. In another work [24], a neu-
ral controller for wind turbine pitch control based on a radial basis function (RBF) net-
work is compared with a tuned PID obtaining better results. There are other works in 
technical optimization on wind turbines where the use of genetic algorithms helps the 
artificial neural network to reduce the computational cost and obtain better results in the 
optimization [25]. 

Wind turbine control problem can also be treated as a multi-objective problem con-
sidering a trade-off between optimizing power performance and lowering the structural 
loads on the wind turbine [26]. The Multi-Objective Genetic Algorithm (MOGA) method 
leads always to a correct and accurate identification of the whole Pareto front [27]. The 
results obtained by implementing the MOGA method do not depend on the analyzed 
objective and constraint functions. The drawback of the MOGA method is the large 
number of iterations required and, consequently, the large computational effort required 
to identify the Pareto front [27,28]. Recent works use multi-objective optimization tech-
niques to obtain a more efficient control of wind turbines with the help of emulated 
models. In [29], a coordination strategy between the blade pitch controller and generator 
torque and power controller is proposed through the Pareto optimization theory. In an-
other work [30], a multi-objective optimization using a genetic algorithm is used to pro-
vide an optimal selection of the orthogonal TLCDs designs which reduce the fore-aft and 
side-to-side fatigue and extreme loads.  

Other scientific works use this methodology applied on real wind turbines, although 
the latter are scarcer. In [31], an intelligent optimization method has been proposed to 
optimize the potential performance though yaw control strategy of a real wind turbine 
manufactured by China Ming Yang Wind Power (CMYWP). In this case, the Pareto front 
had two conflicting objectives: the minimization of the power reduction factor and the 
minimization of the yaw actuator.  

The testing of optimization and control strategies applied directly to real wind tur-
bines is unusual [32]. There is software that allows representing the aeroelastic and dy-
namic characteristics of a wind turbine without physically depending on the natural re-
sources of the wind and a real wind turbine. Wind energy industry often uses aeroelastic 
simulators for horizontal-axis wind turbines and can analyze its turbines. FAST software 
is the primary physics-based engineering tool created by National Renewable Energy 
Laboratory (NREL) for simulating the coupled dynamic response of wind turbines. 
Germanischer Lloyd (GL) WindEnergie GmbH, the world’s foremost certifying body for 
wind turbines and currently called Det Norske Veritas (DNV), issued a statement that it 
is acceptable for manufacturers to use the NREL codes for wind turbine certification [32]. 
Recent works of great scientific impact have been developed using FAST software related 
to wind turbine control [33–36]. In [37], a particle swarm optimization (PSO) and Pareto 
front-based algorithm have been developed in order to find the optimal actions that sat-
isfy the compromise between the power gain and the mechanical loads due to the yaw 
rotation.  

In this work, an adaptive wind turbine control structure operating on the pitch var-
iable in the nominal zone is developed. The proposed control strategy mainly combines 
two control loops, the first one to maintain the generator speed at its nominal value, and 
the second one to reduce the tower f-a displacements. The three elements of the control 
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scheme are the following ones: a gain scheduling proportional–integral (PI) controller 
that regulates the turbine speed by actuating on the pitch angle, an adaptive feedforward 
that compensates for the changes in wind speed, and an active tower damping control 
that generates an extra pitch control component proportional to the tower f-a velocity for 
reducing the tower’s structural fatigue.  

Because of the non-linearity of the system, these three proposed components are 
adaptive by gain scheduling according to the generator speed and/or the wind speed. An 
identification of six linear models at different operating points has been performed for 
tuning these controllers. For each identified model, a PI controller with fore-aft control 
and feedforward compensation is tuned by means of a multi-objective genetic algorithm 
(MGA) using two objective functions: one related to the generator speed error and other 
one related to the tower f-a displacements. To perform the optimization, the wind turbine 
model is simulated using Matlab/Simulink with the assistance of FAST (Fatigue, Aero-
dynamics, Structures, and Turbulence) software [38,39]. The different obtained solutions 
are analyzed with multiple criteria decision-making (MCDM) methods, and an average 
solution of the chosen MCDM methods is calculated as the optimal solution for each op-
erating point. 

The paper is organized as follows: Section 2 introduces a preliminary background 
about Pareto optimization and multiple criteria decision-making methods. In Section 3, 
the proposed adaptive control scheme is described. Section 4 shows a comparative anal-
ysis between the proposed controllers and a baseline controller. Finally, the conclusions 
are summarized in Section 5. 

2. Background on Multi-Objective Optimization 
In this section, some elements of the control methodology used in this work are 

summarized. 
In multi-objective optimization problems, a number of optimal solutions can be 

found given a set of conflicting objectives. A Pareto front solution is a methodology that 
provides data for decision-making considering a trade-off between the divergent objec-
tive functions [40]. 

For these multi-objective problems, diverse strategies first define a cost function 
with weights for different goals, and later the optimization problem is solved. An opti-
mization strategy based on Pareto efficiency to optimize two objective optimization 
problem was developed in [26,40]. The essential concepts of multi-objective optimization, 
definitions of Pareto optimal solutions, and Pareto efficiency are described in [29,40,41]. 

Multi-objective optimization problems are often solved by means of evolutionary 
algorithms, such as genetic algorithms, due to their practical benefits over traditional 
optimization techniques [42]. Genetic algorithms can be combined with local searching 
methods, achieving better computational efficiency [43,44]. In 2002, a fast elitist 
non-dominated sorting genetic algorithm (NSGA-II) was designed [44]; it is an enhanced 
version of the traditional nondominated sorting genetic algorithm (NSGA) [43]. In the 
current work, the algorithm NSGA-II for tuning the parameters of the proposed control 
scheme is employed. 

A representative example of a Pareto frontier is shown in Figure 2. The boxed points 
represent viable solutions to an optimization problem with two objectives to be opti-
mized. Smaller values are preferred to larger ones; that is, the smaller the objective func-
tions F1 and F2 for each alternative are, the better the choice is. Point C is dominated by 
both point A and point B for both criterion (F1(A) < F1(C), F1(B) < F1(C), F2(A) < F2(C), and 
F2(B) < F2(C)); hence, point C cannot be part of the Pareto frontier. Points A and B are not 
exclusively dominated by any other, and therefore they lie on the Pareto frontier. 
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Figure 2. Pareto frontier example. 

In cases where the different objectives are complex and cannot converge at the same 
point, an optimal solution can possibly be different from a satisfactory solution. In gen-
eral, some objectives reach a Pareto frontier and every solution on the frontier are opti-
mal. However, a high-level optimization objective is necessary to analyze the optimal 
solutions and chose the satisfactory one. MCDM methods are necessary to evaluate the 
set of different optimal solutions and then select one accordingly to specific preferences. 
MCDM methods are becoming an increasingly trendy in resolving renewable energy 
problems because these problems imply multiple and frequent conflicting criteria. As an 
example, in [45] a comparative analysis of ranking renewable energy sources for elec-
tricity generation in Taiwan was carried out using different MCDM methods. Then, they 
were utilized to quantitatively evaluate and rank all available alternatives. Next, three 
common MCDM methods are described. 

