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Abstract  19 

One of the major compounds in almond kernels, which determines their nutritional 20 

quality, are lipids. The aim of this research was to determine the fatty acid profile in intact 21 

in-shell and shelled almonds (145 samples) using two new generation handheld near 22 

infrared spectroscopy (NIRS) sensors, of different optical design and technical 23 

specifications, adapted for in situ analysis in different stages in the food supply chain: in 24 

the industry after harvest, at the reception points and during postharvest storage. For both 25 

instruments, two procedures for taking near infrared (NIR) spectra were tested: (1) static, 26 

where point spectral readings were taken of almonds placed on trays; (2) dynamic, where 27 

spectra were taken by scanning the entire trays. Modified partial least squares (MPLS) 28 

regression models were developed using NIR spectra with different combinations of 29 

signal pre-treatments — derivative and scatter correction methods. The residual 30 

predictive deviation for cross validation (RPDcv) of the best models developed for the 31 

prediction of palmitic, stearic, oleic, and linoleic acids using shelled almonds were 2.40, 32 

2.16, 3.98, and 3.77, respectively, and 1.73, 1.73, 2.02, and 2.11 for the in-shell almonds. 33 

These results confirm the feasibility of NIRS technology to measure the fatty acid profile 34 

in in-shell and shelled almonds. A comparison between the presentation mode (in-shell 35 

or shelled) and analysis mode (static or dynamic) showed that the best results were 36 

obtained for shelled almonds analysed in dynamic mode. 37 

 38 

Keywords: almonds, in situ analysis, NIRS sensors, fatty acid profile, quality, shelf life 39 

determination. 40 

  41 
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1. Introduction 42 

 43 

Almonds (Prunus dulcis Miller) are characterized by their high content in lipids, 44 

which are of great nutritional value, constituting 60 % of the total kernel mass (Senesi et 45 

al., 1996). These mainly consist of unsaturated fatty acids – oleic and linoleic acids, which 46 

together generally account for more than 90 % of the fatty acids (Fernández-Cuesta et al., 47 

2013). The consumption of these unsaturated fatty acids available in the almond kernels 48 

can have potential benefits for human health, lowering the level of triglycerides and 49 

increasing high-density lipoprotein cholesterol (Hyson et al., 2002). In addition, the 50 

consumption of these oleic and linoleic acids has been linked to a reduction in the 51 

incidence of diabetes and cardiovascular diseases (Richardson et al., 2009; Virtanen et 52 

al., 2014; Roncero et al., 2016; Becerra-Tomás et al., 2019). Oleic acid is the prevailing 53 

constituent of monounsaturated lipids in almonds and contributes to its oxidative stability 54 

(Venkatachalam and Sathe, 2006). The polyunsaturated fatty acids in almonds not only 55 

give them their nutritional value, but also make them more prone to autoxidation, which 56 

accelerates their deterioration and reduces shelf life. Thus, high levels of linoleic acid 57 

could indicate almond spoilage (Ros and Mataix, 2006; Kodad and Socias i Company, 58 

2008; Martínez et al., 2013; Oliveira et al., 2019). For this reason, one of the most 59 

important quality indexes is the oleic/linoleic acid ratio; high values of this ratio provide 60 

stability in oils and better nutritional value (Kodad et al., 2013).  61 

The composition, quality and shelf life of almonds are influenced by many factors 62 

such as the cultivar, agronomic practices and the environmental conditions during the 63 

growing season (Gama et al., 2018). Different authors have shown that the quality of the 64 

kernels, mainly evident in the fatty acid composition, oil content, protein content, rate of 65 

rancidity, oxidative stability, peroxide formation and shelf life, are all influenced by the 66 
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almond cultivar (Abdallah et al., 1998; Severini et al., 2000; Sathe et al., 2008; Kodad et 67 

al., 2013; Maestri et al., 2015; Yildirim et al., 2016). Others have also reported that the 68 

alpha-tocopherol content, squalene concentration, sugar content and sugar composition 69 

of almonds are also heavily influenced by the cultivar (Nanos et al., 2002; Maestri et al., 70 

2015). The kernel quality and the fatty acid composition of almonds may also be affected 71 

by the stage of maturity and time of harvest. Thus, late-harvested almonds have a higher 72 

kernel dry mass, more sugar, lower oleic acid, higher linoleic acid and lower oil quality 73 

than early-harvested almonds (Nanos et al., 2002; Kazantzis et al., 2003; Piscopo et al., 74 

2010). However, almonds harvested too early in the season can have immature kernels 75 

that have not fully converted their carbohydrates into oil (Nanos et al., 2002). In addition 76 

to pre-harvest factors, the type of storage (in-shell or shelled) can also influence the 77 

quality and shelf life of the almonds (Kazantzis et al., 2003). Hardenburg et al. (1986) 78 

reported stored shelled almonds to be more sensitive to lipid oxidation than in-shell 79 

almonds, with a shelf life of in-shell almonds up to twice as long as those stored without 80 

shell. As a result, fatty acid composition can be used as a measure of the quality and shelf 81 

life of this tree nut and, in turn, to measure the commercial and industrial use of the 82 

almond kernels (Zacheo et al., 1998; Koyuncu et al., 2005; Socias i Company et al., 2008; 83 

