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Resumen 

Actualmente, la computación de propósito general en GPU es uno de los pilares básicos 

de la computación de alto rendimiento. Aunque existen cientos de aplicaciones 

aceleradas en GPU, aún hay algoritmos científicos poco estudiados. Por ello, la 

motivación de esta tesis ha sido investigar la posibilidad de acelerar significativamente 

en GPU un conjunto de algoritmos pertenecientes a este grupo. 

En primer lugar, se ha obtenido una implementación optimizada del algoritmo de 

compresión de vídeo e imagen CAVLC (Context-Adaptive Variable Length Encoding), que 

es el método entrópico más usado en el estándar de codificación de vídeo H.264. La 

aceleración respecto a la mejor implementación anterior está entre 2.5x y 5.4x. Esta 

solución puede aprovecharse como el componente entrópico de codificadores H.264 

software, y utilizarse en sistemas de compresión de vídeo e imagen en formatos 

distintos a H.264, como imágenes médicas.  

En segundo lugar, se ha desarrollado GUD-Canny, un detector de bordes de Canny no 

supervisado y distribuido. El sistema resuelve las principales limitaciones de las 

implementaciones del algoritmo de Canny, que son el cuello de botella causado por el 

proceso de histéresis y el uso de umbrales de histéresis fijos. Dada una imagen, esta           

se divide en un conjunto de sub-imágenes, y, para cada una de ellas, se calcula de forma 

no supervisada un par de umbrales de histéresis utilizando el método de Medina-

Carnicer. El detector satisface el requisito de tiempo real, al ser 0.35 ms el tiempo 

promedio en detectar los bordes de una imagen 512x512. 

En tercer lugar, se ha realizado una implementación optimizada del método de 

compresión de datos VLE (Variable-Length Encoding), que es 2.6x más rápida en 

promedio que la mejor implementación anterior. Además, esta solución incluye un 

nuevo método scan inter-bloque, que se puede usar para acelerar la propia operación 

scan y otros algoritmos, como el de compactación. En el caso de la operación scan, se 

logra una aceleración de 1.62x si se usa el método propuesto en lugar del utilizado en la 

mejor implementación anterior de VLE. 

Esta tesis doctoral concluye con un capítulo sobre futuros trabajos de investigación que 

se pueden plantear a partir de sus contribuciones.      
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1. Introducción 

Hoy en día, la computación de propósito general en unidades de procesamiento de 

gráficos, denominada abreviadamente GPGPU (General Purpose Computing on Graphics 

Processing Units), es una de las tendencias principales en la computación de alto 

rendimiento [1]. En los años 2000, la creciente demanda del mercado de videojuegos 

causó un incremento muy significativo de la capacidad de computación de las GPUs, en 

contraste con la más lenta evolución de las CPUs [2]. Este hecho ofreció la gran 

oportunidad de acelerar la resolución de problemas de propósito general mediante un 

procesamiento repartido entre CPU y GPU (en lugar de realizarlo exclusivamente la CPU) 

[2]. En 2007, para facilitar este sistema heterogéneo de computación, NVIDIA lanzó la 

arquitectura de cálculo paralelo CUDA (Compute Unified Device Architecture) [3], que, 

desde entonces, viene incorporada en sus tarjetas gráficas. CUDA proporciona un 

conjunto de herramientas de desarrollo y extensiones a lenguajes de programación de 

alto nivel, como C y C++, que facilitan enormemente la labor del programador [4, 5]. 

Desde hace una década y media, se están acelerando cientos de aplicaciones en GPU en 

los más diversos campos [6], como el aprendizaje automático [7, 8], el procesamiento 

de vídeo e imagen [9, 10] y la minería de datos [11, 12]. Sin embargo, aún existen 

algoritmos científicos poco explorados, como los métodos de compresión de datos 

CAVLC (Context-based Adaptive Variable Length Coding) [13, 14], CABAC (Context-based 

Adaptive Binary Arithmetic Coding) [15] y VLE (Variable-Length Encoding) [16, 17], y 

diferentes métodos de procesamiento de vídeo e imagen, como la detección de bordes 

de Canny no supervisada [18], el cálculo del descriptor de imágenes RCD (Region 

Covariance Descriptor) [19],  la identificación de texturas a gran escala en tiempo real 

[20] y el algoritmo de eliminación de ruido de vídeo VBM3D (Video Block-Matching and 

3-D Filtering) [21].  Por ello, la motivación de esta tesis ha sido investigar la posibilidad 

de acelerar significativamente en GPU un conjunto de algoritmos científicos 

pertenecientes a este grupo. 

El resto de este capítulo introductorio se divide en las siguientes secciones. La sección 

1.1 proporciona un breve resumen de CUDA para facilitar la comprensión de las 

optimizaciones desarrolladas en esta tesis, la sección 1.2 presenta sus antecedentes, y 

la 1.3, sus objetivos. 
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1.1. CUDA 

CUDA [3] es una plataforma de computación paralela de propósito general que 

aprovecha el motor de cálculo paralelo de sus GPUs para la resolución de problemas 

computacionalmente complejos de forma mucho más eficiente que usando sólo una 

CPU [4]. 

Los objetivos de diseño de CUDA fueron los siguientes [4]: 

● Proporcionar un conjunto pequeño de extensiones a lenguajes de programación 

estándar, como C, C++, Fortran, Python y MATLAB, con objeto de facilitar 

enormemente el desarrollo de algoritmos paralelos [3]. De esta forma, se 

eliminó la necesidad de tener que usar lenguajes de programación específicos 

para gráficos (como OpenGL o Cg) para la resolución de problemas de propósito 

general, lo cual es mucho más complejo. En este trabajo, se ha utilizado CUDA 

C++ [4, 5]. 

● Soportar computación heterogénea, consistente en que las aplicaciones 

ejecuten sus partes secuenciales en la CPU y las paralelas en la GPU. La CPU y la 

GPU (denominadas host y device, respectivamente) se modelan como 

dispositivos separados, con sus propios espacios de memoria. 

CUDA permite definir funciones, denominadas kernels, que son ejecutadas por muchos 

hilos en paralelo en la GPU [4]. Los hilos se organizan en bloques, que pueden tener 

entre una y tres dimensiones. Un kernel es ejecutado por un conjunto de bloques 

idénticos, denominado grid, cuyo número de dimensiones también puede ser hasta tres.  

La arquitectura de una GPU de CUDA se compone de un conjunto de multiprocesadores 

de streaming [4]. Cuando un programa que está siendo ejecutado por la CPU llama a un 

kernel, los bloques del correspondiente grid se distribuyen a los multiprocesadores con 

capacidad de ejecución disponibles. Los hilos de cada bloque se ejecutan 

concurrentemente en un único multiprocesador, y, a su vez, cada multiprocesador 

puede ejecutar concurrentemente muchos bloques. Conforme va finalizando la 

ejecución de los bloques, otros nuevos se van lanzando en los multiprocesadores 

vacantes. Para que un kernel escale con el número de multiprocesadores de cualquier 
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tarjeta gráfica, los bloques se deben poder ejecutar independientemente, es decir, en 

cualquier orden y en paralelo o en serie. 

Un multiprocesador ejecuta los bloques en grupos de 32 hilos consecutivos, 

denominados warps [4]. Cada bloque, tras ser asignado a un multiprocesador, es 

dividido en warps, y cada warp es gestionado por un planificador de warps. Los hilos de 

un warp comienzan en la misma dirección de programa, pero cada uno tiene sus propios 

contador de programa y registro de estado, por lo que diferentes conjuntos de hilos de 

un mismo warp pueden seguir caminos de ejecución independientes. Aunque, a efectos 

de la corrección del código, no es necesario tener en cuenta esta característica de la 

arquitectura de CUDA, se pueden conseguir mejoras significativas en el rendimiento 

disminuyendo al máximo las divergencias de ejecución de los warps.  

Los hilos de CUDA pueden acceder a los siguientes espacios de memoria [4] durante su 

ejecución: 

● Memoria privada de cada hilo, constituida por registros y memoria local, cuyo 

tiempo de vida coincide con el del hilo. 

● Memoria compartida, de baja latencia y visible a todos los hilos de un bloque, 

cuyo tiempo de vida es el del bloque. 

● Un conjunto de memorias usadas para la compartición de datos entre todos los 

hilos de un grid, que son una memoria global de lectura/escritura y otras dos de 

lectura: la memoria de constantes, usada para almacenar valores no 

modificables, y la memoria de texturas, optimizada para accesos con localidad 

espacial 2D. Los contenidos de estas memorias son persistentes entre llamadas 

a kernels de una misma aplicación. 

La memoria global es la más abundante de todas [5]. Por otro lado, las memorias global, 

local y de texturas tienen la latencia más alta, seguidas de la memoria de constantes, la 

memoria compartida y el espacio de registros [5]. 

Una técnica de optimización muy importante es el acceso coalescente a la memoria 

global [5]. Cuando un warp realiza una operación en memoria global, los accesos a 

memoria de sus hilos se unen en una o más transacciones de memoria, según el tamaño 

de las palabras accedidas y la distribución de las direcciones de memoria. Cuanto más 
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dispersos estén los accesos, más transacciones son necesarias y, por tanto, más se 

reduce el rendimiento. 

1.2. Antecedentes 

Aunque actualmente hay cientos de aplicaciones aceleradas en GPU en los más diversos 

campos [6], aún existen algoritmos científicos poco explorados, como los métodos de 

compresión de datos CAVLC [13, 14] y VLE [16, 17]. 

En el caso de CAVLC, la única implementación en GPU anterior a esta tesis es la 

propuesta por Su et al. [13, 14], desarrollada en CUDA. Satisface el requisito de tiempo 

real para el formato HDTV 720p, y su rendimiento es entre 6.29 y 11.17 veces mayor 

que el de los sistemas DSP y multinúcleo publicados hasta ese momento. Aunque se 

trata de una solución eficiente, existen diferentes factores que limitan su velocidad. El 

principal de ellos es que, al estar implementada con varios kernels, existe una 

penalización importante en la eficiencia causada por: 

● Los accesos a memoria global de elevada latencia que se han de realizar para 

transmitir resultados intermedios entre kernels. 

● Las costosas llamadas y finalizaciones de los distintos kernels. 

En relación a las implementaciones de VLE en GPU, los antecedentes de este trabajo son 

el algoritmo PAVLE de Balevic [16] y la solución de Rahmani et al. [17]. La evaluación 

experimental mostró que la aceleración respecto a la implementación en CPU fue 35x, 

en el primer caso, y 22x, en el segundo. El principal factor que limita la velocidad de 

estas dos soluciones es el mismo que el de la implementación de CAVLC de Su et al. [13, 

14]. 

Por último, indicar que, antes de esta tesis, se obtuvo el algoritmo CUVLE [22], una 

implementación eficiente en GPU de VLE. La evaluación experimental mostró que CUVLE 

es más de dos veces más rápido que PAVLE [16]. 
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1.3. Objetivos 

El objetivo general de esta tesis ha sido investigar las posibilidades de acelerar un 

conjunto de algoritmos científicos en entornos heterogéneos basados en GPU, con la 

finalidad de realizar contribuciones en cada uno de los siguientes objetivos específicos: 

1. Estudiar la posibilidad de optimizar el método de codificación entrópica CAVLC 

del estándar de compresión de vídeo H.264. 

2. Profundizar en la investigación sobre la optimización de VLE en arquitecturas 

paralelas de última generación. 

3. Explorar la posibilidad de optimizar aplicaciones de vídeo e imagen en 

arquitecturas paralelas a determinar durante el transcurso de la investigación.  
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2.  Contribuciones 

2.1. Primera contribución: "CAVLCU: an efficient GPU‑based implementation 
of CAVLC" 

En este trabajo [23] se presenta CAVLCU, una implementación eficiente de CAVLC en 

GPU, que es útil en los siguientes escenarios: 

● Se puede aprovechar como el componente de codificación entrópica en 

codificadores H.264 software, una alternativa adecuada a los codificadores 

H.264 hardware de las tarjetas gráficas [24] cuando estos últimos carecen de 

cierta funcionalidad necesaria, como encriptación de datos [25, 26, 27, 28] y 

ocultación de información [29, 30, 31, 32]. 

● Se puede utilizar en una amplia variedad de sistemas de compresión basados en 

GPU para codificar imágenes y vídeos en formatos diferentes a H.264, como 

imágenes médicas [33, 34, 35]. Esto no es posible con las implementaciones 

hardware de CAVLC, al no ser componentes separables de los codificadores 

H.264 hardware en los que están integradas. 

CAVLCU se basa en cuatro ideas clave: 

● Está compuesto de un solo kernel para evitar los accesos de elevada latencia a 

memoria global para transmitir resultados intermedios entre kernels, así como 

los costosos lanzamientos y terminaciones de estos últimos. 

● Se aplica un mecanismo eficiente de sincronización entre bloques de hilos que 

procesan regiones adyacentes del fotograma (en las dimensiones horizontal y 

vertical) para compartir resultados en memoria global. 

● Se explota completamente el ancho de banda de memoria global disponible 

mediante accesos vectorizados que almacenan directamente los coeficientes 

transformados cuantificados en registros. 

● Se realiza la ordenación en zigzag de los bloques de coeficientes directamente 

en el espacio de registros con un alto grado de paralelismo a nivel de instrucción.  

La evaluación experimental mostró que CAVLCU es entre 2.5x y 5.4x más rápido que la 

mejor implementación anterior en GPU de CAVLC [13]. 

Esta contribución se corresponde, como resultado, con los objetivos 1 y 3. 
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Abstract
CAVLC (Context-Adaptive Variable Length Coding) is a high-performance entropy 
method for video and image compression. It is the most commonly used entropy 
method in the video standard H.264. In recent years, several hardware accelerators 
for CAVLC have been designed. In contrast, high-performance software implemen-
tations of CAVLC (e.g., GPU-based) are scarce. A high-performance GPU-based 
implementation of CAVLC is desirable in several scenarios. On the one hand, it can 
be exploited as the entropy component in GPU-based H.264 encoders, which are a 
very suitable solution when GPU built-in H.264 hardware encoders lack certain nec-
essary functionality, such as data encryption and information hiding. On the other 
hand, a GPU-based implementation of CAVLC can be reused in a wide variety of 
GPU-based compression systems for encoding images and videos in formats other 
than H.264, such as medical images. This is not possible with hardware implementa-
tions of CAVLC, as they are non-separable components of hardware H.264 encod-
ers. In this paper, we present CAVLCU, an efficient implementation of CAVLC 
on GPU, which is based on four key ideas. First, we use only one kernel to avoid 
the long latency global memory accesses required to transmit intermediate results 
among different kernels, and the costly launches and terminations of additional ker-
nels. Second, we apply an efficient synchronization mechanism for thread-blocks (In 
this paper, to prevent confusion, a block of pixels of a frame will be referred to as 
simply block and a GPU thread block as thread-block.) that process adjacent frame 
regions (in horizontal and vertical dimensions) to share results in global memory 
space. Third, we exploit fully the available global memory bandwidth by using 
vectorized loads to move directly the quantized transform coefficients to registers. 
Fourth, we use register tiling to implement the zigzag sorting, thus obtaining high 
instruction-level parallelism. An exhaustive experimental evaluation showed that 
our approach is between 2.5× and 5.4× faster than the only state-of-the-art GPU-
based implementation of CAVLC.

Keywords  CAVLC · GPU · CUDA · H.264 · Parallel implementations · Data 
compression · Variable-length encoding
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1  Introduction

In the current digital era, the massive use of multimedia data, such as images and 
videos, together with the necessity to overcome the restrictions of storage space 
and communication bandwidth, have given an essential role to data compression.

Generally speaking, data compression can be lossless or lossy, depending on 
whether the original content is preserved or not [33]. Lossless compression is 
used when it is necessary that the original and uncompressed data remain exactly 
the same, such as executable programs and textual documents. Lossy compres-
sion discards some information to increment the amount of data reduction. Image 
file formats like PNG use only lossless compression, while others like TIFF may 
use either lossless or lossy methods [2]. Entropy coding [33] is a type of lossless 
compression in which mostly used patterns are assigned with codes of shorter 
length, whereas rarely used patterns are assigned with codes of longer length.

CAVLC (Context-Adaptive Variable Length Coding) is a high-performance 
entropy technique for video and image compression [14, 32]. In this method, dif-
ferent sets of variable-length codes are chosen depending on already encoded 
syntax elements. It is the most commonly used entropy technique in the video 
standard H.264.

In the last two decades, many designs for CAVLC have been proposed. The 
majority of these solutions are based on hardware, such as FPGA [4, 6, 12, 28] 
and ASIC approaches [1, 3, 13, 21]. In contrast, parallel software implementa-
tions of CAVLC [5, 31, 38, 39, 43] are currently very scarce.

One of the most successful trends in high-performance computing is general-
purpose computation on graphics processing units (GPGPU), thanks to program-
ming environments such as CUDA [26] and OpenCL [15]. Efficient implementa-
tions of CAVLC on GPU are currently very useful for the following reasons. First, 
they can be exploited as the entropy component in GPU-based H.264 encoders, 
which are a very suitable solution when it is necessary to implement functionality 
not provided by GPU built-in H.264 hardware encoders (e.g., NVENC in NVIDIA 
graphics cards [27]). In that case, many adaptations of CAVLC proposed in dif-
ferent fields, like data encryption [19, 40–42] and information hiding [16, 17, 45, 
46], can be applied. Second, implementations of CAVLC on GPU can be reused 
and easily adapted in the development of a great variety of GPGPU compression 
systems for encoding both images and videos in formats other than H.264, like 
medical images [20, 30, 37]. This is not possible with hardware implementations 
of CAVLC, as they are non-separable components of hardware H.264 encoders.

In this paper, we present CAVLCU, an optimized implementation of CAVLC 
on GPU developed in CUDA. As our approach is built using only one CUDA ker-
nel, it avoids the long latency global memory accesses required to transmit inter-
mediate results among different kernels, and the costly launches and terminations 
of additional kernels. In our algorithm, thread-blocks that process adjacent frame 
regions (in horizontal and vertical dimensions) share results in global memory 
space using an efficient synchronization mechanism. Additionally, CAVLCU sim-
plifies the zigzag sorting of the blocks, as each thread, after reading its block 
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through a vectorized load, sorts it efficiently in the register space through few 
high throughput operations with high degree of instruction-level parallelism.

Therefore, our main contributions in this work are the following. First, a highly 
optimized GPU-based approach to CAVLC implemented in CUDA. Second, com-
parison of our implementation with the only existing state-of-the-art GPGPU imple-
mentation [38, 39]. An exhaustive experimental evaluation showed that our solution 
is between 2.5× and 5.4× faster than the state-of-the-art implementation [38, 39].

The rest of the paper is organized as follows. Sections 2 and 3 give background 
for CAVLC and the state-of-the-art GPU-based implementation of CAVLC [38, 39], 
respectively. Section 4 presents CAVLCU. Section 5 shows the experimental evalu-
ation of our algorithm and a comparison to the state-of-the-art solution [38, 39]. 
Section 6 presents applications of CAVLC. Finally, the main conclusions are stated 
in Sect. 7.

2 � Context‑adaptive variable length coding (CAVLC)

CAVLC (Context-Adaptive Variable Length Coding) [14, 32] is a high efficient 
entropy method for encoding the quantized transform coefficients in video and 
image compression. In this technique, different sets of variable-length codes are 
chosen depending on already encoded syntax elements. Since the variable-length 
codes are designed to match the corresponding conditioned statistics, the entropy 
coding performance is improved by 5-10% in comparison to prior standards designs 
(like MPEG, H.261/3) using a single variable-length code.

CAVLC is one of the two entropy methods in H.264 [14], the most widely used 
video coding standard [29]. The alternative is CABAC (Context-Adaptive Binary 
Arithmetic Coding) [32], a method of arithmetic coding in which the probability 
models are updated based on previous coding statistics. Compared to CABAC, 
CAVLC has lower compression efficiency, but higher coding speed and lower com-
plexity. Thus, it is widely used in low-delay, ‘conversational’ applications such as 
video conferencing, with relatively low computational requirements. Moreover, 
CAVLC is supported in all H.264 profiles, unlike CABAC which is not supported in 
baseline and extended profiles.

Next, Subsection 2.1 gives a detailed description of CAVLC algorithm, and Sub-
section 2.2 presents an example to clarify its operation.

2.1 � CAVLC algorithm

CAVLC operates on blocks of 4 × 4 and 2 × 2 coefficients. It follows the steps pre-
sented in Algorithm  1 for encoding a block [32]. First, as shown in Fig.  1 for a 
4 × 4 block, the coefficients are scanned in zigzag order. The resulting array will be 
referred to as zigzag array in the rest of the paper. Then, CAVLC constructs the 
output bitstream by concatenating a series of binary variable length codes (VLCs) 
assigned to the following data elements (symbols) of the zigzag array: CoeffToken, 
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trailing ones, levels, TotalZeros and runs. In the next subsections, we define the ref-
erenced symbols and describe how they are encoded.

