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A B S T R A C T   

3D image scans are an assessment tool for neurological damage in Parkinson’s disease (PD) patients. This 
diagnosis process can be automatized to help medical staff through Decision Support Systems (DSSs), and 
Convolutional Neural Networks (CNNs) are good candidates, because they are effective when applied to spatial 
data. This paper proposes a 3D CNN ordinal model for assessing the level or neurological damage in PD patients. 
Given that CNNs need large datasets to achieve acceptable performance, a data augmentation method is adapted 
to work with spatial data. We consider the Ordinal Graph-based Oversampling via Shortest Paths (OGO-SP) 
method, which applies a gamma probability distribution for inter-class data generation. A modification of OGO- 
SP is proposed, the OGO-SP-β algorithm, which applies the beta distribution for generating synthetic samples in 
the inter-class region, a better suited distribution when compared to gamma. The evaluation of the different 
methods is based on a novel 3D image dataset provided by the Hospital Universitario ‘Reina Sofía’ (Córdoba, 
Spain). We show how the ordinal methodology improves the performance with respect to the nominal one, and 
how OGO-SP-β yields better performance than OGO-SP.   

1. Introduction 

In the medical field, plenty of data is obtained from patients in order 
to give an accurate diagnosis and decide on a beneficial treatment. From 
simple scalar to fully structured spatiotemporal data, like electrocar
diograms, projectional radiographs, and computed tomography scans, 
all of these sources aid medical staff look for abnormalities and signs of 
degradation or damage. Nonetheless, these examinations are time- 
consuming and costly for hospitals and other medical administrations. 
A great deal of expertise is needed in order to interpret all this data into 
useful information. 

1.1. Machine learning 

Machine Learning (ML) techniques can automatize some of these 
tasks by leveraging on existing data. They can serve as the core to a 
Decision Support System (DSS) in order to help medical staff make a 
better judgment or give an additional opinion. 

In the case of structured data, Convolutional Neural Networks 
(CNNs) have shown excellent performance in tasks such as classification, 
segmentation or regression. These models rely on large amounts of 
labeled data in order to learn. Examples of such tasks can be diagnosis 
(classification) (El-Dahshan, Mohsen, Revett, & Salem, 2014; Mazaheri 
& Khodadadi, 2020), automatic identification of anatomical regions 
(segmentation) (Peng, Xiong, Peng, & Lu, 2020) or landmark location 
(regression) (Payer, Štern, Bischof, & Urschler, 2019). 
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1.2. Parkinson’s disease 

One of many medical applications of Machine Learning (ML) 
explored in the literature is Parkinson’s disease (PD) diagnosis. PD is a 
degenerative nervous system disorder affecting the brain whose symp
toms are primarily motor-related: shaking, gait disturbances, slowness 
and difficulty walking. Other symptoms are related to sleeping, 
emotional or sensory problems. The cost on society of this disease grows 
as the symptoms worsen, as the greatest component of cost is in patient 
care and nursing home costs. Just in the UK, the total cost has been 
estimated to be between £445 million and £3.3 billion annually (Findley, 
2007). 

Assessing the severity of the neurological damage of PD patients is a 
crucial part for the correct treatment, as an unnecessarily high dose of 
levodopa (the most common medication for PD) may worsen symptoms 
in the long-term (Tomlinson et al., 2010). To evaluate this, doctors rely 
both on observations of motor capabilities (Marino et al., 2012) as well 
as imaging techniques like Magnetic Resonance Imaging (MRI) (Marino 
et al., 2012) and nuclear tomography like Single-Photon Emission 
Computerized Tomography (SPECT) or Positron Emission Tomography 
(PET) (Arbizu et al., 2014). Ioflupane (123I) (known commercially as 
DaTscan) is a neuro-imaging drug often used to evaluate the dopami
nergic activity in the nigrostriatal dopaminergic pathway when the 
disease may be in the early stages (Darcourt et al., 2010). It is injected 
into the patient’s bloodstream before taking a SPECT image, so that the 
brain’s dopaminergic activity can be inspected visually. The evaluation 
of this damage may require a great deal of experience. 

In recent years there has been a growing interest on the application 
of ML techniques to this kind of images, which require no previous as
sumptions on the regions of interest or relevant areas for the given task. 
Instead, these methods are able to discover for themselves where and 
what to look for in images, based solely on data previously labeled by 
doctors. Popular methods tackle binary (healthy control or disease) 
(Vinícius dos Santos Ferreira et al., 2018) or nominal (healthy control, 
disease A, disease B, …) classification (Akyol, 2020). 

Some datasets related to PD are available online for research use, 
such as the Parkinson’s Progression Markers Initiative (PPMI)1 or the 
LRRK2 Cohort Consortium (LCC).2 

1.3. Ordinal classification 

In the last decade, the concept of ordinal classification (sometimes 
referred as ordinal regression) has been popularized as a way to exploit 
extra information in a classification problem where a natural ordering of 
the classes is present (Gutiérrez, Pérez-Ortiz, Sánchez-Monedero, 
Fernández-Navarro, & Hervás-Martínez, 2016; Ben-David, 2008). This 
approach has been proven to outperform the classic nominal perspective 
in medical applications such as melanoma diagnosis (Sánchez-Mon
edero, Pérez-Ortiz, Sáez, Gutiérrez, & Hervás-Martínez, 2018) and liver 
transplantation (Dorado-Moreno et al., 2017). Up until now, research 
into this methodology applied to PD diagnosis has not been addressed, 
because existing scales, such as the Hoehn and Yahr scale (Hoehn & 
Yahr, 1967) or the Unified Parkinson’s Disease Rating Scale (UPDRS), 
require subjective evaluation from clinicians of tremor, rigidity or 
movement (Ramaker, Marinus, Stiggelbout, & Van Hilten, 2002) and are 
difficult to quantify in a single measure. 

A complete taxonomy of ordinal classification methods can be found 
in Gutiérrez et al. (2016). The most naive methods perform a simple 
regression using the class labels and then round the values when pre
dicting (Kramer, Widmer, Pfahringer, & de Groeve, 2010) or simply 
apply a label distance cost penalty to a classical nominal classification 

method (Kotsiantis & Pintelas, 2004). These basic approaches lack an 
understanding of the underlying label distance, as different mis
classifications may represent a different error cost. 

Threshold Models are another popular approach for this task. An 
underlying latent continuous variable is assumed to exist, from which 
the different ranks arise by assigning certain thresholds. Thus, in this 
framework, both the value of the latent variable and the thresholds need 
to be learned from the data. Some approaches, like the classical Pro
portional Odds Model (POM) (McCullagh, 1980) or the more recent 
gologit model (Williams, 2006) fall into the Cumulative Link Model 
(CLM) framework, a probabilistic method for predicting probabilities of 
groups of contiguous categories, taking the ordinal scale into account. 