Bai et al., 2017). 84 

Currently, the fatty acid profile is generally determined in almonds using solvent 85 

extraction techniques. However, solvent extraction has several drawbacks, including high 86 

capital equipment cost, operational expenditure and concerns for environmental pollution 87 

(Fernández-Cuesta et al., 2013). 88 

In recent years, non-destructive techniques such as NIRS has been successfully 89 

used to predict oil content and fatty acid profile in almonds (Fernández-Cuesta et al., 90 

2013). These measurements were taken in the fruit after grinding (almond flour), using a 91 
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monochromator, which is only suitable for analysing the product in the laboratory. No 92 

previous studies aiming at the prediction of the fatty acid profile of intact in-shell or 93 

shelled almonds using portable or online NIRS instruments have been found in the 94 

literature. However, currently, there is a clear need for a fast and efficient way of 95 

measuring the fatty composition of the almonds in situ in a non-destructive way, when 96 

the almonds are received by the industry and during the postharvest storage. Nowadays, 97 

there is a wide range of different portable instruments available, which clearly shows how 98 

the use of NIRS technology has evolved and which allow these analyses to be carried out 99 

effectively in situ. However, the wide diversity in the characteristics and features of these 100 

portable NIRS sensors means that they need to be evaluated in advance to determine 101 

which is the most suitable sensor for a particular product or parameter. 102 

The objective of this research was to measure the fatty acid profile in intact in-103 

shell and shelled almonds using two new generation handheld NIRS sensors of different 104 

optical design and technical specifications, suitable for the in situ analysis of almonds 105 

when they are received by the industry, in order to establish the nutritional quality of the 106 

product at that moment. 107 

 108 

2. Materials and methods 109 

 110 

2.1. Sampling 111 

 112 

The plant material consisted of 84 samples of in-shell sweet almonds (Prunus 113 

dulcis Mill., cv. 'Antoñeta', 'Belona', 'Guara', 'Lauranne', 'Soleta', and 'Vairon') and 84 114 

samples of shelled sweet almonds, of the same varieties and batches as above. In addition, 115 

there were 61 samples of bitter almonds of non-specific varieties, initially in-shell, which 116 
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were then shelled manually, making a total of 145 samples of in-shell and shelled almonds 117 

analysed. The samples weighed approximately 1 kg each and were collected during the 118 

2018-2019 harvesting season in the different provinces of the region of Andalusia 119 

(Spain). On arrival at the laboratory, the almonds were immediately placed in dark, 120 

refrigerated storage at 4 ºC and 65 % relative humidity until the following day, when 121 

laboratory testing was performed. Prior to measurement, each sample was left to stabilize 122 

at the laboratory temperature of 20 ºC. 123 

 124 

2.2. Instrumentation and NIR spectra acquisition  125 

 126 

The NIR spectra of the in-shell and shelled sweet and bitter almonds were taken 127 

using two portable handheld NIRS instruments of different optical designs, both suitable 128 

for the in situ analysis of the product (Table 1). 129 

Initially, a compact, handheld instrument based on diode-array technology 130 

(Aurora spectrophotometer, GraiNit S.r.l., Padova, Italia) was used. The 131 

spectrophotometer works in reflectance mode in the spectral range 950-1650 nm, taking 132 

data every 2 nm, with an optical window of 1256 mm2. The sensor integration time was 133 

6.57 ms and each spectrum was the mean of 50 scans. This instrument has an internal 134 

reference, which facilitates easy calibration. Acquisition of the spectra was carried out by 135 

means of the UCal 4TM software (Unity Scientific LLC, Milford, MA, USA). Each sample 136 

of in-shell and shelled almonds was uniformly distributed on a white plastic tray covering 137 

the whole surface, and two modes of analysis were tested: static and dynamic. For the 138 

analysis in static mode, the sensor was placed at 4 different points in the tray and the 139 

equipment was kept still in contact with the almonds while the spectrum was recorded. 140 

Thus, a total of 4 measurements were taken per sample. In the dynamic mode, the 4 141 
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spectra taken per sample were obtained by moving the sensor in contact with the almonds 142 

along the tray, at a speed that enabled us to cover the entire area of the tray. In both cases, 143 

the 4 spectra were averaged to provide a mean spectrum per sample in the two analysis 144 

modes.  145 

Spectra of the almonds were also taken using a spectrophotometer that 146 

incorporates the Linear Variable Filters (LVF) technology as the dispersion element 147 

(MicroNIR™ Pro 1700, VIAVI Solutions, Inc., San Jose, California, USA), which works 148 

in reflectance mode in the spectral range 908 to 1676 nm with a constant interval of 6.2 149 

nm. This portable miniature spectrophotometer is extremely light (64 g, not including the 150 