2.1. Simple Additive Weighting (SAW) Method 
Simple Additive Weighting (SAW) is considered the most intuitive and simple way 

to deal with MCDM problems [46,47]. The aggregated SAW is applied in [48] to assess 
the best wind power plant in evaluating economic, technical and environmental criteria. 
The SAW method requires a normalization process in order to compare all the ratings of 
existing alternatives. For a possible solution i, x  is the value obtained with respect to 
objective j. The normalized value r x  of each objective (or attribute) j is calculated ac-
cording to (2) for cost attributes (smaller is better). The performance value of each solu-
tion i (p ) is determined by (3), where w  denotes the weight of the criterion j, and r (x) 
is the normalized preferred ratings of the alternative i of the criterion j. The best alterna-
tive is that one with the highest total score p .  r (x) = min xx   𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (2) 

p = w  r  (3) 
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2.2. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) Method 
The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) was 

presented by Huang and Yoon in 1981 [49] and has been extensively adopted to solve 
MCDM problems in numerous diverse fields [50]. In the field of energy, several studies 
have used TOPSIS to rank the sustainable electricity production technologies [51] and to 
evaluate offshore wind turbines [52]. TOPSIS was suggested to determine the best alter-
native based on the concepts of the compromise solution. This can be considered as 
choosing the solution with the shortest Euclidean distance from the ideal solution and the 
farthest Euclidean distance from the negative ideal solution [53]. The vector normalized 
value r (x) in (4) is used for the calculation of each weighted normalized value v  ac-
cording to (5). 𝑟 (𝑥) = 𝑥∑ 𝑥    , 𝑖 = 1,2, … ,𝑚 ; 𝑗 = 1,2, … ,𝑛 

(4) 

𝑣 (𝑥) = 𝑤 𝑟 (𝑥) , 𝑖 = 1,2, … ,𝑚 ; 𝑗 = 1,2, … ,𝑛   (5) 

The positive ideal solution (PIS) and negative ideal solution (NIS) are derived from 
(6) for cost attributes: 𝑃𝐼𝑆 = 𝑣 (𝑥), 𝑣 (𝑥), … , 𝑣 (𝑥), … , 𝑣 (𝑥)  = 𝑚𝑖𝑛 𝑣 (𝑥) ,    𝑖 = 1, … ,𝑚   𝑁𝐼𝑆 = 𝑣 (𝑥),𝑣 (𝑥), … , 𝑣 (𝑥), … ,𝑣 (𝑥) = 𝑚𝑎𝑥 𝑣 (𝑥) ,     𝑖 = 1, … ,𝑚  (6) 

The next step is to calculate the separation from the PIS and the NIS between alter-
native solutions. The separation values can be measured using the Euclidean distance (7). 

𝑆 (𝑥) 𝑣 (𝑥)− 𝑣 (𝑥)  
𝑆 (𝑥) 𝑣 (𝑥)− 𝑣 (𝑥)  (7) 

The relative closeness to the ideal solution (𝐶 ) of all alternatives is calculated ac-
cording to (8). Finally, the preferred sorting can be obtained according to the similarities 
to the PIS (𝐶 ) in descending order to choose the best alternatives. As closer to 1 is 𝐶 , 
alternative i is closer to the PIS. 𝐶 = 𝑆𝑆 + 𝑆 , 0 < 𝐶 < 1 (8) 

2.3. VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) Method 
The VlseKriterijumska Optimizacija i Kompromisno Resenje (VIKOR) method [54] 

was created for multicriteria optimization of complex systems in order to find the solu-
tion in decision problems with conflicting and noncommensurable criteria [55]. In the 
VIKOR model, a compromise ranking can be obtained by comparing the measure of 
closeness to the ideal solution [53]. Each alternative is evaluated according to each crite-
rion function. Thus, a compromise ranking is estimated by comparing the measure of 
closeness to the ideal alternative. This method has been used for the assessment of sus-
tainable and renewable energy system problems, considering technical, economic, and 
environmental aspects [56,57]. The following steps are used for the algorithm VIKOR: 
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First, the best f  and worst f  values of all attribute functions are determined ac-
cording to (9). f  is the positive ideal solution for the j criteria, and f  is the negative 
ideal solution for the j criteria. 𝑓 = 𝑚𝑖𝑛(𝑥 ) , 𝑖 = 1,2, … ,𝑚              𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑓 = 𝑚𝑎𝑥(𝑥 )  , 𝑖 = 1,2, … ,𝑚 (9) 

Next, the distances from each alternative to the positive ideal solution are calculated 
and added according to (10) and (11) to obtain Si and Ri. Si represents the distance rate of 
the i alternative to the positive ideal solution (best combination), and Ri represents the 
distance rate of the i alternative to the negative ideal solution (worst combination). The 
best ranking will be based on Si values, and the worst ranking will be based on Ri values. 

S = w  (f − x )(f − f ) (10) 

𝑅 = 𝑚𝑎𝑥 𝑤  (𝑓 − 𝑥 )(𝑓 − 𝑓 )  (11) 

Finally, the VIKOR values Q  are calculated as (12). 𝑄 = 𝑣 𝑆 − 𝑆𝑆 − 𝑆  + (1 − 𝑣) 𝑅 − 𝑅𝑅 − 𝑅  (12) 

where S = max(S ) , S = min(S ), R = max(R ) R = min(R ) , and v is the weight of 
the strategy of “the majority of criteria’’ (or ‘‘the maximum group utility’’). (S −S )/(S − S  represents the distance rate from the positive ideal solution of the i alter-
native’s achievements. (R − R )/(R − R  represents the distance rate from the nega-
tive ideal solution of the i alternative. In general, a v value of 0.5 is a compromise attitude 
of evaluation experts. 

The diverse alternatives are sorted in decreasing order according to Qi. The best al-
ternative is the one with the minimum value of Q. 

3. Control Methodology 
The control strategy proposed in this work incorporates two control loops: one loop 

to maintain the generator speed at its rated value and another loop to reduce the tower 
f-a displacements. The control scheme is depicted in Figure 3. There is a gain scheduling 
PI controller regulating the generator speed by actuating on the pitch angle (βPI). This 
loop also contains an adaptive feedforward action (βFF) to compensate for the wind 
speed, considered a measured disturbance. In addition, there is an adaptive gain to mit-
igate the tower f-a oscillation that generates an extra pitch control component (βf-a) pro-
portional to the tower f-a velocity 𝑥𝐭 . This is also added to the pitch control signal. 

It is important to highlight that the control system is underactuated. It has only a 
single actuator, the pitch (β), and two controlled variables: the generator speed controlled 
by the PI feedforward controller and the tower f-a displacement compensated by the 
adaptive gain Kf-a. 

In the next subsections, the procedure of the proposed methodology is described. 
First, linear models are identified at different operating points within the nominal region. 
Then, the proposed control scheme of Figure 3 is implemented. The parameters of the 
blocks of this control scheme are tuned by means of multi-objective algorithms looking 
for a compromise between two conflicting objectives (tower f-a oscillations and generator 
speed) at each operation point and obtaining multiple possible solutions. Each solution in 
the Pareto frontier is analyzed through the aforementioned MCDM methods (SAW, TO-
SIS, VIKOR) and a ranking is generated with the results. Furthermore, the different 
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MCDM ranking methods are averaged to determine the best solution (satisfactory solu-
tion) at each operation point. Finally, three solutions (satisfactory, optimal objective 1, 
and 2 solutions) with their corresponding control parameters are selected to be imple-
mented and compared in the simulation with different wind patterns.  

 
Figure 3. Proposed control system scheme for the nominal region. 

3.1. Identification of Linear Models of the Wind Turbine 
A representative utility-scale multimegawatt turbine known as the “NREL offshore 

5-MW baseline wind turbine” has been used in this work. This wind turbine is a con-
ventional three-bladed upwind variable-speed variable-blade-pitch-to-feather-controlled 
turbine based on the REpower 5 MW commercial model [26]. The NREL 5-MW turbine 
model has been implemented by using software FAST version 8. Table 1 shows the 
properties for the NREL 5-MW Baseline Wind Turbine. More information on the param-
eters of the analyzed turbine can be found in [58–60]. 

Table 1. Properties of the NREL 5-MW Turbine and Drivetrain. 

