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Abstract: A perspective on the use of heterogeneous catalysis to drive the waste-to-pharma concept is
provided in this contribution based on the conversion of furanics to active pharmaceutical ingredients
(APIs). The provided overview of the concept in this perspective article has been exemplified for two
key molecule examples: Ancarolol and Furosemide.

Keywords: heterogeneous catalysis; waste-to-pharma; furanics; APIs

Society faces a daunting future in terms of water, food and resource scarcity. This has
been evidenced by recent studies showing a significant diminishing of fossil fuel resources,
the increasing generation of waste, as well as the expected increase in population in future
years. Facing these challenges is not an easy task. A multidisciplinary team effort from
many disciplines is needed to develop suitable alternatives for a more sustainable society
able to deal with these important issues.

Waste is currently one of these alarming problems the planet is experiencing and will
face in future years. In Europe, waste generation was reported to be over 2.25 billion tons
in Western European Countries between 1998 and 2001 as well as 550 million in Eastern
Europe Candidate Countries [1]. Main sources of such waste were construction (31%),
mining and quarrying (15%) and most importantly, agricultural and forestry waste, which
accounted for roughly 30% of the total generated waste. Agricultural and forestry waste
residues currently find somewhat limited uses and exploitation different than burning,
field rotting and/or composting, being under-considered despite their huge potential to
be valorised.

Lignocellulosic residues (typically from tree debranching and cutting, left-overs from
crops, municipal residues from packaging, etc.) comprise three markedly different frac-
tions: hemicelluloses (30%), cellulose (45%), and lignin (25%) [2], which can potentially
be isolated separately (more difficult for hemicelluloses and cellulose) and processed to
valuable products.

Derived from C5–C6 fractions, furanic compounds have recently attracted significant
techno-economic considerations due to their production capabilities from non-edible parts
of lignocellulosic biomass to produce fuels, chemicals and materials [3]. For this reason,
some have been listed by the U.S Department of Energy as one of the top 12 and top
30 potential chemical building blocks [4]. In particular, Avantium’s YXY® process produces
furandicarboxylic acid (FDCA) for the development of the new generation of bio-plastics
PEF (Scheme 1) [5]. FDCA production process primarily involves the dehydration of
carbohydrates (C6 and C5 sugars) into alkoxymethyl furfurals (RMFs), being an interme-
diate mixture essentially containing methoxymethyl furfural (MMF), furfural (FA) and
5-hydroxymethyl furfural (HMF) in its composition. Besides leading to various furanics
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and other platform chemicals, the Acid Catalysed Dehydration (ACD) process essentially
leads to the production of an unavoidable side stream residue called humins (Scheme 1).
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Scheme 1. Avantium’s YXY® process for PEF production generates two major side products: methyl
levulinate and humins.

Humins are polyfuranic macromolecule mixtures with minor quantities of furanic
derivatives retained in their structure [6]. The chemical structure of humins is highly
complex and largely depends on the type of feedstock, operating conditions and the
functional groups associated with them (Scheme 2) [7,8]. Despite its existence for many
decades, humins have been mostly employed as residues in low-value applications such
as combustion and gasification [9]. With the primary aim of valorising biorefinery side
streams to improve the bio-based economy, innovative potential applications for humins
as renewable raw materials have been identified mainly in catalysis, water purification,
matrix of impregnation materials, CO2 sequestration and energy storage [6,10,11], with
very few reports to date on the valorisation of humins towards valuable chemicals pro-
duction [12,13]. A recent report by Hallet et al. discloses the use of ionic liquids (ILs) for
the production of humins in view of applications as valuable carbonaceous materials for
antimony removal [14]. Additionally, we recently reported a plausible structure for humins
obtained via several hydro/oxy-deconstruction strategies [15], following previous reports
on structural characterisation of humins [8,14,16–18].
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New and alternative ways to synthesize APIs are largely needed in the EU due to their
generally complex synthetic processes (typically 6–10 synthetic steps) and multiple rounds
of quenching, separation and purification [19]. Neither innovator drug companies nor
generic manufacturers have economic incentives to develop such novel, cost-saving alterna-
tive routes. Importantly, continuous flow technologies, combined with nano(bio)catalysis
are highly advantageous for these purposes. Such benefits include better control of reaction
conditions, which is especially advantageous in the case of highly reactive compounds
such as those derived from biomass, the possibility of scaling up (of high interest and
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novelty in the waste-to-pharma concept) as well as less issues in catalyst separation (it
stays after every run in the fixed bed reactor) and additional intermediate separation and
purification steps. Lastly, continuous flow processes allow gas and/or product/byproduct
removal during the reaction to not interfere in the proposed chemistries.