150 g handle and the acquisition and data processing device), with an optical window of 151 

around 227 mm2. The sensor integration time was set at 11 ms and each spectrum was the 152 

mean of 200 scans. Spectra acquisition was carried out using the VIAVI MicroNIR 153 

software Pro version 2.2 (VIAVI Solutions, Inc., San Jose, California, USA). The 154 

instrument’s performance was checked every 10 min. A white reference measurement 155 

was obtained using a NIR reflectance standard (SpectralonTM) with 99 % diffuse 156 

reflectance, while a dark reference was obtained from a fixed point on the floor of the 157 

room. For in-shell and shelled almonds, the analyses in static and dynamic modes were 158 

also carried out following the same procedure described above, with the only difference 159 

that in the static mode, six spectra were taken per sample, due to the smaller spectral 160 

window of this instrument. Next, the spectra were averaged to obtain a mean spectrum 161 

per sample for each presentation form (in-shell and shelled almonds) and analysis mode 162 

(static and dynamic). 163 

 164 

2.3. Reference data 165 

 166 



8 
 

The fatty acid (FA) profile was measured by capillary gas chromatography of the 167 

fatty acid methyl esters (FAMEs). These FAMEs were prepared by trans-esterification 168 

with KOH according to the official Commission Regulation (EEC) No 2568/91, Annex 169 

X (OJEC, 1991). The FAMEs were separated using a gas chromatograph Alignent 7890A 170 

(Agilent Technologies, Inc., Santa Clara, CA, USA) and afterwards detected using a 171 

flame ionization detector (FID), equipped with a capillary column (RESTEK Rtx2320 60 172 

m × 0.25 mm i.d.) and 0.20 μm film thickness (RESTEK, Bellefonte, PA, USA). The 173 

carrier gas was helium and the flow rate was 1 mL min-1. The temperatures of the injector 174 

and detector were maintained at 250 ºC and 260 ºC, respectively. The initial column 175 

temperature was 175 ºC for 19 min. The oven temperature was gradually increased from 176 

175 ºC to 200 ºC at 5 ºC min-1 ramp rate, and it was maintained at 200 ºC for 15 min. 177 

Injection volume was 1.0 µL. FAME identification was based on retention times as 178 

compared with those of the standard FAME mixture (Sigma-Aldrich, Madrid, Spain). For 179 

calibration development, only the four main fatty acids in almond composition were used, 180 

i.e. palmitic (C16:0), stearic (C18:0), oleic (C18:1) and linoleic (C18:2) acids. The 181 

relative concentration of each acid was expressed as the percentage of total fatty acids. 182 

 183 

2.4. Data processing 184 

 185 

Data pre-processing and chemometric treatments were performed using the 186 

WinISI II software package version 1.50 (Infrasoft International LLC, Port Matilda, PA, 187 

USA) (ISI, 2000). 188 

 189 

2.4.1. Spectral repeatability  190 
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Different procedures were evaluated to determine the spectrum quality for both 191 

instruments using the root mean square (RMS) statistic, which is defined as the averaged 192 

root mean square of differences between the different subsamples scanned at the n 193 

wavelengths (Shenk and Westerhaus, 1995b, 1996). This statistic indicates the similarity 194 

between different spectra of a single sample. Initially, four spectra were taken at the same 195 

point of the sample for the two sample presentations studied (in-shell and shelled 196 

almonds). A total of 10 samples of in-shell and shelled almonds were used. Next, 10 197 

samples of in-shell and shelled almonds were analysed by taking four spectra in static and 198 

dynamic modes using the diode-array spectrophotometer and six and four spectra in static 199 

and dynamic modes, respectively, using the LVF instrument, following the procedure for 200 

obtaining spectral information explained in Section 2.2. An admissible limit for spectrum 201 

quality and repeatability was set following the procedure described by Martínez et al. 202 

(1998) to calculate the standard deviation limit (STDlimit) from the RMS statistic and 203 

obtain an RMS cut-off value. The SDTlimit values for the different analysis modes, sample 204 

presentations and instruments were compared for the two alternatives using Fisher’s F 205 

test (Mark and Workman, 2003). F critical was calculated considering 9 degrees of 206 

freedom and P = 0.05. 207 

 208 

2.4.2. Quantitative models: definition of sets, calibration and validation procedures 209 

Initially, the structure and spectral variability of the population was studied to 210 

select the calibration and internal validation sets for this study. To achieve this, the 211 

CENTER algorithm was used. This algorithm finds the centre of the spectral population 212 

and calculates the Mahalanobis distance (GH) between each sample and the centre of the 213 

population, expressed in principal components (Shenk and Westerhaus, 1995a). The 214 

CENTER algorithm was applied separately for each of the eight available groups (in-shell 215 
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and shelled almonds analysed in static and dynamic modes with both instruments). A 216 

combination of mathematical pre-treatments was applied — standard normal variate 217 

(SNV) and de-trending (DT) for scatter correction (Barnes et al., 1989), together with the 218 

1,5,5,1 derivative treatment, where the first digit is the number of the derivative, the 219 

second the gap over which the derivative is calculated, the third the number of data points 220 

in a running average or smoothing, and the fourth the second smoothing (Shenk and 221 

Westerhaus, 1995b). Those samples with high GH values (GH > 3.5) were identified as 222 

anomalous or spectral outliers, for the different presentation forms and analysis modes. 223 