Property Value 
Rated Power 5 MW 

Cut-In, Rated Rotor Speed 6.9 rpm, 12.1 rpm 
Cut-In, Rated, Cut-Out Wind Speed 3 m/s, 11.4 m/s, 25 m/s 

Rotor Orientation, Configuration Upwind, 3 Blades 
Control Variable Speed, Collective Pitch 

Drivetrain High Speed, Multiple-Stage Gearbox 
Rated Generator Speed 1173.7 rpm 

Gearbox Ratio 97:1 
Electrical Generator Efficiency 94.4% 

Rotor, Hub Diameter 126 m, 3 m 
Hub Height 90 m 
Rotor Mass 110,000 kg 

Nacelle Mass 240,000 kg 
Tower Mass 347,460 kg 

The proposed design is based on linear models. Due to the nonlinearity of the sys-
tem, their approximated linear models vary considerably depending on the operational 
point. In this study, approximated linear models are identified at the six operation con-
ditions considered according to the wind speed v  (12, 14, 16, 18, 20 and 22 m/s) within 
the nominal region (where ω  is 1173.7 rpm).  
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The linear models are given by the transfer functions from (13) to (16), where G (s) 
is the transfer function relating the generator speed (ω  ) in rpm to the pitch angle (β) in 
degrees; Gd (s) is the transfer function relating the controlled variable ω  to the wind 
speed (v ) in m/s as disturbance input; G (s) is the transfer function of the tower f-a 
displacement (x ) in m as output and the pitch angle (β) as input, and Gd (s) is the 
transfer function relating the controlled variable x  to the wind speed v . 𝐺 (𝑠) = 𝐾𝑇 𝑠 + 1 (13) 

𝐺𝑑 (𝑠) = 𝐾𝑇 𝑠 + 1 (14) 

𝐺 (𝑠) = 𝐾 𝑇𝑧 𝑠 + 1𝑇 𝑠 + 1 𝑠 + 2𝜎 𝑠 + 𝜔  (15) 

𝐺𝑑 (𝑠) = 𝐾 (𝑇𝑧 𝑠 + 1)(𝑇 𝑠 + 1)(𝑠 + 2𝜎 𝑠 + 𝜔 ) (16) 

Although the model parameters at the different operation points are not shown, the 
obtained open loop dynamics of all these models are stable. 

3.2. Description of the Control Blocks 
3.2.1. Gain Scheduling PI Control 

Gain scheduling control consists of pre-setting a controller for various operating 
points, and subsequently updating its parameters based on these previous designs ac-
cording to the operating point where the plant is working. There are different gain 
scheduling schemes in the literature. One of the possible strategies is equivalent to sev-
eral controllers working in parallel where only the output of one of them is chosen de-
pending on the operating conditions [61]. A very simple scheme of gain scheduling PI 
control is shown in Figure 4, where there are six previously designed controllers running 
in parallel. The most appropriate one is selected based on the disturbance d, whereas the 
other five controllers are configured in integral tracking mode. The other five controllers 
not selected are configured in the integral tracking mode. Using a similar scheme in this 
work, an adaptive PI control is designed. It is composed of six PI controllers tuned for 
each linear model obtained in the previous section. The value of the wind speed deter-
mines the PI controller that must be selected. 

 
Figure 4. Adaptive proportional–integral (PI) control scheme. 
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In order to assure a bumpless transfer between controllers without sudden changes 
in the control signal, all the PI controllers work in the integral tracking mode updating 
their integral action so that the output of the unselected controllers matches with that of 
the active controller. It is similar to the mechanism used to achieve anti-windup and 
bumpless transfer between automatic/manual modes in PID controllers [62,63]. The 
equation of a non-interactive PI controller is as follows: 𝑢(𝑠) = 𝐾 𝑟(𝑠) − 𝑦(𝑠) +  𝑟(𝑠) − 𝑦(𝑠)𝑇 𝑠  (17)

where u(s) is the control signal, r(s) is the reference, y(s) is the controlled signal, Kp is the 
proportional gain, and Ti is the integral time constant. This continuous control law is 
discretized using the Tustin approximation. The proportional P(k) and integral I(k) ac-
tions of this implementation in the k-th iteration are detailed below: 𝑃(𝑘) = 𝐾  𝑒(𝑘) 𝐼(𝑘) = 𝐼(𝑘 − 1) + 𝐾  (𝑒(𝑘) + 𝑒(𝑘 − 1)) 

(18)

where e(k) is the error signal r(k) − y(k). The constant Kpi is given by: 𝐾 = 𝐾 ℎ2 ∙ 𝑇  (19)

where h is the sample time (with a value of 0.02 s in this work). The control signal is the 
sum of these two actions P(k) and I(k). Additionally, as shown in Figure 4, there can be an 
extra control action from the input f. In this work, this input is used to add the feedfor-
ward action FF(k) to compensate for the wind speed changes, and the action FA(k) to 
reduce the tower f-a displacements. Therefore, the control signal is given by u(k) = P(k) + 
I(k) + FF(k) + FA(k). 

To cope with the input constraints of the process, an anti-windup mechanism is im-
plemented using an actuator constraint model that considers the process input satura-
tions. When the final control signal u(k) is out of its limits, this mechanism updates the 
integral term I(k), constraining u(k) to the exceeded limit. 

The mechanism is shown in (20). In addition, to ensure the tracking of the rest of the 
controllers to the final control signal u(k), it must be considered that the variables P(k) 
and I(k) are vector signals of six elements, one for each controller of the adaptive control. 
As a result, the signal I(k) is updated in the else statement in such a way that the rest of 
the non-active controllers follow the final signal u(k):                     𝑢(𝑘) = 𝑃(𝑘) + 𝐼(𝑘) + 𝐹𝐹(𝑘) + 𝐹𝐴(𝑘)                     𝑖𝑓 𝑢(𝑘) 𝑢  𝐼(𝑘) = 𝑢 − 𝑃(𝑘) − 𝐹𝐹(𝑘) − 𝐹𝐴(𝑘)          𝑒𝑙𝑠𝑒𝑖𝑓 𝑢(𝑘) < 𝑢  𝐼(𝑘) = 𝑢 − 𝑃(𝑘) − 𝐹𝐹(𝑘) − 𝐹𝐴(𝑘)                     𝑒𝑙𝑠𝑒 𝐼(𝑘) = 𝑢(𝑘) − 𝑃(𝑘) − 𝐹𝐹(𝑘) − 𝐹𝐴(𝑘)                    𝑒𝑛𝑑 

(20)

3.2.2. . Adaptive Feedforward Compensation 
Adaptive feedforward control is performed based on the multiple linear models 

identified previously in (13) and (14). Depending on the wind speed v  and generator 
speed ωg, the value of the gain and time constant of the dynamics G (s) and Gd (s) 
are linearly modified, and then the transfer function of the feedforward compensator 
Ca(s) is updated and calculated according to (21). From the wind speed estimation, it 
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provides the control action FF(k) of Equation (20) (or βFF signal in the proposed control 
scheme in Figure 3). 

𝐶𝑎(𝑠) = −𝐺𝑑 (𝑠)𝐺 (𝑠) = − 𝐾𝑇 𝑠 + 1𝐾𝑇 𝑠 + 1  

𝛽 (𝑠) = 𝐾 · 𝐶𝑎(𝑠) 

(21) 

Kff is a gain to be tuned from 0 to 1 and is aimed to reduce the control action of the 
feedforward strategy depending on the operating point. 

Adaptive feedforward compensation (Ca) is designed for all possible operating 
points within the nominal zone. To cover this entire operating range, a linearization of 
both dynamics has been carried out in a pitch range from 0 to 25 degrees in intervals of 
0.5 degrees and wind values from 11.5 to 24 m/s in intervals of 0.5 m/s. A linear interpo-
lation of both dynamics is performed as a function of ωg for each model. The parameters 
obtained from both dynamics as a function of ωg and vw are shown in Figure 5. The four 
parameters are updated in the adaptive controller through interpolations according to 
the wind speed and the generator speed. 

 
Figure 5. Parameters obtained for 𝐺 (𝑠) and 𝐺𝑑 (𝑠) 

3.2.3. Active Tower Damping Control (ATDC) 
The main way to deal with the mitigation of fore-aft movement tower in region IV is 

operating on pitch control through the ATDC. Tower motion can be measured instantly 
using an accelerometer mounted in the nacelle [64]. ATDC allows to reduce tower loads 
considerably without adversely affecting the quality of power or speed regulation. The 
tower dynamics can be modelled as a second-order system exhibiting damped simple 
harmonic motion [65]: 𝑀𝑥 + 𝐷𝑥 + 𝐾𝑥 = 𝐹 + 𝜕𝐹 (22) 

where xt is the tower f-a displacement; F is the applied force, which in this case is pre-
dominantly the rotor thrust; ∂F is the extra thrust added by the pitch angle action; M and 
K are related to the tower modal mass and the modal stiffness, respectively; and D is the 
damping term, which is usually small. Nevertheless, the effective damping of equation 
(22) can be increased with a particular additional damping Dp if ∂F is made proportional 
to −x  by means of an extra pitch angle action ∂β. Since measuring acceleration is less 
complicated than measuring velocity, the tower acceleration is measured and then inte-
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grated to provide an estimate of x . Then, according to the equations in (23), the extra 
pitch action ∂β can be obtained from the partial derivative of the thrust with respect to 
the pitch (∂F/∂β), the estimate of x , and the additional damping Dp [65]. The fraction 
with Dp and ∂F/∂β terms is included into a gain Kf-a, which is the design parameter to be 
tuned in the ATDC. 