2.1.1 � CoeffToken

The magnitude of nonzero coefficients tends to be larger at the start of the zigzag 
array, near the first coefficient, and smaller towards the higher frequencies. In addi-
tion, the absolute value of the last nonzero coefficients often equals to 1. The last 
up to three -1 or +1 coefficients are referred to as trailing ones (T1s), while the 
remaining nonzero coefficients as levels. The symbol CoeffToken (coefficient token) 
represents both the total number of nonzero coefficients (TotalCoeff) and the number 
of trailing ones (NumT1s).

The VLC assigned to CoeffToken is obtained from a lookup table that, in the 
case of a 4 × 4 block, is chosen from three VLC tables and one 6-bit fixed length 
code table, whose contents are specified in Table 9-5 of the H.264 standard [14]. 
An extract of this latter is shown in Table 1. As it can be seen, the choice of the 

Fig. 1   Example of zigzag scan 
for a 4 × 4 block
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lookup table is done in function of a parameter nC, which is calculated from the 
number of coefficients in the blocks to the left and above of the current block 
(parameters nA and nB, respectively). This implies that the lookup table selection 
is context adaptive. Figure 2 illustrates the relationship between a block and its 
neighbours. The parameter nC is calculated as shown in Table 2, where >> indi-
cates binary right shift. The availability of each neighbouring block is determined 
by its existence and its membership in the same slice of the current block.

Table 1   Extract of the table 9-5 of the H.264 standard

NumT1s TotalCoeff 0 ≤ nC <  2 2 ≤ nC <  4 4 ≤ nC < 8 8 ≤ nC

0 0 1 11 1111 0000 11
0 1 0001 01 0010 11 0011 11 0000 00

……………………………………………………………………………………
……………………………………………………………………………………
……………………........................................................................................

2 5 0000 0010 1 0000 101 0100 1 0100 10
3 5 0000 100 0011 0 1010 0100 11

……………………………………………………………………………………
……………………………………………………………………………………
……………………........................................................................................

2 16 0000 0000 0000 0101 0000 0000 0001 01 0000 0000 11 1111 10
3 16 0000 0000 0000 1000 0000 0000 0001 00 0000 0000 10 1111 11

Fig. 2   Relationship between 
current block and its top and left 
neighbours

Table 2   Calculation of 
parameter nC. The operator >> 
represents binary right shift

Condition nC

Left and top blocks are available (nA + nB + 1) >>1
Only the left block is available nA
Only the top block is available nB
Neither neighbouring block is available 0
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2.1.2 � Trailing ones

The T1s are encoded in reverse order with their sign bits (’0’ for positive and ’1’ 
for negative).

2.1.3 � Levels

The levels are encoded in reverse order with VLCs composed of a prefix and a 
possible suffix. The prefix is made up of a string of zero or more bits ’0’ followed 
by a stop bit ’1’. The length of the suffix (SuffixLength) is between 0 and 6 in 
normal cases. If SuffixLength > 0, the last bit of the suffix stores the sign of the 
level.

Table 3 shows an extract of the seven VLC tables used for levels encoding in 
the H.264 baseline profile [11], each one corresponding to a different value of 

Table 3   VLC Tables of levels

Lev-VLCT[0]

Level VLC Length
+1 1 1
−1 01 2
+2 001 3
−2 0001 4
⋯ ⋯ ⋯

+7 0000000000001 13
−7 00000000000001 14
± 8 to ± 15 000000000000001xxxx 19
≥ ±16 0000000000000001xxxxxxxxxxxx 28

Lev-VLCT[1]

Level VLC Length
± 1 1x 2
± 2 01x 3
⋯ ⋯ ⋯

± 5 00001x 6
± 15 000000000000001x 16
≥ ±16 0000000000000001xxxxxxxxxxxx 28

.....................................................................................................................................................................

Lev-VLCT[6]

Level VLC Length
± 1 to ± 32 1xxxxxx 7
± 33 to ± 64 01xxxxxx 8
⋯ ⋯ ⋯

± 449 to ± 480 000000000000001xxxxxx 21
≥ ±481 0000000000000001xxxxxxxxxxxx 28
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SuffixLength.  Table Lev-VLCT[0] is selected for SuffixLength = 0, Table Lev-
VLCT[1] for SuffixLength = 1, and so on. Lev-VLCT[0] has its own structure 
while the remaining VLC tables share a common structure. In all cases, when the 
magnitude of the level is too large, its value is stored entirely in the suffix, whose 
length is set to 12. As the last bit represents the sign, the maximum magnitude 
that CAVLC can encode is 2 11 = 2048 in the baseline profile [11].

Algorithm 2 [14, 32] shows how the levels are encoded. The selection of each VLC 
table is context adaptive, as it depends on the magnitude of the previous coded level.

2.1.4 � TotalZeros

The symbol TotalZeros is the sum of all zeros preceding the last nonzero coef-
ficient in the zigzag array. The VLC assigned to TotalZeros is obtained from a 
lookup table that, in the case of a 4 × 4 block, is selected from 15 VLC tables, 
whose contents are specified in Tables 9-7 and 9-8 of the H.264 standard [14]. An 
extract of these tables is shown in Tables 4 and 5. As it can be seen, the choice of 
the lookup table is done in function of the symbol TotalCoeff. If TotalCoeff is 0 
or 16, TotalZeros is not encoded because it is known that all coefficients are zero 
or nonzero, respectively.
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2.1.5 � Runs

The parameter run of a nonzero coefficient is defined as the sum of all consecu-
tive zeros that precede it. The runs are encoded in reverse order using one of the 
7 VLC tables specified in Table 9-10 of the H.264 standard [14], whose content is 
presented in Table 6. The selection of each VLC is done in function of the sym-
bol run and a second parameter, called ZerosLeft, which is the number of zeros 
that remain to be encoded. ZerosLeft is initialized to TotalZeros and decreases as 
more runs are encoded. The runs encoding is finished in the following two cases: 
(1) All zeros have already been encoded. (2) The current nonzero coefficient is 
the last in the reverse order, which implies that the maximum value to be encoded 
is 14.

Table 4   Extract of the table 9-7 of the H.264 standard

TotalZeros TotalCoeff

1 2 3 4 5 6 7
0 1 111 0101 0001 1 0101 0000 01 0000 01
1 011 110 111 111 0100 0000 1 0000 1
2 010 101 110 0101 0011 111 101

…………………………………………………………….……………………
……………………………………….………………………………………
…………………….…………………………………………………………
…........................................................

14 0000 0001 0 0000 00 – – – – –
15 0000 0000 1 – – – – – –

Table 5   Extract of the table 9-8 
of the H.264 standard

TotalZeros TotalCoeff

8 9 10 11 12 13 14 15
0 0000 01 0000 01 0000 1 0000 0000 000 00 0
1 0001 0000 00 0000 0 0001 0001 001 01 1
2 0000 1 0001 001 001 01 1 1 –

……………………………………………………
……….…………………………………………
………………….………………………………
…………………………….……………………
………………………………………...................
....................................................

7 001 0000 1 – – – – – –
8 0000 00 – – – – – – –
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2.2 � CAVLC example

In this subsection, we present an example of CAVLC encoding, cor-
responding to the 4 × 4 block of Fig.  1. As shown, the zigzag array is 
{5, 1, 0,−1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}.

We assume that the two neighbouring blocks are available, and that the values 
of the parameters nA and nB are 4 and 6, respectively. Hence, nC = (4 + 6 + 1) 
>> 1 = 5. As TotalCoeff = 5 and NumT1s = 3, the VLC assigned to CoeffToken 
is 1010 (see Table 1). Note that the last four nonzero coefficient have magnitude 
1, but only the last three ones are taken into account.

The values of the T1s in reverse order are +1, +1, and −1. Therefore, the VLC 
assigned is 001.

The steps for levels encoding (see Algorithm 2 and Table 3) are the next: 

1.	 TotalCoeff = 5 and NumT1s = 3, hence the condition TotalCoeff > 10 and 
NumT1s < 3 is not fulfilled and SuffixLength is initialized to 0.

2.	 The first level in the reverse order is +1. As the condition NumT1s < 3 is not 
satisfied, the absolute value of the level is not decremented.

3.	 SuffixLength is 0; hence, on the one hand, Lev-VLCT[0] is selected and the VLC 
assigned to level +1 is 1. On the other hand, SuffixLength is assigned the value 
1.

4.	 As SuffixLength is less than 6, on the one hand, the threshold T is calculated: T 
= 3 ×2SuffixLength−1 = 3 ×21−1 = 3. On the other hand,  since magnitude(level) = 1 
and T = 3, the condition magnitude(level) > T is not fulfilled and SuffixLength 
is not incremented.

Table 6   Tables for runs 
encoding

Run ZerosLeft

1 2 3 4 5 6 >6

0 1 1 11 11 11 11 111
1 0 01 10 10 10 000 110
2 – 00 01 01 011 001 101
3 – – 00 001 010 011 100
4 – – – 000 001 010 011
5 – – – – 000 101 010
6 – – – – – 100 001
7 – – – – – – 0001
8 – – – – – 00001
9 – - – – – – 000001
10 – – – – – – 0000001
11 – – – – – – 00000001
12 – – – – – – 000000001
13 – – – – – – 0000000001
14 – – – – – – 00000000001



7565

1 3

CAVLCU: an efficient GPU‑based implementation of CAVLC﻿	

5.	 The last level to encode is +5. As SuffixLength is 1, Lev-VLCT[1] is selected and 
the VLC assigned to level is 000010.

TotalZeros is 2 and TotalCoeff is 5. Therefore, the value assigned to TotalZeros is 
0011 (see Table 4).

The runs of coefficients 5, 1, −1, 1 and 1 are 0, 0, 1, 0 and 1, respectively. 
Their encoding is done as follows (see Table 6): 

1.	 Initially, the value of ZerosLeft equals to TotalZeros, i.e., 2.
2.	 The first run in the reverse order is 1 and ZerosLeft is 2; therefore, the VLC 

assigned is 01 and the value of ZerosLeft changes to 1.
3.	 The second run is 0 and ZerosLeft is 1; hence, the VLC assigned is 1 and the 

value of ZerosLeft does not change.
4.	 The third run is 1 and ZerosLeft is 1, therefore the VLC assigned is 0 and the 

value of ZerosLeft changes to 0.
5.	 As all zeros have been reached, the runs encoding is finished.

Finally, taking into account the different encodings seen in this sub-
section, the resulting bitstream of our example is the following: 
1010-001-1-000010-0011-01-1-0

3 � Solution of Su et al.

The only state-of-the-art GPU-based implementation of CAVLC is the solution 
presented by Su et al. [38, 39], which was developed in CUDA. It satisfies the 
real-time processing for HDTV 720p and its throughput is 11.17 to 6.29 times 
higher than that of the published software encoders on DSP and multi-core 
platforms.

By profiling the instructions of CAVLC, Su et al. found the main factors that 
limit the potential of parallelism [38, 39], which are the context-based data 
dependence, the memory accessing dependence and the control dependence. The 
context-based data dependence is due to the self-adaptive feature of CAVLC. 
Since the value of the parameter nC depends on nA and nB, it is not possible 
to calculate the parameter nC of a block until the symbols TotalCoeff of the 
neighbouring left and top blocks have been calculated. The memory accessing 
dependence is caused by the inherently serial nature of variable length encoding. 
To determine the position of each VLC in the output bitstream it is necessary to 
know the lengths of the VLCs that precede it. Control dependence is caused by 
the existence of different processing paths in two layers: the frame layer and the 
block layer. In the first layer, the branches are due to the different frame types 
and the different components of a frame (luma DC, luma AC, chroma DC and 
chroma AC). In the second layer, the different processing paths are caused by 
the irregular characteristic of symbol data, such as whether sign trail is 1 or -1 
and whether levels are zero or not.
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In order to eliminate or weaken the dependencies described above, Su et al. 
divided the execution of CAVLC into four paths according to the four compo-
nents of a frame, and the CAVLC pipeline of each path was divided into three 
stages: two scans, coding and lag packing.

Fig. 3   Calculation of TotalCoeff and zigzag arrays in the solution of Su et al

Fig. 4   Calculation of nC and other symbols in the solution of Su et al



7567

1 3

CAVLCU: an efficient GPU‑based implementation of CAVLC﻿	

3.1 � Two scans

Two scans are employed to calculate the CAVLC symbols: a forward scan and a 
backward scan.

The forward scan aims at the quantized coefficients and the results include the 
symbols TotalCoeff and the zigzag arrays, as it is shown in Fig. 3. In this stage, 
each thread is assigned to deal with a block. In order to satisfy the requirement 
of coalesced access to global memory [22, 25], the shared memory is used as a 
buffer.

The backward scan is executed on the zigzag arrays generated in the first scan-
ning and the results consist of the values of nC and the remaining CAVLC symbols 
(NumT1s, T1s, levels, TotalZeros and runs). In order to make better use of the local 
data, a frame is divided into several regions of 4 × 2 macroblocks. One thread-block 
calculates the values of nC of blocks in the same region, as it is shown in Fig. 4. The 
program first loads all data needed to the shared memory, then each thread visits nA 
and nB, where one symbol TotalCoeff can be used as either nA or nB.

3.2 � Coding

For the sake of minimizing the performance loss of the target parallel CAVLC 
encoder due to control dependence, Su et al. proposed a component-based coding 
mechanism. In this method, the program codes the symbols frame by frame in order 
of luma DC, luma AC, chroma DC, chroma AC instead of processing the four com-
ponents macroblock by macroblock. The coding method is very similar for the dif-
ferent types of blocks; the main difference is the use of specific lookup tables for 
each component. In addition, the lookup tables are firstly loaded to the shared mem-
ory to speed up the lookup operation. The configuration is similar to that of calcu-
lating the value of nC and the results are the encodings (bitstreams and bit-lengths) 
of each block. A memory unit of 26 short words is used to store the bitstream of a 
block. Figure 5 shows the organization of a thread-block for encoding the symbols. 

Fig. 5   Writing of encodings and bit-lengths in the solution of Su et al
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In the vector of coded words, the grey areas represent the bitstreams of the encod-
ings, while the white regions are the unused spaces.

3.3 � Lag packing

Once all the blocks are encoded, parallel writing is executed. According to the 
lengths of the bitstreams, the output positions are obtained and a parallel packing is 
performed. Thus, it can not only eliminate the constraint of accessing dependence, 
but it also improves the performance of writing.

4 � Efficient GPU‑based implementation of CAVLC (CAVLCU)

In this section, we present CAVLCU, our parallel implementation of CAVLC on 
CUDA. It is also compared with Su et al. proposal so that the achieved performance 
improvement can be clearly established. Our solution is built using only one CUDA 
kernel that has been specifically designed for encoding the luma AC blocks of a 
frame. The method for the remaining types of blocks (luma DC, chroma DC and 
chroma AC) is essentially the same, with very few variations.

The inputs of CAVLCU are the following:

•	 The coefficients of the frame. They are provided in a vector of 16-bit integers 
(d_coeffs), whose layout is shown in Fig. 6 for SQCIF format (128×96). As it can 
be seen, the array is divided in as many subvectors as macroblocks (MBs) in the 
frame (48 in the case of SQCIF format); the i-th subvector stores the coefficients 
of the i-th MB of the frame in the raster scan order (i.e., from left to right and 

Fig. 6   Layout of CAVLCU input vector of coefficients (d_coeffs) for SQCIF format (128×96).The array 
is divided in as many subvectors as MBs in the frame (48 in the case of SQCIF). Each MB subvector is 
divided into 16 subvectors, each one corresponding to a different block of the MB
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from top to bottom). At the same time, each MB subvector is divided into 16 
subvectors, each one corresponding to a different block of the MB; the i-th sub-
vector stores the 16 coefficients of the i-th 4 × 4 block of the MB. Both blocks and 
coefficients are provided in the raster scan order as well.

•	 The prediction modes of the MBs. They are supplied in a vector of 8-bit inte-
gers (d_MB_pred_modes), where the i-th element is assigned to the i-th MB of 
the frame.

•	 The slice IDs of the MBs. They are provided in a vector of 16-bit integers (d_
MB_slices), where the i-th element is assigned to the i-th MB of the frame.

Similarly, the outputs of CAVLCU are the following:

Fig. 7   Layout of CAVLCU output vector of CAVLC encodings (d_enc_words) for SQCIF format (128×
96). The array is divided in as many subvectors of size 16 as blocks in the frame (768 in the case of 
SQCIF). The i-th subvector is used for storing the encoding of the i-th block of the frame. The grey areas 
correspond to the CAVLC encodings, whose lengths are variable

Fig. 8   Partition of a QCIF frame (176×144) in regions of size 4
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•	 The encodings of the blocks. They are written in a vector of 32-bit integers, 
d_enc_words, where the i-th subvector of size 16 (BLK_ENC_SIZE) is used for 
storing the encoding of the i-th block of the frame, as Fig. 7 illustrates for SQCIF 
format.

•	 The binary lengths of the encodings. They are stored in a vector of 16-bit 
integers, d_enc_lens, where the i-th element is assigned to the i-th block of the 
frame.

As illustrated for a QCIF frame (176×144) in Fig. 8, CAVLCU divides a frame into 
equally-sized groups of consecutive MBs in the raster scan order, which will be 
referred to as regions. The execution configuration of the kernel uses a one-dimen-
sional grid with as many thread-blocks as regions in the frame (NUM_REG); the 
i-th thread-block of the grid processes the i-th region of the frame. The dimensions 
of the thread-blocks are 4 ×4×REG_SIZE, where REG_SIZE is the number of MBs 
of each region. As it is shown in Fig. 9 for the region 7 of Fig. 8, the i-th MB of the 

Fig. 9   Mapping of region data to elements of a thread-block in the case of region 7 of Fig. 8. The first 
MB of the region is assigned to the first half-warp of the thread-block, the second MB to the second half-
warp, and so on. For each MB, the first block is assigned to the first thread of the corresponding half-
warp, the second block to the second thread, and so on



7571

1 3

CAVLCU: an efficient GPU‑based implementation of CAVLC﻿	

region is assigned to the i-th half-warp of the thread-block, and the i-th block of a 
MB is encoded by the i-th thread of the corresponding half-warp.

Algorithm  3 shows the pseudocode of CAVLCU kernel. The parameters NUM_
MB, NUM_BLK and NUM_COEFF represent, respectively, the number of MBs, 4 × 4 
blocks and coefficients of the frame; on the other hand, NUM_WORD_ENC is the 
number of 32-bit words used for storing the CAVLC encodings of the frame, whose 
value is the product of NUM_BLK by BLK_ENC_SIZE. Each thread performs the next 
steps. First, it calculates the indexes of the block to be encoded and the MB to which 
the block belongs. Second, it reads the coefficients of the block, and the prediction 
mode and slice ID of the MB. Third, it sorts the block in zigzag order to get the zigzag 
array. Fourth, it calculates a set of symbols from the zigzag array. Fifth, it calculates 
the parameter nC. Sixth, it uses the symbols and the parameter nC to encode the block.
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4.1 � Calculation of block and MB indexes

As the i-th block of the frame is processed by the i-th thread of the grid, the index of 
the block equals to the thread ID in the grid, whose value is the following:

blockIdx.x × (blockDim.x × blockDim.y × blockDim.z)+

+threadIdx.z × blockDim.x × blockDim.y+

+threadIdx.y × blockDim.x + threadIdx.x

Since blockDim.x = blockDim.y = 4 and blockDim.z = REG_SIZE, the index of 
the block is calculated using the following expression:

16 × REG_SIZE × blockIdx.x + 16 × threadIdx.z+

+4 × threadIdx.y + threadIdx.x

As a MB is composed of 16 blocks, the index of the MB is obtained by dividing 
the block index by 16.

4.2 � Coefficients reading

Each thread reads the 16 coefficients of its block through one vectorized access 
using the built-in vector type longlong4 [25], whose definition is shown in Algo-
rithm 4. Since the sizes of types long long int and short are 8 and 2 bytes, respec-
tively, each member of the variable block_vec contains 4 coefficients of the current 
block; as shown in Table 7, the member x contains the first 4 coefficients, the mem-
ber y the next 4, and so on. Vectorized loads are an important CUDA optimization 
because they increase bandwidth and reduce both instruction count and latency [18].

In contrast, the solution of Su et al. uses the shared memory as a buffer to fulfill 
the requirement of coalesced global memory accesses recommended in CUDA lit-
erature [22, 25]. Since the maximum amount of shared memory per multiprocessor 
is 48 KB for GPUs with compute capability less than 3.7 [24] and the size of a block 
is 32 bytes, the occupancy is penalized in these architectures. For example, if the 
number of threads per thread-block is 128, the theoretical occupancy is reduced to 
75% (3.x) or 67% (2.x) [24].

Table 7   Mapping of block 
coefficients to longlong4 
members

Bits

Member 0–15 16–31 32–47 48–63

x Coeff. 0 Coeff. 1 Coeff. 2 Coeff. 3
y Coeff. 4 Coeff. 5 Coeff. 6 Coeff. 7
z Coeff. 8 Coeff. 9 Coeff. 10 Coeff. 11
w Coeff. 12 Coeff. 13 Coeff. 14 Coeff. 15
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4.3 � Zigzag sorting

The coefficients of a block are extracted from the variable block_vec and are written 
in the private array zz_array in zigzag order. This operation is based on the mapping 
shown in Table 7. The performance of this operation is high for the following rea-
sons. First, there are no dependencies between the different coefficient extractions; 
hence, the degree of instruction-level parallelism is high. Second, each coefficient 
extraction is performed with few operations of high throughput (two binary shifts 
and a cast). Third, zz_array is placed in register space [22] because (1) it is small; 
(2) it is indexed with constant quantities, and (3) the kernel does not use more regis-
ters than available.