The study of outliers was carried out together, excluding the same samples in all the 224 

groups if their removal was justified. Having ordered the sample set by spectral distances 225 

and, once the spectral outliers were removed from all the sets, the structured selection of 226 

the calibration and internal validation sets was carried out following the procedure 227 

outlined by Shenk and Westerhaus (1991). To achieve this, in order to match the 228 

calibration and internal validation sets with the same samples and, consequently, to be 229 

able to compare the prediction accuracy of the quantitative models, 1 out of every 4 230 

samples was selected from the set of shelled almonds analysed in dynamic mode using 231 

the LVF spectrophotometer to build the internal validation set, while the remaining 232 

samples were used to build the calibration set. Likewise, the same samples were selected 233 

from the other seven groups to constitute their respective calibration and internal 234 

validation sample sets.  235 

The prediction of the main four fatty acids (palmitic, stearic, oleic, and linoleic) 236 

in in-shell and shelled almonds analysed in static and dynamic modes was devised using 237 

MPLS regression with five cross validation groups (Shenk and Westerhaus, 1995a). The 238 

full spectral range of the instruments was used. For each of the four fatty acids analysed, 239 

two derivative treatments (1,5,5,1 and 2,5,5,1), in combination with SNV and DT for 240 
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scatter correction, were tested. The best models were selected by assessing their 241 

performance using the coefficient of determination for cross validation (R2
cv), the 242 

standard error of cross validation (SECV), and the residual predictive deviation for cross 243 

validation (RPDcv), calculated as the ratio of the standard deviation (SD) of the reference 244 

data for calibration to the SECV. In addition, the regression coefficients for the best 245 

calibration models for the four fatty acids in shelled almonds analysed in dynamic mode 246 

using the diode-array spectrophotometer were also assessed in order to identify those 247 

wavelengths contributing most to the prediction of the parameters evaluated (Martens and 248 

Naes, 1989).  249 

To identify the most suitable spectrophotometer, analysis mode (static or 250 

dynamic), and sample presentation (in-shell or shelled) for the in situ prediction of the 251 

fatty acid composition in almonds, tests were run to identify potential differences between 252 

the models developed. To that end, the SECV values for the best models previously 253 

selected for the four fatty acids studied were compared using Fisher’s F test (Mark and 254 

Workman, 2003), with P = 0.05. Those models obtained using the most suitable analysis 255 

mode and sample presentation for the prediction of the four fatty acids in the in-shell and 256 

shelled almonds analysed with both instruments were selected using the statistical criteria 257 

mentioned above, and later subjected to internal validation following the protocol 258 

outlined by Windham et al. (1989) and the internal validation sets previously selected.  259 

 260 

3. Results and discussion  261 

 262 

3.1. Spectral analysis of the almonds and spectral repeatability 263 

 264 
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The raw spectra and mean second derivative absorbance spectra of the in-shell 265 

and shelled almonds analysed in dynamic mode using both instruments, together with the 266 

most relevant absorption bands (Fig. 1) showed, in the NIR region, a peak at around 1150 267 

nm, which corresponds to the C-H bonds of aromatic compounds, a peak at around 1200 268 

nm that corresponds to the presence of lipids, and a peak at 1410 nm related to the first 269 

overtone absorbance of the O-H functional groups (Shenk et al., 2008). 270 

Studying the quality and repeatability of the collected spectra is a key step in the 271 

attempt to build accurate, robust models for the characterization of almonds. For the first 272 

procedure tested (analysing 10 in-shell and shelled almond samples and taking four 273 

spectra of each of them at the same point), the STDlimit values obtained for in-shell and 274 

shelled almonds when the diode-array instrument was used were 23,300 μlog (1/R) and 275 

23,072 μlog (1/R), respectively. No significant differences were found between these 276 

values (P > 0.05). Likewise, when the analysis was carried out using the LVF instrument, 277 

the STDlimit values obtained for in-shell and shelled almonds were 23,839 μlog (1/R) and 278 

24,721 μlog (1/R), respectively, which were proved not to be significantly different (P > 279 

0.05). This indicates that the repeatability of the instruments was not affected by the type 280 

of sample analysed when the spectra were acquired at the same point of the sample. In 281 

addition, no significant differences (P > 0.05) were found when the results obtained for 282 

both instruments for in-shell and shelled almonds were compared. 283 

Likewise, we studied the influence in the spectral quality of the analysis mode 284 