Other ordinal approaches consist on decomposing the ordinal prob
lem into a set of binary problems (called Ordinal Binary Decomposition 
(OBD)). Sometimes these decompositions are solved by a set of different 
models, like in the cascade linear utility model (Wu et al., 2003). In 
other cases they are modeled by several outputs of the same underlying 
model (Cheng, Wang, & Pollastri, 2008). All OBDs present the same 
challenge: combining the results of all decompositions into a single final 
classification. The simplest approaches assign the first class to reach a 
certain threshold (Wu et al., 2003), but this can lead to an imbalance as 
the last classes are more difficult to select. Error Correcting Codes 
(ECOCs) are better suited to this task, as this approach considers all 
outputs equally in the final decision (Allwein, Schapire, & Singer, 2001). 

The available PD datasets mentioned previously only provide label 
information of binary, nominal or continuous nature. Our study presents 
a novel dataset, collected by the Clinical Management Unit of Nuclear 
Medicine of the Hospital Universitario ‘Reina Sofía’ (Córdoba, Spain), 
containing SPECT Ioflupane (123I) images of PD patients classified in 4 
distinct ordinal labels, according to their stage of presynaptic dopamine 
binding damage (‘no alteration’, ‘slight alteration’, ‘more advanced 
alteration’ and ‘severe alteration’). Ordinal methods are perfect candi
dates to tackle the task of predicting these labels, which serve as a better 
indicator for the medical decision process. 

1.4. Data augmentation 

Classification tasks may suffer from unbalanced data, especially in 
the medical field, as healthy patients are much more common than sick 
patients. Also, data gathering and proper labeling is expensive and time 
consuming. In this situation, data augmentation techniques are required 
in order to boost the performance of ML models. 

The most basic strategy for augmenting spatial data, like medical 
images, is image translation, rotation, flipping and cropping (Perez & 
Wang, 2017). Several of these can be used depending on the specific task 
to learn. For example, object detection tasks, such as anomaly or lesion 
detection, can be accelerated by using cropped Region of Interest (ROI) 
as samples (Rey, Arcay, & Castro, 2020). 

Classic techniques like Synthetic Minority Oversampling (SMOTE) 
(Chawla, Bowyer, Hall, & Kegelmeyer, 2002; Rivera & Xanthopoulos, 
2016) perform well on low dimensional data. Some techniques, such as 
Autoencoders (Hinton & Zemel, 1993) or Generative Adversarial Net
works (GANs) (Goodfellow et al., 2014) are able to leverage convolu
tional operations, which improve the performance and efficiency over 
spatial data. Those techniques, however, require a vast amount of 
training examples in order to avoid pitfalls like mode collapse. 

In order to meet this data volume requirement, more sophisticated 
data augmentation methods are being applied to medical data as of 
recently. As an example, Salazar, Vergara, and Safont (2021) combine 
GANs with Markov Random Field models to augment 3D functional MRI 
multi-subject data and enhance nominal classification performance. 

There also exist data augmentation methodologies that make use of 
ordinal information in the class labels to improve the synthetic data 
generation process. A family of such methods, presented by Pérez-Ortiz, 
Gutiérrez, Hervás-Martínez, and Yao (2015), are the Ordinal Graph- 
based Oversampling (OGO) methods. These consist on computing a 

1 http://www.ppmi-info.org/.  
2 https://www.neurodegenerationresearch.eu/cohort/lrrk2-cohort-consort 

ium/. 
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graph estimating the latent manifold structure in the data by exploiting 
ordinal information in the labels, and then using the edges on that graph 
to generate samples, similar to SMOTE. 

Classic proven techniques such as SMOTE and OGO can be adapted 
to work on spatial data: a CNN can first be trained so that a projection 
from high-dimensional data is learned, and then a traditional data 
augmentation method can be applied to the resulting low-dimensional 
data. 

1.5. Limitations of OGO 

Pérez-Ortiz et al. (2015) propose the use of a gamma distribution for 
the generation of samples in the inter-class space of the latent manifold. 
This distribution is skewed towards the part of the graph adjacent to the 
class to be augmented but permits the inclusion of features in the 
frontier of both classes. 

This, however, presents some limitations. The gamma distribution is 
not suited for the generation of values in a closed domain (in this case, 
δ ∈ [0,1]), as its original domain is in the interval [0,∞). This is not only a 
theoretical overlook, but it also hinders the ability to tune its parameters 
in a meaningful way, subject to the dataset to which it is applied. 

In this paper, an alternative to the gamma distribution is proposed: 
using the better suited beta distribution, which is bounded in the [0, 1]
interval and has easier-to-tune parameters, enabling a higher degree of 
flexibility which can help achieve better performance. 

1.6. Goals 

To the best of our knowledge, there are no previous works using ML 
methods for the assessment of the severity of brain damage from a pa
tient’s brain SPECT 3D image. These methods could help doctors in the 
diagnosis and treatment of PD and other parkinsonisms through DSSs 
and contribute towards the relief of the public health cost of this disease. 

Thus, the goals of the present work are:  

1. Exploring the potential classification performance improvement in 
using ordinal label information.  

2. Adapting the use of classical data augmentation and class balancing 
techniques to spatial three-dimensional data.  

3. Analyzing the developed methodologies in points 1 and 2 using a 
novel and extensive database of SPECT images from Hospital ‘Reina 
Sofía’ (Córdoba, Spain). 

4. Studying a potential improvement to the data augmentation meth
odology presented by Pérez-Ortiz et al. (2015) by applying a better 
suited probability distribution for generating synthetic samples in 
the class frontiers. 

The rest of this paper is organized as follows: In Section 2 we describe 
the data to be used and we propose a fully 3D Deep CNN model for the 
evaluation of presynaptic deficit in SPECT Ioflupane (123I) images. We 
design two versions of the same base model, one nominal and the other 
ordinal, differing on the output layer shape and the activation function 
as well as the loss function. We propose a novel approach for data 
augmentation using the beta probability distribution with efficiently 
estimated parameters. In Section 3, we describe the design of the ex
periments and metrics for the evaluation of the proposed methods. We 
show that our proposal performs better than the nominal methodology 
as well as the previous ordinal method. Finally, in Section 4, we discuss 
the results and propose future work. 

2. Materials and methods 

In this section, we present the dataset used for the experimentation, 
as well as the architecture of the proposed models and the novel data 
augmentation proposal. 

These models have been designed to tackle the task of assessing the 

alteration of dopaminergic activity in the brain of PD patients by 
examining 3D SPECT scans of the brain. 