The solution of Su et al., after loading the blocks in shared memory, write them 
back to global memory in zigzag order; the coefficients will be read later again for 
calculating the CAVLC symbols. Conversely, CAVLCU executes the zigzag sorting 
in a much more efficient way, as it only consists of few high throughput operations 
with high degree of ILP reading and writing in the register space and saving costly 
memory global accesses.

4.4 � Calculation of the symbols

Algorithm  5 shows the pseudocode for calculating the following symbols, which 
will be used for encoding the current block:

•	 The CAVLC symbols TotalCoeff, NumT1s and T1s.
•	 A 16-bit binary mask (ZigzagArrayMask) which represents the structure of the 

zigzag array and hence implicitly the CAVLC symbols TotalZeros and runs. If 
the i-th coefficient of the zigzag array is non-zero, the i-th most significant bit of 
the mask is 1; otherwise, this bit is 0. In the example of Fig. 1, the value of the 
mask is 1101101000000000.

•	 A second 16-bit binary mask (ZigzagLevelsMask) which represents the structure 
of the zigzag array excluding the trailing ones. In the example of Fig. 1, the value 
of the mask is 1100000000000000.
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Each thread performs the next steps. First, it initializes all the symbols to 0. 
Second, for each nonzero AC coefficient stored in zz_array (i.e., all but the first), 
from the last to the first, it updates all the symbols except TotalCoeff perform-
ing the steps presented in Algorithm 6. Third, if the prediction mode of the cur-
rent MB is not Intra 16×16, it processes the DC coefficient (i.e., the first) in the 
same way as in step 2. Otherwise, it ignores the DC coefficient and left-shift 
the symbol ZigzagArrayMask one bit, as only the subblock formed by the AC 
coefficients must be considered. Fourth, it calculates TotalCoeff from ZigzagAr-
rayMask using the CUDA function __popc [23], which counts the number of 
bits that are set to 1 in a 32 bit integer. The throughput of __popc is high as it 
compiles to a single instruction [25].

In the solution of Su et al., each thread iterates two times over the coefficients 
of a block for calculating its CAVLC symbols: TotalCoeff in the first iteration 
and the remaining ones (NumT1s, T1s, levels, TotalZeros, runs) in the second. 
All the symbols are written in global memory and later read for transferring 
them between the corresponding kernels. CAVLCU optimizes significantly this 
process for the following reasons. First, it iterates only one time over the coef-
ficients of a block for calculating the necessary symbols. Second, the number 
of symbols processed in the loop is reduced to only 4 integers: NumT1s, T1s, 
ZigzagLevelsMask  and ZigzagArrayMask. Third, as shown in Algorithm 6, the 
update of the symbols in each loop iteration is performed very efficiently, as it 
only requires two OR operations for the symbols ZigzagLevelsMask and Zigza-
gArrayMask, an addition for NumT1s and a binary left shift, an OR operation 
and a comparison for T1s. Fourth, our algorithm saves read/write global mem-
ory operations performed by the solution of Su et  al. as transferring symbols 
between kernels is not required.
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4.5 � Calculation of parameter nC

According to the method described in Subsection 2.1.1, each thread calculates the 
parameter nC of its block from the information associated to the left and top neigh-
bouring blocks (info_A and info_B, respectively). Each block information is com-
posed of the symbol TotalCoeff and the slice ID. The symbols TotalCoeff of the left 
and top blocks are the parameters nA and nB, respectively. The slice ID of the left 
and top blocks will be denoted as SliceID_A and SliceID_B, respectively.

Each thread (x, y, z) gets info_A as follows. If the current block is not in the 
first column of its MB, nA is read from the left thread (x - 1, y, z) using the CUDA 
function __shfl_up [25], as shown in Fig. 10. As both left and current block are in 
the same MB, SliceID_A is the slice ID of the current MB. If the current block is 
in the first column of the first MB of a region, info_A is read from an intermediate 
array in global memory (d_info_A) of dimensions NUM_REG× 4. As illustrated in 
Fig. 11, each thread (0, y, 0) of a thread-block i reads info_A from the element d_
info_A[i − 1][y] , which is written by the thread (3, y, REG_SIZE - 1) of the thread-
block i - 1. If the current block is in the first column of the second or posterior MB 
of a region, info_A is read from an intermediate array in shared memory (s_info_A) 
of dimensions REG_SIZE× 4. As illustrated in Fig. 12, each thread (0, y, z) with z > 
0 of a thread-block reads info_A from the element s_info_A[z − 1][y] , which is writ-
ten by the thread (3, y, z - 1).

Fig. 10   Reading of parameter 
nA using the CUDA function 
__shfl_up

Fig. 11   Transmission of parameter nA through global memory
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In a similar way, each thread (x, y, z) gets info_B as follows. If the current block 
is not in the first row of its MB, nB is read from the top thread (x, y - 1, z) using 
the CUDA function __shfl_up [25], as shown in Fig. 13. As both top and current 
block are in the same MB, SliceID_B is the slice ID of the current MB. If the cur-
rent block is in the first row of its MB, info_B is read from an intermediate array in 
global memory (d_info_B) of dimensions NUM_MB_VER×NUM_MB_ HOR× 4, 
where NUM_MB_VER and NUM_MB_HOR are the number of MBs in the verti-
cal and horizontal dimensions of the frame, respectively. As illustrated in Fig. 14, 
each thread (x, 0, z) of a thread-block reads info_B from the element d_info_
B[r − 1][c][x] , where r and c are, respectively, the row and the column of the current 
MB. Each element d_info_B[r][c][x] is written by the thread (x, 3, z) of the half-
warp that processes the MB in row r and column c.

Algorithm 7 shows the pseudocode for managing the parameter nC. Each thread 
performs the next steps. First, it represents the necessary information of the current 
block (the symbol TotalCoeff and the slice ID of its MB) in a compact way using 
a 32-bit integer (info), where the 5 least significant bits store TotalCoeff, the sixth 

Fig. 12   Transmission of parameter nA through shared memory

Fig. 13   Reading of parameter 
nB using the CUDA function 
__shfl_up
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least significant bit is set to 1, which ensures info is nonzero, and the 16 most sig-
nificant bits store the slice ID. Second, it calculates the indexes of the row and the 
column of the MB in the frame. Third, if proceeds, writes info in the intermediate 
arrays as described above. Fourth, it synchronizes with other threads of the block for 
ensuring the array s_info_A contains the correct values. Fifth, it gets nA and nB as 
explained above. If a neighbouring block is unavailable, the corresponding reading 
function (read_nA or read_nB) returns −1. Sixth, it calculates nC from nA and nB 
using the method shown in Table 2.

Fig. 14   Transmission of parameter nB through global memory
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As in our previous works [7, 8], the thread-block synchronization mechanism 
proposed by Yan et al. [47] is used for synchronizing the reads with the writes in 
global memory. In this case, it is applied on both horizontal (d_info_A) and vertical 
(d_info_B) dimensions and the reads are performed using atomic operations. The 
elements of d_info_A and d_info_B are initialized to 0 statically. Since all the values 
written are nonzero (due to the fact that the sixth least significant bit is set to 1), the 
read of each element is performed executing the CUDA atomic function atomicExch 
[25] repeatedly until a nonzero value is returned. Additionally, the use of this func-
tion restores the stored value to 0, which allows subsequent uses of the intermediate 
arrays in global memory, and avoids getting old cached values.

As static initialization of variables in shared memory is illegal in CUDA, a differ-
ent synchronization mechanism is used in the accesses to s_info_A. In this case, the 
CUDA intrinsic function __syncthreads() guarantees that each element is not read 
until its value has been written. On the other hand, the use of the keyword volatile in 
the declaration of the array s_info_A ensures any reference to this variable compiles 
to an actual memory read or write instruction [25].

CAVLCU reduces significantly the number of global memory accesses with 
respect to the solution of Su et al. for the following reasons. First, in our solution, 
each thread-block, on the one hand, only writes in global memory the symbols 
TotalCoeff of the last column and the last row of its region and, consequently, on the 
other hand, only reads from global memory the parameters nA and nB of the first 
column and the first row, respectively. In contrast, the solution of Su et al. writes all 
the symbols TotalCoeff of the frame in global memory and each thread-block not 
only reads from global memory the parameters nA and nB of the first column and 
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the first row of its region but also all the symbols TotalCoeff of the region. Second, 
in the approach of Su et al., once the parameters nC are calculated, they are writ-
ten in global memory to be read in the coding stage. Therefore, CAVLCU saves 
two operations in global memory for writing and reading all the parameters nC of a 
frame.

4.6 � Block encoding

The first action of this stage is to call the CUDA warp synchronization function __
syncwarp() [25] to force reconvergence. This prevents the independent thread sched-
uling of modern architectures (Volta and later) from increasing the number of global 
memory writes.

Each thread i of the grid writes the encoding of its block in the subvector i of 
BLK_ENC_SIZE elements (d_blk_enc) of d_enc_words (see Fig.  7), and the bit-
length of the encoding in the element i of d_enc_lens.

The block encoding is constructed in the way specified in Sect. 2. As the VLCs 
assigned to the CAVLC symbols are obtained, their bits are concatenated in a 32-bit 
variable (word_val) and their lengths added in a second 32-bit variable (word_len) 
while the bit-length of the resulting encoding is less than or equal to 32. When the 
last condition is not satisfied, the first 32 bits of the resulting encoding are written in 
the corresponding element of d_blk_enc, and the value and length of the remaining 
encoding are stored in word_val and word_len, respectively. The process continues 
until all the VLCs are written. The bit-length of the encoding is written in the ele-
ment i of d_enc_lens. Its value is calculated using the following expression, where 
word_idx is the index of the last accessed position of d_blk_enc:

word_idx × 32 + word_len
The lookup tables of the symbols CoeffToken, TotalZeros and runs are stored in 

arrays in global memory, which are initialized statically. The base type is the CUDA 
intrinsic vector type uchar2 [25], whose definition is presented in Algorithm 4. The 
members x and y represent, respectively, the bit-length and the value of a variable-
length code. The CUDA function __ldg [25] is used for caching the reads in the 
read-only data cache [22]. In contrast, the solution of Su et al. uses the shared mem-
ory for caching the lookup tables. Both memory systems have a small latency but 
the use of the read-only data cache saves a synchronization barrier and additional 
instructions for caching the lookup tables programmatically.

The VLCs of the levels are calculated using the method for encoding levels 
without lookup tables presented by Hoffman et  al. [11]. The values of the levels 
are extracted from the variable block_vec using the positions stored in the symbol 
ZigzagLevelsMask.

The symbols TotalZeros and runs are obtained from the positions in reverse order 
of the nonzero coefficients in the zigzag array. As illustrated in Table 8 for the exam-
ple of Fig. 1, the coefficients positions are 0 for the last coefficient, 1 for the penul-
timate coefficient, and so on. In the case of TotalZeros the following expression is 
used:
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16 - TotalCoeff - last_coeff_pos  where last_coeff_pos is the position of the last 
nonzero coefficient. In our example, TotalCoeff is 5 and last_coeff_pos is 9; there-
fore, TotalZeros is 16 - 5 - 9 = 2. The symbol run associated to each nonzero coef-
ficient is calculated using the next expression:

prev_coeff_pos - coeff_pos - 1
where coeff_pos and prev_coeff_pos are the positions of the current and imme-

diately previous nonzero coefficients, respectively. Table 9 shows the calculation of 
the runs for our example.

The positions of the nonzero coefficients are obtained from ZigzagArrayMask 
and ZigzagLevelsMask in reverse order (i.e., from the last nonzero coefficient to the 
first) calling the CUDA function __ffs [23], which finds the position of the least sig-
nificant bit set to 1 in a 32 bit integer. After each function call, the last bit of the 
corresponding mask is set to 0 using the next expression, where ∼ and << are the 
bitwise operators AND, NOT and left shift, respectively,

ZigzagArrayMask & ∼ (1 << (coeff_pos - 1))

5 � Experimental evaluation

We have evaluated CAVLCU and compared it to the only existing state-of-the-art 
GPGPU implementation of CAVLC, which is the solution proposed by Su et al. [38, 
39]. It will be referred to as CAVLC_SU in this section. We implemented CAVLC_
SU from scratch following the description of the algorithm given by their authors 
[38, 39] and their support through private communication with Huayou Su.

We used two GPUs to test the algorithms, a GeForce GTX 970 (Maxwell archi-
tecture with compute capability 5.2) and a GeForce RTX 2080 (Turing architecture 
with compute capability 7.5).

In order to compare CAVLCU with CAVLC_SU, we measured the execution 
time, the number of global transactions and the number of executed instructions 
for the first 50 frames of the video sequences City (QCIF), Mother and Daugh-
ter (CIF), and Ducks take off (720p) [44]. Each test was performed with a GOP 
length of 10 and for 11 values of the quantization parameter (QP) between 0 and 
50. The number of threads per thread-block was 128 in all cases; hence, the value 
of the parameter REG_SIZE of CAVLCU was 8.

Figures 15, 16 and 17 present the execution times in milliseconds and Table 10 
the minimum, maximum and average values of CAVLCU speedup with respect to 
CAVLC_SU. As it can be seen, the results on both Maxwell and Turing architec-
tures showed that our algorithm clearly outperforms the solution of Su et al. [38, 

Table 8   Coefficients positions of zigzag array of Fig. 1

Zigzag array 5 1 0 −1 1 0 1 0 0 0 0 0 0 0 0 0

Coefficients positions 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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39], since CAVLCU is between 2.5 and 5.4 faster than CAVLC_SU on the first 
architecture and between 3.0 and 6.7 on the second.

As the main improvement of our implementation is given by the reduction of 
global memory access, Table 11 compares the number of these memory opera-
tions for CAVLCU and CAVLC_SU. It shows that our implementation reduces 
in a 75.70% the number of global memory transactions in Maxwell architecture 
and a 65.86% in Turing architecture. Thus, since CAVLCU is built using only 
one kernel, it saves many of the CAVLC_SU global memory accesses required 

Table 9   Calculation of symbols Runs of zigzag array of Fig.  1. The parameters coeff_pos and prev_
coeff_pos represent the positions of the current and immediately previous nonzero coefficients, respec-
tively

Coefficient coeff_pos prev_coeff_pos Run

1 9 11 11−9−1 = 1
1 11 12 12−11−1 = 0
-1 12 14 14−12−1 = 1

Table 10   Execution time speedup of CAVLCU with respect to CAVLC_SU

Video clip Maxwell GPU Turing GPU

Minimum Maximum Average Minimum Maximum Average

City 2.7 3.6 3.3 4.2 6.2 5.2
Mother and Daughter 2.5 3.5 3.3 3.9 5.4 4.8
Ducks take off 3.3 5.4 4.1 3.0 6.7 5.1

Fig. 15   Execution Time (ms) versus Quality Parameter (QP) for video clip ”City” (QCIF)
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for communicating intermediate results among kernels for the following reasons. 
First, the forward scan of CAVLC_SU reads all the coefficients of the frame from 
global memory and write them back ordered in zigzag; later, the coefficients are 
read again by the backward scan. CAVLCU reads the coefficients only once (in 
an efficient way through vectorized accesses) and does not need to write them 
back. Second, the forward scan of CAVLC_SU writes the symbols TotalCoeff in 
global memory for its posterior reading by the backward scan; in a similar way, 
the backward scan writes the remaining symbols in global memory for its poste-
rior reading in the coding stage. In contrast, CAVLCU holds all the symbols in 
the register space and does not need to process them in global memory. Third, 

Fig. 16   Execution Time (ms) 
versus Quality Parameter (QP) 
for video clip ”Mother and 
Daughter” (CIF)

Fig. 17   Execution Time (ms) versus Quality Parameter (QP) for video clip ”Ducks take off” (720p)
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the backward scan of CAVLC_SU writes all the parameters nC in global mem-
ory for its posterior reading in the coding stage. In contrast, CAVLCU uses the 
thread-block synchronization mechanism of Yan et al. [47] for transmitting only 
the parameters nC that are strictly necessary in an efficient way.

As seen in Table 11, CAVLCU improves the number of executed instructions by 
a factor higher than 2, due to the greater simplicity of our algorithm, which uses 
vectorized loads for reading the blocks, saves intermediate results transmission 
among kernels and, unlike CAVLC_SU, does not cache the lookup tables in shared 
memory.

6 � CAVLC applications

Over the years, many adaptations of CAVLC have been proposed in different fields, 
like data encryption [19, 40–42] and information hiding [16, 17, 45, 46].

Mian et  al. [19] proposed a technique which consists in encrypting codeword 
indexes and looking up codeword tables to determine the new codewords accord-
ing to the encrypted indexes. They embedded encryption into the process of encod-
ing TotalCoeffs, 4 × 4 block TotalZeros, chroma DC 2 × 2 block TotalZeros and runs. 
Experiments showed that the algorithm is able to provide compromise between 
security and complexity, and has little effect on compression performance.

Wang et  al. [42] demonstrated that two fast selective encryption methods for 
CAVLC and CABAC [34–36] are not as efficient as only encrypting the sign bits of 
nonzero coefficients. As a much stronger scrambling effect can be achieved encrypt-
ing the sign bits of intra prediction modes and motion vectors, they proposed a 
tunable encryption method based on these three ways of encryption. Experiments 
showed that this method has null or very little impact on compression performance. 
It can run in real-time and its computational cost is minimal. It is secure against the 
replacement attack when all three control factors are set to one.

Tabash and Izharuddin [40] presented a technique based on Baker’s map, a two-
dimensional chaotic map, which is used to design a pseudorandom number genera-
tor (PRNG). The proposed PRNG is used to encrypt the sign of transformed coef-
ficients, the codewords of runs and the pattern of trailing ones. Experiments showed 
good encryption results, where the visual information was successfully encrypted. 
The proposed method is secure against common attacks and has low computational 
requirements.

Kim et al. [16] proposed a fragile watermarking scheme where the hidden infor-
mation is embedded in the first sign bit of the CAVLC trailing ones encodings. The 
bitrate of the watermarked video remains the same and the PSNR is higher than 43 
dB.

Liao et al. [17] presented an information hiding algorithm which follows the next 
steps: (1) Generate random sequences based on chaotic maps to select the block 
positions for embedding the data. (2) Assign the i-th hidden bit to the parity of the 
number of trailing ones of the i-th block, which implies, when appropriate, setting 
the last trailing one to 0 or adding a one-value coefficient after the last nonzero 
coefficient. This method has low computationally complexity and, hence, can be 
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real-time realized. Experiments showed that the degradation of video quality is neg-
ligible and the same overall size of the video bit-stream is maintained.

Xu et  al. [45] presented a scheme for data hiding directly in the encrypted 
H.264/AVC video bitstreams. The codewords of three sensitive parts (intrapre-
diction modes, motion vector differences and levels) are encrypted with stream 
ciphers. Then, additional data may be embedded in the encrypted domain (spe-
cifically in levels codewords suffixes whose length is greater than one) without 
knowing the original video content. Data extraction can be done either in the 
encrypted domain or in the decrypted domain. In addition, experimental results 
showed that the file size is preserved and that the degradation in video quality 
caused by data hiding is quite small. In [46], Xu et al. proposed an improved ver-
sion of their scheme that can achieve higher embedding capacity. Specifically, 
when the level suffix length is equal to 1, data embedding is performed by paired 
code-word substitution; when the level suffix length is greater than 2, the multi-
ple-based notational system is adopted.

In addition to its use in video coding, CAVLC has many interesting applications 
and great possibilities in other areas of video and image compression, like medical 
image compression [20, 30, 37].

Sridhar et al. [37] proposed an advanced medical image compression technique 
based on integer DCT (Digital Cosine Transform), SPIHT (Set Partitioning In Hier-
archical Trees) and CAVLC. Simulations on different medical images (including 
CT skull, angiogram and MR images) showed better results compared to JPEG and 
JPEG2000 schemes.

Mohanty et  al. [20] presented a framework to stream histopathology image of 
a patient over a lossy network. Firstly, the image is divided into a number of fixed 
size tiles to provide access to regions of interest to the remote pathologist. Sec-
ondly, each tile is compressed using a proposed variant of WebP. Finally, a proposed 
greedy scheme packs macroblocks in such a way that that the number of undecod-
able received macroblocks is minimized. Although JPEG and JPEG2000 have been 
used to compress histopathology images, the authors selected WebP because the size 
of a file compressed by the former methods is 25%-34% more than that of the same 
file compressed by the last method [9, 10]. Nevertheless, they observed that the 
FCFS (First Come First Serve) inter-macroblock dependency introduced by WebP is 
not suitable to stream histopathology images because it cannot prioritize the decod-
ing of an important macroblock. Hence, they modified WebP by using CAVLC in 
place of CABAC encoder.