(static or dynamic) in the in-shell and shelled product analysed with both instruments on 285 

the STDlimit statistic. In all cases, the STDlimit value was significantly higher (P < 0.05) 286 

for those samples analysed in static mode (Table 2). This was to be expected, since a 287 

greater quantity of the sample can be analysed in dynamic mode, and the potential 288 

differences between kernels of the same sample would be minimised after averaging the 289 
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50 or 200 scans taken by the diode-array and LFV spectrophotometers per sample 290 

analysed, respectively. Next, the sample presentation form was assessed, considering only 291 

the dynamic mode of analysis. The STDlimit values obtained using the diode-array 292 

instrument were shown to be significantly lower (P < 0.05) for those samples analysed in 293 

the shelled almonds compared to those analysed in-shell. The light interaction with the 294 

almond shell could favour the scatter effect, by which the part of the light which falls on 295 

the sample cannot be collected by the detectors and is lost. Additive and multiplicative 296 

effects can be observed in the spectra of the samples analysed in-shell (Fig. 1A), with 297 

these samples showing higher absorbance values. These effects could partially account 298 

for the difference between the STDlimit statistical values of the in-shell and shelled 299 

samples, since the occurrence of more or less light scattering when analysing the sub-300 

samples of in-shell almonds could lead to greater differences and, therefore, less 301 

repeatability. Furthermore, the shape of the in-shell almonds made the surface of the 302 

samples on which the NIRS analysis was carried out less homogeneous than in the case 303 

of the shelled almonds, making it more difficult to analyse the in-shell almonds. Similar 304 

comments can be made regarding the spectra taken with the LVF device (Fig. 1B), 305 

although in this case the differences found were not significant (P > 0.05). Furthermore, 306 

a comparison between the two instruments used in this study was carried out. To perform 307 

this comparison, the best analysis mode and sample presentation form in terms of STDlímit 308 

(shelled product and dynamic mode) were considered. The diode-array instrument 309 

presented significantly lower values (P < 0.05) for STDlimit compared to the LVF 310 

instrument, which may reflect differences in the measuring area (1256 mm2 versus 227 311 

mm2). This is because the diode-array instrument has a larger window size and detects a 312 

greater variability in each spectrum taken, which may cause the differences between the 313 

different spectra of the same sample to be smaller. 314 
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The results obtained showed the importance of considering the sample variability 315 

when a STD limit for collected spectra has to be established. Consequently, in this study, 316 

the STD limits were chosen when the spectra were taken at different points (static mode) 317 

of the sample or moving the sensor in contact with the almonds along the tray (dynamic 318 

mode), since when the spectra were taken at the same point of the sample, only the 319 

repeatability of the instrument itself was being evaluated, rather than the influence of the 320 

heterogeneity of the sample. In addition, it must be noted that the influence of the 321 

heterogeneity of the sample could be minimised when the analysis is carried out in 322 

dynamic mode. 323 

 324 

3.2. Population characterization 325 

 326 

Prior to the selection of samples to build the calibration and validation groups, we 327 

identified a total of four outliers belonging to the four groups of in-shell samples analysed 328 

(GH > 3.5). A detailed study of the spectral outliers showed that these samples presented 329 

extreme reference values for palmitic, oleic and linoleic acids. These four outliers were 330 

removed from the eight sets of almonds. 331 

The selection protocol outlined by Shenk and Westerhaus (1991) proved suitable, 332 

in that the calibration and validation sets displayed similar values for range, mean and SD 333 

for all the studied parameters. Additionally, the validation set ranges lay within those of 334 

the calibration set (Table 3). Those parameters with the greatest variability were stearic 335 

(CVcalibration = 20.28 %; CVvalidation = 20.93 %), and linoleic acids (CVcalibration = 18.07 %; 336 

CVvalidation = 14.04 %), whereas palmitic (CVcalibration = 9.36 %; CVvalidation = 7.95 %) and 337 

oleic (CVcalibration = 6.33 %; CVvalidation = 4.86 %) acids showed a lower variability. These 338 

differences in variability could be associated to the almond cultivars analysed in this 339 
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study. These results are in line with those reported by Zamany et al. (2017) in a study on 340 

the fat composition of 20 almond cultivars, who indicated the existence of significant 341 

differences (P < 0.05) between the percentages of palmitic, stearic, oleic and linoleic acids 342 

in these cultivars, and that the stearic and linoleic acids showed the greatest variability. 343 

 344 

3.3. Development of models and cross validation results for the prediction of the fatty 345 

acid composition in almonds using MPLS regression  346 

 347 

The results for the prediction of the saturated fatty acid (SFA) content (Table 4), 348 

showed, as regards palmitic acid content, that the models developed using in-shell 349 

almonds analysed with the diode-array instrument in static and dynamic modes would 350 

enable us to discriminate between high, medium and low values of the parameter tested, 351 

whereas for the LVF instrument, the models for in-shell almonds in both modes of 352 

analysis would allow us to distinguish between low and high values of this acid (Shenk 353 

and Westerhaus, 1996; Williams, 2001). Additionally, the predictive capacity of the four 354 

models (product analysed in static and dynamic modes with both instruments) developed 355 

for the prediction of this fatty acid in shelled almonds could be considered as good (Shenk 356 

and Westerhaus, 1996; Williams, 2001), which means that these results would allow us 357 

to determine the almonds’ palmitic acid content with a similar precision to that obtained 358 

using the traditional reference methods, and consequently, our models would meet the 359 

quality standards established by the industry. All the models devised for the prediction of 360 

stearic acid in in-shell almonds using the two instruments tested showed a predictive 361 

capacity which allowed the samples to be classified as high, medium and low values. 362 

Besides that, models with good predictive capacity were obtained for shelled almonds 363 

analysed in dynamic mode, whereas for the static mode, the models allowed us to classify 364 
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the product into high, medium and low content of stearic acid, also using both instruments 365 

