2 3	1	Effects of two water regimes on mornhological traits nutritive
4 5	T	Effects of two water regimes on morphological traits, nutritive
6 7	2	value and physiology of three Bituminaria bituminosa varieties
8 9 10	3	from the Canary Islands
11 12 12	4	Jesús Fernández-Habas ¹ , M ^a Teresa Hidalgo-Fernández ¹ , José Ramón Leal-
14 15	5	Murillo ¹ , Pilar Méndez ² , José L Quero ¹ , Tom Vanwalleghem ³ , Pilar Fernández-
16 17	6	Rebollo ¹
18 19 20	7	¹ Department of Forest Engineering, ETSIAM, University of Cordoba, Spain
21 22	8	² Department of Agronomy, ETSIAM, University of Cordoba, Spain
23 24	9	³ Canary Institute of Agricultural Research, ICIA, Santa Cruz de Tenerife, Spain
25 26 27	10	
27 28 29	11	Abstract:
30 31 32	12	Morphological traits, nutritive values and physiological responses to two different
33 34	13	water regimes of three Bituminaria bituminosa varieties: var. albomarginata, var.
35 36 27	14	crassiuscula and var. bituminosa were evaluated in a greenhouse experiment. Two
37 38 39	15	water regimes were imposed for 63 days; well-watered (WW) plants and deficit-
40 41	16	watered (DW) plants, both starting from a high soil water content (dripping point).
42 43	17	The three varieties showed similar aerial biomass reduction under reduced
44 45 46	18	watering, 50% for var. <i>albomarginata</i> , 51% for var. <i>bituminosa</i> and 43% for var.
40 47 48	19	crassiuscula. Var. Albomarginata showed lower shoot biomass under both water
49 50	20	regimes than var. bituminosa (56.2 % in WW plants and 55.2% in DW plants) and
51 52 53	21	var. crassiuscula (52% in WW plants and 57.8% in DW plants). This lower shoot
55 54 55	22	biomass could be attributed to the high initial soil water content imposed in this
56 57	23	experiment, affecting early development. This hypothesis is supported by the
58 59 60	24	lower root biomass production of var. <i>albomarginata</i> and its distribution. The DW 1

25	treatment of this experiment was not sufficiently restrictive to cause
26	morphological modifications, whilst of the forage quality variables analysed, only
27	ash was affected. Var. crassiuscula and var. albomarginata had a lower specific
28	leaf area (239 cm ² g ⁻¹ and 235 cm ² g ⁻¹ , respectively) than var. <i>bituminosa</i> (352
29	cm ² g ⁻¹), which might represent an important adaptation to high light intensity and
30	temperature conditions. The values of stem mass fraction (SMF) and leaf mass
31	fraction (LMF) for var. <i>crassiuscula</i> (SMF=0.36 and LMF=0.28) and var.
32	albomarginata (SMF=0.35 and LMF=0.36) indicated better forage aptitude of
33	these varieties than var. <i>bituminosa</i> (SMF= 0.50 and LMF=0.19). All varieties
34	showed good values of crude protein and digestibility, although important
35	differences were found between leaf and stem. According to the studied
36	morphological, nutritional and physiological traits, var. albomarginata showed
37	the best aptitude for being introduced as permanent grasslands in some
38	Mediterranean farming systems. However, the possible susceptibility of var.
39	albomarginata to high water content in the soil could limit its introduction. These
40	results help to inform the potential use of these three Canarian B. bituminosa
41	varieties to improve Mediterranean rainfed grasslands of extensive farming
42	systems.
43	Keywords: Roots, water-use, morphology, biomass production, net
44	photosynthesis, crude protein.
45	1. Introduction

Bituminaria bituminosa (L.) C.H. Stirton is a perennial legume widely distributed
in the Mediterranean basin and Macaronesia and traditionally used as forage crop
for livestock in the Canary Islands, where it is known as "*tedera*" (Méndez,

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
21	
י∠ רר	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
50	
37	
38	
39	
40	
41	
47	
⊿२ //2	
ر ب	
44	
45	
46	
47	
48	
49	
50	
50 E 1	
51	
52	
53	
54	
55	
56	
50	
57	
58	
59	
60	

49	Fernández, & Santos, 1990; Ventura, Castañon, & Mendez, 2009). Varieties from
50	this archipelago are adapted to its large climatic diversity, with annual rainfall
51	varying from 150 mm up to 800 mm. In this study the following varieties were
52	investigated: B. bituminosa var. albomarginata (BAM), B. bituminosa var.
53	crassiuscula (BCC) and B. bituminosa var. bituminosa (BBT). These varieties
54	were selected based on their different morphology and distribution in the Canary
55	Islands (Méndez et al., 1990) which may be a source of adaptation to drought
56	stress. Although <i>B. bituminosa</i> is known for its high content of metabolites such
57	as furanocoumarins and isoflavonoids (Pecetti, Tava, Pagnotta & Russi, 2007;
58	Pistelli et al., 2003), previous studies have demonstrated that it is consumed by
59	livestock in nature (Sternberg, Gishri & Mabjeesh, 2006) and safe to feed sheep
60	maintaining liveweight in a diet of BAM and BCC (Oldham et al., 2015). Ventura
61	et al. (2009) studied the intake of the three varieties of "tedera" by goats and
62	found preference for fresh "tedera" versus alfalfa hay, except in summer, when
63	alfalfa hay was preferred due to a higher concentration of secondary compounds
64	of "tedera" during this season. The same authors showed that the intake of
65	"tedera" in summer could be increased by hay making.
66	In recent years there has been a growing interest in these varieties of <i>B</i> .
67	<i>bituminosa</i> because of their drought resistance and good forage aptitude,
68	especially BAM, which has been established as the most drought- resistant variety
69	(Martínez-Fernández, Walker, Romero, Martínez-Ballesta, & Correal, 2012;
70	Raeside et al., 2012). Its aptitude as a fodder plant in Mediterranean-like climates
71	has been tested in Australia and Israel, showing promising results (Oldham et al.,
72	2013; Real, Oldham, Burgel, Dobbe & Hardy, 2017; Sternberg et al., 2006). The
73	large genetic diversity of <i>B. bituminosa</i> is a promising source for breeding
-	3

3 4	74	programs (Foster, Ryan, Real, Ramankutty, & Lambers, 2013; Pazos-Navarro et
5 6	75	al., 2011). Significant advances have been made by Australian and Spanish
7 8	76	researchers in selecting basic material for breeding programmes to produce
9 10	77	improved lines of good forage aptitude adapted to different environmental
11 12	78	conditions of arid lands (Pazos-Navarro et al., 2011; Raeside et al., 2012; Real &
13	70	Verbula 2010) Indeed a new variety named Lanza has recently been registered
15 16	15	verbyla, 2010). Indeed, a new variety, named <i>Lanza</i> , has recently been registered
17 18	80	as a result of these breeding programmes.
19		
20 21	81	The Mediterranean basin is expected to be especially vulnerable to climate change
22 23	82	(IPCC, 2018). Lower precipitation associated with a higher uncertainty of inter-
24	83	annual distribution together with increases in temperature are forecast for the 21 st
26		
27	84	century (Giannakopoulos et al., 2009; Giorgi & Lionello, 2008). Gang, et al.
28 29	85	(2015) found a decreasing trend of net primary productivity of grasslands in
30	05	(2013), found a decreasing trend of net primary productivity of grassiands in
31 32	86	Europe from 1981 to 2010 and an overall decline in water use efficiency in woody
33		
34	87	savannas and non-woody grasslands in response to climate change from 2000 to
35	00	2012 (Cong et al. 2016). The expected elimetic variability shellonges the posture
37	88	2015 (Gang et al., 2016). The expected chinadic variability chanenges the pasture
38	89	productivity and hence the capacity to sustain livestock production. In this
39 40		r
41	90	context, perennial legumes with drought resistance, dehydration tolerance, and
42		
43	91	consequently steady forage production, such as <i>B. bituminosa</i> , are of key
44 45	07	importance for sustaining extensive forming systems in the Mediterroneen region
46	92	importance for sustaining extensive farming systems in the Mediterranean region
47	93	such as <i>Dehesas</i> (Bennett Ryan Colmer & Real 2011. Hernández-Esteban
48 49	55	Such as Denesas (Dennea, Ryan, Conner, & Real, 2011,, Remanael Estevan,
50	94	López-Díaz, Cáceres & Moreno, 2019; Melis, Franca, Re, & Porqueddu 2018;
51		
52	95	Porqueddu et al., 2016).
53 54		
55	96	Although summer drought is a limiting factor for forage production in the
56		
57	97	Mediterranean region (Cosentino, Gresta, & Testa, 2014), soil water saturation
59		

1 2

60

4

Journal of Agronomy and Crop Science

2	
2	
1	
4	
с С	
6	
7	
8	
9	
10	
11	
12	
12	
14	
14	
15	
16	
17	
18	
19	
20	
21	
22	
~~ 72	
23 24	
24	
25	
26	
27	
28	
29	
30	
31	
37	
22 22	
22	
34	
35	
36	
37	
38	
39	
40	
11	
רו רו∕	
42 42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
58	
59	
~ ~	