Priya et  al. [30] proposed a region-based compression method for compressing 
medical images in DICOM (Digital Imaging and Communications in Medicine) for-
mat. Their method consists of the following steps: (1) Using fuzzy C-means cluster-
ing, the image is segmented in regions of interest (ROI) and non-regions of interest 
(NROI). (2) The NROI and ROI areas are compressed using, respectively, CAVLC 
and a lossless compression method based on DWT (Discrete Wavelet Transform) 
and SPIHT. (3) The outputs of CAVLC and the lossless compression method are 
merged to get the compressed image. Experiments results showed that the pre-
sented method outperforms, in terms of PSNR (peak signal-to-noise ratio), SSIM 
(structural similarity index measure) and CR (compression ratio), the conventional 
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methods EZW (Embedded Zerotrees of Wavelet), STW (Spatial-orientation Tree 
Wavelet) and SPIHT.

7 � Conclusions

This work has presented CAVLCU, a highly optimized GPU-based approach to 
CAVLC implemented in CUDA, which improves the only state-of-the-art imple-
mentation on GPU.

Thus, our algorithm outperforms the throughput of previous implementation by 
applying several optimization strategies. On the one hand, CAVLCU is built using 
only one kernel to avoid the long latency global memory accesses required to trans-
mit intermediate results among different kernels, and the costly launches and termi-
nations of additional kernels. On the other hand, our algorithm applies thread-block 
synchronization mechanism to manage efficiently the data dependence between 
thread-blocks in the calculation of the parameters nC. Moreover, CAVLCU opti-
mizes the zigzag sorting of the blocks, as, after their reading through vectorized 
loads, sort them efficiently in the register space through few high throughput opera-
tions with high degree of instruction-level parallelism.

Experimental evaluation showed that CAVLCU is between 2.5 and 5.4 faster than 
the unique state-of-the-art GPU-based implementation.

We believe that our work is very useful for the following reasons. First, our algo-
rithm is a significantly improved alternative to the only existing GPU-based solu-
tion. Second, our method can be exploited as the CAVLC component in GPU-based 
H.264 encoders, which are a very suitable solution when GPU built-in H.264 hard-
ware encoders lack certain necessary functionality, such as data encryption and 
information hiding. Third, as CAVLC is a high-performance entropy compression 
method, apart from its wide use in the video standard H.264, it can be applied in 
many other compression systems. Hence, taking into account the massive use of 
multimedia data compression in the current digital era, our solution can be exploited 
in the development of many GPU-based applications for encoding both images and 
videos in formats other than H.264, like medical images. This is not possible with 
hardware implementations of CAVLC, as they are non-separable components of 
hardware H.264 encoders.
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2.2. Segunda contribución: "GUD‑Canny: a real‑time GPU‑based 
unsupervised and distributed Canny edge detector" 

El segundo trabajo de esta tesis [36] propone GUD-Canny, una implementación en GPU 

no supervisada y distribuida del detector de bordes de Canny, que resuelve las dos 

principales limitaciones de sus implementaciones actuales [18, 37, 38, 39, 40, 41, 42, 

43]: 

● El cuello de botella causado por el proceso de histéresis. 

● El uso de umbrales de histéresis fijos. 

Dada una imagen W × H, GUD-Canny calcula la magnitud del gradiente normalizado, la 

divide en sub-imágenes 32 × H y calcula el par óptimo de umbrales de histéresis de cada 

sub-imagen utilizando el método de Medina-Carnicer [44]. Posteriormente, en lugar de 

ejecutar un costoso proceso de histéresis CPU-GPU de varias pasadas en toda la imagen, 

lleva a cabo un conjunto de procesos de histéresis (uno por sub-imagen, utilizando sus 

umbrales específicos) completamente en la GPU, de forma independiente y en paralelo. 

Cada bloque de hilos realiza el proceso de histéresis en una sub-imagen en memoria 

compartida, y representa cada píxel del mapa de histéresis con un solo bit para optimizar 

el uso del espacio limitado de dicha memoria. 

La evaluación experimental mostró que GUD-Canny sólo requiere 0.35 ms en promedio 

para detectar los bordes de imágenes 512x512, por lo que satisface completamente el 

requisito de tiempo real, y es más rápido que las implementaciones en GPU [18, 37, 38, 

39, 40, 41, 42, 43] y en FPGA [45, 46, 47, 48, 49, 50, 51, 52, 53] existentes. 

Esta contribución se corresponde, como resultado, con el objetivo 3. 
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Abstract
The Canny algorithm is one of the most commonly used edge detectors due to its superior performance, especially in noisy 
environments. Its main limitation is that it is time consuming due to its multistage nature and the use of complex compu-
tational operations, primarily hysteresis thresholding. For this reason, many efficient implementations of the Canny edge 
detector have been developed on different accelerating platforms, such as ASICs, FPGAs and GPUs. The two main limita-
tions of the GPU implementations developed to date are the bottleneck caused by the hysteresis process, and the use of fixed 
hysteresis thresholds. To overcome these issues, a novel GPU-based unsupervised and distributed Canny edge detector is 
proposed in this paper. Experimental evaluation showed that our Canny edge detector fully satisfies real time requirements, 
as it only requires 0.35 ms on average to detect edges on 512×512 images, and that it is faster than existing GPU and FPGA 
implementations.

Keywords  Edge detection · Canny edge detector · GPU · CUDA · Parallel implementations

1  Introduction

Edge detection is an essential operation in different fields, 
such as image processing, computer vision and pattern rec-
ognition. Over the years, many edge detection algorithms 
have been proposed, including classical approaches, such as 
Roberts [1], Sobel [2], Prewitt [3] and Canny [4] methods, as 
well as more recent methods based on soft computing tech-
niques, such as fuzzy logic [5], Artificial Neural Networks 
[6], genetic algorithms [7], particle swarm optimization [8], 
ant colony optimization [9] and adaptive neuro fuzzy infer-
ence system [10].

The Canny algorithm [4], also known as optimal detec-
tion method, is still one of the most widely used edge 

detection techniques due to its superior performance. It con-
sists of the following four stages: (1) noise reduction, (2) 
gradient computation, (3) non-maximum suppression, and 
(4) hysteresis thresholding. First, the image noise is reduced 
by a Gaussian convolution. Next, first derivatives are calcu-
lated in both horizontal ( dx ) and vertical dimensions ( dy ). 
From these two images, the gradient magnitude (G) and 
direction ( � ) are computed for each pixel by the formulas 
G =

√
d2
x
+ d2

y
 and � = tan−1(

dy

dx
) . In the third stage, possible 

edges are obtained by suppressing all pixels which are not 
local maximums in the gradient direction. In the last stage, 
hysteresis thresholding determines which of possible edges 
are really edges using two thresholds values, low and high. 
First, the set of pixels with G ≥ high and the set of pixels 
with G ≤ low are directly classified as edges and non-edges, 
respectively. Then, the remaining possible edges (i.e., those 
with low < G < high ) are classified as edges if and only if 
they are connected (directly or via other possible edges) to 
pixels with G ≥ high . In the rest of the paper, the set of pix-
els with low < G < high will be referred to as instability 
zone [11], and their classification process as linking process 
[11]. Additionally, we define the instability map as a binary 
image of the same dimensions as G, in which the value of 
pixel (i, j) is 1 if the pixel (i, j) of G belongs to the instability 
zone, or 0 otherwise.
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The main drawback of the Canny edge detector is that it 
is time consuming, due to its high computational complex-
ity. To overcome this limitation, many implementations of 
the algorithm have been presented on different accelerat-
ing platforms, such as ASICs [12–14], FPGAs [15–23] and 
GPUs [25–32].

There are several ASICs implementations of Deriche fil-
ters, which have been derived from Canny’s criteria. Deriche 
[12] presented a network with four transputers that took 6 
s to detect edges in a 256 × 256 image, which is far from 
real-time requirements. Torres et al. [13] proposed a faster 
solution that processed 25 frames/s at 33 MHz, but the area 
overhead was increased by the use of Last-In First-Out 
(LIFO) stacks in off-chip SRAM memories. Lorca et al. [14] 
presented a new design that improved that of [13] by reduc-
ing the memory size and the computation cost by a factor 
of two. Nevertheless, the number of clock cycles per pixel 
varies with the image size, and the processing time increases 
with the size of the image.

Some efforts have been made to accelerate Canny edge 
detection using FPGAs [15–23]. The proposals in [15] and 
[16] translated the software designs directly into hardware 
description languages (Handel-C and VHDL, respectively), 
which resulted in timing performance degradation. Gentsos 
et al. [17] presented a parallel architecture of simultaneous 
4-pixel calculation that reduced the latency of the implemen-
tations of [15] and [16]. He et al. [18] proposed a self-adapt 
threshold Canny algorithm to overcome the drawback of 
setting the hysteresis thresholds manually in existing hard-
ware implementations. In their method, hysteresis thresholds 
are calculated from the histogram of gradient magnitude. 
Their algorithm required about 2.5 ms to detect the edges 
of a 360×280 image on a FPGA chip EP1C60240C8 (Altera 
Cyclone) based platform. Li et al. [19] presented other solu-
tion for self-adapt threshold Canny algorithm, which adopted 
a Shifting-LUT-based direction calculation algorithm to 
improve the processing speed. The processing time was 5.24 
ms for a 512×512 image on a Xilinx’s Virtex-5 FPGA. Peng 
et al. [20] proposed an improved high-speed Canny edge 
detection algorithm based on FPGA, in which the gradient 
is calculated by the second harmonic of the variable param-
eters (SHOVP) to simplify complex arithmetic into logic 
operation. The feasibility and effectiveness of the algorithm 
was tested on Altera DE2 platform. Abdelgawad et al. [21] 
proposed an implementation of Canny algorithm on Zynq 
platform using Vivado High Level Synthesis (HLS). The 
achieved results showed that the collaboration of CPU and 
FPGAs enabled up to a 100x performance improvement. The 
CPU utilization dropped down and the frame rate was up to 
60 fps for 1280×1024 resolution. Xu at al. [22] presented a 
distributed Canny edge detection algorithm that adaptively 
computes the edge detection thresholds based on the block 
type and the local distribution of the gradients in the image 

block. In addition, their method uses a non-uniform gradi-
ent magnitude histogram to compute block-based hysteresis 
thresholds. The implementation of the algorithm on a Xilinx 
Virtex-5 FPGA platform takes only 0.721 ms (including the 
SRAM read/write time and the computation time) to detect 
edges of 512×512 images in the USC SIPI database when 
clocked at 100 MHz. Sangeetha et al. [23] proposed a cost-
effective robust Canny edge detection algorithm, whose keys 
contributions are the following: (1) computation of gradient 
magnitude and orientation using approximate method, (2) 
block classification techniques, and (3) adaptive threshold 
calculation of each block. Results on Xilinx Virtex-5 FPGA 
showed that the algorithm requires only 0.672 ms to detect 
the edges of 512×512 image when clocked at 100 MHz.

In the area of General Purpose Graphic Processing 
Unit (GPGPU), several efficient implementations of the 
Canny algorithm have been proposed [25–32]. Luo and 
Duraiswami [25] presented the first implementation of the 
Canny algorithm on the popular NVIDIA CUDA framework 
[33]. They mapped the entire algorithm to the GPU, and 
improved previous similar implementations on NVIDIA Cg 
[34] and Khronos Group GLSlang [24] that not included the 
hysteresis stage. The convolution steps (Gauss and Sobel 
filtering) are efficiently implemented using a separable fil-
ter algorithm, similar to the one supplied with the CUDA 
toolkit [35]. The gradient magnitude and direction are eas-
ily obtained by calculating the L2 norm and the arctan-
gent, respectively, of the first derivatives on a simple pixel 
to thread mapping. The gradient direction of each pixel is 
quantized to one of the eight directions corresponding to 
the neighboring pixels ( �∕8 + k�∕4 ). Non-maximum sup-
pression is performed on a straightforward way by setting 
to 0 the gradient magnitudes that are not local maximums in 
the gradient direction. Hysteresis is performed by a kernel 
of 16× 16 thread-blocks, each of which processes a separate 
16× 16 pixel-block of the gradient along with a one pixel 
wide apron around the 16× 16 pixel-block, resulting in a 
17× 17 pixel-block. Each thread-block loads its assigned 
17× 17 pixel-block to shared memory, and executes a breadth 
first search (BFS) algorithm on it to classify the pixels of 
the internal 16× 16 pixel-block as edges or non-edges. This 
classification is carried out by assigning -2 to the gradient 
magnitude, if the pixel is an edge, or 0, otherwise. Once a 
thread-block finishes the BFS process, it writes the edge 
states of all non-apron pixels in shared memory back into 
the gradient magnitude space in global memory. Subsequent 
calls to the hysteresis kernel will allow the linking among 
pixels that belong to different 16× 16 pixel-blocks, thanks 
to the reloading of the updated edge states of apron pix-
els into shared memory. Due to this multi-pass approach, 
the implementation speed is dominated by the hysteresis 
process. Experimental evaluation showed that it occupies 
more than 70% of the total runtime. For testing purposes, the 
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hysteresis kernel was called four times per iteration, as no 
significant improvement was observed with higher values for 
the test images. Experiments showed a significant speedup 
against straightforward CPU functions, but a moderate 
improvement against multi-core multi-threaded CPU func-
tions taking advantage of special instructions. The measured 
execution time for a 512×512 image was 3.40 ms. Ogawa 
et al. [26] presented a solution based on the work of Luo and 
Duraiswami [25], in which they described an issue in the tra-
versing of all weak edge pixels, and proposed a stack-based 
mechanism to fix it. In the hysteresis thresholding stage, 
if the pixel assigned to a thread is a strong edge pixel, the 
thread uses a stack to traverse the adjacent weak edge pixels, 
which are labeled as final edge pixels. Experimental evalu-
ation showed a runtime of 364.389 ms for a 10240×10240 
image. The logarithmic image processing (LIP) model is a 
robust mathematical framework that is compatible with what 
is known about the human visual process [36]. In [27], Palo-
mar et al. presented the implementation of two LIP-Canny 
methods, one operating images in LIP space with traditional 
operators, and the other operating images in natural space 
with modified operators. The work of Palomar et al. [27] 
was based on those of Palomares et al. [37] and Luo and 
Duraiswami [25]. As in [25], the number of iterations of the 
hysteresis kernel was fixed to 4. Experimental evaluation 
showed that CUDA implementations are 10–16 times faster 
than the corresponding C++ implementations. Moreover, 
LIP-Canny using modified operators is slightly faster than 
the alternative approach based on classical operators. The 
average runtimes for 512×512 images were 26.448 ms and 
28.848 ms for the first and second method, respectively. 
Lourenço et al. [28] developed a CUDA implementation of 
the Canny algorithm for the Insight Segmentation and Regis-
tration Toolkit (ITK) using second-order derivatives (instead 
of Sobel filtering [25]) and a hybrid CPU-GPU approach 
for the hysteresis stage that closely followed the method 
proposed in [25]. Experimental evaluation showed that the 
CUDA implementation on three generations of NVIDIA 
GPGPUs was between 3.6 and 50 times more faster than the 
standard ITK Canny implementation on two CPU models. 
The main novelties of the CUDA implementation proposed 
by B. M. L. P. Vigil [29] are the application of Otsu method 
for automatic calculation of hysteresis thresholds, and the 
use of interpolation in the non-maximum suppression step to 
improve the quality of edge detection. The hysteresis thresh-
olding is performed by the same hybrid CPU-GPU technique 
used in previous works, and, hence, it occupies a consider-
able percentage in the total execution time (more than 50%). 
The execution times of the CUDA Canny detector for 512×
512 Lena, Mandrill and Peppers images were 8.49 ms, 9.84 
ms and 10.90 ms, respectively. Huang et al. [30] presented 
a CUDA implementation on the embedded CPU and GPU 
heterogeneous computing platform Jetson TK1 of NVIDIA. 

Noise reduction, gradient computation and non-maximum 
suppression are efficiently implemented in a similar way to 
that of [25]. However, the linking process is replaced by a 
simpler schema, which classifies a pixel of the instability 
zone as an edge pixel if at least one of its eight neighboring 
pixels is an edge pixel. Additionally, the hysteresis thresh-
olds are obtained from the histogram of gradient magnitude. 
Experimental evaluation showed that the runtimes for 512×
512 Lena and Peppers images were approximately 3 ms. In 
[32], Emrani et al. presented a CUDA implementation of 
Canny algorithm in which the main novelty was the replace-
ment of the Luo and Duraiswami’s BFS algorithm [25] with 
a more efficient method. The kernel corresponding to this 
method checks whether a pixel belongs to the instability 
zone or not. If so, it will check its neighboring pixels. If a 
strong edge is found, the current pixel is classified as an edge 
pixel. A flag in global memory is used to indicate whether 
any pixel of the instability zone has been classified as an 
edge pixel. The kernel is launched as long as the flag is set. 
The execution time of the CUDA Canny detector for a 512×
512 image was 37.35 ms on a GeForce GTX 550 Ti GPU.

As we have just seen, the main bottleneck of GPU-based 
implementations of Canny algorithm is the hysteresis step, 
due to the need of calling the hysteresis kernel an indeter-
minate number of times (at least 4) executed on host side. 
On the other hand, in all implementations, except B. M. L. 
P. Vigil’s [29] and Huang et al.’s [30], the hysteresis thresh-
olds are adjusted manually. In this work, we propose a novel 
GPU-based implementation of the Canny algorithm on 
CUDA that overcomes these limitations. As in [22] and [23], 
the image is partitioned into sub-images, and the following 
steps are performed on each sub-image in parallel: (1) cal-
culation of the optimal hysteresis thresholds, and (2) hyster-
esis process using the parameters obtained in the previous 
step. As each sub-image is processed independently, it is not 
necessary the costly hybrid CPU-GPU approach of previ-
ous implementations for hysteresis stage. The calculation of 
hysteresis thresholds is carried out with Medina-Carnicer’s 
method [11], which, at present, is relevant for unsupervised 
edge detection because, since its introduction, it has been 
used to find automatically the hysteresis thresholds in many 
works [38–51]. Medina-Carnicer’s method [11] outperforms 
those used in previous implementations of Canny algorithm 
[18, 19, 22, 23, 29], because the first searches the optimal 
values of both hysteresis thresholds low and high, while the 
latter do not, since they assume a constant ratio low/high. 
Experimental evaluation showed that our GPU-based unsu-
pervised and distributed Canny edge detector, which we have 
named GUD-Canny, requires only between 0.33 and 0.48 
milliseconds to detect edges on 512×512 images, which fully 
satisfies real-time requirements and outperforms reported 
runtimes of existing FPGA and GPU solutions.



594	 Journal of Real-Time Image Processing (2022) 19:591–605

1 3

The rest of the paper is organized as follows. Section 2 
gives a brief overview of Medina-Carnicer’s method. Sec-
tion 3 presents GUD-Canny. Section 4 shows the experimen-
tal evaluation of our solution, and, finally, the main conclu-
sions are stated in Sect. 5.

2 � Medina‑Carnicer’s method 
for unsupervised determination 
of hysteresis thresholds

2.1 � Background

In [11], Medina-Carnicer et al. presented a novel method to 
look for the hysteresis thresholds in an unsupervised way. 
Given a set of candidate thresholds pairs, the key idea is to 
combine the gradient information with that obtained from 
applying the linking process for all the candidate thresholds 
pairs. Experimental evaluation showed that the performance 
of Medina-Carnicer’s algorithm is better than those of pre-
vious methods [52, 53]. The computational complexity of 
Medina-Carnicer’s algorithm [11] is smaller than that of 
the solution presented in [53], but bigger than that of the 
proposal in [52]. Nevertheless, the approach in [52] only 
finds an approximate edge map and it is not able to find the 
hysteresis thresholds. The results obtained by Medina-Car-
nicer’s method [11] have been validated only for the Canny 
edge detector, but there are no restrictions to apply it to any 
other edge detector whose strategy is based on the hysteresis 
mechanism.

The main innovations presented in [11] are the following: 

1.	 In contrast to previous works [53–56], which are aimed 
at directly searching for hysteresis thresholds, it follows 
an indirect way, which consists of looking for the insta-
bility zone and then determining the hysteresis thresh-
olds from it.

2.	 Unlike previous proposals [53, 55, 56], which only use 
gradient information, it combines the latter with that of 
the linking process.

2.2 � Steps summary of Medina‑Carnicer’s method

Let I be an image, G its gradient magnitude after non-maxi-
mum suppression normalized in the interval [0,1], and C a set 
of candidate thresholds pairs {(low, high), low, high ∈ (0, 1)}.

Given a hysteresis thresholds pair (low, high), we define 
the following edge maps:

•	 Hysteresis map ( Glow,high ), which is obtained by perform-
ing the hysteresis process on G with (low, high).

•	 High map ( Ghigh ), which is the result of thresholding G 
with high.

•	 Linking map ( ΔGlow,high ), which is composed exclu-
sively of the edges added by the linking process using 
(low, high). Note that ΔGlow,high = Glow,high − Ghigh.

The steps of Medina-Carnicer’s method are the following: 

1.	 Calculate a set H of linking maps corresponding to the 
candidate thresholds pairs of C. 

2.	 Compute the sum SMH of the linking maps. 

 In this matrix, the value of each element is the number 
of times that the corresponding pixel of G is classified as 
edge by the linking process for all the candidate thresh-
olds pairs.