The increment of pitch action ∂β is added to the pitch control signal of the generator 
power (or speed) controller, which provides the control action FA(k) of Equation (20) (or 
βf-a signal in the proposed control scheme in Figure 3).          𝜕𝐹 = 𝜕𝐹𝜕𝛽 𝜕𝛽 = −𝐷 𝑥,        

 𝛽 = 𝜕𝛽 = −𝐷𝜕𝐹/𝜕𝛽 𝑥 = −𝐾 𝑥 
(23) 

3.3. Multi-Objective Optimization by Genetic Algorithms 
In previous sections, the blocks contained in the proposed control scheme have been 

explained. In this section, the methodology for tuning the parameters of these control 
blocks is described. It is addressed as an optimization problem that combines two objec-
tive functions f1 and f2 to be minimized. These indices correspond to the integral of ab-
solute error (IAE) of the generator speed ωg and the cumulative variation rate (CVR) of 
the tower f-a displacement xt, and they are given in (24): 𝑓 = 𝐼𝐴𝐸 = 𝜔 −𝜔 (𝑡)  𝑑𝑡 

𝑓 = 𝐶𝑉𝑅 = |𝑥 (𝑡 ) − 𝑥 (𝑡 )| 𝑑𝑡 (24) 

The two conflicting objectives in (24) are combined to be optimized using mul-
ti-objective genetic algorithms. The proposed cost function seeks simultaneously to re-
duce the tower fatigue by minimizing fore-aft displacements while tries to maintain the 
generator speed close to its rated value. Due to the nonlinearity of these performance in-
dices, the PI tuning that minimizes them must be formulated as a nonlinear optimization 
problem [66,67].  

The optimization procedure is performed by means of simulations of each identified 
linear model in its operation point where the controller must maintain the generator 
speed at its rated value of 1173.7 rpm for wind step changes of ±0.5 m/s from its nominal 
value at that point. The six operation points are related to the wind speed values: 12, 14, 
16, 18, 20, and 22 m/s. The simulations also consider the noise presented by the nonlinear 
model on the variables ω  and x  to obtain more realistic results.  

Each controller has four parameters to be tuned: Kp and Ti (PI controller), Kf-a 
(ATDC), and Kff feedforward gain. The search range of the Kp, Ti, and Kf-a is limited from 
10−4 to 30, being negative for Kp. The Kff gain ranges from 0 to 1. The main options con-
figured in the genetic algorithm are as follows: a population size of 1000, an elite count of 
0.05 times the population size for reproduction with a crossover fraction of 0.8.  

Due to the presence of two objective functions, a set of Pareto-optimal solutions with 
50 possible solutions is derived in each operation point. In each Pareto front of solutions, 
there is one optimal solution based on each objective function. Figure 6 shows the re-
sultant Pareto front for the operating point with wind speed of 12 m/s. The optimal solu-
tions based on each single objective function f1 = IAEωg and f2 = CVRxt are also pointed out. 

MCDM methods help to evaluate the different alternatives according to various 
criteria to obtain the most suitable solutions. Each approach has its advantages and dis-
advantages. There is no method which is better than another; however, the selection of an 
approach depends mainly on the preferences of the selected criteria. Therefore, decision 
makers do not restrict themselves to one method and may achieve nonidentical results 
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using different methods. In this case, decision-makers require using integrated methods 
for the final decision. The average ranking of alternatives obtained by different methods 
can be a good choice [68]. 

 
Figure 6. Pareto front points obtained for a wind speed of 12 m/s. 

For each Pareto front, the following procedure is performed: first, the SAW, TOPSIS, 
and VIKOR method are applied to each one of the 50 possible solutions of the front. Next, 
the solutions are sorted from the best to the worst for each method. Then, the average of 
the three methods applied in each solution is calculated, and the solution with ranking 
equal to 1 is considered the best satisfactory solution. The results of the average ranking 
method for the ten best possible solutions obtained at the operation point with wind 
speed of 12 m/s are shown in Table 2. In this case, the best average solution coincides 
with the best solution obtained by the TOPSIS method. 

Figure 7 shows the Pareto front obtained for each operation point. In each one, the 
best solution according to the different MCDM methods and the average ranking solu-
tion are also highlighted. As the wind speed increases, the IAEωg index decreases, and the 
CVRxt index increases. For the operating points associated to wind speed of 12 and 22 
m/s, the average ranking solution coincides with the TOPSIS optimal solution. In the case 
wind speed of 14, 16, and 18 m/s, the TOPSIS solution coincides with the optimal VIKOR 
solution. 

Table 2. The ten best solutions according to the average ranking method in the Pareto front ob-
tained for a wind speed of 12 m/s. 

Rank Average 
Rank 

SAW TOPSIS VIKOR 

1 7.6667 10 1 12 
2 8.0000 12 6 6 
3 8.0000 13 9 2 
4 8.3333 3 2 20 
5 8.3333 11 3 11 
6 9.0000 14 12 1 
7 10.3333 2 5 24 
8 10.6667 9 4 19 
9 10.6667 15 14 3 
10 12.0000 1 7 28 
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Figure 7. Pareto fronts obtained at the six operating points. 

Table 3 shows the control parameters obtained for the satisfactory solution at each 
operation point. They are also depicted in Figure 8 together with the obtained parameters 
for the IAEωg optimal solution and CVRxt optimal solution at each operation point. The 
optimal CVRxt solution has only the objective function of reducing the tower f-a dis-
placements as much as possible, while the optimal IAEωg solution only considers mini-
mizing the deviation of the generator speed from its nominal value. 

Table 3. Control parameters obtained for the satisfactory solution for each operation point. 

vw (m/s) Kp Ti Kf-a Kff 
12 −0.0494 6.1350 3.9874 0.8586 
14 −0.0315 4.2592 3.7942 0.8106 
16 −0.0346 6.4161 2.2943 0.9178 
18 −0.0344 6.9279 2.0323 0.9641 
20 −0.0330 6.8686 2.0981 0.9455 
22 −0.0496 6.1413 0.7911 0.9566 
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Figure 8. Control parameters at each operation point for different solutions. 

From Figure 8, it can be deduced how the different components that collaborate in 
the proposed control scheme cause an effect on the objective functions IAEωg and CVRxt 
with a certain degree of opposition between them. The following points can be pointed 
out:  
• To minimize the deviation of the generator speed from its nominal value (optimal 

IAEωg solution), it is necessary a strong participation of the feedforward control (Kff) 
and a low intervention of the active tower damping control (Kf-a). 

• To minimize the tower f-a displacements (optimal CVRxt solution), it is necessary to 
combine the PI controller with a low Ti together with a lower participation of the 
feedforward control (Kff) and a higher intervention of active tower damping control  
(Kf-a). 

• Satisfactory solutions achieve a compromise of both objectives combining an inter-
mediate Kp value of the PI controller with a strong participation of the feedforward 
control (Kff) and a medium intervention of the active tower damping control (Kf-a). 

4. Proposed Design Evaluation 
In this section, the performance of the proposed gain scheduling controller (GSC) 

obtained for the previous satisfactory solution is evaluated through two simulations with 
different wind speed profiles. The wind turbine is operated at Region IV, where the rated 
generator speed is 1173.7 rpm. The achieved responses are compared to those obtained 
by a traditional gain scheduling PI controller as baseline controller (BSC). For each sim-
ulation, a comparative quantitative analysis of the system responses is detailed by means 
of different performance indices. The indices of the responses obtained by the proposed 
GSC tuned with the parameters of the IAEωg optimal solution and CVRxt optimal solution 
are also collected. However, their simulation curves are not plotted in figures since the 
difference between the three GSC solutions is not clear enough to be distinguished.  
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The BSC used for comparison in this research is the gain scheduled proportional 
integral control originally developed by Jonkman [39]. Its structure is shown in Figure 9. 
The proportional gain Kp and integral gain Ki of the PI controller are updated as shown in 
(25) according to a scheduling function f(β) depending on the pitch angle value [39]. K = 0.0188·f(β) K = 0.0188·f(β)  f(β) = 𝟏𝟏 𝛃𝟎.𝟏𝟏 (25) 

 
Figure 9. Baseline controller structure within the nominal. 