60

98	and wet conditions frequently occur at early stages of plant establishment and
99	development during the autumn and winter months, especially in lower
100	topographies (Ceballos & Schnabel, 1998; Lozano-Parra, Schnabel, & Ceballos-
101	Barbancho, 2015; Maneta, Pasternack, Wallender, Jetten & Schnabel, 2007;
102	Maneta, Schnabel, Wallender, Panday, & Jetten, 2008). Both limiting factors are
103	expected to increase under future climate conditions, as projections show that
104	droughts could start earlier in the year and last longer (Beniston et al., 2007;
105	Giannakopoulos et al., 2009), whereas wet conditions may increase in late autumn
106	and winter due to increases in precipitation extremes (Giorgi & Lionello, 2008).
107	While the adaptation of <i>B. bituminosa</i> to drylands has been proven successful
108	(Suriyagoda, Real, Renton, Lambers, & Ryan, 2013), susceptibility to wet
109	conditions and unsuccessful development during wet winters has also been
110	reported (Raeside et al., 2012; Real & Verbyla, 2010). This reflects the need to
111	investigate the response of <i>B. bituminosa</i> varieties under different soil moisture
112	conditions to ensure their successful introduction into pastures of Mediterranean
113	farming systems in the face of climate change.
114	The morphological traits and nutritive value of <i>B. bituminosa</i> have been widely
115	studied in Spain, Italy and Australia (Correal, Hoyos, Real, Snowball, & Costa,
116	2008; Melis et al., 2018; Méndez et al., 1990; Méndez, Santos, Correal, & Ríos,

117 2006; Muñoz & Correal, 2000Porqueddu, Dettori, Falqui, & Re, 2011; Raeside et

- al., 2012). However, to our knowledge, some traits such as leaf mass fraction or
- 119 leaf area ratio and leaf and stem-nutritive value have not been investigated for
- 120 Canarian varieties. These traits may have important implications since they

121 influence forage aptitude (Abd El Moneim, Khair & Rihawi, 1990; Méndez et al.,122 2006).

This study aims to assess the response in terms of (i) physiology, (ii) biomass and morphological traits of shoot/root and (iii) nutritive value of leaves and stems of the three recognised Canarian varieties of B. bituminosa under two different water regimes in greenhouse controlled conditions: high soil water content at the beginning of the growth cycle, followed by high or low irrigation regimes (well-watered or deficit-watered). This study could further inform the potential of these three varieties to adapt to future Mediterranean climatic conditions and elucidate the role that upcoming commercial varieties could play in improving pastures and thereby sustaining livestock production. 2. Materials and methods 2.1. Plant material Seeds from the three varieties of *B. bituminosa* were collected from wild

Seeds from the three varieties of *B. bituminosa* were collected from wild
populations of the Canary Islands (Spain) (Table 1). Tedera is a selfpollinated
diploid (2n=20) species (Pazos-Navarro et al., 2011). This together with the
geographical isolation of the populations guaranteed no outcrossing pollination
among varieties.

BAM is native to the island of Lanzarote, where it grows in semi-arid coastal
habitats with not more than 200 mm annual rainfall, having a five to six monthlong hot and dry season and high relative humidity due to maritime influence.
BCC grows in the National Park of Cañadas del Teide (2200m a.s.l.) with 500

2
2
1
4
5
6
7
8
Q Q
10
10
11
12
13
14
15
10
16
17
18
19
20
21
∠ I 22
22
23
24
25
26
20
27
28
29
30
31
32
22
22
34
35
36
37
38
20
39
40
41
42
43
10
 //
45
46
47
48
49
50
50
51
52
53
54
55
55
50
57
58
59

60

144	mm of annual rainfall (including snow), showing winter dormancy and the
145	growing season during spring and mild summer (Martínez-Fernández et al.,
146	2012). Previous research has pinpointed a biannual behaviour of this variety
147	outside its native habitat at Mount Teide (Melis et al., 2018; Méndez, unpublished
148	data). BBT is widespread on all the Canary Islands and the Mediterranean basin
149	with 200-800 mm of annual rainfall during warm and dry summers (Table 1).
150	The seeds were scarified by nicking the outer seed coat using a surgical scalpel
151	(Beard, Nichols, Loo, & Michael, 2014) and germinated in 90-mm Petri dishes
152	with wet filter paper (Foster et al., 2015; Pecettzi, Tava, Pagnotta, & Russi,
153	2007;). Once germinated, the seeds were grown in trays (17 days). Subsequently,
154	each seedling was transplanted into individual plastic six-litre cylindrical pots 37
155	cm high, with a 16.80 cm and 12.5 cm diameter at the top and bottom of the pot
156	respectively and holes at the bottom to allow free drainage of water. Ech pot was
157	filled with a mix of commercial peat (Gramosemi GF-Anz./Verm from
158	Gramoflor) and sand (9:1 v/v) with 2 g of 19-19-19 NPK fertiliser per pot. The
159	soil had a pH of 7.31 (1/2.5), 2.96 g 100g ⁻¹ organic matter content, 0.647 (mmhos
160	cm ⁻¹) of electrical conductivity and cation exchange capacity of 20.69 meq 100 g-
161	¹ . Water was provided daily at a rate of 50 ml per pot, and the temperature set at
162	22°C/7°C (day/night) for 13 days in the greenhouse to ensure successful
163	establishment and acclimatisation before the treatments were imposed.
164	2.2. Experimental design
165	The experiment was conducted at the greenhouse of the University of Cordoba,

166 Cordoba (Spain). The experiment comprised a complete randomised design to167 analyse two treatments (water regimes), and three *B. bituminosa* varieties with six

Page 8 of 44

168	pots per variety and treatment, having a total of 36 pots. The water regimes
169	imposed were: high soil water content at the beginning followed by a high
170	irrigation regime, well-watered plants (WW); and high soil water content at the
171	beginning followed by a reduced irrigation regime, deficit-watered plants (DW).
172	On the first day of the experiment, all pots were watered with 2,279 ml of water to
173	the point of dripping (~1.17 g g^{-1}) to achieve even starting conditions of high soil
174	water content. Then, WW plants were manually watered every day with 50 ml
175	(2.3 lm^{-2}) for the first 47 days. For the rest of the experiment (16 days), when the
176	plants had a higher demand for water due to an increase in daily mean
177	temperature, watering was increased to 75 ml (3.4 l m ⁻²). In the second treatment,
178	watering was reduced by \sim 50%, with the DW plants being watered every second
179	day with the same amount of water and following the same irrigation strategy as
180	the WW plants. These watering regimes did not produce drainage in either WW or
181	DW plants. At the end of the experiment, each WW plant received ~2,279 ml of
182	water at initial watering, plus ~3,550 ml (263 1 m ⁻²) for 63 days while DW plants
183	received ~2,279 ml plus ~1,775 ml (183 l m ⁻²). This initial watering represents
184	around half of the average autum rainfall of Cordoba, whilst the water supplied
185	for 63 days is about 33% higher (WW) or 33% lower (DW) than the average
186	spring rainfall registered in Cordoba. The greenhouse temperature was kept in the
187	range of 30 °C /15 °C (day/night) during the experiment. The experiment started
188	on April 1st, 2019 when all plants had approximately seven leaves (after 13 days
189	of acclimatisation in the greenhouse as mentioned in the previous section) and the
190	plants were harvested on June 3 rd , 2019 at the beginning of flowering. The
191	duration of the experiment was 63 days.
192	2.3. Water use and physiological measurements

Journal of Agronomy and Crop Science

Page 9 of 44

1	
2	
3	
1	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
ר∠ ר<	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
20	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52	
22	
54	
55	
56	
57	
58	
59	
60	

193	Four pots per variety and water regime were weighed three times per week from
194	day 30 to the end of the experiment (day 63). Pot evapotranspiration, ET (ml) was
195	estimated as ET = $PW_i - PW_j + I_{ij}$, where PW_i is the pot weight at day <i>i</i> (g), PW_j is
196	the pot weight at day j (g) and I_{ij} the irrigation water provided between days i and
197	j (ml). During the same period, relative soil water content was estimated as
198	RSWC= $(SW_i - DSW)/(FSW - DSW)$, where SW _i is the soil weight at day <i>i</i> , DSW
199	is dry soil weight and FSW is the soil weight at point of dripping. DSW was
200	obtained by weighing and averaging the oven-dried soil (105°C/24h) of four pots.
201	For FSW, the same four pots were previously watered to point of dripping and
202	weighed discounting the weight of an empty pot. Since at day 30 the canopy of the
203	plant already covered the entire pot surface, transpiration can account for most of
204	the measured ET (Or, Lehmann, Shahraeeni, & Shokri, 2013; Ritchie, 1972).
205	At day 46, four fully expanded leaves of each plant were removed (12:00-14:00 h)
206	to measure the relative leaf water content (RWC). RWC was calculated as RWC =
207	$(FW - DW) / (SFW - DW) \times 100$, where FW is fresh leaf weight, DW is dry leaf
208	weight and SFW is saturated fresh leaf weight. After recording FW, the leaves
209	were immersed in 90-mm Petri dishes filled with deionised water for 24 h at 20 –
210	25 °C and then weighed again to record SFW. DW was measured after oven-
211	drying the leaves at 60°C for 72h. Before drying, the leaves were scanned
212	(EPSON 1640 XL) and the area was measured using the image analyser software
213	ImageJ (<u>https://imagej.nih.gov/ij/</u>) for the later calculation of the specific leaf area
214	(SLA, $cm^2 g^{-1}$). Net photosynthesis per area (A _{area}) and stomatal conductance per
215	area (g _{Sarea}) were also measured at day 46 (09:00-12:00 h) of mid-height, fully
216	expanded and undamaged leaves using a portable infrared CO ₂ gas analyser
217	(LiCor Li6400XT, Li-Cor, Inc., Lincoln, NE, USA) fitted with a 2-cm ² leaf 9

cuvette. PAR was set at 1000 μ mol photon m⁻² s⁻¹, flow rate at 500 μ mol s⁻¹, [CO2] to 400 ppm, with block temperature set at 25°C. Water-use efficiency (WUE) was derived from the ratio A_{area}/g_{Sarea}. An example of the state of WW and DW plants at the moment of measurement of the physiological variables can be seen in Fig. S1.