2.1. Data description 

The dataset consists of 508 3D images provided by the Clinical 
Management Unit of Nuclear Medicine of the Hospital Universitario 
‘Reina Sofía’ (Córdoba, Spain). They are obtained by first administering 
the patients with Ioflupane (123I), a radiopharmaceutical which binds to 
the presynaptic dopamine transporters in the brain. Some time later, a 
SPECT scan is performed, so as to inspect the dopaminergic activity in 
the nigrostriatal dopaminergic pathway, which is one of the neuro
pathological characteristics of PD. 

Of these images, 314 (61.8%) are of healthy patients (class 0), 42 
(8.3%) show slight alteration (class 1), 52 (10.2%) show more advanced 
alteration (class 2) and 100 (19.7%) show severe alteration (class 3). It is 
common for medical diagnosis datasets like this one to have a severe 
imbalance problem. In our case, more than 60% of samples are of 
healthy patients, and less than 10% belong to class 1. 

The doctors’ diagnosis is attached as a class label to each of the 
images. Because of the gradual nature of these classes, the task of 
recognizing which of the four categories an image belongs to can be 
posed as an ordinal classification problem and, thus, specific techniques 
can be employed to exploit the order information. 

Automatic linear image registration has been performed on all im
ages using the FMRIB’s Linear Image Registration Tool (FLIRT) from the 
FMRIB Software Library (FSL) (Smith et al., 2004) considering the T2 
version of the MNI152 2 mm standard space SPECT template (Evans, 
Janke, Collins, & Baillet, 2012). Thus, all images have a final resolution 
of 91 × 109 × 91 voxels. Also, during training, the symmetrical nature 
of the images is exploited: with 50% probability, the images are flipped 
on the frontal axis (left to right) each time they are used. 

2.2. Global architecture 

The overall architecture of the CNN model considered in this paper 
consists on convolutional blocks of repeating layers reducing the size of 
the image while increasing the number of feature maps. Afterwards, the 
output of the convolutional part of the network is fed into a fully con
nected layer of neurons before computing the output decision of the 
model. 

Each convolutional block consists of a 3D convolutional layer fol
lowed by a batch normalization layer. The kernel size and the stride of 
the convolution are parameters to be cross-validated during the training 
process. The output of each block is then fed into a Leaky Rectified 
Linear Unit (LReLU) activation function, which has been proven to have 
good convergence properties such as scale-invariance and 1-Lipschitz 
continuity (Suzuki, 2018). 

The low resolution feature maps which are the output of the con
volutional blocks are then the input of a densely connected neuron layer 
(the number of neurons of this layer is also cross-validated during 
training) using, again, LReLU as the activation function. A final output 
layer computes the final classification given by the model. In the 
training phase, the model weights are updated using the Adam optimi
zation algorithm (Kingma & Ba, 2017) so that the outputs align with the 
annotated labels. 

We test two different architectures: a classic architecture based on 
nominal classification and an ordinal architecture, considering the 
ordering of the class labels. In Fig. 1, it can be noted that both archi
tectures share the same structure for their convolutional part, but they 
are different in the way the final output is computed. Moreover, two 
different class balancing methods are applied in each case, as explained 
in Section 2.5. 
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2.3. Classic nominal classification architecture 

As is the case with classic CNN architectures, the output of the 
convolutional part of the network is then fed to a single fully connected 
layer. This is then again fully connected with the output layer, which has 
as many outputs as classes to decide. Then, a softmax activation function 
maps the output of the network into a set of probabilities oq of belonging 
to each class C q : oq = P(y = C q). 

The optimizing criterion is the categorical cross-entropy loss, 
described as: 

ℓ(xi) = −
∑Q

q=1
1{yi = C q}log(P(yi = C q |xi)), (1)  

where Q is the number of classes, 1{yi = C q} is the indicator function 
that is equal to 1 when yi = C q and 0 otherwise and P(y = C q |xi) is the 
predicted probability of xi belonging to class C q. To evaluate the 
effectiveness of the trained model, a new unseen given sample x is 
classified as belonging to the class with maximum predicted probability 

ŷ = argmax1⩽q⩽QP(y = C q |x).

2.4. Proposed ordinal classification architecture 

When the classes are ordered, instead of dealing with the complete 
problem as previously mentioned, OBD can be applied: the problem is 
decomposed into Q − 1 binary decision problems. Each problem q con
sists on deciding if y ≻ C q conditioned to x (1⩽q < Q). 

This would normally require Q − 1 different models, each solving one 
of these binary problems. This approach, originally presented by Frank 
and Hall (2001), would imply to first compute every probability pq =

P(y = C q) based on the obtained models and then select the highest 
probability class. The individual probabilities are computed as a func
tion of the cumulative probabilities, P

(
y ≻ C q

)
, estimated by the binary 

models: 

p1 = P(y = C 1) = 1 − P(y ≻ C 1)

pq = P
(
y = C q

)
= P

(
y ≻ C q− 1

)
− P

(
y ≻ C q

)
∀1 < q < Q

pQ = P(y = C 1) = P(y ≻ C Q− 1).

However, different problems are associated to this approach: 
because the outputs of the different decompositions are not combined in 
the same training process, the basic probability assumptions (that is, 
P(y ≻ C q)⩾P(y ≻ C q+1), pq⩾0 and 

∑
qpq = 1) are not necessarily 

satisfied, which can lead to inconsistencies. Moreover, when computing 
the individual probabilities, at most only two of the model outputs are 
considered, instead of all of them. Finally, when obtaining the decom
position, the ratio of positive to negative samples becomes very unbal
anced in the extreme classes. In the case of an already unbalanced 
dataset, this procedure can become unrealistic. 

To circumvent this limitation, a compromise is proposed: a single 
convolutional model can be trained simultaneously to then be fed into 
multiple fully connected blocks, each one solving an individual binary 
classification subproblem. This way, the imbalance of the training data 
can be less acute, and training can be done in parallel. The output of 
each of the Q − 1 fully connected blocks has a sigmoid activation func
tion representing the probability ok = P(y ≻ C k |x) ∈ (0,1). 

Moreover, for obtaining the final probabilities, we use a more stable 
option based on the decision function of the ECOC framework (Allwein 
et al., 2001). The correct ideal output code for each class is considered as 
the coordinates of a vertex of a hypercube in Q − 1 dimensions, e.g. for a 
4 class ordinal problem classes C 1,C 2,C 3 and C 4 would be associated 
to the codes (0,0, 0), (1,0, 0), (1, 1,0) and (1, 1, 1), respectively. This 
way, all the model outputs are considered for classification. To decide 
which class a sample x belongs to, the class with the nearest code ac
cording to some distance d is selected: 

ŷ = argmin1⩽q⩽Q d(o, cq),

where o = (o1, o2,…, oQ− 1) is the vector of output values, and cq is the 
code vector associated with class C q. It can be noted that the afore
mentioned probability assumptions do not need to hold in order to 
assign a class in this framework. 