(Shenk and Westerhaus, 1996; Williams, 2001). Nicolaï et al. (2007) indicated that RPDcv 366 

values between 1.5 and 2 could discriminate between low and high values of the predicted 367 

variable, while a value between 2 and 2.5 indicates that coarse quantitative predictions 368 

are possible. Measuring these SFAs is of key importance, since they regulate the oxidation 369 

and deterioration of the almond postharvest, with those almonds with high levels of SFAs 370 

being less susceptible to lipid oxidation and accelerated deterioration (Pleasance et al., 371 

2018). However, SFAs can have negative effects on the human cardiovascular system, as 372 

they increase low-density lipoprotein cholesterol (LDL-c) (Zock, 2006; Kodad and Socias 373 

i Company, 2008), which makes it necessary to quantify these SFAs in food products. 374 

Nevertheless, in the almonds analysed in this study, palmitic acid represented 6.52 ± 0.59 375 

% and stearic acid 2.11 ± 0.45 %. 376 

The results for the prediction of the monounsaturated (oleic acid) fatty acid 377 

(MUFA) and polyunsaturated (linoleic acid) fatty acid (PUFA) content (Table 5) showed, 378 

with regard to oleic acid, that the predictive capacity of the models developed for in-shell 379 

almonds with both instruments in dynamic mode was considered as good. Additionally, 380 

the results obtained for the prediction of this acid in shelled almonds using the diode-381 

array instrument in dynamic mode showed an excellent predictive capacity, according to 382 

Shenk and Westerhaus (1996) and Williams (2001). For linoleic acid, the models 383 

developed using in-shell almonds analysed with the diode-array instrument in dynamic 384 

mode and those performed with the LVF instrument, in both static and dynamic modes, 385 

had a predictive capacity which can be considered as good when interpreting the 386 

coefficient of determination of cross validation, as proposed by Shenk and Westerhaus 387 

(1996) and Williams (2001). Likewise, the predictive models for shelled almonds 388 
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analysed with the diode-array instrument in dynamic mode showed an excellent 389 

predictive capacity (Shenk and Westerhaus, 1996; Williams, 2001).  390 

Therefore, the models developed in this study are of great interest to the industry 391 

since they would enable us to estimate the shelf life of almonds and their quality 392 

throughout the postharvest period, serving as a means of supporting decision-making 393 

when managing batches of the product. 394 

The comparisons carried out to identify the best sample presentation form, 395 

analysis mode and instrument used (Table 4 and Table 5) showed that the sample 396 

presentation form actually influenced the predictive capacity of the models. The SECV 397 

values obtained were shown to be equal or significantly lower (P < 0.05), for all the 398 

models developed using spectra from shelled almonds, than the values for in-shell 399 

almonds, as could be expected. Nevertheless, promising results were obtained for the in 400 

situ analysis of almond samples when they are received in the industry before they are 401 

shelled and processed. This is of major importance, since prior to any industrial 402 

processing, NIRS could provide information about the quality of the almonds received. 403 

The results obtained using the dynamic mode of analysis produced, in all cases, equal or 404 

significantly better results (P < 0.05) compared to the static mode of analysis. The reason 405 

for this could be the greater amount of the sample analysed in dynamic mode, so that a 406 

more representative spectrum was obtained from the sample under analysis. The results 407 

also showed (Table 4 and Table 5) that although the predictive capacity of both 408 

instruments used was fairly similar for most of the models obtained, significant 409 

differences (P < 0.05) were found for the prediction of palmitic acid in in-shell almonds 410 

in dynamic mode and for the prediction of oleic and linoleic acids in shelled almonds in 411 

dynamic mode, with the diode-array instrument showing a better prediction capacity. As 412 

explained in previous sections, this could be due to the differences in the area of the 413 
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optical windows of the instruments tested, as well as to the fact that the measurement 414 

interval along the spectral range is lower in the diode-array (2 nm) than in the LVF (6.2 415 

nm). 416 

The contributions of individual wavelengths to the prediction of the main four 417 

fatty acids in shelled almonds analysed using the diode-array instrument in dynamic mode 418 

(Fig. 2) showed that the regions around 1160–1200 nm and 1500–1600 nm, which can be 419 

related to the second overtone of C–H bonds and first overtone and combination bands of 420 

the –OH group, respectively (Shenk et al., 2008; Prades et al., 2012), were of considerable 421 

importance.  422 

 423 

3.4. Internal validation  424 

The calibration models obtained using both spectrophotometers and the best 425 

analysis mode (dynamic) were subjected to an internal validation procedure.  426 

Although the best calibration models were obtained for the shelled almonds, 427 

owing to the importance of the screening of the almonds quality at the reception points in 428 

the processing industries, the best models obtained for the prediction of the fatty acid 429 

profile in in-shell almonds using both instruments were also internally validated (Fig. 3 430 

and Fig. 4). According to Nicolaï et al. (2007), based on the residual predictive deviation 431 

for prediction (RPDp) values calculated as the ratio of the SD to the standard error of 432 

prediction (SEP), the models developed for the prediction of stearic acid in in-shell 433 

almonds using the diode-array instrument could discriminate between low and high 434 

values of this FA, while for palmitic acid using both instruments and for oleic and linoleic 435 

acids when the LVF instrument was used, the capacity of the developed models was low. 436 