2.4. Biomass and trait measurement

At the end of the experiment, plants were cut at the soil surface. Aerial plant components were separated into stem and leaves, which were also split into green/senescent leaves. Pots were cut open and the soil was separated into three layers (0-10.5, 10.5-21, 21-31.5 cm). The soil was carefully removed from the roots using a 2-mm sieve. The roots of each layer were then split into thin roots (<0.5 mm) and thick roots (>0.5 mm) and immediately frozen. This threshold was chosen to explicitly emphasise more absorptive roots (Wang, Liu, Fang & Shangguan, 2020). A representative subsample of thin roots from the first layer and all thick roots from the three soil layers of four WW plants per variety were split and independently scanned (EPSON 1640 XL). Root length was calculated using WinRHIZO software (http://regent.gc.ca/) and then root length to weight ratio (m g⁻¹) was also calculated. Leaves, stems and roots were oven-dried for 72 h at 60°C and dry mass (DM) recorded.

Root to shoot ratio was calculated as the total root DM/total shoot DM. The Leaf
mass fraction (LMF), Stem mass fraction (SMF) and Root mass fraction (RMF)
were calculated as the proportion of the total DM corresponding to each one of
these plant components. SLA, (cm² g⁻¹) was calculated as the ratio between the
leaf area and its dry mass. Leaf area ratio (LAR, cm² g⁻¹), the ratio of leaf area and

242	total plant DM, was estimated as the product of SLA and LMF (Poorter &
243	Remkes, 1990; Villar et al., 2004). Leaf to stem ratio was measured as total leaf
244	DM/total steam DM. Senescent to green leaf ratio was calculated as senescent leaf
245	DM/green leaf DM. The proportion of thin roots in each layer was estimated as
246	the thin roots DM/total roots DM.
247	2.5. Nutritive value
248	Samples of green, fully expanded leaves and stems were independently analysed
249	for four plants of each variety and treatment at the end of the experiment. These
250	samples were ground and passed through a 1-mm sieve. Crude protein (CP),
251	ashes, neutral detergent fibre (NDF), acid detergent fibre (ADF) and enzyme
252	digestibility of organic matter (EDOM) were determined by near-infrared
253	spectroscopy (NIRS) using a portable LabSpec 5.000 spectrometer (350–2.500
254	nm; ASD Inc., Boulder, Colorado, USA) using IndicoPro 6.0 spectrum acquisition
255	software (ASD Inc., Boulder, CO, USA). Spectral data of samples was recorded
256	in the whole range of 350-2,500 nm by 1-nm step. Four replicates of each sample
257	were scanned (each being an average of 50 internal scans). White reference scans
258	(with a Spectralon panel) were taken between every sample scan. The final sample
259	spectrum was obtained by averaging the four scans. The statistics of the NIRS
260	equations used to predict nutritional values of samples in this study are presented
261	in Supplementary material (Table S1). NIRS equations were calibrated based on
262	130 spectra of Mediterranean pastures and forage crops analysed by wet chemical
263	methods at the Laboratory of Animal Nutrition of SERIDA (Villaviciosa, Spain).
264	NIRS predictions were performed using WinISI software (Infrasoft International,
265	Port Matilda, PA, USA).

2
2
5
4
5
6
7
/
8
9
10
11
10
12
13
14
15
16
10
17
18
19
20
20
21
22
23
21
24
25
26
27
20
20
29
30
31
32
22
33
34
35
36
50
3/
38
39
40
-TU 41
41
42
43
44
15
45
46
47
48
10
49
50
51
52
52
55
54
55
56
57
57
58
59
60

266 2	.6. St	atistical analysis
-------	--------	--------------------

267	Differences among varieties and treatments for each variable were tested by two-
268	way ANOVAs (variety and water regimes as fixed factors). For those variables
269	where soil layer (3 depth levels) and plant organ (stem or leaf) were included,
270	differences were explored by three-way ANOVAs (variety, water regimes and
271	depth/organ as fixed factors). Accumulated evapotranspiration and RSWC were
272	tested by two-way ANOVA for each measurement date and the interactions of the
273	factors were also considered. When differences were significant (p<0.05), post-
274	hoc Tukey's test at the 0.05 probability level was carried out to test differences
275	among means. The data was transformed, when needed, using either logarithmic
276	or square-root transformation to meet normality and homoscedasticity
277	assumptions. To summarise and analyse the covariation between variables, a
278	principal component analysis (PCA) was performed with morphological and
279	physiologic traits. Evapotranspiration and nutritive value parameters were not
280	included in the analysis because of the different number of observations.
281	Statistical analyses were performed using the software R v. 3.6.1 (R Development
282	Core Team, 2019).

283 **3. Results**

284 **3.1.** Biomass and morphological traits

The deficit-watered treatment significantly affected (p < 0.05, Table S2) biomass

production and senescent to green leaf ratio of all varieties (Table 2). The

287 morphological traits shown in Table 3 were modified not by the water regime but

by the variety. BAM was the variety with the lowest biomass production for both

289 water regimes, while no difference was found between BBT and BCC under each

1	
2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
17	
42	
45	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
57	
54	
22	
56	
57	
58	
59	
60	

290	treatment (Table 2). Shoot biomass under the DW treatment as a percentage of the
291	WW treatment was similar for the three varieties: 50% for BAM, 49% for BBT
292	and 57% for BCC. The three varieties showed significantly different aboveground
293	biomass allocation (Table S3). BAM had the highest leaf to stem ratio (1.06 g g^{-1})
294	followed by BCC (0.80 g g^{-1}) and BBT (0.38 g g^{-1}). Similarly, BAM had the
295	highest LFM whereas BBT had significantly higher SMF than BCC and BAM
296	(Table 3).
297	The SLA and LAR were not modified by the water regime although it was
298	different for each variety (Table S3). The SLA was significantly lower for BAM
299	(235 cm ² g ⁻¹) and BCC (239 cm ² g ⁻¹) than for BBT (352 cm ² g ⁻¹). Concerning
300	LAR, BBT showed significantly lower LAR than BAM (Table 3).
301	Although root to shoot ratio did not change for either variety or treatment (Table
302	3), significant differences were found for root biomass and its allocation
303	throughout the profile (Table S4). Root biomass was reduced by the DW
304	treatment and it was always the lowest for BAM (Table 2). There was a two-way
305	interaction among varieties and depth (p=0.017, Table S4), revealing a different
306	pattern of root biomass distribution throughout the profile (Fig. 1: A). While BBT
307	and BCC showed a clear stratified distribution of root biomass decreasing with
308	depth, BAM showed similar root biomass throughout the soil profile. Root
309	biomass in the lower layer was of similar magnitude for all three varieties and this
310	pattern was not modified by the water regime. The proportion of thin roots (<0.5
311	mm) increased throughout the profile for all varieties, being 30%, 79% and 95%
312	for upper, middle and lower levels, respectively (Fig. 1: B). BCC invested more
313	biomass in thin roots than BAM and BBT under WW treatment (82%, 65% and

3	314
5 6	315
7 8	316
9 10	317
12 13	318
14 15 16 17	319
18 19	320
20 21	321
22 23 24	322
24 25 26	323
27 28	324
29 30	325
31 32 33	326
34 35	327
36 37	328
38 39	329
40 41 42 43	330
44 45	331
46 47	332
48 49	333
50 51 52	334
53 54	335
55 56	336
57 58 59	

1

62% respectively). However, under DW treatment, BCC and BAM showed a
higher proportion of thin roots than BBT (72%, 71% and 56% respectively). BCC
had a significantly shorter root length to weight ratio of thin roots (33.5 m g⁻¹)
than BAM (60.1 m g⁻¹) and BBT (59.1 m g⁻¹). No differences were found for
thicker roots (>0.5mm) with 1.1 m g⁻¹ root length to weight ratio on average.

3.2. Plant water use

The accumulated evapotranspiration over the measurement period showed a significant difference (p<0.001) between treatments. The total evapotranspirated water was $1,790 \pm 25$ ml under DW and $2,833 \pm 102$ ml under WW. Moreover, important differences were found when the accumulated evapotranspiration was evaluated at each measurement date. At the beginning, both treatments had similar evapotranspiration; however, from day 36 to the last measurement WW plants had significantly higher evapotranspiration than DW plants. Regarding differences by variety, BAM showed significantly lower evapotranspiration than BCC from the first measurement to day 40. Thereafter, there was an interaction that indicated lower accumulated evapotranspiration of BAM under WW treatment (Fig. 2: A). At the beginning, relative soil water content (RSWC) was 66% on average and 45% under WW and DW respectively (Fig.2: B), showing no differences among varieties. During the measurement period, RSWC was always significantly lower under DW. From days 36 to the last measurement BAM showed significantly higher RSWC than BCC and BBT. In DW treatment, RSWC decreased to a minimum value of around 12% at day 53 when it seemed to stabilise; this value was firstly reached by BCC (Fig.2: B).