Instead of individually training the different binary subproblems (as 

Fig. 1. The two network architectures: nominal (above) and ordinal (below).  
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proposed for ECOC) and to be consistent with the decision criterion, the 
global optimization criterion of the network is set to be the mean 
squared error (MSE) loss: 

ℓ(xi) =
1

Q − 1
∑Q− 1

k=1
(1{yi ≻ C k} − P(yi ≻ C k |xi))

2
.

While classifying new samples, the L2 norm is used as the distance metric 
d, as it aligns with the MSE optimization criterion: 

ŷ = argmin1⩽q⩽Q ||o − cq||2.

2.5. Class balancing 

For problems of imbalanced nature, such as medical diagnosis, where 
samples of specific classes are a minority compared to the rest, some 
considerations need to be made in the training process to avoid biases in 
the final model that can undermine its generalization capabilities. 

Different techniques such as class balancing can help with this 
problem. These generally consist on sampling or generating techniques 
that balance the ratio of training samples of each class presented to the 
classifier during training. 

A popular approach is SMOTE: in order to generate new samples of a 
minority class, several existing samples of said class from the training set 
are randomly selected and a random weighted sum of their features is 
used as a new synthetic sample of that class. SMOTE can work well when 
the number of features is not too large and all features are continuous. 

In order to account for the ordinal information in the sample syn
thesis process, OGO techniques based on the idea of SMOTE have been 
previously proposed, such as OGO via shortest paths using a probability 
function for the inter-class edges (abbreviated to OGO-SP) (Pérez-Ortiz 
et al., 2015). This algorithm defines a way to construct a graph which 
captures the neighbouring relations between samples of the dataset, 
considering the ordering information provided by the class labels. 

2.6. OGO-SP algorithm 

Consider a dataset D = {(x1,y1),(x2,y2),…,(xN,yN)}, where each xi ∈

Rd is a training sample and yi ∈ {C 1,C 2,…,C Q} its corresponding 
class label, which follows a ranking structure (∀i < j, C i ≺ C j). 

From this, an N-vertex undirected graph G = (V, E) will be con
structed, where V corresponds to the vertices representing the N training 
samples and E⊆V2 corresponds to the edges representing the neigh
bouring relations between samples: 

V = {v1, v2,…, vN} = {x1, x2,…, xN},

E = {ei,j} = {(vi, vj)} = {(xi, xj)}, 1⩽i < j⩽N.

If q is the index of the class to be over-sampled, a graph G′

q of this 
form will be constructed based on three subgraphs: 

Gq− 1,q = (Vq− 1,q,Eq− 1,q),

Gq,q = (Vq,q,Eq,q),

Gq,q+1 = (Vq,q+1,Eq,q+1),

G′

q = (V ′

q,E
′

q) = (Vq− 1,q ∪ Vq,q ∪ Vq,q+1,Eq− 1,q ∪ Eq,q ∪ Eq,q+1).

The edges of graph Gq− 1,q are determined by the intersection of two 
different sets obtained from a neighbourhood analysis based on the 
distance relation d: 

Eq− 1,q = N d(Xq− 1,Xq, k) ∩ N d(Xq,Xq− 1, k),
N d(X1,X2, k) = {ei,j | (xi ∈ X1) ∧ (xj ∈ X2) ∧ (xj ∈ nnd(xi,X2, k))},

where Xc is the subset of all samples with label y = C c,N d(X1,X2, k) is 
the k-neighbourhood of X1 with respect to X2 according to some distance 
d and nnd(x,X, k) is the set containing the k nearest neighbours of x from 
set X. The vertices Vq− 1,q are all those appearing on Eq− 1,q: 

Vq− 1,q = {xi | ((xi, x) ∈ Eq− 1,q) ∨ ((x, xi) ∈ Eq− 1,q)}.

Using only the intersection of both neighbourhoods ensures that only 
the connecting regions of each class are considered. Parameter k will 
control how broad is the region to consider. 

Graph Gq,q+1 is defined in an analogous way: 

Eq,q+1 = N d(Xq,Xq+1, k) ∩ N d(Xq+1,Xq, k),
Vq,q+1 = {xi | ((xi, x) ∈ Eq,q+1) ∨ ((x, xi) ∈ Eq,q+1)}.

Finally, Gq is simply defined as: 

Eq,q = N d(Xq,Xq, k),
Vq,q = {xi | ((xi, x) ∈ Eq,q) ∨ ((x, xi) ∈ Eq,q)}.

For the case of the extreme classes (C 1 and C Q), one of Gq− 1,q or 
Gq,q+1 may be empty and only the connecting region to the one adjacent 
class will be considered. 

Based on the ordinal classification hypothesis that the distance to 
adjacent classes is lower than the distance to non-adjacent classes, the 
final graph Gq = (Vq,Eq) will be constructed based on the previously 
constructed G′

q. Ideally, a distance-based manifold exists in the class 
label, such that Xq lies in the space between Xq− 1 and Xq+1. In reality, 
some outliers may exist in Xq that are not desirable in the over-sampling 
procedure. In order to identify the key samples which lie between the 
adjacent classes, the shortest paths between the samples of Xq− 1 and 
Xq+1 are used to decide the edges present in the final Gq. 

A path between two vertices v1 and vz of the graph is defined as the 
sequence P = (v1, v2,…, vz) ∈ Vz such that ei,i+1 = (vi,vi+1) ∈ E. If a cost 
function f : E→R assigning a cost to every edge is defined, the shortest 
path P1,z is that which minimizes the total sum of the costs of the edges 
∑z− 1

i=1 f(ei,i+1). In our implementation, the cost function selected is the 
same as distance d used for N d, which is the L2 norm or euclidean 
distance: 

f (ei,j) = d(xi, xj) = ||xi − xj||2.

In order to find those patterns in Xq lying in the latent ordinal 
manifold, all the shortest paths between all the vertices in Vq− 1,q and all 
in Vq,q+1 will be computed using Dijkstra’s algorithm (Dijkstra, 1959), 
and only the edges contained in one or more of these paths will be 
included in Eq: 

Eq =
{

ei,j |∃a ∈ Vq− 1,q, b ∈ Vq,q+1
s.t.
(
vi, vj ∈ Pa,b

)
∨
(
vj, vi ∈ Pb,a

)}

Vq = {vi | ei,j ∈ Eq}.