3.	 Calculate the division of SMH by the cardinality of C, 
which will be denoted as Prob(SMH) . 

 Each element of Prob(SMH) represents the probability 
that the corresponding pixel of G is classified as edge 
by the linking process.

4.	 Compute the distribution P(F(x)),∀x ∈ (0, 1) , defined as 
follows: 

where

•	 Probx(SMH) is the binary edge map obtained by thresh-
olding Prob(SMH) with x ∈ (0, 1) . Its elements with value 
1 correspond to the pixels of G that have a probability 
equal or greater than x of being classified as edges by the 
linking process.

•	 |Probx(SMH)| is the number of elements with value 1 in 
Probx(SMH).

•	 F(x) = G◦Probx(SMH) , where ◦ is the Hadamard product.
•	 |F(x)| is the number of elements with value x in F(x).

The distribution P(F(x)) represents the probability that a 
pixel has gradient level x if it is a pixel with probability 
equal or greater than x of being added by the linking process. 
It is the combined information used by Medina-Carnicer’s 
method.

5. Compute the histogram of Prob(SMH) for the set 
D = {x ∈ (0, 1)|P(F(x)) ≠ 0} , which represents the insta-
bility zone. The hysteresis thresholds are the values of D 

(1)H = {ΔGlow,high, (low, high) ∈ C}

(2)SMH =
∑

H

(3)Prob(SMH) = SMH∕|C|

(4)P(F(x)) =

{
|F(x)|

|Probx(SMH ))|
|Probx(SMH)| > 0

0 |Probx(SMH)| = 0
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corresponding to the first and last local maximums of the 
histogram.

The set C is obtained by sampling an interval 
[0.01,MAX_HIGH] , where 0.01 < MAX_HIGH ≤ 1.0 . In 
[11], Medina-Carnicer et al. showed that two selections of 
C that ensure a good performance of their method are those 
obtained by sampling the interval [0.01, 0.25] with steps 
0.01 and 0.03. Furthermore, the results presented in [53] 
indicate that their approach, in general, depends less on the 
initial set than the method of Yitzhaky and Peli [56] does.

3 � GPU‑based unsupervised and distributed 
Canny edge detector (GUD‑Canny)

In this section, we describe GUD-Canny, our GPU-based 
unsupervised and distributed Canny edge detector, which 
has been developed using the popular NVIDIA CUDA 
framework [33]. In the presented algorithms, the following 
notation is employed:

•	 Prefixes d_, s_ and c_ in the names of the variables indi-
cate that they are allocated in global, shared and constant 
memory spaces, respectively.

•	 Symbols&, |, ∼ , << and >> are the bitwise operators 
AND, OR, NOT, left shift and right shift, respectively.

Algorithm 1 provides a high-level description of GUD-
Canny. As it can be seen, the inputs of our method are the 
following. First, a W × H image, which is provided in a vec-
tor of P 8-bit unsigned integers ( d_image ), where P is the 
number of pixels. Second, the standard deviation � . Third, 
a set of NCTP candidate thresholds pairs, which is supplied 
in a vector of float pairs ( c_C ). On the other hand, the output 
of GUD-Canny are the edges of the input image, which are 
written in a vector of P 8-bit unsigned integers ( d_edges).

Steps 1–3 correspond to the classic first stages of Canny 
edge detection. To apply Medina-Carnicers’s method (steps 
4 to 7), the non-maximum suppression returns the gradient 
magnitude normalized in the interval [0, 1] ( d_G ). The gra-
dient magnitude is partitioned horizontally into NS = W∕32 
sub-images of dimension 32 × H , and Medina-Carnicer’s 
method [11] is used to calculate an optimal pair of hysteresis 
thresholds for each sub-image. Finally, in step 8, the hyster-
esis map is computed for each subimage using its assigned 
hysteresis thresholds pair, and written in the output vector 
d_edges.

Since the original width of the input image may not be a 
multiple of 32, the CUDA function cudaMemcpy2D [57] is 

used to copy the input image from host to device memory 
adding the necessary padding to each row, and the same 
function is called to copy the output edges from device to 
host memory.

In the following subsections, each step of GUD-Canny is 
described in detail.

3.1 � Gaussian filtering

To reduce the impact of noise, the input image is smoothed 
by convolving it with two one-dimensional Gaussian filters 
in the horizontal and vertical dimensions.

Each Gaussian filtering is performed by a different CUDA 
kernel, in which each output pixel is computed by a dif-
ferent thread. Kernels implementations are similar to those 



596	 Journal of Real-Time Image Processing (2022) 19:591–605

1 3

presented in [35], but with the difference that the shared 
memory is not used for caching data. Since the hardware 
cache system ensures a good performance [57], all read/
write operations are performed directly to global memory.

Each thread initializes each element of the input image 
vector used to perform the convolution dot product as fol-
lows. If it corresponds to an existing pixel, i.e., the position 
of the pixel is not outside the borders of the image, it is read 
from the input image. Otherwise, it is assigned the value 
zero.

As in [27], the length of Gaussian filters is variable and 
depends on the standard deviation � . Each kernel obtains 
the Gaussian filter from a table in constant memory, which 
stores the Gaussian filters corresponding to � values between 
0.1 and 2.0. The first table entry corresponds to � = 0.1, the 
second one to � = 0.2, and so on up to 2.0.

3.2 � Gradient computation

After Gaussian filtering, each gradient tuple (dx, dy) is cal-
culated using the first difference operator (−1, 0, 1) , and the 
associated gradient magnitude by the formula 

√
d2
x
+ d2

y
 . 

The results are written in the output vectors d_grad_x , 
d_grad_y and d_grad_mag , respectively. As in Gaussian 
filtering step, all read/write operations are made directly to 
global memory, and the border conditions are carefully 
checked.

Additionally, to compute the maximum gradient magni-
tude, each thread performs an atomic maximum operation 
(using the CUDA function atomicMax [57]) between the 
calculated gradient magnitude and a global memory variable 
( d_max_grad_mag[0] ), which has been initialized to zero.

3.3 � Non‑maximum suppression

In this step, one kernel computes a new version of gradient 
magnitude ( d_G ) by performing non-maximum suppression 
and normalization on the gradient magnitude obtained in 
the previous stage ( d_grad_mag ). Given a pixel of value p 
in d_grad_mag , the value of the corresponding pixel in d_G 
is p∕d_max_grad_mag[0] if the pixel is a maximum in the 
gradient direction, or zero otherwise. Each pixel of d_G is 
computed by a different thread of the kernel.

The method used for maximum suppression is the one 
employed in [29], which quantizes gradient direction to one 

of the eight directions {�∕8 + k�∕4} , and uses linear inter-
polation to calculate the values of the two neighboring pixels 
in the gradient direction.

Global memory operations and border conditions man-
agement are executed as in previous steps.

3.4 � Hysteresis thresholds computation

As we said previously, the gradient magnitude is partitioned 
horizontally into NS = W∕32 sub-images, and the method of 
Medina-Carnicer is applied on each one in parallel.

Images are processed by dividing them into groups of 
32 consecutive pixels in the horizontal dimension, which 
will be referred to as regions. The numbers of regions of an 
image and of a sub-image will be denoted by NRI and NRS, 
respectively. For simplicity, the regions of instability/hys-
teresis/high/linking maps will be referred to as instability/
hysteresis/high/linking regions, respectively.

Each of the steps 4–7 of Algorithm 1 is performed by a 
different kernel, whose actions are specified in the following 
subsections.

3.4.1 � Calculation of the matrices SMH

Algorithm 2 presents the pseudo code of the kernel calc_
SM_H, which calculates the matrix SMH for each sub-image 
of G. The inputs are G, which is provided in a vector of P 
32-bit floats ( d_G ), and C, which is supplied in a vector 
of NCTP 32-bit float pairs, initialized statically in constant 
memory ( c_C ). The output are the NS matrices SMH cor-
responding to the NS sub-images of G, which are written in 
a vector of P 32-bit unsigned integers ( d_SM_H ), initial-
ized to 0. Maps regions are represented by 32-bit unsigned 
integers, where the i-th bit stores the binary value of the 
i-th pixel of the region. Although the gradient regions reads 
in step 1 are not coalesced, as CUDA literature [58] [57] 
recommends, they satisfy the principle of spatial locality 
because each thread reads 32 consecutive elements of d_G , 
which are properly aligned. Therefore, the transparent cache 
hierarchy of modern GPU architectures ensures a good per-
formance while reading the gradient regions. On the other 
hand, the writes in step 5 are carried out atomically using 
the CUDA function atomicAdd [57].
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In step 3, of Algorithm 2 each thread gets its hysteresis 
region ( hyst_reg ) by calling the function calc_hyst_map , 
which receives as inputs the high and instability regions 
of the calling thread ( high_reg and inst_reg , respectively). 
The actions performed by this function are presented in 
Algorithm 3. As it can be seen, each thread-block computes 
its hysteresis map in a shared memory 32-bit unsigned int 
vector ( s_hyst_map ) of size NRS. Each hysteresis region 
i is managed by the thread i, and held in the element 
s_hyst_map[i].

An alternative way to divide the gradient magnitude into 
sub-images is by partitioning it vertically into NS = H∕32 
sub-images of dimension W × 32 . In this case, the spatial 
locality of accesses to global memory is improved, because 
consecutive threads access consecutive regions. On the other 
hand, the advantage of the horizontal partition is that the 
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number of operations in the linking process is reduced (step 
5 of the function calc_hyst_map). The reason is that it is 
only necessary to examine the top and bottom regions; in 
the case of a vertical partition, the six remaining neighbor 
regions (left, top left, bottom left, right, top right and bottom 
right) have also to be taken into account. As will be shown 
in Sect. 4, GUD-Canny is slightly faster for sub-images of 
dimension 32 × H.

3.4.2 � Calculation of the matrices Prob(SMH)

The matrix Prob(SMH) for each sub-image of G is obtained 
by dividing each element of the corresponding matrix SMH 
by NCTP. The matrices Prob(SMH) are written in a vector 
of P 32-bit floats ( d_Prob_SM_H).

The number of threads of the grid equals to P divided by 
4, and each thread i performs the following actions: 

1.	 Reads the group i of four consecutive elements from 
d_SM_H through one vectorized load.

2.	 Calculates the division of each element by NCTP.
3.	 Writes the four computed float values to the 4-elements 

group i of d_Prob_SM_H through one vectorized store.

Vectorized accesses are an important GPU optimization, 
because they increase bandwidth and reduce both instruc-
tion count and latency [59].

3.4.3 � Calculation of the distributions P(F(x)) 
and the histograms of the matrices Prob(SMH)

For each sub-image of G, the distribution P(F(x)) and the 
histogram of Prob(SMH) are computed by one kernel for 
x ∈ {0.01, 0.02, ...,MAX_HIGH} . The number of x values, 
which is MAX_HIGH∕0.01 , will be denoted by NX.

The number of thread-blocks of the grid is NS × NX . 
Each thread-block calculates P(F(x)) and the histogram of 
Prob(SMH) for one sub-image of G and one x value. The size 
of thread-blocks is NRS.

The actions performed by the kernel are shown in Algo-
rithm 4, where div and mod are the quotient and remainder 
operators, respectively. The three parallel reductions are effi-
ciently executed using the CUDA function __shfl_down_sync 
[57] and fast device memory atomic operations, as described 
in [60].
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3.4.4 � Searching of hysteresis thresholds

The hysteresis thresholds searching for each sub-image of 
G is performed by the kernel described in Algorithm 5. 
The number of warps of the grid is NS, and each warp i 
searches for the hysteresis thresholds pair of sub-image i. It 
is assumed that NX < 32.

The warp votes are performed by calling the CUDA func-
tion __balloc_sync [57], which, given a predicate, evaluates 
it for all threads in the current warp, and returns a 32-bit 
binary mask, in which each bit j is set if the predicate evalu-
ates to non-zero for the lane j.

The searches of bits within the masks are performed 
efficiently using the CUDA integer intrinsic functions __ffs 
and __brev [61]. The first one finds the position of the least 
significant bit set to 1 in a 32-bit integer, and the second one 
reverses the bit order of a 32-bit unsigned integer.
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3.5 � Hysteresis thresholding

The hysteresis thresholding is carried out by the kernel pre-
sented in Algorithm 6, which is very similar to Algorithm 2. 
The number of thread-blocks of the grid is NS, and the size 
of each thread-block is NRS. The i-th thread-block calculates 
the hysteresis map corresponding to the i-th sub-image of 
G following the same steps of Algorithm 2. Then, the j-th 
thread of the thread-block writes the pixels values specified 
in its hysteresis mask ( hyst_reg ) to the j-th region of the 
corresponding output edges sub-image.

To write the hysteresis region, each thread accesses the 
output edges image through a pointer to a structure of 32 
8-bit unsigned int members. As in the case of gradient 
regions reading, although the accesses to global memory 
are not coalesced, they satisfy the principle of spatial local-
ity, and are properly aligned.

4 � Experimental evaluation

To evaluate the performance of GUD-Canny edge detection, 
we used the ground truth images of Heath’s dataset [62], 
that can be downloaded from ftp://​figme​nt.​csee.​usf.​edu/​
pub/​Edge_​Compa​rison/​images/​resul​ts/. The 28 gray refer-
ence images of this dataset were selected by humans from 
a limited set of edge maps, which were obtained using the 
Canny edge detector with different values for its parameters.

We utilized the same two candidate thresholds sets 
selected in [11], which were those obtained by sampling the 
interval [0.01, 0.25] with steps 0.01 and 0.03, and that will 
be denoted by C0.01 and C0.03 , respectively.

Our test machine had a 3.50Ghz Intel Core i7-7800X 
CPU and 32 GB of RAM. The GPU that we used was a 
GeForce RTX 2080 (Turing architecture with compute capa-
bility 7.5), and no optimization flags were utilized in our 
implementation.

4.1 � Quality evaluation

In the first experiment, we compared the quality obtained 
by applying Medina-Carnicer’s method to the entire W × H 
image (classical frame-level approach) with the quality 
resulting from executing the same method on each 32× H 
sub-image (distributed approach, which is the focusing of 
GUD-Canny). Table 1 shows the mean-square errors (MSE) 
obtained for sets C0.01 and C0.03 . In each row, for each can-
didate thresholds set, the minimum MSE is highlighted in 
bold. As it can be seen, the good performance of Medina-
Carnicer’s method not only remains in the distributed 
approach, but it even slightly outperforms that of frame-level 
approach. For the set C0.01 , the average MSEs for classical 
and distributed approaches were 0.0534 and 0.0498, respec-
tively. In the case of the set C0.03 , the values were 0.0534 and 
0.0502, respectively.

On the other hand, it can be observed that there is no 
big difference between the quality obtained using C0.01 with 
respect to that resulting from utilizing C0.03 , as the average 
MSEs are 0.0498 and 0.0502, respectively.

4.2 � Temporal efficiency evaluation

Table 2 presents the GUD-Canny edge detection times for 
sets C0.01 and C0.03 . At the end of each column, statistics 
(average, minimum and maximum) are presented for all 
images, and for those of size 512×512. Additionally, Table 3 
shows the statistics of GUD-Canny speedup for C0.03 with 
respect to C0.01 . From the presented results, we can see the 
following points: 

ftp://figment.csee.usf.edu/pub/Edge_Comparison/images/results/
ftp://figment.csee.usf.edu/pub/Edge_Comparison/images/results/
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1.	 GUD-Canny fully satisfies real time requirements, as its 
execution times are on average 1.2736 ms and 0.3637 ms 
for sets C0.01 and C0.03 , respectively.

2.	 For the set C0.03 , the edge detection times are between 
0.2814 and 0.3932 milliseconds for 512×512 images. 
Hence, GUD-Canny outperforms the temporal efficiency 
of existing GPU and FPGA implementations, like the 
solution of Sangeetha et al. [23], whose edge detection 
time is 0.672 ms for 512×512 images.

3.	 The speedup obtained using C0.03 instead of C0.01 is sig-
nificant, as its values are between 2.99x and 3.90x. The 
reason is that the number of linking maps that have to be 
calculated for C0.03 ( 36 × NS ) is much less than that for 
C0.01 ( 300 × NS ). This contrasts with the small difference 
between the quality of edge maps obtained with these 
candidate thresholds sets.

4.3 � Distribution of execution times

Tables 4 and 5 show the statistics (average, minimum and 
maximum) of kernels execution time proportions (expressed 
as percentages) for sets C0.01 and C0.03.

Unlike the case of existing GPU-based Canny edge detec-
tors, the hysteresis stage is executed efficiently, as its average 
time proportions are 2.02% and 7.70% for sets C0.01 and C0.03 , 
respectively.

As expected, due to their higher computational complex-
ity, the most time-consuming operations are the calcula-
tion of matrices SMH (whose average time proportions are 
82.38% and 39.39% for sets C0.01 and C0.03 , respectively) 
followed by the computation of distributions {P(F(x))} and 
histograms of matrices Prob(SMH)(whose average time 

Table 1   MSE values for 
frame-level Canny edge 
detection and distributed 
Canny edge detection using 
Medina-Carnicer’s method for 
unsupervised determination of 
hysteresis thresholds

For each image and candidate thresholds set, the minimum MSE is highlighted in bold

Image Frame, C0.01 Dist., C0.01 Frame, C0.03 Dist., C0.03

Airplane (659×409) 0.0095 0.0081 0.0103 0.0071
Banana (512×468) 0.0289 0.0422 0.0310 0.0351
Basket (512×512) 0.0670 0.0603 0.0499 0.0524
Beehive (512×512) 0.0270 0.0284 0.0270 0.0278
Briefcase (577×419) 0.0237 0.0253 0.0269 0.0263
Brush (572×512) 0.0407 0.0243 0.0407 0.0259
Coffeemaker (461×665) 0.0275 0.0277 0.0291 0.0289
Egg (512×512) 0.0522 0.0540 0.0534 0.0550
Elephant (512×456) 0.0523 0.0661 0.0828 0.0727
Feather (512×512) 0.0797 0.0640 0.0643 0.0624
Flower (536×509) 0.0207 0.0260 0.0249 0.0247
Golfcart (548×509) 0.0607 0.0577 0.0914 0.0721
Grater (512×438) 0.0204 0.0210 0.0252 0.0224
Mailbox (512×512) 0.0461 0.0479 0.0531 0.0550
Orange (412×472) 0.0691 0.0679 0.0676 0.0688
Pillow (552×468) 0.0394 0.0360 0.0341 0.0357
Pinecone (512×512) 0.0687 0.0629 0.0603 0.0566
Pitcher (568×419) 0.0165 0.0169 0.0195 0.0188
Pond (512×512) 0.0719 0.0724 0.0778 0.0735
Shopping cart (512×512) 0.1188 0.0761 0.0949 0.0781
Stairs (579×441) 0.0496 0.0498 0.0635 0.0540
Stapler (529×510) 0.0335 0.0373 0.0360 0.0376
Tiger (512×512) 0.1811 0.1376 0.1554 0.1270
Tire (512×512) 0.1018 0.1102 0.1018 0.1105
Traffic Cone (437×604) 0.0768 0.0636 0.0662 0.0617
Trashcan (539×433) 0.0528 0.0521 0.0528 0.0525
Turtle (512×512) 0.0142 0.0145 0.0139 0.0165
Videocamera (577×435) 0.0441 0.0445 0.0420 0.0464
Average 0.0534 0.0498 0.0534 0.0502
Minimum 0.0095 0.0081 0.0103 0.0071
Maximum 0.1811 0.1376 0.1554 0.1270
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proportions are 7.21% and 24.87% for sets C0.01 and C0.03 , 
respectively).

Figure 1 presents the statistics (average, minimum and 
maximum) of the total GPU time proportions correspond-
ing to memory transferences. As it can be seen, the penalty 
is moderate because the percentages are less than 12% and 
30% for sets C0.01 and C0.03 , respectively.

4.4 � Horizontal partitioning vs. vertical partitioning

Table 6 shows the edge detection times (ms) on 512×512 
images using the candidate thresholds C0.03 for sub-images 
sizes 32 × H (horizontal partition) and W × 32 (vertical par-
tition). For each image, the minimum execution time is high-
lighted in bold. In all cases, the number of sub-images is 16 
and the number of regions per sub-image is 512.

From the presented results, we can see that the execution 
times are slightly lower using the horizontal partitioning. 
The average speedup is 1.14x. As explained in Sect. 3.4.1, 
although the spatial locality of accesses to global memory is 
improved using vertical partitioning, the number of opera-
tions in the linking process is reduced if the sub-image size 
is 32 × H . Experimental evaluation has shown that the per-
formance improvement due to the second factor is greater 
than that of the first.

5 � Conclusions

This work has presented GUD-Canny, a novel GPU-based 
unsupervised and distributed implementation of Canny edge 
detector. Our solution overcomes the two main limitations 
of current Canny algorithm implementations, which are the 
bottleneck caused by the hysteresis process, and the use of 
fixed hysteresis thresholds.