3 4	337	3.3.	Relative	water	content,	photosynthesis	and	stomatal
5 6 7	338	con	ductance					
8 9	339	The deficit	watered regin	ne did no	t affect the l	RWC (Table S5), a	s value	es are
10 11 12	340	similar und	er both water	regimes.	However, B	AM showed highe	r RWC	than the
13 14	341	other two v	arieties (Table	e 4). For A	A _{area} , the int	eraction of variety	and tre	atment
15 16	342	(Table S5)	reflected the f	act that B	SCC was the	only variety affec	ted by]	DW
17 18	343	treatment. I	BAM was the	variety w	rith the high	est A _{area} , although	it show	ed similar
19 20 21	344	values to B	CC under WW	V treatme	nt (Table 4)	. g _{Sarea} was also hi	gher foi	r BAM and
22 23	345	was reduce	d by DW treat	tment acr	oss the three	e varieties. WUE w	as not	influenced
24 25	346	by either va	riety or treatm	nent.				
26 27 28	347	The first tw	o axes of the]	PCA acco	ounted for 3	3.0% and 24.1% o	f total v	variation,
29 30	348	respectively	y. The three va	arieties sł	nowed clear	clustering (Fig. 3.	A) whi	le the
31 32 33	349	treatments	were more sca	attered on	both axes (Fig. 3. B). Overall	, morph	ological
34 35	350	traits were	more importar	nt to expl	ain the varia	bility of both prine	cipal co	mponents
36 37	351	than physic	logical ones.	LMF, lea	f to stem rat	io and LAR had hi	igh neg	ative
38 39	352	loadings an	d high positiv	e loading	for root bio	mass for the first j	orincipa	al
40 41 42	353	component	. For the secor	nd princip	al compone	ent, root biomass, r	oot to s	shoot ratio
43 44	354	and thin roo	ots proportion	presented	d high positi	ive loadings while	SMF, S	SLA and
45 46	355	senescent to	o green leaf ra	tio had h	igh negative	loadings. All bio	mass-re	elated
47 48 49	356	variables to	gether with w	ater use e	efficiency (V	WUE), RMF and ro	oot to sl	hoot ratio
50 51	357	showed cov	variation. LAR	R, LMF ai	nd leaf/stem	ratio presented co	variatic	on with
52 53 54	358	A _{area} , g _{Sarea}	and RWC. Fir	nally, SL	A and SMF	also showed covar	iation.	
55 56 57	359	3.4.	Nutritive	value				

360	Ash content was around 10-12% (leaf and stem weighed average across varieties),
361	showing two interactions (Table S6): variety by organ (p=0.008) and organ by
362	treatment (p=0.019). BBT ash content was significantly lower in the stem than in
363	the leaf while BAM and BCC showed no difference in ash content between
364	organs (Fig. 4: A). The organ by treatment interaction reflected the effect of DW
365	on the leaf ash content reduction whereas it had no effect on the stem (Fig. 4: B).
366	The other parameters analysed, EDOM, ADF, NDF and CP, were not affected by
367	the water reduction imposed in this experiment (Table S6). The leaf EDOM was
368	similar for all varieties, with an average value of 86.2%. Stem EDOM was
369	significantly lower than in leaf, also being lower for BBT than for BAM and
370	BCC, which had similar values (Fig. 5: A). CP leaf values were around 16%
371	across all varieties. However, a two-way interaction (Table S6) reflected BAM
372	having higher stem CP than BCC whereas BBT had the same CP value as the
373	other varieties (Fig. 5: B). There was an interaction between variety and organ for
374	NDF (Table S6). Although the NDF value for stem was similar for all varieties,
375	42.9% on average, the leaf NDF content was significantly higher for BAM than
376	for BBT, while BCC showed no difference in leaf NDF compared to the other two
377	varieties (Fig. 5:C). As expected, ADF was significantly higher for stem than for
378	leaf, although values were similar across the three varieties, 19.9% for leaf and
379	31.4% for stem on average (Fig. 5:D).

4. Discussion

The lower shoot biomass production of BAM under both treatments differs from previous studies where BAM was highly productive (Melis et al., 2018; Real et al., 2014). These contrasting results compared to previous studies (Foster et al.,

1	
2	
3	
4	
5	
6	
7	
/	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
∠_) 24	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
22	
20	
5/	
58	
59	
60	

384	2015; Foster, Ryan, Real, Ramankutty, & Lambers, 2012; Martínez-Fernández et
385	al., 2012) could be explained by differences in experimental conditions, in
386	particular, the high initial soil water content and differences in the water regimes.
387	The relatively high initial soil water content could have affected the early
388	development of BAM leading to a lower biomass production. BAM grows
389	naturally in a very low-rainfall environment (< 200 mm) while BCC and BBT
390	grow in environments with higher rainfall (Table 1) where periodic wet conditions
391	may be expected during the growing season. BCC, in particular, which grows in
392	the National Park of Cañadas del Teide (2200m a.s.l.) and receives part of the
393	average precipitation (500 mm) as snow (Méndez et al., 1990; Raeside et al.,
394	2012; Real et al., 2014), may have longer wet conditions due to snow melt. Real
395	et al. (2014) also suggested that variability in wet conditions tolerance might be
396	expected based on the high natural habitat variability of <i>B. bituminosa</i> .
397	This hypothesis is supported by the lower root biomass production of BAM and
398	its distribution throughout the profile compared to BCC and BBT (Fig. 1: A). In
399	the same line, BAM was the only variety for which the WW treatment reduced the
400	proportion of thin roots, as these are expected to be more susceptible to root rot.
401	This poor root development limited the soil water use, as shown by the high
402	RSWC maintained over the last growing period even for DW plants (Fig. 2: B).
403	Similarly, the evapotranspiration of BAM could be affected by the lower shoot
404	biomass and by a root system that was unable to use the soil water content as
405	much as BCC and BBT which developed larger root systems. B. bituminosa
406	susceptibility to stem and root rot has been pointed out in previous studies
407	(Martínez-Fernández et al., 2012; Real et al., 2014). Real et al. (2014) found <i>B</i> .
408	<i>bituminosa</i> accessions were generally sensitive to wet conditions although four 17

409	accessions showed tolerance. Raeside et al. (2012) also found BAM failed to
410	persist and produce biomass during wet winters. These results have important
411	agronomic implications since BAM susceptibility to wet conditions may limit its
412	potential as a novel forage legume (Raeside et al., 2012) in areas with contrasting
413	rainfall during the plant growing season. In the Mediterranean basin, clay/silty
414	soils and high-rainfall periods could often contribute to periodic wet conditions
415	that might limit BAM root system development and therefore its resistance to
416	subsequent drought periods. This could also mean a competitive disadvantage of
417	BAM in grassland mixtures at initial stages, since more tolerant species to initial
418	high soil water content could dominate and outcompete BAM. For example, as
419	shown in Fig. 2: A, BAM under WW conditions showed lower accumulated
420	evapotranspiration, while no differences between varieties were found under DW.
421	Breeding programmes have used BCC to improve BAM cold-resistance (Real et
422	al., 2014; Walker, Romero & Correal 2010); these crossed lines with BCC could
423	also improve BAM susceptibility to wet conditions (Raeside et al., 2012). The
424	efforts of the breeding programs to deliver wet conditions- and drought-resistant
425	ideotypes (Real et al., 2014) will be crucial to overcoming this potential limitation
426	of BAM in permanent grasslands of the Mediterranean basin.
427	The DW treatment of this experiment was not restrictive enough to cause SLA or
428	other morphological modifications seen in previous studies (Foster et al., 2012;
429	Foster et al., 2015; Martínez-Fernández et al., 2012). Only biomass-related
430	variables and senescent to green leaf ratio contributed to differentiating between
431	both treatments (Fig. 3. B). However, BAM and BCC had a significantly lower
432	SLA than BBT, which could indicate a thicker and/or denser leaf for these
433	varieties. The higher SLA of BBT could also be related to the lower NDF content 18

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
20	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
<u>⊿1</u>	
40	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52	
22	
54	
55	
56	
57	
58	
59	
60	

434	in leaf (which indicates the cell-wall material) of this variety (Fig.5:C). Khaled,
435	Duru, Decruyenaere, Jouany and Cruz, (2006) also found a negative correlation
436	between SLA and fibre content in grassland species. SLA values for the three
437	varieties were higher than those reported by Martínez-Fernández et al. (2012) for
438	pot-grown plants and lower than SLA values of plants grown in the field in the
439	same study. As these authors state, these differences might be due to different
440	temperature and light intensity exposure. Foster et al. (2013) and Martínez-
441	Fernández et al. (2012) suggested that lower SLA in BAM might play an
442	important role in its protection against light intensity and water loss. Since BCC
443	and BAM showed lower SLA (i.e., thicker and/or denser leaves), these two
444	varieties could be better adapted than BBT to high light intensity and temperature.
445	A_{area} and g_{Sarea} values of BAM measured at day 46 (that was not the point of
446	maximum drought stress) were associated with higher leaf RWC (Foster et al.,
447	2015) which confirms the drought adaptation of this variety (Foster et al., 2013).
448	The differences in A_{area} of BCC by treatment could also be influenced by its
449	RSWC at measurement time (day 46) under DW treatment, which was the lowest
450	of the three varieties (12% vs 15% and 23% for BBT and BAM, respectively)
451	(Fig.2: B). The significant lower Aarea recorded for BBT under WW treatment
452	might indicate higher responsiveness to high temperature leading to earlier A_{area}
453	reduction. The A_{area} and g_{Sarea} response of the different <i>B. bituminosa</i> varieties to
454	increasing temperature and also light intensity could be further investigated in
455	future research as it might play an important role in their adaptation to
456	Mediterranean permanent grasslands.
457	In agreement with the results of this study, previous research has found little or no
458	effect of moderate drought stress on the quality parameters of forage legumes

2	
2	
5	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
47	
-1/ /0	
4ð	
49	
50	
51	
52	
53	
51	
54	
55	
56	
57	
58	
59	
60	
50	