Note that, if q is any of the extreme classes, Vq,q will have to be used 
instead of Vq− 1,q or Vq,q+1, depending on the case. 

An example of the computed graph (Vq, Eq) is shown in Fig. 2. 
Finally, new synthetic samples can be generated from Gq: in order to 

generate sample (x′

,C q), a random edge e = (xi, xj) ∈ Eq is selected so 
that x′ lies in the segment between xi and xj: 

x′

= (1 − δ)xi + δxj,

where δ is a random variable in the range [0, 1]. The distribution from 
where δ is sampled will depend on the selected edge e:  

• If both yi = C q and yj = C q (i.e. e is an intra-class edge), then δ is 
sampled from a uniform distribution U(0,1) just like SMOTE.  

• If yi = C q but yj ∕= C q (i.e. e is an inter-class edge), then δ is 
sampled from an asymmetrical distribution so that the new synthetic 
sample favours the augmented class but is able to capture the class 
transition phase. In the original OGO-SP paper (Pérez-Ortiz et al., 
2015), δ ∼ Gamma(k = 2, θ = 0.15). While this has the previously 
mentioned properties, the gamma distribution is not bounded, δ ∈ [0,
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∞), which means that P(δ > 1) > 0, and there is a risk that x′ lies in a 
different region of the manifold than C q and is therefore incorrectly 
labelled. 

In order to overcome this problem of the original algorithm, we 
propose the following modification: instead of weighting on a parameter 
δ ∼ Gamma(k,θ), the better suited beta distribution is used δ ∼ Beta(α,β), 
where the parameters α > 0 and β > 0 control the shape of the distri
bution (Keeping, 1995). We hypothesize that the beta distribution is 
better suited than the gamma distribution for this purpose, because it is 
bounded in the interval [0, 1], it has lower variance and its parametri
zation allows the probability density to be skewed towards a specific 
extreme, depending on the values of α and β. 

The beta distribution has been applied to model the behaviour of 
random variables limited to intervals of finite lengths in a wide variety 
of disciplines. This distribution, in its standard form, is a continuous 
distribution with probability density function f(x) given by: 

f (x) =
xα− 1(1 − x)β− 1

B(α, β)

for 0 < x < 1 and α > 0,β > 0, where B is the beta function. Depending 
on the parameter values, the following properties of the distribution can 
be outlined:  

• If α > 1, then f(0) = 0. Similarly, if β > 1, then f(1) = 0.  
• If both α > 1 and β > 1 (see upper right plot in Fig. 3), it has a unique 

mode at α− 1
α+β− 2.  

• If α = β, it is symmetric. If α = β = 1 it becomes the uniform 
distribution. 

We refer to this new method from now on as OGO-SP with beta 
frontier distribution (OGO-SP-β). 

Based on the two different possibilities of the two endpoints f(0) and 
f(1), four different asymmetric shapes can be obtained for this distri
bution. One of these shapes (α > 1 and β < 1) will not be considered, as 
this would put more probability mass in the neighbouring class side of 
the distribution. To ensure this, we use the quantile constraint P(δ <

0.5) = 0.75, so that the majority of the probability mass is in the 
augmented class side. 

Van Dorp and Mazzuchi (2000) prove that two quantile constraints 
are sufficient to parametrize the beta distribution and provide a nu
merical method to obtain the values of α and β that satisfy these con
straints. We therefore choose three other quantile constraints that, in 
combination with the previous one, yield the three different shapes, and, 
using the aforementioned method, we compute the values of α and β:  

(a) Beta distribution where P(δ < 0.5) = 0.75 and P(δ < 0.65) =

0.9 : δ ∼ Beta(α = 1.558,β = 2.827)
(b) Beta distribution where P(δ < 0.5) = 0.75 and P(δ < 0.75) =

0.9 : δ ∼ Beta(α = 0.513,β = 1.186)
(4) Beta distribution where P(δ < 0.5) = 0.75 and P(δ < 0.85) =

0.9 : δ ∼ Beta(α = 0.243,β = 0.642)

All three configurations were tested and compared to the original 
OGO-SP. 

Our hypothesis is that the beta distribution will be a better candidate 
for synthetic sample generation for certain datasets, like the one that 
will be studied in this paper (Section 2.1). While configuration (a) im
itates the original gamma distribution just for comparison, configuration 
(b) and (c) of OGO-SP-β exploit the versatility of the beta distribution. 

A graphical visualization of the shape of the probability density 
function for all distributions can be seen in Fig. 3. From there, it can be 
noted that when α < 1 the value of the PDF for δ = 0 tends to infinity, as 
more probability mass is directed to that extreme. The same thing 
happens for β < 1 and δ = 1. This way, the probability of generating 

Fig. 2. Example of the OGOSP graph construction procedure. The markers 
represent samples of the dataset. The graph (V2,E2) corresponding to class2 is 
constructed. The top diagram shows E1,2 (in red) and E2,3 (in blue). The bottom 
diagram shows the shortest path between two vertices in V1,2 and V2,3 (in 
green) and the edges of the final constructed graph E2 (in black). 

Fig. 3. Shape of the probability density functions for the four different distri
butions of δ, the original gamma distribution Pérez-Ortiz et al., 2015 and the 
three proposed configurations of the beta distribution (see Section 2.6). 
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samples in the inter-class region can be controlled, while favouring the 
generation of samples in the augmented class region with respect to the 
neighbouring class. 

The detailed process is finally specified in Algorithm 1.  
Algorithm1: OGO-SP algorithm 

Input D: The original dataset  
Input q: The class to augment  
Input n: How many instances of class q to generate  
Input k: The neighbourhood size  

1: begin OGO-SP D,q,n,k  
2: Construct graph Gq = (Vq,Eq) as described in Section 2.6  
3: D′ ←∅  
4: For i = 1 to n do  
5: repeat 
6: Select a random e = (xi, xj) from Eq, with uniform probability  
7: until yi = C q ∨ yj = C q  

8: if yi = C q ∧ yj = C q then ▹class-interior edge case  
9: Sample δ from an uniform distribution U(0,1)
10: else class-frontier edge case 
11: if yi ∕= C q then ▹Swap so that xi is the one with label C q  

12: xi,xj←xj ,xi  

13: end if 
14: Sample δ from an asymmetrical distribution (see Section 2.6)  
15: end if 
16: x′ ←(1 − δ)xi + δxj  

17: D′ ←D′

∪ {x′

}

18: end for 
19: return D′

20: end  

In our case, the data described in Section 2.1 is severely imbalanced, 
so data augmentation is crucial for the performance of the classification 
model. We argue that the OGO-SP-β algorithm is well suited here due to 
the ordinal nature of the problem: the alteration of dopaminergic ac
tivity is a gradual process, so it is expected to see a more severe damage 
in a later stage of the disease and vice versa. Moreover, because the 
intermediate classes are the minority ones, the beta distribution will 
favour the generation of samples in their regions. 