Given a W × H image, GUD-Canny computes the normal-
ized gradient magnitude, partitions it into 32× H sub-images, 
and calculates the optimal pair of hysteresis thresholds for 
each sub-image using Medina-Carnicer’s method [11]. Once 
the hysteresis thresholds are obtained, instead of running 
one costly multipass CPU-GPU hysteresis process on the 
entire image, hysteresis thresholdings (one per sub-image, 
using its specific hysteresis thresholds) are executed entirely 
on GPU, independently and in parallel. Each thread-block 
performs the hysteresis process on one sub-image in shared 
memory, and represents each pixel of the hysteresis map 
with only one bit to optimize the use of the limited space of 
shared memory.

Experimental evaluation showed that GUD-Canny only 
requires 0.35 ms on average to detect edges on 512×512 
images. Hence, it fully satisfies real time constraints, and is 
faster than existing GPU and FPGA implementations.

Table 2   Edge detection times (ms) for candidate thresholds sets C0.01 
and C0.03

Image C0.01 C0.03

Airplane (659×409) 1.2805 0.3385
Banana (512×468) 1.0715 0.3108
Basket (512×512) 1.2234 0.3612
Beehive (512×512) 1.0518 0.3153
Briefcase (577×419) 1.2838 0.3496
Brush (572×512) 1.4066 0.3853
Coffeemaker (461×665) 2.1042 0.5396
Egg (512×512) 1.0554 0.3325
Elephant (512×456) 1.0943 0.3458
Feather (512×512) 1.3306 0.3607
Flower (536×509) 1.4382 0.3703
Golfcart (548×509) 1.5631 0.4238
Grater (512×438) 1.1136 0.3106
Mailbox (512×512) 1.3599 0.3932
Orange (412×472) 0.9376 0.2671
Pillow (552×468) 1.4201 0.3870
Pinecone (512×512) 1.1283 0.3770
Pitcher (568×419) 1.2057 0.3286
Pond (512×512) 1.2288 0.3480
Shopping cart (512×512) 1.2945 0.3721
Stairs (579×441) 1.4954 0.4707
Stapler (529×510) 1.1602 0.3283
Tiger (512×512) 1.3492 0.3739
Tire (512×512) 1.2050 0.3686
Traffic Cone (437×604) 1.5956 0.4115
Trashcan (539×433) 1.0523 0.3500
Turtle (512×512) 1.0314 0.2814
Videocamera (577×435) 1.1798 0.3833
Average 1.2736 0.3637
Minimum 0.9376 0.2671
Maximum 2.1042 0.5396
Average (512×512) 1.2053 0.3531
Minimum (512×512) 1.0314 0.2814
Maximum (512×512) 1.3599 0.3932

Table 3   Statistics of GUD-Canny speedup for C0.03 with respect to 
C0.01

Images Average Minimum Maximum

All 3.50x 2.99x 3.90x
512×512 3.42x 2.99x 3.69x
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2.3. Tercera contribución: "GVLE: a Highly Optimized GPU-Based 
Implementation of Variable-Length Encoding" 

En este trabajo [54] se presenta GVLE, una implementación de VLE en GPU, que supera 

las principales limitaciones de las soluciones del estado del arte a través de las siguientes 

estrategias de optimización: 

● El cacheo en memoria compartida de la tabla de búsqueda de palabras de código 

se realiza de forma que el número de conflictos de banco producidos en las 

búsquedas se minimiza. 

● Los datos de entrada se leen mediante accesos vectorizados para aprovechar al 

máximo el ancho de banda de memoria global disponible. 

● La codificación de cada hilo se realiza eficientemente en el espacio de registros 

con un alto grado de paralelismo a nivel de instrucción y un menor número de 

instrucciones ejecutadas. 

● Se usa un nuevo método diseñado en esta tesis para la operación scan inter-

bloque ejecutada en memoria global para el cálculo de las posiciones binarias de 

las codificaciones de bloque en el vector de salida. El mecanismo propuesto se 

basa en una operación scan segmentada regular ejecutada eficientemente, 

mediante sumas atómicas, en secuencias de longitudes binarias de 32 

codificaciones de bloque consecutivas.  

● Los datos de salida se escriben eficientemente en memoria global a través de 

accesos coalescentes. 

La evaluación experimental arrojó los siguientes resultados: 

● GVLE es 2.6x más rápido que la mejor implementación anterior en GPU de VLE 

[55]. 

● La operación scan es 1.62x más rápida si se usa el método scan inter-bloque 

propuesto en lugar del empleado en la mejor implementación anterior de VLE 

[55]. Por tanto, ofrece posibilidades prometedoras para acelerar algoritmos que 

lo requieran, como la propia operación scan y el algoritmo de compactación [56]. 

Esta contribución se corresponde, como resultado, con el objetivo 2.  
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Abstract
Nowadays, the massive use of multimedia data gives to data compression a funda-
mental role in reducing the storage requirements and communication bandwidth. 
Variable-length encoding (VLE) is a relevant data compression method that reduces 
input data size by assigning shorter codewords to mostly used symbols, and longer 
codewords to rarely utilized symbols. As it is a common strategy in many compres-
sion algorithms, such as the popular Huffman coding, speeding VLE up is essen-
tial to accelerate them. For this reason, during the last decade and a half, efficient 
VLE implementations have been presented in the area of General Purpose Graph-
ics Processing Units (GPGPU). The main performance issues of the state-of-the-art 
GPU-based implementations of VLE are the following. First, the way in which the 
codeword look-up table is stored in shared memory is not optimized to reduce the 
bank conflicts. Second, input/output data are read/written through inefficient strided 
global memory accesses. Third, the way in which the thread-codes are built is not 
optimized to reduce the number of executed instructions. Our goal in this work is to 
significantly speed up the state-of-the-art implementations of VLE by solving their 
performance issues. To this end, we propose GVLE, a highly optimized implemen-
tation of VLE on GPU, which uses the following optimization strategies. First, the 
caching of the codeword look-up table is done in a way that minimizes the bank 
conflicts. Second, input data are read by using vectorized loads to exploit fully the 
available global memory bandwidth. Third, each thread encoding is performed effi-
ciently in the register space with high instruction-level parallelism and lower num-
ber of executed instructions. Fourth, a novel inter-block scan method, which out-
performs those of state-of-the-art solutions, is used to calculate the bit-positions of 
the thread-blocks encodings in the output bit-stream. Our proposed mechanism is 
based on a regular segmented scan performed efficiently on sequences of bit-lengths 
of 32 consecutive thread-blocks encodings by using global atomic additions. Fifth, 
output data are written efficiently by executing coalesced global memory stores. An 
exhaustive experimental evaluation shows that our solution is on average 2.6× faster 
than the best state-of-the-art implementation. Additionally, it shows that the scan 
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algorithm is on average 1.62× faster if it utilizes our inter-block scan method instead 
of that of the best state-of-the-art VLE solution. Hence, our inter-block scan method 
offers promising possibilities to accelerate algorithms that require it, such as the 
scan itself or the stream compaction.

Keywords  Data compression · Variable-length encoding · Huffman coding · GPU · 
CUDA

1  Introduction

In the current digital era, huge amounts of multimedia data, such as images and vid-
eos, are generated continuously [1]. For example, at the time of writing this paper, 
720,000 hours of video are uploaded to YouTube by day [2]. Since the rate of 
growth of data is much higher than the rate of growth of technologies (e.g., DVDs, 
Blu-ray, ADSL, optical fibers, etc.), data compression has nowadays an essential 
role in reducing the cost of data storage and transmission [1].

Variable-length encoding (VLE) is a popular data compression method in which 
most frequently occurring symbols are replaced by codewords of shorter length, 
whereas rarely used symbols are substituted by codewords of longer length [3]. 
Since VLE is a common strategy in many compression algorithms [3, 4], such as the 
widely used Huffman coding [5, 6], acceleration of VLE is key to speed them up. 
In order to achieve this goal, during the last decade and a half, efficient implemen-
tations of VLE have been proposed in the area of General Purpose Graphics Pro-
cessing Units (GPGPU) [7–14], which is, nowadays, mainstream high-performance 
computing [15–17].

The first GPGPU VLE solution is the algorithm PAVLE, proposed by Balevic 
[7]. This method uses an encoding alphabet of up to 256 symbols, with each sym-
bol representing one byte. Without loss of generality, it assumes that the values and 
bit-lengths of the codewords are stored in a look-up table, which is cached in the on-
chip shared memory. This table will be referred to as VLET in the rest of the paper. 
As GPU architectures provide more efficient support for 32-bit data types, the source 
and compressed data are provided and written, respectively, in two vectors of 32-bit 
unsigned integers. Consecutive threads load consecutive segments of elements from 
the source vector. Each thread uses the VLET for encoding the loaded segment in its 
private memory and calculating the corresponding bit-length. An intra-block scan 
primitive [18] is performed to calculate the bit-positions of the thread encodings 
in the corresponding thread-block encoding on the basis of their bit-lengths. The 
threads of a thread-block write concurrently their encodings in a buffer in shared 
memory using atomic operations to deal with the race conditions that occur when 
parts of adjacent encodings are written to the same memory location. Once the writ-
ing is finished, the content of the buffer is copied to the output vector at the same 
position of the corresponding source segment in the input vector. After the encod-
ing is finished, a second kernel is launched to compact the output vector. Experi-
mental evaluation showed speedups with respect to the serial implementation on a 
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2.66 GHz Intel QuadCore CPU of up to 35x. Fuentes-Alventosa et al. [8] presented 
CUVLE, a new implementation of VLE on CUDA. As in the case of PAVLE, the 
VLET is cached in shared memory, and consecutive threads process consecutive 
source segments. However, their approach uses the following optimization strate-
gies. First, persistent blocks [19], which equals the grid size to the maximum num-
ber of resident thread-blocks, thereby minimizing the number of VLET loads in 
shared memory. Second, contiguous writing of thread-block encodings in global 
memory, which avoids the necessity of running any compaction extra kernel. The 
bit-positions of the thread encodings in the output vector are calculated by combin-
ing the efficient intra-block scan algorithm of Sengupta et al. [20] with the adjacent 
thread-block synchronization mechanism proposed by Yan et al. [21]. Third, direct 
writing of thread-block encodings in global memory. Since CUVLE does not use an 
intermediate buffer in shared memory, it saves the time to make additional opera-
tions, avoids the appearance of bank conflicts and saves the reserved space for the 
buffer. Experimental evaluation showed that CUVLE is on average more than 20 
and 2 times faster than the corresponding CPU serial implementation and PAVLE, 
respectively. The test machine had a 2.67Ghz Intel Core i7 920 CPU and 12 GB of 
RAM, and the GPUs utilized were a GeForce GT 640 2GB GDDR5 and a GeForce 
GTX 550 Ti. Rahmani et al. [9] proposed a CUDA-based Huffman coder that does 
not have any constraint on the maximum code bit-length by generating an interme-
diate byte stream where each byte represents a single bit of the compressed output 
stream. After the Huffman tree generation is done serially on the CPU, the encod-
ing is performed in parallel on the GPU following the next three steps (each one 
implemented with a different kernel). First, the code offsets for each input symbol 
in the intermediate stream are calculated using the scan method presented in [18]. 
Second, the intermediate stream is generated by the i-th thread of the second kernel 
writing the code of the i-th input symbol to its corresponding memory slots in the 
intermediate stream. Third, the output stream is obtained by each thread of the third 
kernel reading 8 consecutive bytes from the intermediate stream, and generating a 
single byte of the output stream. As the encoding is implemented with three kernels, 
this solution has two main overheads: the extra long latency global memory accesses 
required to transmit intermediate results between kernels, and the costly launches 
and terminations of the kernels. Experimental evaluation on the NVIDIA GTX 480 
GPU showed speedups with respect to the CPU serial implementation of up to 22x 
on an Intel Core 2 Quad CPU running at 2.40 GHz. The work of Yamamoto et al. 
[10] focused on GPU acceleration of Huffman encoding and decoding and was 
developed in CUDA. As in the case of CUVLE, the VLE stage is implemented with 
only one kernel. The authors exposed that their kernel is similar to CUVLE, but it is 
much more faster because, instead of using Yan et al.’s mechanism [21], it utilizes 
a novel adjacent thread-block synchronization method, which is much more effi-
cient. The reason is that, in the Yan et al.’s algorithm [21], each thread-block looks 
back the result written in global memory by only one thread-block, while, in the 
Yamamoto et al.’s approach [10], each thread-block looks back 32 previous results 
simultaneously. Experimental evaluation for ten files on NVIDIA Tesla V100 GPU 
showed that Yamamoto et al.’s VLE implementation is between 2.87 and 7.70 times 



	 A. Fuentes‑Alventosa et al.

1 3

faster than CUVLE. For this reason, the best state-of-the-art implementation of VLE 
on GPU is the solution of Yamamoto et al.

The main performance issues of the state-of-the-art GPU-based implementations 
of VLE [8, 10] are the following. First, the way in which the VLET is cached is not 
optimized to reduce the shared memory bank conflicts. Second, each thread reads/
writes the elements of its input/output segment one by one, which results in inef-
ficient strided global memory accesses. Third, the way in which the thread-codes 
are built is not optimized to reduce the number of executed instructions. In order to 
solve these issues, we propose GVLE, a highly optimized implementation of VLE 
on GPU, which significantly speeds up the solution of Yamamoto et al. As in previ-
ous approaches [7, 8, 10], the VLET is cached in shared memory, and consecutive 
threads process consecutive segments of the input vector. However, GVLE uses the 
following optimization strategies. First, the VLET storage in shared memory is done 
in a way that minimizes the bank conflicts. Second, the input segments are read by 
using vectorized loads to exploit fully the available global memory bandwidth [22]. 
Third, each thread, after reading its assigned segment, encodes it efficiently in the 
register space with high instruction-level parallelism and lower number of executed 
instructions. Fourth, a novel inter-block scan method, which outperforms those of 
Yan et al. [21] and Yamamoto et al. [10], is used to calculate the bit-positions of the 
thread-blocks encodings in the output vector. Our proposed mechanism is based on 
a regular segmented scan performed efficiently on sequences of bit-lengths of 32 
consecutive thread-blocks encodings by using global atomic additions [23]. Fifth, 
the thread-block encodings are written efficiently to the output vector by executing 
coalesced global memory stores [24].

Our main contributions in this work are the following:

•	 A highly optimized GPU-based approach to VLE, called GVLE,1 that signifi-
cantly improves the state-of-the-art implementations [8, 10].

•	 A novel inter-block scan method for calculating the bit-positions of thread-
blocks encodings that outperforms those used in [8] and [10].

•	 A comparison of our solution with the best state-of-the-art implementation [10]. 
An exhaustive experimental evaluation shows that our proposal is on average 
2.6× faster than the method presented in [10].

•	 A comparison of our inter-block scan method with that of [10]. The experimental 
results show that the speedup of the scan operation using our inter-block scan 
algorithm is on average 1.62× with respect to using the method of [10].

The rest of the paper is organized as follows. Section 2 gives background for CUDA, 
VLE and the Yamamoto et  al.’s implementation of VLE [10]. Section  3 presents 
GVLE and compares our method with the one proposed in [10], so that the achieved 
performance improvement can be clearly established. Section 4 shows the experi-
mental evaluation of our algorithm and a comparison to the method of Yamamoto 

1  The source code is available at https://​github.​com/​z12fu​ala/​GVLE.

https://github.com/z12fuala/GVLE.
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et  al. [10], CUVLE [8] and the serial implementation of VLE. Section  5 reviews 
related work. Finally, the main conclusions are stated in Section 6.

2 � Background

This section is structured in the following way. Section 2.1 gives a brief overview of 
CUDA, and cites several relevant documents that can provide further background to 
readers. Section 2.2 defines VLE, and highlights its important role in data compres-
sion. Section 2.3 gives a detailed description and a critical analysis of the best state-
of-the-art implementation of VLE on GPU ( [10]).

2.1 � CUDA

CUDA (Compute Unified Device Architecture) is a parallel computing framework 
developed by NVIDIA for GPGPU computing [16]. Since its release in 2007, thou-
sands of applications have been developed on CUDA [15, 16], so it is one of the 
main responsible technologies for the GPGPU computing revolution.

CUDA greatly facilitates to developers the implementation of parallel algorithms 
by providing a small set of extensions to popular languages such as C, C++, For-
tran, Python and MATLAB [16]. In this work, we have utilized CUDA C++.

As shown in Fig. 1 [23], in a CUDA program, the sequential parts runs on the 
CPU (usually referred to as the host), while the compute intensive parts are executed 
by thousands of threads on the GPU (commonly named as the device). The func-
tions executed on the GPU are called kernels, which are defined by the program-
mer using the __global__ declaration specifier. The number of threads that execute 
a kernel is specified using the <<<...>>> execution configuration syntax. They are 
organized into one-, two- or three-dimensional blocks of threads, which are called 
thread-blocks. A kernel is executed by a set of identical thread-blocks, called grid, 
which can also have up to three dimensions.

The architecture of a CUDA GPU is composed of a set of streaming multipro-
cessors (SMs) [23]. When a kernel is launched, the thread-blocks of the grid are 

Fig. 1   Execution of a CUDA 
program
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distributed to the available multiprocessors with execution capacity. The threads of 
each thread-block run concurrently on a single multiprocessor, and each multipro-
cessor can concurrently execute many thread-blocks. As the execution of the thread-
blocks finishes, new ones are launched in the available multiprocessors. The SMs 
execute the threads in groups of 32 called warps. The threads of a warp start at the 
same program address, but each one has its own instruction address counter and reg-
ister state, and, hence, they are free to branch and execute independently. Although 
CUDA developers can ignore this behavior for the correctness of their applications, 
they can greatly improve their performance by minimizing the warp divergence.

CUDA threads can access three types of memory spaces during their execution 
[23]:

•	 Each thread has private memory consisting of registers and local memory. Its 
lifetime is that of the thread.

•	 Each thread-block has shared memory visible to all threads in it. Its lifetime is 
that of the thread-block. The __shared__ qualifier is used for the declaration of 
variables in shared memory.

•	 All threads of a grid have access to a read/write global memory, and two other 
read memories: the constant memory, used to store non-modifiable values, and 
the texture memory, optimized for accesses with 2D spatial locality. The contents 
of these memories are persistent between the different kernel calls of the same 
application.

Global memory is the most abundant of these memory spaces [24]. On the other 
hand, global, local, and texture memory have the highest access latency, followed 
by constant memory, shared memory, and registers [24]. A very important opti-
mization technique is the coalescing of global memory accesses [23, 24]. When a 
warp performs an operation on global memory, the memory accesses of its threads 
are coalesced into one or more memory transactions according to the size of the 
accessed words and the distribution of the memory addresses. The more scattered 
the accesses are, the more transactions are necessary, and, hence, the more reduced 
the throughput is.

2.2 � Variable‑length encoding (VLE)

Input data to a compression algorithm can be modeled as a sequence of elements, 
called symbols, belonging to an alphabet [4]. A symbol can be an ASCII character, 
a byte, an audio sample, etc. Given an alphabet S = {s0, s1, ..., sn−1} , its digital rep-
resentation is called the code C = {c0, c1, ..., cn−1} , and the representation ci of each 
symbol is called the codeword for symbol si . Codes are classified into fixed length 
codes (FLC) and variable-length codes (VLC), depending on the length of their 
codewords is fixed or variable, respectively. The process of assigning codewords to 
symbols of input data is called encoding, and the reverse process is called decoding.

Variable-length encoding (VLE) [3] is a compression method in which input 
data size is reduced by using a VLC that assigns shorter codewords to mostly used 
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symbols, and longer codewords to rarely utilized symbols. Figure 2 illustrates VLE. 
For example, consider the alphabet S = {A,B,C,D,E} and the 9-symbols input data 
string BAAA​AAA​AC [4]. On the one hand, if the encoding is performed using a 3-bit 
FLC, the bit-length of the result is 9 × 3 = 27 . On the other hand, if the encoding is 
performed using the VLC C = {0, 100, 101, 110, 111} , the bit-length of the result is 
1 × 3 + 7 × 1 + 1 × 3 = 13 , which is less than half that obtained with the FLC.

VLE is one of the main building blocks in many compression algorithms [3, 4], 
such as the popular Huffman coding [5, 6], which is the most relevant entropy cod-
ing method at present [25]. Huffman coding is a component of the Deflate algo-
rithm, which is used in the file compression programs ZIP, 7ZIP, GZIP, and PKZIP, 
and in the image compression format PNG, for example [26]. Additionally, Huffman 
coding is the most used entropy coding algorithm in multimedia encoding standards 
such as JPEG, MPEG, H.264 and VC-1 [27], and is a critical step in an increasing 
number of high-performance computing applications [12, 28, 29]. Since VLE is an 
essential step in so many important present and future compression algorithms, its 
acceleration is fundamental to speed them up.

2.3 � Solution of Yamamoto et al

The best state-of-the-art implementation of VLE on GPU is the solution presented 
by Yamamoto et al. [10], which was developed in CUDA. It is composed of only 
one kernel, which will be referred to as YAVLE in the rest of the paper. In this sec-
tion, we give a detailed description of YAVLE based on the paper of Yamamoto 
et al. [10], and the source code of their solution published on GitHub at github.com/
daisuke-takafuji/Huffman_coding_Gap_arrays.