459	(Komainda, et al., 2019; Kuchenmeister, Kuchenmeister, Kayser, Wrage &
460	Isselstein, 2013). As Kuchenmeister et al. (2013) stated, selection of legume
461	species and cultivation in mixture or monoculture may have more influence on
462	quality parameters than drought stress. These studies reported values of CP for
463	alfalfa between 19% and 27% and informed of minor effect of drought stress on
464	CP content (Kuchenmeister et al. 2013; Staniak & Harasim, 2018). In this study,
465	just green leaves were sampled for nutritive analysis. Although green leaves might
466	have no differences in quality, it is worth noting that drought stressed plants with
467	senescent leaves may have lower global quality (lower digestibility and CP
468	content and higher NDF and ADF) than those with no senescent leaves.
469	Overall, BAM and BCC showed better forage aptitude than BBT due to the higher
470	leaf proportion (Table 3). The leaf proportion is an important morphological value
471	to assess the nutritive value of forage legumes (Abd El Moneim et al., 1990).
472	Although BBT had similar leaf nutritive value to the other two varieties (Fig.4),
473	the lower leaf to stem ratio of this variety (Table 3) makes it less suitable as
474	forage since it reduces its palatability compared to BAM and BCC. As the PCA
475	showed, the LMF, leaf to stem ratio (both higher in BAM) and the SMF clearly
476	contributed to differentiating the three varieties, especially between BAM and
477	BBT. The weighed average value of CP between stem and leaf of BAM (15%),
478	BBT (12.5 %) and BCC (12.4%) were lower than concentrations found for
479	Canarian varieties with values ranging from 15 to 17.7% for samples taken in
480	summer (Ventura et al., 2009; Ventura, Méndez, Flores, Rodriguez & Castañon,
481	2000), although similar to CP values from 9.4 to 16.1% reported for Italian
482	accessions (Pecetti et al., 2007). As Ventura et al. (2009) informed, these varieties
483	have higher forage quality than alfalfa hay, which showed values of 11.8% CP,

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
17	
10	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40 11	
41 ⊿ว	
+∠ ⊿२	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

484	57.4% NDF and 43.7% digestible organic matter. The weighed average
485	concentrations of NDF (BAM 34.8%, BBT 38.4% and BCC 32.1%) and ADF
486	(BAM 26.7%, BBT 28.1% and BCC 25.5%) were lower than previously
487	evaluated concentrations of Canarian varieties and other for Italian accessions that
488	reported values of NDF from 41.1 to 53.7% (Pecetti et al., 2007; Ventura et al.,
489	2000; Ventura et al., 2009). These differences in NDF may be explained by the
490	age of the plants sampled, three-year-old plants in the case of the Italian
491	accessions (Pecetti et al., 2007). Evaluations of BAM nutritive value have shown
492	CP to be highly variable depending on the accession analysed, with values
493	ranging from 12.8% to 24.2% (Oldham et al., 2013; Raeside et al., 2012). The
494	same studies presented lower values of NDF (25.4 - 32.8 %) and ADF (19.4 - 22.3
495	%) (Oldham et al., 2013; Raeside et al., 2012) although these differences may be
496	accounted for by the earlier phenological stage. Mismatches in reproductive
497	development of the three studied varieties could be observed due to the different
498	meteorology in their native environment (Méndez et al., 1990). Although
499	phenology was not the subject of study here, the three varieties showed signs of
500	being at the beginning of the reproductive stage without considerable differences
501	between them. Melis et al. (2018) found some differences in the date of the first
502	flower appearance between B. bituminosa Spanish accessions, Sardinian
503	accessions and Bituminaria morisiana all grown in Sardinia (Italy). However, no
504	significant differences were found for accessions of the three varieties from the
505	Canary Islands. The intrinsic morphological traits such as leaf and stem mass
506	fraction seem to have stronger effects on the forage aptitude than possible
507	mismatches of the phenology between the three varieties. CP (15.0%), NDF
508	(34.8%) and ADF (26.6%) stem and leaf average concentration of BAM were

509	very similar to the concentrations also evaluated by near infrared analysis for the
510	same variety by Adriansz, Hardy, Milton, Oldham, & Real, (2017), CP (15.0%),
511	NDF (37.6%) and ADF (26.6%). However, it would be worth investigating the
512	drought stress effect on phenology of the studied varieties since it would directly
513	affect their nutritive value.
514	Leaf ash content increased with WW treatment. This finding is consistent with
515	other research that reported an increase in most leaf nutrient under well irrigated
516	condition (Olivera-Viciedo et al., 2020), especially those nutrients that are
517	passively uptaken (Wu, Liu, Wang, Zhang & Xu, 2012). Furthermore, ash content
518	has been positively correlated with transpiration ratio (ratio of water transpired to
519	carbon fixed) (Masle, Farquhar & Wong, 1992; Merah, Deleens, Souyris &
520	Monneveux, 2001), and an increase in the later can occur under well irrigated
521	condition. However, Masle et al. (1992) stated, that changes in the transpiration
522	ratio induced by environmental factors (as atmospheric humidity or carbon
523	dioxide concentration) do not cause a noticeable change in the mineral content.
524	Leaf ash content can affect the response of the plant to water stress due to some
525	nutrient are involved in water flow regulation. For example, moderate potassium
526	starvation inhibits the mechanism of stomatal closure and can cause tissue
527	dehydration in water-stressed plants (Benlloch-González, Arquero, Fournier,
528	Barranco & Benlloch, 2008). In fact, we found a positive correlation between leaf
529	ash content and RWC (result not shown). The ash content may seem higher
530	compared to previous studies Italian accessions (6.0-7.7%) (Pecetti et al., 2007);
531	however, similar values in Spanish accessions (9.18-12.2%) are reported by
532	Oldham et al., (2013) and SIA (2019). These Canarian varieties show higher CP
533	and lower NDF and ADF content than Mediterranean rainfed grasslands, at a 22

Journal of Agronomy and Crop Science

2	
3	
4	
5	
6	
7	
, R	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
∠ I 22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
22 24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42	
11	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	
60	

534	similar phenological stage (Henkin et al., 2011; Vázquez De Aldana, García-
535	Ciudad, & García-Criado, 2008; Zarovali, Yiakoulaki, & Papanastasis, 2007).
536	This higher nutritive value together with its drought and grazing tolerances make
537	this species a promising fodder plant for Mediterranean grasslands (Oldham et al.
538	2013; Real et al., 2017; Sternberg et al., 2006).

5. Conclusion

539

Water stress reduced biomass production equally for the three varieties. However, 540 the initial soil water content affected the early development and biomass of BAM, 541 542 which was reflected by the poor root system development. This denotes susceptibility of BAM to high soil water content which may limit its introduction 543 to some Mediterranean farming systems, where periodic soil water saturation can 544 be expected, especially at the beginning of the growing season. According to the 545 morphological traits studied, BAM showed the best forage aptitude. The lower 546 547 SLA of BAM and BCC is an important adaptation against high light intensity and temperature in arid environments. The three *B. bituminosa* native to the Canary 548 Islands showed good nutritive value for their use to improve the quality of 549 Mediterranean rainfed pastures. 550

The wide diversity of existing varieties and the progress of the breeding programmes developed in Spain and Australia based on Canarian *B. bituminosa* varieties bring forward the opportunity for the incorporation of these lines for the improvement of Mediterranean pastures. However, additional research through continuous monitoring of its use and long-term field experiments will be needed to confirm the proper adaptation of the improved lines and selected ideotypes to the wide range of Mediterranean environmental conditions.

558	6. Acknowledgements
559	This study is funded by the European Union's Horizon 2020 research and
560	innovation programme, grant agreement 774124, project SUPER-G (Sustainable
561	Permanent Grassland). The study was developed thanks to a PhD fellowship FPU
562	(code FPU18/02876) of the Spanish Ministry of Education awarded to J.
563	Fernández-Habas.
564	The authors would like to thank the anonymous reviewers for providing insightful
565	suggestions that have allowed to significantly improve the paper.
566	7. References
567	Abd El Moneim, A. M., Khair, M. A., & Rihawi, S. (1990). Effect of genotypes
568	and plant maturity on forage quality of certain forage legume species under
569	rainfed conditions. Journal of Agronomy and Crop Science, 164, 85-92.
570	https://doi.org/10.1111/j.1439-037X.1990.tb00790.x
571	Adriansz, T. D., Hardy, J. L. M., Milton, J. T. B., Oldham, C. M., & Real, D.
572	(2017). Near infrared analysis for nutritive attributes of tedera (Bituminaria
573	bituminosa var. albomarginata). Journal of Near Infrared Spectroscopy, 25,
574	215-218. https://doi.org/10.1177/0967033517712133
575	Beard, C., Nichols, P.G.H., Loo, C., Michael, P. (2014). Establishment of Tedera
576	(Bituminaria Bituminosa var. albomarginata) (Technical Report nº 13).
577	Retrieved from Future Farm Industries CRC: Crawley, UK website:
578	http://www.futurefarmonline.com.au/publications/other-publications.htm.
579	Beniston, M., Stephenson, D. B., Christensen, O. B., Ferro, C. A. T., Frei, C.,
580	Goyette, S., Woth, K. (2007). Future extreme events in European climate:

Journal of Agronomy and Crop Science

581	An exploration of regional climate model projections. Climatic Change, 81,
582	71-95. https://doi.org/10.1007/s10584-006-9226-z
583	Benlloch-González, M., Arquero, O., Fournier, J. M., Barranco, D., & Benlloch,
584	M. (2008). K+ starvation inhibits water-stress-induced stomatal closure.
585	Journal of plant physiology, 165, 623-630.
586	https://doi.org/10.1016/j.jplph.2007.05.010
587	Bennett, R. G., Ryan, M. H., Colmer, T. D., & Real, D. (2011). Prioritisation of
588	novel pasture species for use in water-limited agriculture: A case study of
589	Cullen in the Western Australian wheatbelt. Genetic Resources and Crop
590	Evolution, 58, 83-100. https://doi.org/10.1007/s10722-010-9567-3
591	Ceballos, A., & Schnabel, S. (1998). Hydrological behaviour of a small catchment
592	in the dehesa landuse system (Extremadura, SW Spain). Journal of
593	<i>Hydrology</i> , 210, 146–160. https://doi.org/10.1016/S0022-1694(98)00180-2
594	Correal E., Hoyos A., Ríos S., Méndez P., Real D., Snowball R., & Costa J.
595	(2008). Seed production of Bituminaria bituminosa: size, production,
596	retention and germination capacity of the legumes. Options
597	Méditerranéennes, 79, 379-383.
598	Cosentino, S. L., Gresta, F., & Testa, G. (2014). Forage chain arrangement for
599	sustainable livestock systems in a Mediterranean area. Grass and Forage
600	Science, 69, 625-634. https://doi.org/10.1111/gfs.12085
601	Foster, K., Lambers, H., Real, D., Ramankutty, P., Cawthray, G. R., & Ryan, M.
602	H. (2015). Drought resistance and recovery in mature Bituminaria
603	bituminosa var. albomarginata. Annals of Applied Biology, 166, 154–169.

604	https://doi.org/10.1111/aab.12171
605	Foster, K., Ryan, M. H., Real, D., Ramankutty, P., & Lambers, H. (2012).
606	Drought resistance at the seedling stage in the promising fodder plant tedera
607	(Bituminaria bituminosa var. albomarginata). Crop and Pasture Science, 63,
608	1034-1042. https://doi.org/10.1071/CP12216
609	Foster, K., Ryan, M. H., Real, D., Ramankutty, P., & Lambers, H. (2013).
610	Seasonal and diurnal variation in the stomatal conductance and
611	paraheliotropism of tedera (Bituminaria bituminosa var. albomarginata) in
612	the field. Functional Plant Biology, 40, 719–729.
613	https://doi.org/10.1071/FP12228
614	Gang, C., Wang, Z., Zhou, W., Chen, Y., Li, J., Chen, J., Qi, I., Odeh &
615	Groisman, P. Y. (2016). Assessing the spatiotemporal dynamic of global
616	grassland water use efficiency in response to climate change from 2000 to
617	2013. Journal of Agronomy and Crop Science, 202, 343-354.
618	https://doi:10.1111/jac.12137
619	Gang, C., Zhou, W., Wang, Z., Chen, Y., Li, J., Chen, J., Qi, I., Odeh &
620	Groisman, P. Y. (2015). Comparative assessment of grassland NPP dynamics
621	in response to climate change in China, North America, Europe and Australia
622	from 1981 to 2010. Journal of Agronomy and Crop Science, 201, 57-68.
623	https://doi:10.1111/jac.12088
624	Giannakopoulos, C., Le Sager, P., Bindi, M., Moriondo, M., Kostopoulou, E., &
625	Goodess, C. M. (2009). Climatic changes and associated impacts in the
626	Mediterranean resulting from a 2 °C global warming. Global and Planetary

627	Change, 68, 209–224. https://doi.org/10.1016/j.gloplacha.2009.06.001
628	Giorgi, F., & Lionello, P. (2008). Climate change projections for the
629	Mediterranean region. Global and Planetary Change, 63, 90-104.
630	https://doi.org/10.1016/j.gloplacha.2007.09.005
631	Henkin, Z., Ungar, E. D., Dvash, L., Perevolotsky, A., Yehuda, Y., Sternberg, M.,
632	Landau, S. Y. (2011). Effects of cattle grazing on herbage quality in a
633	herbaceous Mediterranean rangeland. Grass and Forage Science, 66, 516-
634	525. https://doi.org/10.1111/j.1365-2494.2011.00808.x
635	Hernández-Esteban, A., López-Díaz, M. L., Cáceres, Y., & Moreno, G. (2019).
636	Are sown legume-rich pastures effective allies for the profitability and
637	sustainability of Mediterranean dehesas?. Agroforestry Systems, 93, 2047-
638	2065. https://doi.org/10.1007/s10457-018-0307-6
639	IPCC. (2018). Global Warming of 1.5°C. An IPCC Special Report on the impacts
640	of global warming of 1.5° C above pre-industrial levels and related global
641	greenhouse gas emission pathways, in the context of strengthening the global
642	response to the threat of climate change, sustainable development, and
643	efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, HO. Pörtner, D.
644	Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R.
645	Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E.
646	Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. In Press.
647	Khaled, R. A. H., Duru, M., Decruyenaere, V., Jouany, C., & Cruz, P. (2006).
648	Using leaf traits to rank native grasses according to their nutritive value.
649	Rangeland Ecology and Management, 59, 648–654.

650	https://doi.org/10.2111/05-031R2.1
651	Komainda, M., Küchenmeister, K., Küchenmeister, F., Breitsameter, L.,
652	Wrage-Mönnig, N., Kayser, M., & Isselstein, J. (2019). Forage legumes for
653	future dry climates: Lower relative biomass losses of minor forage legumes
654	compared to Trifolium repens under conditions of periodic drought stress.
655	Journal of Agronomy and Crop Science, 205, 460-469.
656	https://doi.org/10.1111/jac.12337
657	Kuchenmeister, K., Kuchenmeister, F., Kayser, M., Wrange-Mönning, N., &
658	Isselstein, J. (2013). Influence of drought stress on nutritive value of
659	perennial forage legumes. International Journal of Plant Production, 7,
660	1735–8043.
661	Lozano-Parra, J., Schnabel, S., & Ceballos-Barbancho, A. (2015). The role of
662	vegetation covers on soil wetting processes at rainfall event scale in scattered
663	tree woodland of Mediterranean climate. Journal of Hydrology, 529, 951-
664	961. https://doi.org/10.1016/j.jhydrol.2015.09.018
665	Maneta, M.P., Schnabel, S., Wallender, W. W., Panday, S., & Jetten, V. (2008).
666	Calibration of an evapotranspiration model to simulate soil water dynamics
667	in a semiarid rangeland. Hydrological Processes, 22, 4655–4669.
668	https://doi.org/10.1002/hyp
669	Maneta, M.P., Pasternack, G. B., Wallender, W. W., Jetten, V., & Schnabel, S.
670	(2007). Temporal instability of parameters in an event-based distributed
671	hydrologic model applied to a small semiarid catchment. Journal of
672	Hydrology, 341, 207–221. https://doi.org/10.1016/j.jhydrol.2007.05.010

2		
3	673	Martínez-Fernández, D., Walker, D. J., Romero, P., Martínez-Ballesta, M. C., &
4		
5	674	Correal F (2012) The Response of the Leguminous Fodder Plant
6	074	Conteal, E. (2012). The response of the Deguinhous rouder rhund
7	675	Rituminaria hituminosa to Water Stress Journal of Joronomy and Cron
8	075	Buumunaria buumunosa to water Suess. Journal of Agronomy and Crop
9		
10	676	<i>Science</i> , 198, 442–451. https://doi.org/10.1111/j.1439-03/X.2012.00515.x
11		
12	C 77	Malia D. A. M. France, A. D. C. A. & Darguaddy, C. (2019) Dia agramamia
14	677	Mens, K. A. M., Flanca, A., Ke, O. A., & Folqueduu, C. (2018). Dio-agronomic
15		
16	678	characterization and implications on the potential use as forage of
17		
18	679	Bituminaria bituminosa and B. morisiana accessions. Grass and Forage
19		
20	680	Science, 7, 284–296. https://doi.org/10.1111/gfs.12342
21		
22		
23	681	Méndez, P., Fernández, M., & Santos, A. (1991). Variedades de "Bituminaria
24		
25	682	bituminosa" (L.) Stirton (Leguminosae) en el archipiélago canario. Pastos:
26		
27	683	Revista de La Sociedad Española Para El Estudio de Los Pastos 2021 157–
28		
29	691	166
30 21	004	100.
37		
32	685	Méndez P Santos A Correal E & Ríos S (2006) Agronomic traits as forage
34		
35	686	crops of nineteen population of <i>Rituminaria bituminosa</i> . In : Sustainable
36	080	crops of mineteen population of <i>Dituminaria oliuminosa</i> . In . Sustainable
37	c 0 7	
38	687	grassiana productivity: Proceedings of the 21st General Meeting of the
39		
40	688	European Grassland Federation, Badajoz, Spain, 3-6 April, 2006 (pp. 300–
41		
42	689	302). Sociedad Española para el Estudio de los Pastos (SEEP).
43		
44		
45	690	Muñoz, A., Ortiz-Dorda, J., & Correal, E. (2000). Morphological and molecular
46		
47	691	characterization of Biturninaria bituminosa accessions from South-East
48		
49	692	Spain and the Canary Islands, Cahiers Options Méditerranéennes, 45, 103–
50		
51	603	107
52	000	107.
54		
55	694	Oldham, C., Real, D., Bailey, H. J., Thomas, D., Van Burgel, A., Vercoe, P.,
56		, , , , <u>,</u> ,,, .,
57	695	Rios S (2013) Australian and Spanish scientists are collaborating in the
58	000	1966, 5. (2015). Australian and Spanish Scientists are condobrating in the
59		
60		29
		LJ