The results obtained for the prediction of stearic acid using the LVF instrument and for 437 

the models developed for the prediction of oleic and linoleic acids using the diode-array 438 
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instrument showed that coarse quantitative predictions were possible for these acids. 439 

Following the protocol of Windham et al. (1989), the slope values for the four FAs when 440 

the models were devised with the diode-array instrument and for the palmitic, oleic and 441 

linoleic acids when the LVF instrument was used, did not fall within the recommended 442 

interval values, despite being close. As a result, these equations can be taken as a first 443 

step in the in situ measurement of the quality of almonds when they are received in the 444 

industry using a handheld instrument, since all the models met with the other validation 445 

requirements, R2
p > 0.6 (except the ones devised for palmitic acid with both instruments 446 

and the one developed for oleic acid using the LVF instrument), and SEP(c) and bias lay 447 

within the confidence limits. Furthermore, the equation developed to predict stearic acid 448 

content using the LVF instrument could be applied routinely, since it met all the validation 449 

requirements established by Windham et al. (1989). Although no previous studies for the 450 

prediction of the fatty acid profile in intact in-shell and shelled almonds have been found 451 

in the literature, similar studies involving other products such as other in-shell nuts can 452 

be highlighted. Sundaram et al. (2010) measured the fatty acid composition of Valencia-453 

type in-shell peanuts using a monochromator working on reflectance in a spectral range 454 

of 400-2500 nm, and reported better results for palmitic (RPDp = 2.85; SEP = 1.56 %), 455 

stearic (RPDp = 3.02; SEP = 0.53 %), oleic (RPDp = 3.72; SEP = 4.48 %), and linoleic 456 

(RPDp = 2.30; SEP = 7.76 %) acids than those obtained in this study. However, in addition 457 

to using a NIRS laboratory instrument with different benefits from those tested here, it is 458 

important to take into account other factors such as the type of fruit analysed and the type 459 

of shell of each product, since peanuts have a thinner shell than almonds. 460 

Internal validation statistics for the best models for the four fatty acids tested, for 461 

shelled almonds analysed in dynamic mode using both instruments (Fig. 5 and Fig. 6), 462 

showed that the models developed for the prediction of palmitic and stearic acids with 463 
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both instruments met the validation requirements established by Windham et al. (1989) 464 

in terms of R2
p (R

2
p > 0.6) and slope (1.10 > slope > 0.90), while SEP(c) and bias lay 465 

within the confidence limits. Consequently, these equations could guarantee accurate 466 

prediction and could be applied in routine analysis. However, the slope values of the 467 

models devised with both instruments for the prediction of oleic and linoleic acids did not 468 

meet the validation requirements established by these authors, despite being extremely 469 

close. Therefore, these models could be considered as a first step in the in situ 470 

measurement of the oleic and linoleic content in intact shelled almonds. The similarity in 471 

the SEP and SECV values confirms that the latter statistic is a good estimator of the SEP 472 

(Shenk et al., 1989). The RPDp values obtained for the four fatty acids when the LVF 473 

instrument was used indicate that coarse quantitative predictions are possible. When the 474 

models were devised using the diode-array spectrophotometer, the RPDp values obtained 475 

for stearic and linoleic acids correspond to a good prediction accuracy of the models, 476 

while the RPDp values for palmitic and oleic acids indicate that an excellent prediction 477 

accuracy could be obtained using those models (Nicolaï et al., 2007). In a study conducted 478 

by Fernández-Cuesta et al. (2013), a monochromator working in reflectance in the 479 

spectral range of 400-2500 nm was used to measure the palmitic (RPDp = 1.41; SEP = 480 

0.34 %) and stearic (RPDp = 1.44; SEP = 0.34 %) acids content in ground almonds. The 481 

results reported by the authors were inferior to the ones obtained here for the prediction 482 

of these SFAs in intact shelled almonds, despite the fact that they analysed ground 483 

samples, while in the present study intact samples were analysed, making the application 484 

developed here more challenging. In addition, the results of this research were an 485 

improvement on those reported by Fox and Cruickshank (2005), who measured the oleic 486 

(RPDp = 2.81; SEP = 6.4 %) acid content in shelled peanuts using a monochromator 487 

working on reflectance in the spectral range of 400-2500 nm. Davrieux et al. (2010) 488 
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developed NIRS models for the prediction of fatty acids in ground shea tree nuts. The 489 

results here obtained surpass those reported by these authors for palmitic (RPDp = 1.30; 490 

SEP = 0.53 %) and linoleic (RPDp = 1.71; SEP = 0.78 %) acids. However, the results they 491 

obtained for the prediction of stearic (RPDp = 6.26; SEP = 1.19 %) and oleic (RPDp = 492 