4.1. Simulation with Step Change Wind Speed Profile 
In the first simulation, the wind speed profile is composed of different upward and 

downward step changes. It starts at 12 m/s and increases its value +2 m/s every 100 s until 
reaching 22 m/s; then, the rest of wind profile is a descending mirror of this part, as 
shown in Figure 10. This wind profile allows evaluating the control response of system 
through the six operation points used in the design stage. Figure 10 shows the responses 
of the proposed GSC obtained for the satisfactory solution (satisfactory GSC) in previous 
section and those achieved by the BSC. The wind speed profile vw, generator speed ωg, 
tower f-a displacement xt, and pitch angle β responses are depicted. The simulation re-
sults show that the proposed GSC performs better than the baseline controller for all 
wind speeds. In Figure 11, a part of these responses is zoomed to obtain a better appre-
ciation of the improvement of the proposed design. The GSC achieves a faster wind 
speed disturbance rejection improving the tracking of ω , and the fluctuations in the 
controlled variable x  are smaller.  
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Figure 10. Simulation responses for first simulation. 

 
Figure 11. Zoomed simulation responses for a wind speed step change from 12 to 14 m/s. 
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In order to analyze a fair comparison, the obtained GSC tuned with the satisfactory 
solution parameters is also compared with this same GSC tuned with the parameters of 
the two optimal solutions based on each objective functions f1 = IAEωg and f2 = CVRxt. 
Different performance indices are calculated from the simulation data for the compara-
tive quantitative analysis. These indices are the following: the two conflicting objectives 
used for optimization in the proposed designs (IAEωg and CVRxt), the cumulative varia-
tion rate of the pitch angle CVRβ, and the cumulative variation rates CVRMfa and CVRMss 
of the lifetime damage equivalent moments at the tower base in the fore-aft and 
side-to-side direction (Mfa and Mss), respectively [30,69]. The expressions of the three last 
indices are calculated from the simulation data according to (26). These last indices have 
not been used in the optimization process; however, they have been calculated to per-
form a more complete quantitative analysis. Table 4 shows all these indices for the four 
controllers: satisfactory GSC, IAEωg optimal GSC, CVRxt optimal GSC, and BC. 𝐶𝑉𝑅 = |𝛽(𝑡 ) − 𝛽(𝑡 )| 𝑑𝑡 

      𝐶𝑉𝑅 = 𝑀 (𝑡 ) −𝑀 (𝑡 )  𝑑𝑡 
    𝐶𝑉𝑅 = |𝑀 (𝑡 ) −𝑀 (𝑡 )| 𝑑𝑡 

(26) 

Table 4. Performance indices for steps change wind speed profiles. 

Controller /Indices 𝐈𝐀𝐄𝛚𝐠 𝐂𝐕𝐑𝐱𝐭 𝐂𝐕𝐑𝜷 𝐂𝐕𝐑𝐌𝐟𝐚 𝐂𝐕𝐑𝐌𝐬𝐬 
BSC 16.3·103  10.21 56.39 1.89·106 9.56·105 

Satisfactory GSC 1091.6 5.89 72.36 1.18·106 5.39·105 
Optimal IAEωg GSC 984.5 6.75 67.87 1.32·106 6.18·105 
Optimal CVRxt GSC 1911.1 5.50 73.13 1.11·106 5.09·105 

The IAEωg index related to the error has been improved at the expense of a greater 
control effort CVRβ in the manipulated variable β. It is important to clarify that the vari-
ations of step changes in wind speed are  unrealistic. However, this is a very strong re-
quirement for the control system, which must overcome the abrupt wind change. 

Observing the qualitative and quantitative results with step wind, the following 
points can be highlighted: the proposed GSC tuned with satisfactory solution parameters 
obtains a better CVRxt index value, reducing its index by 42.3% compared to that obtained 
by the baseline controller. With respect to the IAEωg value, the designed controller re-
duces this index by 93.3% in comparison with that obtained using the baseline controller.  

Figure 12 shows the spider diagrams obtained for the previously performed simu-
lations. These diagrams show the load comparisons (CVRMfa and CVRMss) versus objective 
functions (IAEωg and CVRxt) and the control effort CVRβ of the baseline control with all 
three controller solutions. The left spider diagram shows a comparison of the index val-
ues of the different controllers with respect to the BSC, and the right spider diagram 
displays the comparison for the three obtained GSC with respect to the satisfactory GSC. 

The results of the normalized spider diagrams with respect to the baseline control 
for step wind simulation show a significant improvement in the indices for the three de-
signed GSC. The results reflect a substantial improvement of the satisfactory, optimal 
IAEωg, and optimal CVRxt with a respective reduction of 93.3%, 93.9%, and 88.2% in the 
IAEωg index; 42.3%, 33.9%, and 46.1% in the CVRxt index; 37.7%, 30.4%, and 41.3% in the 
CVRMfa index; and 43.6%, 35.4%, and 46.8% in the CVRMss index with respect to the base-
line control. 
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Figure 12. Spider diagrams for first simulation. 

Although at first glance it seems that the results in the indices are similar for the 
three designed GSC, if these controllers are compared with each other with respect to the 
satisfactory solutions (right spider diagram in Figure 12), the satisfactory solution 
achieves a good balance. The satisfactory solution reduces the IAEωg index by 75.1% with 
respect to the optimal CVRxt solution and by 14.5%, 11.8%, and 14.7% for the CVRxt, 
CVRMfa, and CVRMss with respect to optimal IAEωg solutions. Table 5 shows the previ-
ously commented results. 

Table 5. Performance indices from Table 4 standardized to baseline control and satisfactory gain 
scheduling controller (GSC). 

Standardized in Baseline Control 
Controller /Indices 𝐈𝐀𝐄𝛚𝐠 𝐂𝐕𝐑𝐱𝐭 𝐂𝐕𝐑𝜷 𝐂𝐕𝐑𝐌𝐟𝐚 𝐂𝐕𝐑𝐌𝐬𝐬 
Satisfactory GSC −93.3% −42.3% 28.3% −37.7% −43.6% 

Optimal IAEωg GSC −93.9% −33.9% 20.4% −30.4% −35.4% 
Optimal CVRxt GSC −88.2% −46.1% 29.7% −41.3% −46.8% 

Standardized in Satisfactory GSC 
Controller /Indices 𝐈𝐀𝐄𝛚𝐠 𝐂𝐕𝐑𝐱𝐭 𝐂𝐕𝐑𝜷 𝐂𝐕𝐑𝐌𝐟𝐚 𝐂𝐕𝐑𝐌𝐬𝐬 
Optimal IAEωg GSC −9.8% +14.5% −6.2% +11.8% +14.7% 
Optimal CVRxt GSC +75.1% −6.6% +1.1% −5.8% −5.6% 

4.2. Simulation with Stochastic Wind Speed Profile 
The second simulation was performed using a more realistic wind speed profile 

with the following characteristics: a mean value of 17 m/s, a turbulent component with 
standard deviation of 10%, and a sine component with amplitude of 1 m/s and period of 
100 s. Figure 13 shows the simulation results using this wind speed profile.  
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Figure 13. Simulation responses for second simulation. 

The corresponding performance indices are collected in Table 6, where a compara-
tive quantitative summary analysis of the three GSC tuning solutions (satisfactory, op-
timal IAEωg, and optimal CVRxt solutions) is shown in comparison with the baseline 
control for stochastic wind speeds.  
Table 6. Performance indices for stochastic change wind speed profiles. 