The identification of manufacturing routes that utilize the lowest-cost raw materials
(e.g., humins) and most efficient tools available (e.g., continuous flow processes, photoredox
catalysis) to make this a future reality, starting with the synthesis of two relevant APIs fully
from humins (Ancarolol and Furosemide) will be reported in due course. A revolutionary
and innovative approach for the valorisation of furanic-containing humins to valuable
biofuranics with biological activities has been recently proposed by our group, driven by
heterogeneous catalysis. All reactions are performed using low environmental impact
technologies, including mechanochemistry and nano-(bio)catalysis as well as continuous
flow processes in view of a future potential scaling-up (Figure 1, overall concept).
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Figure 1. Project concept: from waste to the next generation of bioactive furanics under sustainable
premises. The synthesis of APIs from biomass-derived waste has the potential to be conducted using
green technologies, including mechanochemistry, photocatalysis and continuous flow processes
(flow chemistry).

The first proposed relevant API synthesis deals with the preparation of atenolol
analogues (antihypertensive drugs) from furanics derived from humins. Atenolol is an
extensively prescribed API beta-blocker to treat high blood pressure [20] with a global
market value of billion euros [21], being in the top 1% of drugs prescribed for patients
worldwide (over 30 million only in the USA in 2015 and expected to grow by 4.94% by
2023 [22]). Importantly, since 2017, Atenolol has been listed on the FDA Drug Shortages
database, making it imperative to search for chemical analogues that can provide the
required biological activity without major secondary effects.

Ancarolol derivatives (Scheme 3) have been selected as target molecules, being analo-
gous beta-adrenergic blocking agents, due to their relevance and remarkably interesting
compatible structure and biological activity featuring a furanic ring coupled to an ortho-
aminophenol derivative linked to a potential glycerol-derived tail [23]. Another potential
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synton (3-(tert-butylamino)-1,2-propanediol) that could be employed in the synthesis of
the drug is a chemical intermediate utilized in the industrial chiral synthesis of related β-
blockers—i.e., (S)-timolol—employed in the treatment of various cardiovascular disorders
such as hypertension, angina pectoris and cardiac arrhythmia [24].
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carbonate; K2CO3: potassium carbonate. Step 3 involves the addition of Tosyl chloride (TsCl) as an activating group for
primary OH activation from the glycerol moiety.

The proposed synthetic process involves four steps in principle, including the activa-
tion of the primary OH group for the final reaction, as illustrated in Scheme 3. The first step
(1) involves a simple and previously reported one-pot synthesis of aryloxypropanediols
using glycerol as starting material with various phenols including 2-methoxyphenol (99%
conversion, 8 h, 110 ◦C) [25] however unreported for 2-aminophenol. Interestingly, such
reaction generated an additional unexpected benzoxazine API-type product from the cycli-
sation of 2-aminophenol and glycerol [(3,4-dihydro-2H-benzo[b][1,4]-oxazin-3-yl)methanol,
Scheme 4) with promising biological activities [26]. The intramolecular cyclisation reac-
tion may involve OH activation taking place under mechanochemical conditions and the
presence of potassium carbonate.

Benzoxazines are core motifs in relevant APIs including apararenone [27], elbasvir [28],
and etifoxine [29].

Preliminary results indicate that furfural in the second step (2) can also be success-
fully coupled with aromatic amines (aniline, benzylamine as well as the obtained 3-(2-
aminophenoxy)propane-1,2-diol in step 1) under pulsed laser/LED irradiation using plas-
monic systems (e.g., Au and Ag-based TiO2 catalysts) [30] via most plausible oxidative
amidation (oxidation of the aldehyde group in furfural to carboxylic acid and addition
of amine to form the amide) as previously reported by our group [31]. Subsequent steps
can lead to a final ancarolol derivative in which more than half of the molecule is derived
from renewable feedstocks (glycerol and humins). Preliminary calculations pointed to an
atom economy of the whole synthetic process over 70%, with an E-factor of 7 [30], far from
classical values (25–100) from the pharmaceuticals industry.

The other example for API synthesis is Furosemide. Furosemide is an extensively
prescribed API with interesting biological activities in the treatment of fluid build-up (loop
diuretic) due to heart failure, liver scarring, or kidney diseases [32], being in the World
Health Organisation’s List of Essential Medicines as most effective and safest required in a
health system [33]. The structure of Furosemide (Scheme 5) can be synthesized in three
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steps in a relatively simple way (also under continuous flow conditions), starting from
furfural/furanics.
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The proposed synthesis involves the reductive amination of furanics (including fur-
fural and HMF) using a simple and mild reductive amination catalysed by Rh/TiO2 mate-
rials (94% yield from furfural to furfurylamine using 0.5%Rh/TiO2, 2 h reaction, 100 ◦C),
similar to those reported to be most effective in such reaction [34]. Results are currently
under translation into the continuous flow using H-Cube reactors [35,36]. Additionally,
2,4-dichlorobenzoic acid has been reacted in two steps (first SO3HCl, then ammonia) to
form the chloro-substituted sulfamoylbenzoic acid that will eventually react with furfuryl
amine to yield Furosemide (for furfural) and derivatives.

We hope the present contribution can stimulate scientists to further develop the waste-
to-pharma concept and look forward to witnessing further developments on the topic in
the years to come, all for a more sustainable future for the betterment of humankind.
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