Journal of Agronomy and Crop Science

696	domestication of tedera: Young Merino sheep grazing a monoculture of
697	tedera in autumn showed preference for certain accessions but no signs of ill
698	health. Crop and Pasture Science, 64, 399–408.
699	https://doi.org/10.1071/CP13059
700	Oldham, C. M., Wood, D., Milton, J., Real, D., Vercoe, P., & Van Burgel, A. J.
701	(2015). An animal house study on utilisation of fresh tedera (Bituminaria
702	bituminosa var. albomarginata and crassiuscula) by Merino wethers. Animal
703	Production Science, 55, 617-624. https://doi.org/10.1071/AN13068
704	Olivera-Viciedo, D., de Mello Prado, R., Martinez, C. A., Habermann, E., Branco,
705	R. B. F., de Cássia Piccolo, M., & Lata Tenesaca, L. F. (2020). Water
706	stress and warming impact nutrient use efficiency of Mombasa grass
707	(Megathyrsus maximus) in tropical conditions. Journal of Agronomy and
708	Crop Science. https://doi.org/10.1111/jac.12452
709	Or, D., Lehmann, P., Shahraeeni, E., & Shokri, N. (2013). Advances in soil
710	evaporation physics—A review. Vadose Zone Journal, 12(4), 1-16
711	Pazos-Navarro, M., Dabauza, M., Correal, E., Hanson, K., Teakle, N., Real, D., &
712	Nelson, M. N. (2011). Next generation DNA sequencing technology delivers
713	valuable genetic markers for the genomic orphan legume species,
714	Bituminaria bituminosa. BMC Genetics, 12, 140.
715	https://doi.org/10.1186/1471-2156-12-104
716	Pistelli, L., Noccioli, C., Appendino, G., Bianchi, F., Sterner, O., & Ballero, M.
717	(2003). Pterocarpans from Bituminaria morisiana and Bituminaria
718	bituminosa. Phytochemistry, 64, 595-598. https://doi.org/10.1016/S0031-

719	9422(03)00190-0
720	Pecetti, L., Tava, A., Pagnotta, M., & Russi, L. (2007). Variation in forage quality
721	and chemical composition among Italian accessions of Bituminaria
722	bituminosa (L.) Stirt. Journal of the Science of Food and Agriculture, 87,
723	985-991. https://doi.org/10.1002/jsfa.2792
724	Poorter, H., & Remkes, C. (1990). Leaf area ratio and net assimilation rate of 24
725	wild species differing in relative growth rate. <i>Oecologia</i> , 83, 553–559.
726	Porqueddu, C., Ates, S., Louhaichi, M., Kyriazopoulos, A. P., Moreno, G., del
727	Pozo, A., Nichols, P. G. H. (2016). Grasslands in "Old World" and "New
728	World" Mediterranean-climate zones: Past trends, current status and future
729	research priorities. Grass and Forage Science, 71, 1–35.
730	https://doi.org/10.1111/gfs.12212
731	Porqueddu, C., Dettori, G., Falqui, A., & Re, G. A. (2011). Bio-agronomic
732	evaluation of fifteen accessions within Psoralea complex. In Grassland
733	farming and land management systems in mountainous regions. Proceedings
734	of the 16th Symposium of the European Grassland Federation, Gumpenstein,
735	Austria, 29th-31st August, 2011 (pp. 374-376). Agricultural Research and
736	Education Center (AREC) Raumberg-Gumpenstein.
737	R Development Core Team (2019). R: A language and environment for statistical
738	computing. R Foundation for Statistical Computing, Vienna, Austria. URL
739	https://www.R-project.org/.
740	Raeside, M. C., Nie, Z. N., Clark, S. G., Partington, D. L., Behrendt, R., & Real,
741	D. (2012). Evaluation of tedera [(Bituminaria bituminosa (L.) C.H. Stirton

74	2 var. <i>albomarginata</i>)] as a forage alternative for sheep in temperate southern
74	Australia. Crop and Pasture Science, 63, 1135–1144.
74	4 https://doi.org/10.1071/CP12293
74	Real, D., Oldham, C. M., Nelson, M. N., Croser, J., Castello, M., Verbyla, A.,
74	Ewing, M. A. (2014). Evaluation and breeding of tedera for Mediterranean
74	climates in southern Australia. <i>Crop and Pasture Science</i> , 65, 1114–1131.
74	8 https://doi.org/10.1071/CP13313
74	Real, D. & Verbyla, A. (2010). Maximizing genetic gains using a plant model in
75	the Tedera (<i>Bituminaria bituminosa</i> var. <i>albomarginata</i> and var.
75	<i>crassiuscula</i>) breeding program in Australia. <i>Options Méditerranéennes</i> , 92,
75	2 87-95.
75	Real, D, Oldham, C., Burgel, A., Dobbe, E., & Hardy, J. (2017). Tedera proves its
75	value as a summer and autumn feed for sheep in Mediterranean-like climates,
75	5 Animal Production Science 58, 2269–2279.
75	5 https://doi.org/10.1071/AN16432
75	7 Ritchie, J. T. (1972). Model for predicting evaporation from a row crop with
75	incomplete cover. <i>Water Resources Research</i> , 8, 1204–1213.
75	https://doi.org/10.1029/WR008i005p01204
76	SIA. (2019, December 4). Servicio de Información sobre Alimentos: Base de
76	datos pastos españoles (SEEP)/alimentos para animales. Retrieved from
76	2 http://www.uco.es/sia/banco_de_datos/index.php?banco=8
76	Staniak, M., & Harasim, E. (2018). Changes in nutritive value of alfalfa
76	4 (medicago× varia t. martyn) and festulolium (festulolium braunii (k. richt) a.

765	camus) under drought stress. Journal of Agronomy and Crop Science,
766	204(5), 456-466.
767	Sternberg, M., Gishri, N., & Mabjeesh, S. J. (2006). Effects of grazing on
768	Bituminaria bituminosa (L) Stirton: A potential forage crop in Mediterranean
769	grasslands. Journal of Agronomy and Crop Science, 192, 399-407.
770	https://doi.org/10.1111/j.1439-037X.2006.00227.x
771	Suriyagoda, L. D. B., Real, D., Renton, M., Lambers, H., & Ryan, M. H. (2013).
772	Establishment, survival, and herbage production of novel, summer-active
773	perennial pasture legumes in the low-rainfall cropping zone of Western
774	Australia as affected by plant density and cutting frequency. Crop and
775	Pasture Science, 64, 71-85. https://doi.org/10.1071/CP12398
776	Vázquez De Aldana, B. R., García-Ciudad, A., & García-Criado, B. (2008).
777	Interannual variations of above-ground biomass and nutritional quality of
778	Mediterranean grasslands in Western Spain over a 20-year period. Australian
779	Journal of Agricultural Research, 59, 769–779.
780	https://doi.org/10.1071/AR07359
781	Ventura, M. R., Castañon, J. I. R., & Mendez, P. (2009). Effect of season on
782	tedera (Bituminaria bituminosa) intake by goats. Animal Feed Science and
783	Technology, 153, 314-319. https://doi.org/10.1016/j.anifeedsci.2009.06.018
784	Ventura, M. R., Méndez, P., Flores, M. P., Rodriguez, R., & Castañon, J. I. R.
785	(2000). Energy and protein content of Tedera (Bituminaria bituminosa).
786	Cahiers Options Méditerranéennes, 45, 219-221.
787	Villar, R., Ruiz-Robleto, J., Quero, J. L., Poorter, H., Valladares, F., & Marañón,

3
4
5
6
7
/
8
9
10
11
12
13
14
15
10
16
17
18
19
20
21
22
22 22
∠⊃ ⊃∕
24
25
26
27
28
29
30
21
22
32
33
34
35
36
37
38
30
40
40
41
42
43
44
45
46
47
10
40
49
50
51
52
53
54
55
56
50
57
58
59

788	T. (2004). Tasas de crecimiento en especies leñosas: aspectos funcionales e
789	implicaciones ecológicas. In Valladares, F. (Ed). Ecología del bosque
790	mediterráneo en un mundo cambiante. (pp. 191-227). Ministerio de Medio
791	Ambiente, EGRAF, S. A., Madrid.
792	Walker, D. J., Romero, P., & Correal, E. (2010). Cold tolerance, water relations
793	and accumulation of osmolytes in Bituminaria bituminosa. Biologia
794	Plantarum, 54, 293-298. https://doi.org/10.1007/s10535-010-0051-x
795	Wang, G., Liu, S., Fang, Y., & Shangguan, Z. (2020). Adaptive changes in root
796	morphological traits of Gramineae and Leguminosae seedlings in the
797	ecological restoration of the semiarid region of northwest China. Land
798	Degradation & Development, 1-13. https://doi.org/10.1002/ldr.3616
799	Wu, Y., Liu, X., Wang, W., Zhang, S., & Xu, B. (2012). Calcium regulates the
800	cell-to-cell water flow pathway in maize roots during variable water
801	conditions. Plant Physiology and Biochemistry, 58, 212–219.
802	https://doi.org/10.1016/j.plaphy.2012.07.005
803	Zarovali, M. P., Yiakoulaki, M. D., & Papanastasis, V. P. (2007). Effects of shrub
804	encroachment on herbage production and nutritive value in semi-arid
805	Mediterranean grasslands. Grass and Forage Science, 62, 355-363.
806	https://doi.org/10.1111/j.1365-2494.2007.00590.x
807	

- **Table 1**. Population and descriptive location data for the three varieties used. *B*.
 - *bituminosa* var. *albomarginata* (BAM); *B. bituminosa* var. *bituminosa* (BBT); *B.*
 - *bituminosa* var. *crassiuscula* (BCC).