YAVLE operates on 8-bit symbols and, therefore, it utilizes an alphabet of up to 
256 symbols. The VLET is provided in a vector (d_VLET) of 256 elements, whose 
base type is a structure (Codeword) with two 32-bit unsigned int members that rep-
resent the value and the bit-length of a codeword. Yamamoto et al. assume that the 
maximum bit-length of codewords is 16 because Huffman coding with this limited 
maximum codeword can be generated efficiently [10, 30, 31]. In fact, actually, the 
maximum codeword length is limited in the most implementations of Huffman cod-
ing [10].

Fig. 2   Variable-Length Encod-
ing (VLE). Input data size is 
reduced by assigning shorter 
codewords to mostly used 
symbols, and longer codewords 
to rarely utilized symbols
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The source data are supplied in a vector of 32-bit unsigned integers (d_input). 
Hence, each element contains 4 symbols. The compressed data are written in an out-
put vector (d_output) of 32-bit unsigned integers too. Let B be the thread-block size. 
The vector d_input is partitioned into segments of size B × 8 , which will be named 
as block-inputs. Each block-input is processed by a thread-block and the encoding 
result, which will be referred to as block-code, is written in d_output. Figure 3 illus-
trates this inter-block mechanism. Consecutive threads of each thread-block pro-
cess consecutive segments of eight elements (i.e., 32 symbols) of the corresponding 
block-input, which will be named as thread-inputs. The encoding of a thread-input 
will be referred to as thread-code. Figure 4 clarifies this intra-block mechanism.

Algorithm 1 provides a high-level description of YAVLE. Each thread-block 
caches the VLET in shared memory (Step 1) and encodes a different subset of 
block-inputs (Steps 2 to 7). The number of thread-blocks of the grid is set to 

Fig. 3   Inter-block mechanism for an input vector of 4 block-inputs and a grid of 2 thread-blocks. The 
thread-block 0 processes the block-inputs 0 and 2, and writes the corresponding block-codes 0 and 2 in 
the output vector. The thread-block 1 performs the same actions with the block-inputs 1 and 3

Fig. 4   Intra-block mechanism. The thread-block i (of size B) processes the block-input j and writes the 
corresponding block-code j in the output vector. Each thread k of the thread-block i encodes the thread-
input k and writes the thread-code k in the output vector
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the maximum number of resident thread-blocks. Hence, the number of VLET 
loads in shared memory is minimized. The indexes of the block-inputs are 
obtained from a zero-initialized global counter (Steps 2 and 7). The function 
get_global_counter_value uses the CUDA function atomicAdd [23] to return the 
successive values of the global counter, that is, 0, 1, 2,  and so on. This mecha-
nism ensures that, when a thread-block starts the processing of a block-input i, 
the management of block-inputs 0, 1, ...., i − 1 have already begun. The process-
ing of each block-input consists of Steps 3 to 6.

In Sects. 2.3.1 to 2.3.4, we describe Steps 4 to 6 of Algorithm 1, respectively.
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2.3.1 � Calculation of bit‑lengths of thread‑codes

In Step 4 of Algorithm 1, each thread iterates over the 32 symbols of its thread-
input to calculate the bit-length thcode_len (line 12) of the corresponding thread-
code. For each symbol, if the element to which it belongs has not been loaded 
from d_input yet, that element is read. Then, the symbol is extracted from its 
element, and its codeword is obtained from the VLET. The bit-length of the 
thread-code is computed by accumulating the bit-lengths of its codewords.

2.3.2 � Calculation of bit‑positions of thread‑codes in output vector

In Step 5 of Algorithm 1, the bit-position thcode_pos (line 15) of each thread-code 
in the output vector is computed by adding the bit-position of the thread-code in its 
block-code ( pos_of_thcode_in_bcode ) to the bit-position of the block-code in the 
output vector ( blockcode_pos).

On the one hand, the intra-block scan method of Sengupta et al. [20] is performed 
on the parameters thcode_len of the current block-code to compute the correspond-
ing bit-positions pos_of_thcode_in_bcode and the bit-length of the block-code 
( blockcode_len).

On the other hand, a novel inter-block scan algorithm [10], which is described in 
the next section, is executed on the parameters blockcode_len of the block-codes to 
compute their bit-positions blockcode_pos.

2.3.2.1  Yamamoto et al.’s inter‑block scan method  The inter-block scan method of 
Yamamoto et al. uses an auxiliary global vector d_scan (line 5) of 64-bit unsigned 
integers, whose initial values are zero. The number of elements of d_scan equals to 
the number of block-codes, and each element i is assigned to the block-code i. Each 
value written in d_scan has two mutually exclusive flags, named as A and P, which 
are located in bits 56 and 63, respectively. Given an element d_scan[i] , if the flag A is 
set, then it stores the bit-length of block-code i; otherwise, if the flag P is set, it holds 
the sum of bit-lengths of block-codes 0 to i, which is the bit-position of the block-
code i + 1 in the output vector.

Given a block-code i, the first warp of its assigned thread-block computes the 
parameter blockcode_pos by following the steps presented in Algorithm  2. If the 
block-code is the first, blockcode_pos is clearly zero (line 3). Otherwise, the warp 
iterates on the necessary 32-elements segments of d_scan before to d_scan[i] to 
compute blockcode_pos (lines 8 to 20). This parameter is obtained by the sum of the 
elements d_scan[k] , d_scan[k + 1] , ... d_scan[i − 1] , where k is the index of the last 
element previous to d_scan[i] with the flag P activated.
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The main difference between CUVLE [8] and YAVLE is in the method used 
to calculate the parameters blockcode_pos . Yamamoto et  al.’s inter-block scan is 
much more efficient than Yan et al.’s technique [21] employed by CUVLE because, 
to obtain the bit-position of a block-code i, the first processes rapidly 32-element 
segments previous to d_scan[i] , whose values are read simultaneously by the first 
warp of the thread-block, while the second iterates only over one previous element 
( d_scan[i − 1] ). This optimization is the unique reason of the significant speedup of 
YAVLE with respect to CUVLE [10].

2.3.3 � Writing of thread‑codes to output vector

In Step 6 of Algorithm  1, each thread iterates over the 32 symbols of its thread-
input in the same way as it does to calculate the bit-length of the thread-code (Step 
4). Let d_thcode be a pointer to the first element of d_output that will be occupied 
by the thread-code. As the codewords assigned to the symbols are obtained from 
the VLET, their bits are concatenated in a 32-bit variable ( word_val ) and their bit-
lengths added in a second 32-bit variable ( word_len ) while the bit-length of the 
resulting encoding is less than or equal to 32. When the last condition is not satis-
fied, the first 32 bits of the resulting encoding are written in the corresponding ele-
ment of d_thcode , and the value and bit-length of the remaining encoding are stored 
in word_val and word_len , respectively. The process continues until all the code-
words are written. To avoid race conditions with the previous and next thread-codes, 
the first and last writes are performed by using atomic OR operations [23].

3 � Highly optimized GPU‑based implementation of VLE (GVLE)

In this section, we present GVLE, our GPU-based implementation of VLE, which 
has been developed using the popular NVIDIA CUDA framework [16]. It is also 
compared with Yamamoto et  al.’s proposal so that the achieved performance 
improvement can be clearly established.

As previous solutions [8, 10], GVLE is composed of only one kernel, whose 
execution configuration sets the number of thread-blocks to the maximum number 
of resident thread-blocks. The inputs and outputs of GVLE are the same as those 
of YAVLE, except that, in the case of GVLE, the VLET is provided in two sepa-
rate vectors, one of 256 16-bit unsigned integers (d_VLET_val) and the other of 256 
8-bit unsigned integers (d_VLET_len), which store the values and the bit-lengths of 
the codewords, respectively. As in the case of YAVLE, it is assumed that the maxi-
mum bit-length of codewords is 16.

Algorithm 3 presents the pseudo code of GVLE. As in previous approaches [8, 
10], each thread-block caches the VLET in shared memory (Step 1) and encodes a 
different subset of block-inputs (Steps 2 to 9). The technique used to get the indexes 
of the block-inputs (Steps 2 and 9) is the same as that of YAVLE (Sect. 2.3). Let us 
define a warp-code as the encoding of the 32 thread-inputs processed by a warp, that 
is to say, the concatenation of the thread-codes computed by a warp. The processing 
of each block-input consists of Steps 3 to 8.
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In Sect.  3.1, we describe Step 1 of Algorithm  3, and, in Sects. 3.2 to 3.6, 
Steps 4 to 8, respectively.
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3.1 � VLET caching

In Step 1 of Algorithm 3, since the VLET is used intensively for searching the code-
words, each thread-block caches it in the fast on-chip shared memory. The global 
memory vectors d_VLET_val (line 8) and d_VLET_len (line 9) are copied to the 
identical shared memory vectors s_VLET_val and s_VLET_len, respectively, in a 
fully coalesced way.

The warp accesses to the VLET are random because they depend on the source 
data. For this reason, in order to minimize the bank conflicts caused by irregular 
warp accesses [23, 24], the VLET is implemented with two separate vectors (lines 
8 and 9) whose base types have the minimum size necessary to store codewords 
of up to 16 bits (16-bits for s_VLET_val and 8-bits for s_VLET_len). In contrast, 
as YAVLE caches the VLET in a single vector whose base type (Codeword) has a 
size of 64-bits, the number of bank conflicts is much higher. The reason is that, in 
the case of YAVLE, each codeword is stored in two consecutive 32-bits elements of 
shared memory, while, in the case of GVLE, two codewords’ values are cached in 
one 32-bit element, and four codewords’ bit-lengths are kept in one 32-bit element.

On the other hand, although GVLE has to access two vectors (instead of one, as 
YAVLE) to get the value and the bit-length of one codeword, these readings are fast 
because they are executed in parallel at the instruction level.

3.2 � Reading of thread‑inputs

In Step 4 of Algorithm  3, each thread reads the 32 symbols of its thread-input 
through one vectorized access using the custom vector type uchar32, which is com-
posed of 32 8-bit unsigned integers, and stores the thread-input in the variable thin-
put (line 14). Vectorized loads are an important CUDA optimization because they 
increase bandwidth and reduce both instruction count and latency [22].

In contrast, YAVLE reads the elements of its thread-input one by one, which 
results in inefficient strided global memory accesses [23, 24]. In addition, YAVLE, 
instead of loading its thread-input from global memory once, reads it twice: the first 
time to calculate the bit-length of the thread-code, and the second time to compute 
the bit-stream of the thread-code on the fly during its writing in the output vector.

3.3 � Calculation of thread‑codes

In Step 5 of Algorithm 3, each thread searches in s_VLET_val and s_VLET_len the 
codewords assigned to the 32 symbols stored in thinput to compute the correspond-
ing thread-code (lines 16 to 18). Since a thread-code is the concatenation of 32 con-
secutive codewords and the bit-length of each codeword is no more than 16-bits, 
a thread-code is made up of 16 binary segments (each segment i corresponding to 
the concatenation of the codewords 2 × i and 2 × i + 1 ), whose bit-lengths are not 
greater than 32-bits. Taking this into account, the values and the bit-lengths of the 
segments are calculated and cached in the private arrays seg_val and seg_len (line 
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15), of 16 32-bit unsigned integers each, respectively. Additionally, the bit-length 
thcode_len of each thread-code (line 15) is obtained by adding the bit-lengths of its 
segments.

The calculation of thread-codes is efficient for the following reasons. First, there 
are no dependencies between the different computations of segments, hence the 
degree of instruction-level parallelism is high. Second, each segment calculation is 
performed with few operations of high throughput (one binary shift and two sums). 
Third, there is no warp divergence in the computation of segments. Fourth, the 
arrays seg_val and seg_len are placed in the register space [24] because (1) they are 
small, (2) they are indexed with constant quantities, and (3) the kernel does not use 
more registers than available.

Since YAVLE computes the bit-stream of each thread-code by concatenating its 
32 codewords on the fly during its writing to the output vector, the number of exe-
cuted instructions is higher than that of GVLE.

3.4 � Calculation of parameters of warp‑codes

In Step 6 of Algorithm  3, each thread-block calculates the following parameters, 
which are necessary for the posterior processing of the warp-codes of the current 
block-code (line 19):

•	 Bit-position of each thread-code in its warp-code ( pos_of_thcode_in_wcode).
•	 Bit-length of each warp-code ( wcode_len).
•	 Bit-position of each warp-code in the output vector ( wcode_pos).

On the one hand, the intra-block scan method of Sengupta et al. [20] is executed on 
the bit-lengths of the thread-codes of the current block-code to calculate the param-
eters pos_of_thcode_in_wcode , wcode_len , the bit-position of each warp-code 
in the block-code ( pos_of_wcode_in_bcode ), and the bit-length of the block-code 
( blockcode_len).

On the other hand, the bit-position of each block-code in the output vector 
( blockcode_pos ) is obtained by carrying out a scan operation on the bit-lengths of 
the block-codes using a novel inter-block scan algorithm, which is proposed in the 
next section.

Once a warp gets the parameters blockcode_pos and pos_of_wcode_in_bcode , it 
computes wcode_pos by adding them.

3.4.1 � Our inter‑block scan method

In our algorithm, the global vector d_scan (line 6), whose elements are initially 
zero, is used to perform a regular segmented inclusive scan on segments of bit-
lengths of 32 consecutive block-codes. Each segment i is composed of the bit-
lengths of block-codes 32 × i to 32 × i + 31 , and its prefix sum is written in the 
corresponding 32-elements sub-vector i of d_scan . The scan of each segment is 
performed by a set of 32 thread-blocks, which will be referred to as sub-grid. 



	 A. Fuentes‑Alventosa et al.

1 3

Each segment i is processed by a sub-grid i, which is composed of the thread-
blocks that manage the block-codes 32 × i to 32 × i + 31 . The scan of each seg-
ment i is calculated directly in the d_scan sub-vector i by the first warp of each 
thread-block j of the sub-grid i performing an atomic addition [23] of the bit-
length of its block-code to the elements j to 31 of the sub-vector i. Note that the 
number of atomic additions carried out by each sub-grid on each element j of the 
corresponding sub-vector is j + 1 . Figure 5 illustrates this mechanism for the first 
segment.

In order to detect that the segmented prefix sum has already been calculated 
for a particular d_scan sub-vector element, bits 57 to 62 of each element are used 
to store the number of atomic additions performed on it. This sums counter is 
implemented by performing the atomic additions with the bit 57 of the bit-lengths 
of the block-codes set to 1. The bits 0 to 56 of each element j of each d_scan sub-
vector i are used to store the corresponding segmented scan value, i.e., the sum 
of bit-lengths of block-codes 32 × i to 32 × i + j . In the case of the thirty-second 
element of each sub-vector i except the first, a second value is assigned to its bits 
0 to 56 in a posterior stage of our algorithm, which is the not-segmented scan 
value, i.e., the sum of bit-lengths of block-codes 0 to 32 × i + 31 . To distinguish 
between these two mutually exclusive values, in the second case, a flag will be 
activated in the bit 63, which will be referred to as flag P. Table 1 shows an exam-
ple of GVLE inter-block scan, which presents an extract of the first 64 values 
written in d_scan (i.e., the corresponding to the first two segments). Note that 
d_scan[63] is the only element that has the flag P activated (the bit 63 is 1). The 
reason is that it stores the sum (1, 206, 728) of all the bit-lengths of segments 0 
and 1. The remaining elements hold the segmented scan value (bits 0 to 56), and 
the number of atomic additions performed on them (bits 57 to 62).

Let us define a sub-code as the bit-stream composed of the block-codes man-
aged by a sub-grid. Given a thread-block j of a sub-grid i, the first warp of the 
thread-block follows the next steps to calculate the parameter blockcode_pos of 
the corresponding block-code:

1.	 It performs an atomic addition of the bit-length of the block-code (with the bit 57 
set to 1) to the elements j to 31 of the sub-vector i.

Fig. 5   GVLE inter-block scan on the first segment
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2.	 It gets the bit-position of the block-code in its sub-code, which will be referred 
to as pos_of_bc_in_sc , in the following way. If j = 0 , clearly pos_of_bc_in_sc 
is 0. Otherwise, it reads repeatedly the element j − 1 of the sub-vector i until its 
sums counter is j. The parameter pos_of_bc_in_sc is obtained by resetting the 
bits 57 to 62.

3.	 It gets the bit-position of the sub-code in the output vector, which will be referred 
to as pos_of_sc_in_out , in the following way. If i = 0 , clearly pos_of_sc_in_out 
is 0. Otherwise, it reads repeatedly the element 31 of the sub-vector i − 1 until its 
sums counter is 32 or the flag P is activated (i.e., the value stored in bits 57 to 63 
is 32 or 64). If the flag P of the read value is not activated, it repeats the same pro-
cedure on sub-vectors i − 2 , i − 3 , ... until the read value has the flag P activated 
or there are no more sub-vectors to process. The parameter pos_of_sc_in_out is 
obtained by accumulating the read values, with the bits 57 to 63 set to 0, as they 
are read.

4.	 The parameter blockcode_pos is obtained by adding pos_of_bc_in_sc to 
pos_of_sc_in_out.

5.	 If j = 31 (i.e., the thread-block is the last of the sub-grid): 

(a)	 It computes the bit-length of the sub-code i ( sc_len ) by adding 
pos_of_bc_in_sc to blockcode_len.

(b)	 It computes the sum of pos_of_sc_in_out to sc_len , and stores it in the ele-
ment 31 of the sub-vector i with the flag P activated. Note that the written 
value is the bit-position of the sub-code i + 1 in the output vector.

As will be shown in Sect.  4, our inter-block scan method outperforms that of 
Yamamoto et al. The reasons are the following: 

Table 1   Example of GVLE 
inter-block scan on the two first 
segments

i Bit-length of 
block-code i

Value stored in bits 57 
to 63 of d_scan[i]

Value stored in bits 
0 to 56 of d_scan[i]

0 19,036 1 19,036
1 18,641 2 37,677
2 18,210 3 55,887
. . . .
29 18,976 30 565,395
30 19,209 31 584,604
31 19,026 32 603,630
32 18,775 1 18,775
33 19,223 2 37,998
34 19,331 3 57,329
. . . .
61 18,632 30 565,170
62 18,865 31 584,035
63 19,063 64 1,206,728



	 A. Fuentes‑Alventosa et al.

1 3

1.	 Since the scan on different segments are executed independently by the corre-
sponding sub-grids, the degree of parallelism is higher in our algorithm.

2.	 In YAVLE, each thread-block assigns the bit-length of its block-code to a single 
element of d_scan , while, in GVLE, each thread-block uses the bit-length of its 
block-code to update 32 − j elements of d_scan , where j is the index of the thread-
block within its sub-grid. As the number of elements updated by thread-blocks 
0, 1, ..., 31 of a sub-grid are 32, 31, .... 1, respectively, the average number of 
elements updated per thread-block is 16.

3.	 In GVLE, the scan of each segment is performed directly on its sub-vector by 
using atomic operations. In contrast, in YAVLE, after writing the bit-lengths on 
d_scan , it is necessary to read them in groups of 32 elements to perform the scan 
operation.

3.5 � Building of warp‑codes in shared memory

In Step 7 of Algorithm 3, each warp i of each thread-block builds its warp-code in 
the shared memory buffer s_warp_code[i] (line 23) of 513 32-bit unsigned integers. 
The warp-code is written right-shifted the same number of bits that it will be in 
the target sub-vector of d_output . The size of each buffer is 513 for the following 
reasons. On the one hand, since the bit-length of each codeword is no more than 
16-bits, the number of codewords of each thread-code is 32, and the warp size is 32, 
the maximum number of bits of a warp-code is 16 × 32 × 32 = 16, 384 bits, which 
can be stored in 16, 384∕32 = 512 unsigned integers. On the other hand, as each 
warp-code is written right-shifted, an extra unsigned integer is necessary, so the size 
of each warp buffer is 512 + 1 = 513.

The warp-code is built in the buffer by each thread of the warp writing its thread-
code, which was cached previously in the private arrays seg_val and seg_len ((lines 
15 to 18)), in the bit-position of the tread-code within its warp-code. Given a thread-
code, let s_thcode be the buffer sub-vector in which it is written, p the bit-position 
of the thread-code in s_thcode , and thcode_len the bit-length of the thread-code. We 
call q and r the quotient and the remainder of the division of (thcode_len − 32 + p) 
by 32, respectively. As shown in Fig.  6, the first 32 − p bits of the thread-code 
(which will be referred to as first chunk) are written right-aligned in s_thcode[0] , the 
following q 32-bits sequences in s_thcode[1] , ... s_thcode[q] , and, if r > 0 , the last 
r bits (which will be denoted by last chunk) in s_thcode[q + 1] . The writing of the 
warp-code is carried out by following the next steps: 

Fig. 6   Writing of a thread-code 
in the shared memory buffer 
s_warp_code[i]
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1.	 Each thread writes all the bits of its thread-code, except the last chunk, in the 
elements s_thcode[0] , ... s_thcode[q].