Controller /Indices 𝐈𝐀𝐄𝛚𝐠 𝐂𝐕𝐑𝐱𝐭 𝐂𝐕𝐑𝜷 𝐂𝐕𝐑𝐌𝐟𝐚 𝐂𝐕𝐑𝐌𝐬𝐬 
BSC 4.66·104 15.59 138.37 2.68·106 4.52·105 

Satisfactory GSC 3.28·103 9.20 253.10 1.58·106 4.36·105 
Optimal IAEωg GSC 3.09·103 9.78 258.35 1.89·106 4.40·105 
Optimal CVRxt GSC 4.87·103 8.88 233.59 1.45·106 4.33·105 

Regarding the results in this second simulation, similar conclusions can be obtained: 
the designed GSC tuned with satisfactory solution obtains a better CVRxt index value, 
reducing it by 41% in comparison to that of the BSC. With respect to the IAEωg index 
value, the designed controller reduces this index by 92.9% compared to BSC. 

Figure 14 shows the spider diagrams obtained from the simulations performed with 
stochastic wind.  
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Figure 14. Spider diagrams obtained with stochastic wind. 

In a similar way to the results obtained for step wind, the results for stochastic wind 
show that a relevant improvement with respect to the base controller is achieved in the 
indices IAEωg, CVRxt, and CVRMfa for the three GSC designed. However, the same does 
not happen for the index CVRMss, which is hardly improved, since the objective functions 
designed for tuning the GSC did not consider this type of structural tower load. 

The results show a significant improvement of 92.9%, 93.3, and 89.5 in the IAEωg in-
dex; 41%, 37.3%, and 43% in the CVRxt index; 41.1%, 29.4%, and 45.9 in the CVRMfa index; 
and 3.6%, 2.7%, and 4.5% in the CVRMss index of the satisfactory solutions, optimal IAEωg, 
and optimal CVRxt with respect to the BSC.  

If the satisfactory solution is compared to the other optimal IAEωg and optimal CVRxt 
solutions, the satisfactory solution achieves an optimal compromise between both alter-
natives, reducing the index IAEωg by 48.5% with respect to optimal CVRxt solutions and 
6.3% and 19.9% in CVRxt and CVRMfa indices with respect to optimal IAEωg solutions. 
Table 7 shows the results that have been discussed previously. 

Table 7. Performance indices from Table 6 standardized to baseline control and satisfactory GSC. 

Standardized in Baseline Control 
Controller /Indices 𝐈𝐀𝐄𝛚𝐠 𝐂𝐕𝐑𝐱𝐭 𝐂𝐕𝐑𝜷 𝐂𝐕𝐑𝐌𝐟𝐚 𝐂𝐕𝐑𝐌𝐬𝐬 
Satisfactory GSC −92.9% −41% 82.9% −41.1% −3.6% 

Optimal IAEωg GSC −93.3% −37.3% 86.7% −29.4% −2.7% 
Optimal CVRxt GSC −89.5% −43% 68.8% −45.9% −4.5% 

Standardized in Satisfactory GSC 
Controller /Indices 𝐈𝐀𝐄𝛚𝐠 𝐂𝐕𝐑𝐱𝐭 𝐂𝐕𝐑𝜷 𝐂𝐕𝐑𝐌𝐟𝐚 𝐂𝐕𝐑𝐌𝐬𝐬 
Optimal IAEωg GSC −5.8% +6.3% +2.1% +19.9% ≈0% 
Optimal CVRxt GSC +48.5% −3.5% −7.7% −8.2% ≈0% 

If the two objectives, IAEωg and CVRxt, are globally analyzed, the satisfactory solu-
tion achieves better dynamic responses than the baseline controller for both wind pat-
terns, translating into a significant improvement in the generator angular speed control 
and reduction in the wind turbine tower fluctuations. 

As shown on the left spider diagrams of Figures 12 and 14, the blue pentagon is the 
outermost, which shows that any of the three proposed solutions for tuning the GSC 
(satisfactory, optimal IAEωg, and optimal CVRxt solutions) improves the system response 
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compared to the BSC. Furthermore, the satisfactory solution achieves a good balance 
between the optimal IAEωg optimal and CVRxt optimal solutions for both wind patterns.  

5. Conclusions 
A wind turbine adaptive control structure operating on the pitch variable in the 

nominal zone is developed in this work. The proposed control strategy is based on the 
following control loops: the first loop to maintain the generator speed at its nominal 
value reducing the fluctuations and consequently keeping the generated power constant 
through a gain scheduling PI controller with adaptive feedforward control, and the sec-
ond loop to reduce the tower fore-aft displacements through an active tower damping 
control (ATDC). 

The gain scheduling PI controller with adaptive feedforward regulates the turbine 
speed by actuating on the pitch angle, and the ATDC generates an extra pitch control 
component proportional to the tower fore-aft velocity reducing the structural fatigue of 
the tower.  

The tuning procedure of the PI controller parameters with fore-aft control and 
feedforward compensation is treated as an optimization problem with two objectives 
using multi-objective genetic algorithm: minimizing structural loads and keeping con-
stant the nominal generator speed. The computed Pareto curves of the trade-off between 
tower fore-aft fatigue load and deviation of the generator speed for different operation 
points demonstrate a potential tool for seeking possible solutions in tuning controllers for 
wind turbines. The average ranking of the MCDM methods SAW, TOSIS, and VIKOR is 
selected as satisfactory solution. 

The proposed controller tuned with the satisfactory solution parameters is evaluated 
with different wind conditions (step and stochastic wind profiles) and compared with a 
classic adaptive baseline controller as well as with the same controller tuned with each 
one of the two other optimal solutions (minimum fore-aft tower displacements and 
minimum generator speed deviations). Comparing the qualitative and quantitative re-
sults for both wind patterns between the satisfactory and baseline controller, it is im-
portant to highlight that the improvement of the IAEωg, CVRxt, and CVRMfa indices fully 
compensates for the increase in the CVRβ index. The simulation and spider diagrams re-
sults show a significant performance improvement of the proposed controller tuned with 
the satisfactory solution parameters in comparison to those of the baseline controller for 
both step and stochastic wind profiles. An improvement in the reference tracking of the 
generator speed and in the mitigation of the tower fore-aft oscillations has been achieved 
for both wind conditions. With respect to the other two optimal solutions, the satisfactory 
solution reaches a good balance between the two objectives to minimize with negligible 
effect on the CVRβ index. 

The simulation results show a good compromise between the different objectives, 
which is one of the main advantages of the proposed methodology in this work. Never-
theless, the multi-objective genetic approach requires a large number of iterations and, 
consequently, a considerable computational effort to identify the Pareto front. This 
drawback can be addressed and partially solved by using parallel computing. 

Finally, it is important to note that the study of the proposed methodology has been 
carried out by means of the aeroelastic FAST turbine model. This software has been suf-
ficiently validated against field measurements, and thus provides a good benchmark tool 
for the future implementation of the proposed controllers in a real turbine. The procedure 
performed in this work is general and can be extended to mitigating other types of loads 
on wind turbines. Although the work has been implemented on a 5 MW wind turbine, 
this methodology might be implemented in all types of large-scale horizontal axis wind 
turbines (HAWT) and variable-speed–variable-pitch (VS–VP) turbines, off-shore or 
on-shore. 



Appl. Sci. 2021, 11, 2844 23 of 25 
 

Author Contributions: Conceptualization, M.L.; methodology, M.L. and J.G.; resources, F.V.; 
software, M.L. and M.L.R.; validation, M.L.; investigation, M.L.; writing—original draft prepara-
tion, M.L. and J.G.; writing—review and editing, J.G., F.V. and M.L.R.; supervision, J.G. and F.V. 
All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding.  

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Acknowledgments: M. Lara would like to express appreciation for the FPU fellowship 
(FPU17/02747) from the Spanish Ministry of Education, Culture, and Sports. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Njiri, J.G.; Söffker, D. State-of-the-art in wind turbine control: Trends and challenges. Renew. Sustain. Energy Rev. 2016, 60, 377–

393, doi:10.1016/j.rser.2016.01.110. 
2. Luo, L.; Zhang, X.; Song, D.; Tang, W.; Li, L.; Tian, X. Minimizing the Energy Cost of Offshore Wind Farms by Simultaneously 

Optimizing Wind Turbines and Their Layout. Appl. Sci. 2019, 9, 835, doi:10.3390/app9050835. 
3. Kong, X.; Cai, C.-S.; Hu, J. The State-of-the-Art on Framework of Vibration-Based Structural Damage Identification for Decision 

Making. Appl. Sci. 2017, 7, 497, doi:10.3390/app7050497. 
4. Ancuti, M.-C.; Musuroi, S.; Sorandaru, C.; Dordescu, M.; Erdodi, G.M. Wind Turbines Optimal Operation at Time Variable 

Wind Speeds. Appl. Sci. 2020, 10, 4232, doi:10.3390/app10124232. 
5. Ruz, M.L.; Garrido, J.; Fragoso, S.; Vazquez, F. Improvement of Small Wind Turbine Control in the Transition Region. Process. 