2.7. Application to spatial data 

Applying techniques like SMOTE or OGO-SP to spatial data, such as 
images or 3D scans is not appropriate. They are unable to capture the 
variability of the position of different objects in a scene or anatomical 
elements on a CT scan. Applying these techniques in the original space 
that the images are sampled on yields completely unnatural and inap
propriate synthetic samples that detract from the generalization capa
bilities of the resulting model. 

On the other hand, the convolutional part of a CNN model tries to 
achieve a projection from the original space to a small number of fea
tures that can separate the samples correctly according to the classifi
cation problem at hand. The space of this projection should be better 
suited for interpolation and, consequently, for the application of SMOTE 
and derived techniques. Thus, in this paper, we propose a two-step 
training process for the application of class balancing:  

1. First the whole network (convolutional  + fully connected parts) is 
trained on the original dataset D.  

2. Once the stopping criterion is reached, the convolutional part g is 
used to project the original dataset D into a new space with reduced 
dimensionality in order to obtain D′ : 

D′

= {(g(xi), yi) | (xi, yi) ∈ D}, g : Rd→Rd′ ,

where d is the original dimensionality of the data and d′ is the new 
reduced dimensionality.  

3. New synthetic samples for each class q are generated by using 
SMOTE in the nominal case and OGO-SP/OGO-SP-β in the ordinal 

case. If nq is defined as the number of samples labelled as C q in D′ , 
then D′

+q are the generated samples of class q. The number of samples 
to generate for each class is chosen so as to equalize the number of 
training samples of all classes. Note that this means that no synthetic 
sample will be generated for the majority class: 
⃒
⃒
⃒D

′

+q

⃒
⃒
⃒ =

(

max
1⩽k⩽Q

k
)

− nq.

4. Synthetic samples are then merged with dataset D′ to produce the 
augmented dataset D′

+: 

D′

+ = D′

∪

(
⋃Q

q=1
D′

+q

)

.

5. Finally, only the fully connected part of the original model is trained 
again using D′

+, with the same stopping criterion. 

3. Experimentation 

The five models previously described (one nominal and four ordinal 
for the different distributions for δ) will be compared against each other, 
in order to evaluate the effect of using the ordinal information in the 
learning process. 

3.1. Experimental design 

A stratified 5-fold cross-validation over the complete dataset is per
formed. The dataset is split into 5 (approximately) equal size subsets in a 
stratified fashion, so that the class distribution is maintained for each 
fold. For each step, one subset is used for testing and the rest are used as 
training samples. 

For each of these 5-fold steps, in the first phase, a model selection 
process is performed, i.e. the hyperparameters of the algorithm are 
tuned. For this, three 90/10 holdout splits are performed and all the 
possible combinations of the following parameter values are considered:  

• Learning rate (η): {10-3, 10-4}.  
• Hidden layer size (H): {2048, 4096}3.  
• Convolution kernel size (k): {3, 5}.  
• Neighbourhood size for the data augmentation method: {3, 5}. 

The mean MAE score across the three splits is used to rank the 
parameter combinations, and the best combination for each fold is then 
used for evaluation. 

Once the hyperparameter selection phase is completed, the optimal 
parameter combination is used in the second phase for final evaluation. 
The model is initialized and trained 30 times with different 90/10 train/ 
validation splits, as well as a different random seed for initialization of 
the weights of the network and data augmentation. 

The same scheme is repeated for each of the data folds. An illustra
tion of this process can be seen in Fig. 4. 

In every training instance, the validation samples are used for early 
stopping of the training process: when the loss over the validation set 
does not improve for 50 epochs (‘patience’ parameter), training is 
stopped, and the best performing weights are restored. 

A batch size of 32 samples is used in all cases. 
The code used to perform the experiments can be accessed through 

3 Note that in the case of the ordinal model, each output uses a (Q − 1)th of 
this number of nodes for each binary output, so the number of parameters 
between models is comparable 
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GitHub.4 

3.2. Evaluation metrics 

Multi-class nominal and ordinal metrics. 
While the Correct Classification Rate (CCR) is usually the most 

important criterion in classification tasks, in the case of high class 
imbalance, it is less relevant (Provost & Fawcett, 1997). In scenarios like 
this, a model that disregards the minority classes can still obtain a high 
CCR score, which is not desirable, and per-class sensitivity needs to be 
addressed (Sánchez-Monedero, Gutiérrez, Fernández-Navarro, & 
Hervás-Martínez, 2011). Still, while optimizing sensitivity, specificity 
may suffer a performance hit, so it also needs to be monitored. 

In addition to this, CCR does not consider how much each prediction 
deviates from the ground truth, as it is designed primarily for nominal 
classification problems (where all the mistakes are equally penalised). 
For ordinal classification problems, a classification error of only 1 class 
is more desirable over an error of 2 classes. For this reason, rank dif
ference metrics like the Mean Absolute Error (MAE), Spearman’s rank 
correlation coefficient (rs), Kendall’s rank correlation coefficient (τb) 
(Cardoso & Sousa, 2011) and Weighted Cohen’s Kappa (κ) (Ben-David, 
2008) are better suited to evaluate the performance of the model. 

Moreover, MAE may also be deceiving in high class imbalance scenarios, 
so per-class MAE is also useful to consider. 

When monitoring per-class metrics, it is useful to look at the mini
mum in order to ensure that performance does not increase at the 
expense of ignoring some of the classes. 

In this study, the following metrics will be used. Metrics to be 
maximized are marked with (↑) and metrics to be minimized with (↓). In 
the following equations, N denotes the number of test samples, Q de
notes the number of classes, yi is the class label for sample xi and ̂yi is the 
estimated label for sample xi.  

• CCR (↑): CCR = 1
N
∑N

i=11
{

ŷi = yi

}

.  

• Geometric mean of the sensitivities and minimum sensitivity (↑): 

GMS =

̅̅̅̅̅̅̅̅̅̅̅̅
∏Q

q=1
Sq

Q

√
√
√
√ ,

MS = min
1⩽q⩽Q

Sq,

where per-class sensitivity (Sq) is: 

Sq =

∑N

i=1
1{yi = ŷi = q}

∑N

i=1
1{yi = q}

.