	Variety	Population	Location	Average Rainfall (mm)	Altitude (m)	Mean temperature (°C) hottest/coldest months	Average annual evapotranspiration (mm)
	BAM	Malpaso	Lanzarote	150-250	250-280	24/16	1293
	BCC	Chavao-Cañadas	Tenerife	500	1900-2200	22/8	1585
	BBT	Tamarco	Tenerife	400	400	22/15	1208
812							
813							
814							
815							
816							
817							
818							
819							
820							
821							
822							
823							
824							
825							
826							
				2	5		
				5	<u>ل</u>		

828 experiment (63 days) for *B. bituminosa* varieties under two water regimes.

	Variety	Treatment	Shoot dry mass (g)	Root dry mass (g)	Total dry mass (g)	Senescent leaves: Green leaves (g g ⁻¹)
	BAM	WW	6.0 ± 1.0 c	2.7 ± 0.4 c	8.7 ± 1.4 c	$0.38\pm0.10~b$
	DAIM	DW	$3.0\pm0.7~d$	$1.2\pm0.4\ d$	$4.2\pm1.1~d$	0.52 ± 0.03 a
	BBT	WW	13.7 ± 1.4 a	5.9 ± 0.9 a	19.6 ± 1.9 a	$0.33\pm0.06~b$
	DDT	DW	$6.7\pm1.4~\mathrm{b}$	$3.1\pm0.5\;b$	$9.8\pm1.8~\text{b}$	0.35 ± 0.03 a
	PCC	WW	12.5 ± 1.7 a	8.0 ± 1.3 a	$20.5\pm2.2~\mathrm{a}$	$0.18\pm0.04\ b$
	всс	DW	$7.1\pm0.4~b$	$3.5\pm0.3\ b$	$10.6\pm0.5~\text{b}$	$0.32\pm0.04~a$
829	Mean value	es (n = 6) not	sharing a com	non letter differ	significantly (1	P < 0.05) according to
830	Tukey's tes	st. Standard e	error is showed.	BAM: B. bitumi	nosa var. albo	marginata; BBT: B.
831	bituminosa	var. <i>bitumin</i>	osa; BCC: B. b.	<i>ituminosa</i> var. <i>cr</i>	assiuscula.	
832						
833						
834						
835						
836						
837						
838						
839						
840						
841						
842						
843						
844						

Table 3. Morphological traits at the end of the experiment (63 days) for the *B. bituminosa*

846 varieties. Mean of the two water regime treatments is presented. Leaf to stem ratio, root to

847 shoot ratio, Leaf mass fraction (LMF), stem mass fraction (SMF), root mass fraction

848 (RMF), specific leaf area (SLA) and leaf area ratio (LAR)

Variety	Leaf:Stem ratio (g g ⁻¹)	Root: Shoot ratio (g g ⁻¹)	LMF (g g ⁻¹)	SMF (g g ⁻¹)	RMF (g g ⁻¹)	$\frac{\text{SLA}}{(\text{cm}^2 \text{ g}^{-1})}$	LAR $(cm^2 g^{-1})$
BAM	1.06 ± 0.10 a	0.46 ± 0.05 n.s.	0.36 ± 0.02 a	0.35 ± 0.02 b	0.29 ± 0.02 b	235 ± 10.0 b	86.9 ± 7.3 a
BBT	$0.38\pm0.04\ c$	$0.47\pm0.04\ n.s.$	$0.19\pm0.02~c$	$0.50\pm0.02~a$	$0.31\pm0.02~ab$	352 ± 17.0 a	64.1 ± 4.8 t
BCC	$0.80\pm0.03~\text{b}$	$0.59\pm0.06\ n.s.$	$0.28\pm0.01~b$	$0.36\pm0.01~b$	$0.36\pm0.02~a$	$239\pm9.3~b$	67.6 ± 3.7 a
849 N	fean values ($n = 6$) not sharing a cor	nmon letter diff	fer significantly	(P < 0.05) acco	rding to	
850 T	ukey's test. Stand	ard error is showe	d. BAM: <i>B. bitt</i>	ıminosa var. alb	oomarginata; BE	B T: <i>B</i> .	
851 bi	<i>ituminosa</i> var. <i>biti</i>	uminosa; BCC: B.	<i>bituminosa</i> var	. <i>crassiuscula</i> . n	a.s.: no significat	nt.	
852							
853							
854							
855							
856							
857							
858							
859							
860							
861							
862							
863							
864							
865							
866							
867							
			37				

- **Table 4.** Relative water content (RWC) of the leaf, net photosynthesis per area (A_{area}),
 - stomatal conductance per area (g_{Sarea}) and water use efficiency (WUE) for *B. bituminosa*
 - 870 varieties under two water regimes measured at day 46.

Variety	Treatment	RWC (%)	$\begin{array}{c} A_{area} \\ (\mu mol \ CO_2 \ m^{-2} \ s^{-1}) \end{array}$	$\underset{(mmol H_2O m^{-2} s^{-1})}{g_{Sarea}}$	WUE (µmol CO ₂ (molH ₂ O) ⁻¹))
DAM	WW	$85.5 \pm 1.5 \text{ a}$	19.9 ± 1.6 a	192.5 ± 8.5 a	105.6 ± 11.3 n.s.
DAM	DW	92.1 ± 1.0 a	15.5 ± 2.1 a	$164.9 \pm 20.4 \text{ b}$	104.9 ± 21.4 n.s.
BBT	WW	$83.5\pm2.5~b$	$6.0 \pm 2.0 \text{ bc}$	54.7 ± 11.8 c	117.2 ± 18.0 n.s.
	DW	$77.3\pm4.7~b$	$4.7 \pm 1.1 \text{ c}$	$35.2 \pm 4.3 \text{ d}$	124.7 ± 21.6 n.s.
DCC	WW	81.9 ± 3.4 b	$13.3 \pm 2.7 \text{ ab}$	75.5 ± 29.9 c	138.9 ± 28.4 n.s.
ысс	DW	$74.8\pm4.2~b$	$2.5\pm0.6~\mathrm{c}$	$23.2 \pm 5.3 \text{ d}$	86.3 ± 13.6 n.s.

871 Mean values (n = 6) not sharing a common letter differ significantly (P < 0.05) according to

872 Tukey's test. Standard error is showed. BAM: B. bituminosa var. albomarginata; BBT: B.

873 bituminosa var. bituminosa; BCC: B. bituminosa var. crassiuscula. n.s.: no significant.

- experiment (63 days) for *B. bituminosa* varieties under two water regimes and **B**:
- Proportion of thin roots. Thin roots proportion down the three soil layers for Bituminaria
- *bituminosa* varieties. BAM=B. *bituminosa* var. *albomarginata*; BBT=B. *bituminosa* var.
- bituminosa; BCC= B. bituminosa var. crassiuscula; WW= well-watered; DW=deficit-
 - watered. Mean values and standard errors (N=6).

Fig.2. Evapotranspiration (ml) (A) and relative soil water content (RSWC) (%) (B) of B.

- *bituminosa* varieties under two water regimes WW= well-watered and DW=deficit-
- 887 watered. BAM=B. bituminosa var. albomarginata; BBT=B. bituminosa var. bituminosa;
- 888 BCC= *B. bituminosa* var. *crassiuscula*. Mean values and standard errors (N=4).

889

Fig. 3. Principal component analysis (PCA) showing the two main axes of variability in 890 891 morphological and physiological variables. Normal ellipse grouping observations by B. 892 *bituminosa* variety: BAM=B. *bituminosa* var. *albomarginata*; BBT=B. *bituminosa* var. 893 bituminosa; BCC= B. bituminosa var. crassiuscula (A) and water regime: WW= well-894 watered and DW=deficit-watered (B). Abbreviations: net photosynthesis per area 895 (Aarea), stomatal conductance per area (gsarea), water use efficiency (WUE), Leaf mass 896 fraction (LMF), stem mass fraction (SMF), root mass fraction (RMF), specific leaf area (SLA) and leaf area ratio (LAR), Senescent to green leaves ratio (Sen.green, leaves). 897

Fig. 4. Ash content (%) in leaf and stem of *B. bituminosa* varieties (means of two water
regimes) (A), and in leaf and stem under two water regimes WW= well-watered and
DW=deficit-watered (means of three *B. bituminosa* varieties) (B) at the end of the
experiment (63 days). BAM=*B. bituminosa var. albomarginata*; BBT=*B. bituminosa var. bituminosa*; BCC= *B. bituminosa var. crassiuscula*. Mean values and standard errors
(N=4). Means not sharing a common letter differ significantly (P < 0.05) according to
Tukey's test.

911 Fig. 5. Enzyme digestibility of organic matter (EDOM) (A), crude protein (CP) (B),

912 neutral detergent fibre (NDF) (C) and acid detergent fibre (ADF) (D) of leaf and stem of

B. bituminosa varieties at the end of the experiment (63 days). BAM=*B. bituminosa* var.

albomarginata; BBT=*B. bituminosa* var. *bituminosa*; BCC=*B. bituminosa* var.

crassiuscula. Mean values and standard errors (N=4). Means not sharing a common letter

916 differ significantly (P < 0.05) according to Tukey's test.

1 2			
3 4	920		
5			
7	921	8. Supplementary material	
8 9			
10 11			
12 13			
14			
16			
17 18			
19 20			
21 22			
23 24			
25 26			
27			
29			
30 31			
32 33			
34 35			
36 37			
38 39			
40 41			
42 43			
44			
46			
47 48			
49 50			
51 52			
53 54			
55 56			
57			
59			
60			44