2020, 8, 244, doi:10.3390/pr8020244. 
6. Kumar, D.; Chatterjee, K. A review of conventional and advanced MPPT algorithms for wind energy systems. Renew. Sustain. 

Energy Rev. 2016, 55, 957–970, doi:10.1016/j.rser.2015.11.013. 
7. Yaramasu, V.; Wu, B.; Sen, P.C.; Kouro, S.; Narimani, M. High-power wind energy conversion systems: State-of-the-art and 

emerging technologies. Proc. IEEE 2015, 103, 740–788. 
8. Fragoso, S.; Ruz, M.L.; Garrido, J.; Vázquez, F.; Morilla, F. Educational software tool for decoupling control in wind turbines 

applied to a lab-scale system. Comput. Appl. Eng. Educ. 2016, 24, 400–411, doi:10.1002/cae.21718. 
9. Fragoso, S.; Garrido, J.; Vázquez, F.; Morilla, F. Comparative Analysis of Decoupling Control Methodologies and H∞ Multi-

variable Robust Control for Variable-Speed, Variable-Pitch Wind Turbines: Application to a Lab-Scale Wind Turbine. Sustain-
ability 2017, 9, 713, doi:10.3390/su9050713. 

10. Simani, S.; Castaldi, P. Robust Control Examples Applied to a Wind Turbine Simulated Model. Appl. Sci. 2017, 8, 29, 
doi:10.3390/app8010029. 

11. Liu, H.; Tang, Q.; Chi, Y.; Zhang, Z.; Yuan, X. Vibration reduction strategy for wind turbine based on individual pitch control 
and torque damping control. Int. Trans. Electr. Energy Syst. 2016, 26, 2230–2243, doi:10.1002/etep.2201. 

12. Mohammadi, E.; Fadaeinedjad, R.; Moschopoulos, G. Implementation of internal model based control and individual pitch control to 
reduce fatigue loads and tower vibrations in wind turbines. J. Sound Vib. 2018, 421, 132–152, doi:10.1016/j.jsv.2018.02.004. 

13. Gambier, A.; Nazaruddin, Y.Y. Collective Pitch Control with Active Tower Damping of a Wind Turbine by Using a Nonlinear 
PID Approach. IFAC-PapersOnLine 2018, 51, 238–243, doi:10.1016/j.ifacol.2018.06.072. 

14. Murtagh, P.J.; Ghosh, A.; Basu, B.; Broderick, B.M. Passive control of wind turbine vibrations including blade/tower interaction 
and rotationally sampled turbulence. Wind. Energy 2007, 11, 305–317, doi:10.1002/we.249. 

15. Mensah, A.F.; Dueñas-Osorio, L. Improved reliability of wind turbine towers with tuned liquid column dampers (TLCDs). 
Struct. Saf. 2014, 47, 78–86, doi:10.1016/j.strusafe.2013.08.004. 

16. Fitzgerald, B.; Basu, B.; Nielsen, S.R.K. Active tuned mass dampers for control of in-plane vibrations of wind turbine blades. 
Struct. Control. Heal. Monit. 2013, 20, 1377–1396, doi:10.1002/stc.1524. 

17. Pascu, V.; Kanev, S.; Van Wingerden, J.-W. Adaptive tower damping control for offshore wind turbines. Wind. Energy 2016, 20, 
765–781, doi:10.1002/we.2058. 

18. Scholbrock, A.; Fleming, P.; Schlipf, D.; Wright, A.; Johnson, K.; Wang, N. Lidar-enhanced wind turbine control: Past, present, 
and future. In Proceedings of the American Control Conference, Boston, MA, USA, 8 July 2016; pp. 1399–1406, 
doi:10.1109/ACC.2016.7525113.. 

19. Ungurán, R.; Petrović, V.; Pao, L.Y.; Kühn, M. Uncertainty identification of blade-mounted lidar-based inflow wind speed 
measurements for robust feedback–feedforward control synthesis. Wind. Energy Sci. 2019, 4, 677–692, 
doi:10.5194/wes-4-677-2019. 

20. Yu, C.; Li, D. Fuzzy-PI and feedforward control strategy of DFIG wind turbine. In Proceedings of the IEEE PES Innovative 
Smart Grid Technologies, Tianjin, China, 21–24 May 2012; pp. 1–5. 



Appl. Sci. 2021, 11, 2844 24 of 25 
 

21. Kumar, A.A.; Bossanyi, E.A.; Scholbrock, A.K.; Fleming, P.A.; Boquet, M.; Krishnamurthy, R. Field testing of LIDAR assisted 
feedforward control algorithms for improved speed control and fatigue load reduction on a 600 kW wind turbine. In Pro-
ceedings of the European Wind Energy Association Annual Conference and Exhibition 2015, Paris, France, 17–20 November 
2015; pp. 31–35. 

22. Patrascu, M.; Ion, A. Evolutionary Modeling of Industrial Plants and Design of PID Controllers. Studies in Systems, Decision and 
Control 2015, 40, 73–119, doi:10.1007/978-3-319-26230-7_4. 

23. Sierra-Garcia, J.E.; Santos, M. Improving Wind Turbine Pitch Control by Effective Wind Neuro-Estimators. IEEE Access 2021, 9, 
10413–10425, doi:10.1109/access.2021.3051063. 

24. Sierra-Garcia, J.E.; Santos, M. Performance Analysis of a Wind Turbine Pitch Neurocontroller with Unsupervised Learning. 
Complex. 2020, 2020, 1–15, doi:10.1155/2020/4681767. 

25. Schaffer, J.D.; Whitley, D.; Eshelman, L.J. Combinations of genetic algorithms and neural networks: A survey of the state of the 
art. In COGANN 1992-International Workshop on Combinations of Genetic Algorithms and Neural Networks; IEEE Computer Society 
Press: Washington, DC, USA, 1992; pp. 1–37, doi:10.1109/COGANN.1992.273950. 

26. Odgaard, P.F. On usage of pareto curves to select wind turbine controller tunings to the wind turbulence level. In Proceedings 
of the 2015 European Control Conference, Linz, Austria, 15–17 July 2015; pp. 1534–1539, doi:10.1109/ECC.2015.7330756. 

27. Chiandussi, G.; Codegone, M.; Ferrero, S.; Varesio, F. Comparison of multi-objective optimization methodologies for engi-
neering applications. Comput. Math. Appl. 2012, 63, 912–942, doi:10.1016/j.camwa.2011.11.057. 

28. Magnier, L.; Haghighat, F. Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and 
Artificial Neural Network. Build. Environ. 2010, 45, 739–746, doi:10.1016/j.buildenv.2009.08.016. 

29. Lin, Z.; Chen, Z.; Wu, Q.; Yang, S.; Meng, H. Coordinated pitch & torque control of large-scale wind turbine based on Pareto 
efficiency analysis. Energy 2018, 147, 812–825, doi:10.1016/j.energy.2018.01.055. 

30. Park, S.; Glade, M.; Lackner, M.A. Multi-objective optimization of orthogonal TLCDs for reducing fatigue and extreme loads of 
a floating offshore wind turbine. Eng. Struct. 2020, 209, 110260, doi:10.1016/j.engstruct.2020.110260. 

31. Song, D.; Fan, X.; Yang, J.; Liu, A.; Chen, S.; Joo, Y.H. Power extraction efficiency optimization of horizontal-axis wind turbines 
through optimizing control parameters of yaw control systems using an intelligent method. Appl. Energy 2018, 224, 267–279, 
doi:10.1016/j.apenergy.2018.04.114. 

32. Buhl, M.; Manjock, A. A Comparison of Wind Turbine Aeroelastic Codes Used for Certification. In Proceedings of the 44th 
AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 9–12 January 2006; pp. 9456–9469, doi:10.2514/6.2006-786. 