• Geometric mean of the specificities and minimum specificity (↑): 

GMSp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∏Q

q=1
Spq

Q

√
√
√
√ ,

MSp = min
1⩽q⩽Q

pq,

where per-class specificity (Spq) is: 

Spq =

∑N

i=1
1{yi ∕= q ∧ ŷi ∕= q}

∑N

i=1
1{yi ∕= q}

.

• Mean Absolute Error (MAE) (↓): MAE = 1
N
∑N

i=1|ŷi − yi|.  
• Average and maximum MAE (↓): 

AMAE =
1
Q

∑Q

q=1
MAEq,

MMAE = max
1⩽q⩽Q

MAEq,

where per-class MAE (MAEq) is: 

MAEq =

∑N

i=1
1
{

yi = q
}⃒
⃒
⃒
⃒ŷi − yi

⃒
⃒
⃒
⃒

∑N

i=1
1
{

yi = q
} .

• Weighted Cohen’s Kappa (↑): κ = 1 −

∑Q
i=1

∑Q
j=1

wijpij
∑Q

i=1

∑Q
j=1

wijeij
. where wij is the 

disagreement cost when y = C i and ŷ = C j (wij = |i − j|), pij is the 
observed agreement and eij is the expected agreement due to chance.  

• Kendall rank correlation coefficient (↑): τb = nc − nd̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(nc+nd+n1)(nc+nd+n2)

√ , 

where nc, nd, n1 and n2 are computed from every pair {(yi, ŷi),(yj, ŷj)}. 
nc is the number of concordant pairs, nd is the number of discordant 

Fig. 4. The cross-validation scheme used for the validation of hyperparameters 
and evaluation of the models. 

4 https://github.com/ayrna/ordinal-cnn-parkinsons. 
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pairs, and n1 and n2 is the number of tied pairs only for y and only for 
ŷ, respectively: 

nc =
∑N

i=1

∑N

j=i+1
1

{[(

yi<yj

)

∧

(

ŷi< ŷj

)]

∨

[(

yi>yj

)

∧

(

ŷi> ŷj

)]}

,

nd =
∑N

i=1

∑N

j=i+1
1

{[(

yi<yj

)

∧

(

ŷi> ŷj

)]

∨

[(

yi>yj

)

∧

(

ŷi< ŷj

)]}

,

n1 =
∑N

i=1

∑N

j=i+1
1

{(

yi=yj

)

∧

(

ŷi ∕= ŷj

)}

,

n2 =
∑N

i=1

∑N

j=i+1
1

{(

yi ∕= yj

)

∧

(

ŷi= ŷj

)}

.

• Spearman rank correlation coefficient (↑): rs =
Cov(y,̂y)

σyσ
ŷ

, where Cov(y,

ŷ) is the covariance between the ground truth labels and the pre
dicted labels and σy and σ ŷ is their standard deviation. 

Of the previous metrics, CCR, MS, MAE, AMAE, MMAE, κ,
τb and rs are completely defined by Cruz-Ramírez, Hervás-Martínez, 
Sánchez-Monedero, and Gutiérrez (2014) and GMS by Pérez-Ortiz et al. 
(2015). CCR, GMS, MS, GMSp and MSp are all purely nominal 
metrics, while the rest apply only to ordinal class labels and are gener
ally more relevant for this kind of classification problems. 

Also, GMS, MS, MSp, GMSp, AMAE and MMAE were chosen as 
class imbalance-sensitive metrics, to asses the effectiveness in these 
scenarios. 

Lastly, based on the output scores of the models, the area under the 
Receiver Operating Characteristic (ROC) curve (AUC) will be computed. 
In order to obtain this value, as many curves as the number of classes are 
obtained, where each curve is based on a binary one-vs-rest labelling 
(OvR). Then, the average AUC is obtained from the Q curves. 

Binary metrics. Given that no previous literature exists on the diag
nosis of the stage of presynaptic damage from PD, some binary metrics 
will be extracted from the results with the only purpose of comparing it 
to previous works, which deal with the diagnosis problem of discerning 
PD patients from Healthy Controls (HC). Directly comparing CCR or any 
other of the previously mentioned metrics against the case of a binary 
classifier would be incorrect and unfair, as the ordinal metric is quite 
more demanding, having to classify into four different classes instead of 
only two. 

For this purpose, all class 0 labels will be considered as ‘negative 
class’ or HC and the rest (class 1 through 3) will be considered as 
‘positive class’ or PD. From this, a confusion matrix can be extracted. 
Using the number of true positives (TP), true negatives (TN), false pos
itives (FP) and false negatives (FN) the following metrics can be 
obtained: 

Accuracy =
TP + TN

TP + TN + FP + FN
,

Sensitivity =
TP

TP + FN
,

Specificity =
TN

TN + FP
.

3.3. Experimental results 

Table 1 includes a summary of all the results from the 150 executions 
of the different methodologies, based on the different performance 
metrics introduced in the previous subsection. A graphical summary of 
the results can be found in Fig. 5. 

From these results, it can be noted that some configuration of OGO- 
SP-β always shows better average performance over all other classifiers 
in all metrics, with the exception of CCR for which the nominal 

methodology obtains the best results, with OGO-SP-β (c) in second place. 
By looking at the GMS and MS metrics, it is very clear that the nominal 
methodology fails to address the present class imbalance and ignores the 
minority classes, arranging all test samples into a couple of the majority 
classes, which drops the score to zero in most of the evaluation splits. 

Comparing OGO-SP-β to the original OGO-SP, OGO-SP-β generally 
obtains better average performance over all splits, specially according to 
MAE. 

Both ordinal methodologies clearly outperform the nominal one. 
Fig. 6 shows the corresponding ROCs for the different classes of the 
problem. Both ordinal methodologies obtain a noticeable advantage in 
the intermediate minority classes, specially for class 1, the class with the 
least number of samples. 

We used a Wilcoxon signed-rank test to detect significant differences 
between the metrics. This version of the test was used to measure the 
performance of the classifiers, because the variables come from the same 
sample (Wilcoxon, 1945). Purely nominal methodology was compared 
with the overall best performing ordinal methodology using OGO-SP-β 
(configuration (c)). We also used the test to compare the ordinal 
methodology using OGO-SP with the best performing ordinal method
ology using OGO-SP-β (configuration (c)). 

The critical values (p-values), for a bilateral test of each metric, are 

Table 1 
Summary of evaluation results. Best mean results are highlighted in bold.   

CCR (↑) GMS (↑) MS (↑)  

Mean Std. dev. Mean Std. dev. Mean Std. dev. 