2.	 All threads of the warp synchronize by executing the CUDA function __syncwarp 
[23].

3.	 Each thread, if its thread-code has a last chunk, writes it in the first r bits of 
s_thcode[q + 1].

Note that the warp synchronization ensures that no race conditions exist in the writ-
ing of those elements of the buffer in which the last chunk of a thread-code and the 
first chunk of the next thread-code are stored.

3.6 � Writing of warp‑codes to output vector

In Step 8 of Algorithm 3, each warp, after writing its warp-code in the shared mem-
ory buffer, iterates over 32-elements segments of the buffer to copy them to the tar-
get d_output sub-vector in a coalesced way [24] (lines 28 to 31). The first and last 
elements of the target d_output sub-vector are written using atomic OR operations ( 
[23]) to preserve the last chunk of the previous warp-code and the first chunk of the 
next warp-code, respectively, if they have already been written.

In YAVLE, each thread writes the elements of its thread-code directly to global 
memory one by one, which results in inefficient strided global memory accesses.

4 � Experimental evaluation

To evaluate GVLE and compare it to YAVLE, we have used the Standard Canter-
bury Corpus, consisting of 11 files (alice29.txt, asyoulik.txt, cp.html, fields.c, gram-
mar.lsp, kennedy.xls, lcet10.txt, plrabn12.txt, ptt5, sum, xargs.1) and the Large 
Canterbury Corpus, consiting of 3 files (bible.txt, e.coli, world192.txt), which are 
available at http://​www.​data-​compr​ession.​info/​Corpo​ra/​Cante​rbury​Corpus/. Fur-
thermore, to fully utilize the resources of the target GPU, we have increased each of 
the 14 files by replicating its original content the minimum number of times neces-
sary to make the final size greater than or equal to 100 megabytes.

The method used to compute the VLETs is the Huffman coding, and we 
have obtained the implementation of YAVLE from the source code of Yama-
moto et  al.’s solution, published on GitHub at github.com/daisuke-takafuji/
Huffman_coding_Gap_arrays.

In order to measure precisely the execution times of the kernels, we run one 
warm-up iteration and then fifty iterations to report their statistical values.

Our test machine has a 3.50Ghz Intel Core i7-7800X CPU, 32 GB of RAM, and 
a GeForce RTX 2080 GPU (Turing architecture with compute capability 7.5).The 
CUDA toolkit and the GPU driver versions are 11.1 and 512.15, respectively. We 
have used the default optimization flag (− O3) [32].

http://www.data-compression.info/Corpora/CanterburyCorpus/
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4.1 � Sensitivity analysis of the thread‑block size

To analyze the effect of the thread-block size on the performance of YAVLE and 
GVLE, we have measured their average runtimes for all possible values of the 
thread-block size that are multiples of 32. Figure  7 shows the obtained results. 
Note that, in the case of GVLE, the maximum thread-block size is 736, due to the 
shared memory buffer used to build the warp-codes.

As it can be seen, the effect of the thread-block size on the performance of 
YAVLE and GVLE is low. Since 128 is an optimal thread-block size for both 
GVLE and YAVLE, we have used this value in the remaining experiments.

4.2 � Comparison of GVLE with YAVLE

In order to determine the contribution of each of our optimizations in the perfor-
mance improvement in GVLE with respect to YAVLE, we have developed a set 
of kernels that starting from YAVLE, gradually implement the different optimi-
zation techniques of GVLE. In the following sections, we present the obtained 
results.

4.2.1 � VLET implementation

We have built the kernel EXP_VLET from YAVLE by substituting YAVLE’s imple-
mentation of VLET (i.e., one vector of 256 elements of type Codeword) for that of 
GVLE (i.e., a vector of 256 16-bit unsigned integers to store the values of the code-
words, and a second vector of 256 8-bit unsigned integers to hold the bit-lengths of 
the codewords).

Fig. 7   YAVLE and GVLE runtimes for thread-block sizes between 32 and 1024 (in steps of 32 threads)

Table 2   Number of shared memory load bank conflicts and runtimes of kernels YAVLE and EXP_
VLET, and corresponding improvements in EXP_VLET over YAVLE

Parameter YAVLE EXP_VLET Improvement

Shared load bank conflicts 13,839,817 3,262,067 4.24×
Runtime (ms) 1.30 1.07 1.21×
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As shown in Table  2, EXP_VLET is 1.21× faster than YAVLE due to the 
improvement in the shared memory load bank conflicts (4.24×).

4.2.2 � Global memory reading and writing

We have obtained the kernel EXP_GM from EXP_VLET by replacing its global 
memory reading and writing methods for those of GVLE. On the one hand, instead 
of reading the thread-inputs element by element through strided global memory 
accesses, they are read through vectorized accesses using the custom vector type 
uchar32. On the other hand, instead of writing the thread-codes directly to global 
memory element by element through strided global memory accesses, each warp, 
after writing its warp-code in its shared memory buffer, iterates over 32-elements 
segments of the buffer to copy them to global memory in a coalesced way.

As shown in Table  3, EXP_GM is 1.53× faster than EXP_VLET due to the 
improvement in the global load transactions (8.38× ), the global reduction transac-
tions (20.96× ), the global store transactions (3.21× ) and the executed instructions 
(1.31×).

4.2.3 � Thread‑codes building

We have developed the kernel EXP_REG from EXP_GM by performing the follow-
ing two changes. First, the calculation of the bit-length of the thread-code (Step 4 of 
Algorithm 1) is replaced by the complete calculation of the thread-code (Step 5 of 
Algorithm 3). Second, each warp-code is built in shared memory by concatenating 
the 16-binary segments of each thread-code (Step 7 of Algorithm 3), instead of by 
linking the 32 codewords of each thread-code (Step 6 of Algorithm 1).

Table 3   Number of global load/reduction/store transactions, number of executed instructions and runt-
imes of kernels EXP_VLET and EXP_GM, and corresponding improvements in EXP_GM over EXP_
VLET

Parameter EXP_VLET EXP_GM Improvement

Global load transactions 60,039,145 7,164,487 8.38×
Global reduction transactions 4,307,360 205,459 20.96×
Global store transactions 7,156,553 2,231,864 3.21×
Executed instructions 1,153,782.69 882,368.02 1.31×
Runtime (ms) 1.07 0.70 1.53×

Table 4   Number of executed instructions and runtimes of kernels EXP_GM and EXP_REG, and corre-
sponding improvements in EXP_REG over EXP_GM

Parameter EXP_GM EXP_REG Improvement

Executed instructions 882,368.02 542,291.61 1.63×
Runtime (ms) 0.70 0.57 1.23×
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As shown in Table  4, EXP_REG is 1.23× faster than EXP_GM due to the 
improvement in the executed instructions (1.63×).

4.2.4 � Inter‑block scan method

The unique difference between the kernels EXP_REG and GVLE is that the former 
uses the Yamamoto et  al.’s inter-block scan method (Sect.  2.3.3), while the latter 
uses our inter-block scan algorithm (Sect. 3.4.1).

As shown in Table  5, although the number of global atomic transactions of 
EXP_REG is 0.18× that of GVLE, GVLE is 1.14× faster than EXP_REG due to the 
improvement in the global load transactions (1.08× ), the global store transactions 
(1.02× ) and the executed instructions (1.05×).

4.2.5 � Global contribution of our optimization strategies

Table 6 compares YAVLE and GVLE by presenting the values of the performance 
parameters referenced in previous sections. As it can be seen, GVLE is 2.57× 
faster than YAVLE due to the improvement in the shared memory load bank con-
flicts (4.36× ), the global load transactions (8.97× ), the global reduction transac-
tions (20.96× ), the global store transactions (3.28× ), and the executed instructions 
(2.55× ). Finally, Fig. 8 presents the runtimes of YAVLE and GVLE, and Table 7 the 
corresponding statistics. As it can be seen, the acceleration of GVLE is significant, 
since its value is between 1.97× and 3.11×.

Table 5   Number of global 
atomic/load/store transactions, 
number of executed instructions 
and runtimes of kernels 
EXP_REG and GVLE, and 
corresponding improvements in 
GVLE over EXP_REG

Parameter EXP_REG GVLE Improvement

Global atomic transactions 26,051 141,610 0.18×
Global load transactions 7,259,723 6,721,148 1.08×
Global store transactions 2,231,864 2,181,301 1.02×
Executed instructions 542,291.61 517,852.75 1.05×
Runtime (ms) 0.57 0.50 1.14×

Table 6   Number of shared memory load bank conflicts, number of global load/reduction/store transac-
tions, number of executed instructions and runtimes of kernels YAVLE and GVLE, and corresponding 
improvements in GVLE over YAVLE

Parameter YAVLE GVLE Improvement

Shared load bank conflicts 13,839,817 3,170,669 4.36×
Global load transactions 60,261,119 6,721,148 8.97×
Global reduction transactions 4,307,361 205,459 20.96×
Global store transactions 7,156,553 2,181,301 3.28×
Executed instructions 1,319,851.51 517,852.75 2.55×
Runtime (ms) 1.30 0.50 2.57×
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4.3 � Comparison between GVLE, CUVLE and the serial implementation of VLE

Table 7 compares the statistics of GVLE, CUVLE and the implementation of VLE 
on CPU (CPU_VLE). As it can be seen, GVLE is on average 13.63× faster than 
CUVLE, our previous implementation of VLE, which represents a significant 
advance in our research on GPU-based acceleration of VLE. On the other hand, the 
speedup of VLE with respect to the serial implementation of VLE is considerable, 
since it is on average 377.15×.

4.4 � Comparison between inter‑block scan methods

In order to compare the performance of our inter-block scan method with those 
of Yamamoto et al. [10] and Yan et al. [21], we have developed three kernels that 
perform the scan operation using the method of Sengupta et al. [20] for the intra-
block scan, and one of the methods under study for the inter-block scan. We call 
the kernels that use our inter-block scan method, that of Yamamoto et al, and that 
of Yan et al., GVLE_scan, YAVLE_scan and CUVLE_scan, respectively. The input 
and output vectors are the same as those used in our previous experiments, with the 

Table 7   Statistics of GVLE, 
YAVLE, CUVLE and CPU_
VLE Runtimes, and of GVLE 
Speedups

Average Minimum Maximum

GVLE runtime (ms) 0.50 0.42 0.53
YAVLE runtime (ms) 1.30 0.82 1.50
Speedup of GVLE 2.57× 1.97× 3.11×
CUVLE runtime (ms) 6.85 6.59 7.36
Speedup of GVLE 13.63× 12.93× 16.67×
CPU_VLE runtime (ms) 191.75 112.07 225.93
Speedup of GVLE 377.15× 273.15× 425.90×

Fig. 8   YAVLE and GVLE runtimes for each test file
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particularity that each thread, instead of reading eight consecutive elements of the 
input vector, reads only one.

Table  8 compares the statistics of the kernels. As it can be seen, GVLE_scan 
clearly outperforms YAVLE_scan, since the speedup is between 1.56× and 1.65× . 
Moreover, the speedup of GVLE_scan_with respect to CUVLE_scan is very high, 
as it is between 36.87× and 39.49× . It can be seen that although our inter-block scan 
algorithm is the least influential optimization in the acceleration of YAVLE, it pro-
vides a significant speedup in the case of the scan operation. Therefore, it can be 
used to accelerate significantly algorithms that require performing an inter-block 
scan, such as the scan operation itself or the stream compaction [33].

5 � Related work

In this section, we review some GPU-based solutions in which VLE is partially 
implemented, since it only operates on small data chunks, and does not concatenate 
the resulting encodings. Each data chunk is mapped to a thread-block [11, 12], a 
warp [13] or even a thread [13, 14]. In the corresponding compression algorithms, 
the concatenation is not necessary [11, 12] or is implemented with a separate com-
ponent [13].

Tian et al. [11] proposed cuSZ, a CUDA-based implementation of SZ [34], which 
is one of the best error-bounded lossy compressors for scientific data. cuSZ splits 
the whole dataset into multiple chunks, and compresses them independently, which 
favors coarse grained decompression. A dual-quantization scheme is applied to com-
pletely remove the strong data dependency in SZ’s prediction-quantization step. The 
quantization codes generated by the dual-quantization procedure are compressed 
by a customized Huffman coding, which follows the next four steps. First, calculate 
the statistical frequency for each quantization bin (as a symbol) using the method 
proposed by Gómez-Luna et al. [35]. Second, build the Huffman tree based on the 
frequencies and construct a base codebook. Third, transform the base codebook 
to the canonical Huffman codebook [36]. Fourth, encode in parallel according to 
the codebook, and concatenate Huffman codes into a bitstream (called deflating). 
Experimental evaluation on a NVIDIA V100 GPU showed that cuSZ improves SZ’s 
compression throughput by up to 13.1x over the production version running on two 
20-core Intel Xeon Gold 6148 CPUs.

Table 8   Statistics of kernels 
GVLE_scan, YAVLE_scan and 
CUVLE_scan Runtimes, and of 
GVLE_scan Speedups

Average Minimum Maximum

GVLE_scan runtime (ms) 1.22 1.20 1.27
YAVLE_scan runtime (ms) 1.97 1.95 2.05
Speedup of GVLE_scan 1.62× 1.56× 1.65×
CUVLE_scan runtime (ms) 47.13 46.68 48.02
Speedup of GVLE_scan 38.32× 36.87× 39.49×
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In a later work, Tian et  al. [12] presented an efficient CUDA-based Huffman 
encoder that outperforms the scheme presented in [11]. The main novelties of this 
work are the following. First, the development of an efficient parallel codebook con-
struction on GPUs that scales effectively with the number of input symbols. Second, 
a novel reduction-based encoding scheme that can efficiently merge the codes on 
GPU. Experimental evaluation showed that their solution can improve the encod-
ing throughput by up to 5.0x and 6.8x on NVIDIA RTX 5000 and V100 GPUs, 
respectively, over their previous proposal [11], and by up to 3.3 over the multithread 
encoder on two 28-core Xeon Platinum 8280 CPUs.

Zhu et  al. [13] presented an efficient parallel entropy coding method (EPEnt), 
which was implemented in CUDA, to accelerate the entropy coding stage of JPEG 
image compression algorithm. EPEnt has three phases: coding, shifting and stuff-
ing. In the coding phase, the 8 × 8 blocks of quantized transformed coefficients are 
encoded in parallel, via run-length encoding and Huffman coding, to form their cor-
responding bitstreams. In the shifting phase, the bitstreams are shifted to ensure that 
the bitstreams of adjacent coefficient blocks can be correctly concatenated. Finally, 
in the stuffing phase, the output stream is produced by concatenating the shifted 
bitstreams. Experimental evaluation on a NVIDIA GTX 1050Ti GPU showed that 
compared with sequential implementation on a 2.4 GHz i7-4700HQ CPU, the maxi-
mum speedup ratio of entropy coding can reach 39 times without affecting com-
pressed images quality.

Fuentes-Alventosa et al. [14] proposed CAVLCU, an efficient implementation of 
CAVLC on CUDA, which was based on four key ideas. First, CAVLCU is com-
posed of only one kernel to avoid the long latency global memory accesses required 
to transmit intermediate results between different kernels, and the costly launches 
and terminations of additional kernels. Second, the efficient Yan et al.’s synchroni-
zation mechanism [21] is used for thread-blocks that process adjacent frame regions 
(in horizontal and vertical dimensions) to share results in global memory space. 
Third, the available global memory bandwidth is exploited fully by using vectorized 
loads to move directly the quantized transform coefficients to registers. Fourth, reg-
ister tiling is used to implement the zigzag sorting, thus obtaining high instruction-
level parallelism. Experimental evaluation on NVIDIA GPUs GeForce GTX 970 
and GeForce RTX 2080 showed that CAVLCU is between 2.5x and 5.4x faster than 
the best previous GPU-based implementation of CAVLC [37, 38].

6 � Conclusions

This work has presented GVLE, a highly optimized GPU-Based implementa-
tion of variable-length encoding. Our solution overcomes the main performance 
issues of the state-of-the-art GPU-based implementations of VLE by using the 
next optimization strategies. First, the caching of the codeword look-up table is 
done in a way that minimizes the bank conflicts. Second, input data is read by 
using vectorized loads to exploit fully the available global memory bandwidth. 
Third, each thread encoding is performed efficiently in the register space with 
high instruction-level parallelism and lower number of executed instructions. 
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Fourth, a novel inter-block scan method, which outperforms those of state-of-the-
art solutions, is used to calculate the bit-positions of the thread-blocks encod-
ings in the output bit-stream. Our proposed mechanism is based on a regular seg-
mented scan performed efficiently on sequences of bit-lengths of 32 consecutive 
thread-blocks encodings by using global atomic additions. Fifth, output data are 
written efficiently by executing coalesced global memory stores.

An exhaustive experimental evaluation shows that our solution is between 
1.97× and 3.11× faster than the best state-of-the-art implementation due to the 
improvement in the shared memory load bank conflicts (4.36× ), the global load 
transactions (8.97× ), the global reduction transactions (20.96× ), the global store 
transactions (3.28× ) and the executed instructions (2.55× ). Moreover, experimen-
tal results show that the speedup of the scan operation using our inter-block scan 
algorithm is on average 1.62× and 38.32× with respect to using the methods of 
Yamamoto et al. and Yan et al., respectively. Therefore, our method can be used 
to accelerate significantly algorithms that require performing an inter-block scan, 
such as the scan operation itself or the stream compaction.
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3. Conclusiones y futuros trabajos 

3.1. Conclusiones 

La realización de esta tesis ha conducido a la optimización en GPU de un conjunto de 

algoritmos científicos (CAVLC, detector de bordes de Canny y VLE) y a la obtención de 

un nuevo método scan inter-bloque en GPU eficiente. Las conclusiones son las 

siguientes: 

1. En [23] se ha presentado CAVLCU, una implementación optimizada de CAVLC 

entre 2.5x y 5.4x más rápida que la implementación que representaba el estado 

del arte [13]. 

2. En [36] se ha propuesto GUD-Canny, un detector de bordes de Canny no 

supervisado y distribuido, que es más rápido que las implementaciones en GPU 

[18, 37, 38, 39, 40, 41, 42, 43] y en FPGA [45, 46, 47, 48, 49, 50, 51, 52, 53] 

existentes, y cumple los siguientes requisitos de diseño: 

• Resolución de las principales limitaciones de las implementaciones del 

algoritmo de Canny, que son el cuello de botella causado por el proceso 

de histéresis y el uso de umbrales de histéresis fijos. 

• Determinación no supervisada de los umbrales de histéresis mediante el 

método propuesto en [44]. 

• Ejecución en tiempo real, al ser 0.35 ms el tiempo promedio en detectar 

los bordes de imágenes 512x512. 

3. En [54] se ha presentado GVLE, una implementación optimizada de VLE 2.6x más 

rápida en promedio que la mejor solución anterior [55]. Además, se ha 

propuesto un nuevo método eficiente para la operación scan inter-bloque que 

se ejecuta en memoria global para calcular las posiciones binarias de las 

codificaciones de bloque en el vector de salida. En el caso de la operación scan, 

si se usa este método en lugar del empleado en la mejor implementación 

anterior de VLE [55], se logra una aceleración de 1.62x. 
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3.2. Futuros trabajos 

Los resultados obtenidos en esta tesis sugieren nuevas ideas a explorar, tales como: 

1. Uso de CAVLCU en la optimización de codificadores de vídeo e imagen. 

Teniendo en cuenta el uso masivo de la compresión de datos multimedia en la 

presente era digital [57, 58], CAVLCU se puede aprovechar en futuros trabajos 

sobre implementaciones en GPU de los siguientes sistemas: 

● Codificadores H.264 software que requieran funcionalidad inexistente en 

los codificadores H.264 hardware incorporados en las tarjetas gráficas 

[24], como encriptación de datos [25, 26, 27, 28] y ocultación de 

información [29, 30, 31, 32]. 

● Codificadores de vídeo e imágenes en otros formatos distintos a H.264, 

como imágenes médicas [33, 34, 35].   

2. Utilización de GUD-Canny en la optimización de aplicaciones de vídeo e 

imagen. Dada la esencial importancia de la detección de bordes en diferentes 

ámbitos (como el procesamiento de imágenes, la visión por computador y el 

reconocimiento de patrones), GUD-Canny se puede aplicar en la optimización en 

GPU de sistemas de tiempo real que requieran detección de bordes no 

supervisada. 

3. Uso de GVLE en la optimización de sistemas de compresión de datos. Al ser VLE 

uno de los principales bloques de construcción de muchos sistemas de 

compresión, como la popular codificación de Huffman, GVLE se puede 

aprovechar en futuros trabajos sobre implementaciones en GPU de dichos 

sistemas. 

4. Utilización del método scan inter-bloque de GVLE en la optimización de 

algoritmos que requieran la operación scan. Dada la aceleración de 1.62x 

lograda en la operación scan usando el método scan inter-bloque de GVLE en 

lugar del empleado en la mejor implementación anterior de VLE, resulta de 

interés estudiar: 

● La posibilidad de obtener una versión optimizada de la operación scan a 

través del método scan inter-bloque propuesto y de un conjunto de 

técnicas de optimización, a determinar, del componente intra-bloque de 

scan. 

● La aplicación del método scan inter-bloque propuesto en la aceleración 

de algoritmos que requieren la operación scan, como el algoritmo de 

compactación [56]. 
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