33. Beltran, B.; Ahmed-Ali, T.; Benbouzid, M.E.H. Sliding Mode Power Control of Variable-Speed Wind Energy Conversion Sys-
tems. IEEE Trans. Energy Convers. 2008, 23, 551–558, doi:10.1109/tec.2007.914163. 

34. Hassan, H.M.; Elshafei, A.; Farag, W.; Saad, M. A robust LMI-based pitch controller for large wind turbines. Renew. Energy 
2012, 44, 63–71, doi:10.1016/j.renene.2011.12.016. 

35. Bakka, T.; Karimi, H.; Christiansen, S. Linear parameter-varying modelling and control of an offshore wind turbine with con-
strained information. IET Control. Theory Appl. 2014, 8, 22–29, doi:10.1049/iet-cta.2013.0480. 

36. Jafarnejadsani, H.; Pieper, J. Gain-scheduled λ1-optimal control of variable-speed-variable-pitch Wind Turbines. IEEE Trans. 
Control. Syst. Technol. 2014, 23, 372–379, doi:10.1109/tcst.2014.2320675. 

37. Saenz-Aguirre, A.; Zulueta, E.; Fernandez-Gamiz, U.; Ulazia, A.; Teso-Fz-Betono, D. Performance enhancement of the artificial 
neural network–based reinforcement learning for wind turbine yaw control. Wind. Energy 2019, 23, 676–690, doi:10.1002/we.2451. 

38. Jonkman, J. NWTC Information Portal (FAST). Available online: https://www.nrel.gov/wind/nwtc/fastv8.html (accessed on 29 
December 2020). 

39. Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5-MW reference wind turbine for offshore system 
de-velopment. Tech. Rep. 2009, 1–75, doi:10.2172/947422. 

40. Odgaard, P.F.; Larsen, L.F.; Wisniewski, R.; Hovgaard, T.G. On using Pareto optimality to tune a linear model predictive 
controller for wind turbines. Renew. Energy 2016, 87, 884–891, doi:10.1016/j.renene.2015.09.067. 

41. Cui, Y.; Geng, Z.; Zhu, Q.; Han, Y. Review: Multi-objective optimization methods and application in energy saving. Energy 
2017, 125, 681–704, doi:10.1016/j.energy.2017.02.174. 

42. Fogel, D.B. The Advantages of Evolutionary Computation. In Proceedings of the Biocomputing And Emergent Computa-
tion-Proceedings of Bcec97, Skövde, Sweden, 1–2 September 1997; pp. 1–11. 

43. Srinivas, N.; Deb, K. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evol. Comput. 1994, 2, 
221–248, doi:10.1162/evco.1994.2.3.221. 

44. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. 
Comput. 2002, 6, 182–197, doi:10.1109/4235.996017. 

45. Lee, H.-C.; Chang, C.-T. Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan. Renew. 
Sustain. Energy Rev. 2018, 92, 883–896, doi:10.1016/j.rser.2018.05.007. 

46. Fishburn, P.C. Letter to the Editor—Additive Utilities with Incomplete Product Sets: Application to Priorities and Assign-
ments. Oper. Res. 1967, 15, 537–542, doi:10.1287/opre.15.3.537. 

47. Churchman, C.W.; Ackoff, R.L. An Approximate Measure of Value. J. Oper. Res. Soc. Am. 1954, 2, 172–187, doi:10.1287/opre.2.2.172. 
48. Bagočius, V.; Zavadskas, E.K.; Turskis, Z. Multi-person selection of the best wind turbine based on the multi-criteria integrated 

additive-multiplicative utility function. J. Civ. Eng. Manag. 2014, 20, 590–599, doi:10.3846/13923730.2014.932836. 
49. Tzeng, G.-H.; Huang, J.-J. Multiple Attribute Decision Making; Apple Academic Press: Waretown, NJ, USA, 2011. 



Appl. Sci. 2021, 11, 2844 25 of 25 
 

50. Hwang, C.-L.; Yoon, K. Methods for Multiple Attribute Decision Making; Springer: Berlin/Heidelberg, Germany, 1981; pp. 58–191. 
51. Şengül, Ümran; Eren, M.; Shiraz, S.E.; Gezder, V.; Şengül, A.B. Fuzzy TOPSIS method for ranking renewable energy supply 

systems in Turkey. Renew. Energy 2015, 75, 617–625, doi:10.1016/j.renene.2014.10.045. 
52. Minguez, E.L.; Kolios, A.J.; Brennan, F.P. Multi-criteria assessment of offshore wind turbine support structures. Renew. Energy 

2011, 36, 2831–2837, doi:10.1016/j.renene.2011.04.020. 
53. Chitsaz, N.; Banihabib, M.E. Comparison of Different Multi Criteria Decision-Making Models in Prioritizing Flood Manage-

ment Alternatives. Water Resour. Manag. 2015, 29, 2503–2525, doi:10.1007/s11269-015-0954-6. 
54. Kaya, T.; Kahraman, C. Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The 

case of Istanbul. Energy 2010, 35, 2517–2527, doi:10.1016/j.energy.2010.02.051. 
55. Opricovic, S. Multicriteria optimization of civil engineering systems. Fac. Civ. Eng. Belgrade 1998, 2, 5–21. 
56. Cristóbal, J.S. Multi-criteria decision-making in the selection of a renewable energy project in spain: The Vikor method. Renew. 

Energy 2011, 36, 498–502, doi:10.1016/j.renene.2010.07.031. 
57. Büyüközkan, G.; Karabulut, Y. Energy project performance evaluation with sustainability perspective. Energy 2017, 119, 549–

560, doi:10.1016/j.energy.2016.12.087. 
58. Jonkman, J.M.; Buhl, M.L.J. FAST User’s Guide; National Renewable Energy Laboratory: Golden, CO, USA, 2005. 
59. Jafari, S.; Pishkenari, M.M.; Sohrabi, S.; Feizarefi, M. Advanced modeling and control of 5 MW wind turbine using global 

optimization algorithms. Wind. Eng. 2019, 43, 488–505, doi:10.1177/0309524x18807471. 
60. Yang, F.; Li, S.-S.; Wang, L.; Zuo, S.; Song, Q.-W. Adaptive Backstepping Control Based on Floating Offshore High Tempera-

ture Superconductor Generator for Wind Turbines. Abstr. Appl. Anal. 2014, 2014, 1–11, doi:10.1155/2014/139752. 
61. Albertos, P.; Mareels, I. Feedback and Control for Everyone.  Springer-Verlag Berlin Heidelberg: Germany; 2010; pp. 3–27. 
62. Garrido, J.; Lara, M.; Ruz, M.; Vázquez, F.; Alfaya, J.; Morilla, F. Decentralized PID control with inverted decoupling and 

superheating reference generation for efficient operation: Application to the Benchmark PID. IFAC 2018, 51, 710–715, 
doi:10.1016/j.ifacol.2018.06.187. 

63. Lara, M.; Computer Science and Numerical Analysis Department University of Córdoba. Spain; Garrido, J.; Vázquez, F. 
Adaptive PI control and active tower damping compensation of a wind turbine. Renew. Energy Power Qual. J. 2020, 18, 339–344, 
doi:10.24084/repqj18.323. 

64. Bossanyi, E.A. The Design of closed loop controllers for wind turbines. Wind. Energy 2000, 3, 149–163, doi:10.1002/we.34. 
65. Bossanyi, E.A. Wind Turbine Control for Load Reduction. Wind. Energy 2003, 6, 229–244, doi:10.1002/we.95. 
66. Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley Professional: Boston, MA, USA, 

1989. 
67. Wang, P.; Kwok, D. Optimal design of PID process controllers based on genetic algorithms. Control. Eng. Pract. 1994, 2, 641–648, 

doi:10.1016/0967-0661(94)90008-6. 
68. Shakoor, A. Adaptive application of multi-attribute decision making methods in determining the level of existence of a case 

study: Rural areas of Kamyaran Towns. Rural Stud. 2015, 6, 679–698. 
69. Sun, C.; Jahangiri, V. Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper. 

Mech. Syst. Signal Process. 2018, 105, 338–360, doi:10.1016/j.ymssp.2017.12.011. 
 