Nominal 0.7448 0.0412 0.1927 0.2015 0.0679 0.0774 
OGO-SP 0.7121 0.0422 0.4256 0.1847 0.2426 0.1611 
OGO-SP-β 

(a)  
0.7048 0.0487 0.4134 0.1891 0.2297 0.1575 

OGO-SP-β 
(b)  

0.7108 0.0644 0.4239 0.1734 0.2235 0.1475 

OGO-SP-β 
(c)  

0.7255 0.0423 0.4403 0.1830 0.2460 0.1451   

MSp (↑) GMS (↑) AUC (↑)  

Mean Std. dev. Mean Std. dev. Mean Std. dev. 

Nominal 0.7691 0.0569 0.8898 0.0179 0.8486 0.0344 
OGO-SP 0.8276 0.0407 0.8979 0.0138 0.8588 0.0345 
OGO-SP-β 

(a)  
0.8223 0.0406 0.8957 0.0146 0.8553 0.0385 

OGO-SP-β 
(b)  

0.8294 0.0601 0.8977 0.0229 0.8567 0.0331 

OGO-SP-β 
(c)  

0.8312 0.0512 0.9009 0.0170 0.8596 0.0366   

MAE (↓) AMAE (↓) MMAE (↓)  

Mean Std. dev. Mean Std. dev. Mean Std. dev. 

Nominal 0.3826 0.0737 0.6803 0.1127 1.1427 0.1328 
OGO-SP 0.3738 0.0586 0.5671 0.1131 0.9043 0.2148 
OGO-SP-β 

(a)  
0.3791 0.0643 0.5668 0.1070 0.9021 0.2005 

OGO-SP-β 
(b)  

0.3729 0.0751 0.5631 0.1038 0.9187 0.1800 

OGO-SP-β 
(c)  

0.3639 0.0649 0.5594 0.1186 0.9113 0.1896   

τb (↑)  κ (↑)  rs (↑)   

Mean Std. dev. Mean Std. dev. Mean Std. dev. 

Nominal 0.7119 0.0565 0.6816 0.0645 0.7702 0.0600 
OGO-SP 0.7323 0.0442 0.6822 0.0548 0.7980 0.0516 
OGO-SP-β 

(a)  
0.7282 0.0496 0.6776 0.0580 0.7968 0.0527 

OGO-SP-β(b)  0.7343 0.0467 0.6844 0.0654 0.8011 0.0512 
OGO-SP-β 

(c)  
0.7389 0.0481 0.6898 0.0596 0.7986 0.0548  
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provided in Table 2. 
Significant differences in performance (with α = 0.05) favouring the 

ordinal methodology over the nominal one are found for all metrics, but 
CCR and κ. As expected, the nominal methodology fixates on improving 
CCR instead of the rest of ordinal metrics, which are generally more 
desirable for ordinal type classification problems. Moreover, the nomi
nal methodology tends to ignore minority classes, obtaining signifi
cantly worse results for GMS, MS, MSp, GMSp and AUC. 
Furthermore, OGO-SP-β performs significantly better in CCR, MAE and 
GMSp compared to the original OGO-SP using the gamma distribution. 

Clearly, even when the tests do not find significant differences, OGO- 
SP-β shows better overall performance in the ordinal metrics. The 
inconclusiveness present in the imbalance-sensitive metrics 
(GMS, MS, MSp and MMAE) could be explained by their unstable 
nature, which results in a larger standard deviation, and thus it is more 
difficult for the test to draw a conclusion. 

Lastly, the results for the binary metrics results can be found in 
Table 3. The results are compared against the following works:  

• Rizzo et al. (2016): A meta-analysis of 20 different studies, all using 
different techniques, between 1988 and 2014.  

• de la Fuente-Fernández (2012): An aggregation of 2 different studies 
both using SPECT imaging. 

• Martinez-Murcia et al. (2017): A CNN approach for binary classifi
cation from SPECT imaging.  

• Orozco-Arroyave et al. (2016): An application of radial base Support 
Vector Machines to running speech audio samples from patients.  

• El Maachi, Bilodeau, and Bouachir (2020): An application of neural 
networks to gait sensor data from patients. 

Note that the task considered in these works is different, as the 
different possibilities for positive labels (PD) are not differentiated, 
greatly reducing the complexity. However, even considering that the 
proposed models are more informative and taking into account that the 
experimental settings and the datasets are not same, we can conclude 
that the performance obtained by the different proposals is competitive, 
specially when trying to achieve a balance between the three binary 

Fig. 5. Graphical summary of the experimentation results as boxplots.  
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metrics. That is, the extra information provided by the proposed multi- 
class classifiers is not obtained at the cost of losing performance in the 
binary task. 

4. Conclusions 

We have confirmed experimentally that the exploitation of ordinal 
information can improve the performance of a complex task such as the 
assessment of brain activity alteration in PD. This exploitation comes 
from aspects such as the model architecture, the optimization target and 
the data augmentation strategy. This expands on the current range of 
models capable of exploiting ordinal information, in this case, a fully 3D 
CNN. 

This methodology is able to alleviate the class imbalance problem 
while improving ordinal performance metrics. This approach could be 

applied to already existing ordinal classification tasks which suffer from 
this same problem, which is common among the medical field. 

Furthermore, the proposed OGO-SP-β ordinal augmentation algo
rithm improves performance of ordinal and nominal metrics compared 
to the original OGO-SP. 

From the more classical binary diagnosis point of view, a good per
formance is achieved, as can be noted in the comparison against expert 
diagnoses and other ML techniques. 

Future work lines include further data acquisition or the application 
of this methodology to publicly available data. Current available data 
commonly lacks ordinal information, but ordinal target labels may be 
extracted from already available information. Larger datasets could help 
obtain more relevant and precise results. Also, 3D ordinal applications 
outside the medical can be explored to asses the performance over 
nominal approaches. 
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Javier Barbero-Gómez: Writing - original draft, Conceptualization, 
Methodology, Software, Validation, Investigation. Pedro-Antonio 
Gutiérrez: Writing - review & editing, Supervision. Víctor-Manuel 
Vargas: Writing - review & editing, Software. Juan-Antonio Vallejo- 
Casas: Data curation. César Hervás-Martínez: Formal analysis, Writing 
- review & editing, Supervision. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

Akyol, K. (2020). Stacking ensemble based deep neural networks modeling for effective 
epileptic seizure detection. Expert Systems with Applications, 148, Article 113239. 
https://doi.org/10.1016/j.eswa.2020.113239 

Allwein, E. L., Schapire, R. E., & Singer, Y. (2001). Reducing multiclass to binary: A 
unifying approach for margin classifiers. Journal of Machine Learning Research, 1, 
113–141. https://doi.org/10.1162/15324430152733133 

Arbizu, J., Luquin, M., Abella, J., de la Fuente-Fernández, R., Fernandez-Torrón, R., 
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