7.91; SEP = 0.90 %) acids were better than those obtained in this study. The oleic acid 493 

they found (CVval = 14.31%) exhibited a greater variability than that obtained in our 494 

study, which according to Shenk et al. (1997) would enable them to obtain more robust 495 

models. In addition, the different sample presentation form (powder), the type of nut and 496 

the instrument (monochromator working in the 400-2500 nm range) used by these authors 497 

should also be noted.  498 

 499 

4. Conclusions 500 

 501 

The results obtained demonstrated the viability of NIRS technology for the in situ 502 

measurement of the fatty acid profile of intact in-shell and shelled almonds, permitting 503 

the measurement of the quality and freshness of the nuts at the moment when the product 504 

is received by the industry. Nevertheless, further studies are needed in order to improve 505 

the robustness of the calibration models.  506 

NIRS technology would enable us to study the evolution of the oleic and linoleic 507 

acid contents during the postharvest storage, which is an indicator of the products’ 508 

freshness, and could act as a support system for decision-making in the management of 509 

product batches. The portability of these miniaturized systems means that they can be 510 

used for the integrated control of this product, permitting the fatty acid profile to be 511 

included on the labelling of the product as an element of nutritional quality, thus satisfying 512 

consumer demand for safe, healthy food.  513 
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The tests carried out in this study have shown that, in order to obtain the best 514 

results, the NIRS analysis of the samples must be carried out dynamically, after the 515 

almonds have been shelled. Nevertheless, the models developed in this study using in-516 

shell almonds reported promising results for the in situ analysis of almond samples before 517 

they are shelled and processed. 518 
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Table 1 717 

Technical features of the diode-array and LVF spectrophotometers. 718 

Property Instrument 

Aurora  MicroNIRTM Pro 1700  

Detector type 256-pixel InGaAs 

detector 

128-pixel InGaAs 

photodiode array 

Dispersion element Diode-array Linear variable filter 

Wavelength range (nm) 950-1650 908-1676 

Resolution (nm) 2 6.2 

Sampling integration time (ms) 6.57 11 

Weight (kg) 2 64·10-3 

Analysis mode Reflectance Reflectance 

  719 
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Table 2 720 

Fisher’s test results for the analysis of the STDlimit values for the two analysis modes 721 

carried out. 722 

Instrument Almond presentation Analysis mode a SDTlimit F Fcritical 

Diode-array In-shell  Static 126,528 5.91* 3.18 

Dynamic 52,026   

Shelled  Static 49,461 7.49* 3.18 

Dynamic 18,068   

Linear 

variable filter 

In-shell  Static 169,326 10.60* 3.18 

Dynamic 52,014   

Shelled  Static 96,347 4.67* 3.18 

Dynamic 44,605   

a standard deviation limit.  723 

* Significant differences (P < 0.05) 724 

  725 
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Table 3 726 

Number of samples, range, mean, standard deviation (SD) and coefficient of variation 727 

(CV) for the fatty acids studied in the calibration and validation sets. 728 

Acid (%) Set N Range Mean SD CV (%) 

Palmitic Calibration 106 5.32-7.70 6.52 0.61 9.36 

Validation 35 5.34-7.40 6.54 0.52 7.95 

Stearic Calibration 106 1.47-3.39 2.12 0.43 20.28 

Validation 35 1.59-3.30 2.15 0.45 20.93 

Oleic Calibration 106 59.32-76.24 69.78 4.42 6.33 

Validation 35 62.69-75.97 70.15 3.41 4.86 

Linoleic Calibration 106 15.34-29.98 20.64 3.73 18.07 

Validation 35 15.60-25.63 20.23 2.84 14.04 

 729 

  730 
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Table 4 731 

Calibration statistics for the best equations obtained for the prediction of saturated 732 

(palmitic and stearic) fatty acids in in-shell and shelled almonds.  733 

Acid (%) Instrument Almond 

presentation  

Analysis 

mode 

Mean a LV b R2
cv c SECV* d RPDcv 

Palmitic   Diode-array In-shell Static 6.52 5 0.51 0.43a 1.43 

Dynamic 6.48 6 0.66 0.35b 1.73 

Shelled  Static 6.50 10 0.77 0.29c 2.09 

Dynamic 6.51 11 0.83 0.26c 2.40 

Linear variable 

filter 

In-shell Static 6.52 7 0.41 0.47a 1.30 

Dynamic 6.52 9 0.49 0.44a 1.40 

Shelled  Static 6.51 8 0.82 0.26c 2.36 

Dynamic 6.52 7 0.82 0.26c 2.33 

Stearic  Diode-array In-shell Static 2.11 6 0.57 0.28a 1.52 

Dynamic 2.08 7 0.66 0.23bc 1.73 

Shelled  Static 2.11 12 0.58 0.27ab 1.55 

Dynamic 2.11 13 0.79 0.19d 2.16 

Linear variable 

filter 

In-shell Static 2.08 5 0.57 0.25abc 1.52 

Dynamic 2.10 7 0.60 0.26ab 1.59 

Shelled  Static 2.12 9 0.59 0.27ab 1.56 

Dynamic 2.10 7 0.70 0.22cd 1.83 

* The coincidence of any of the superscript letters in the different SECV values of the same fatty acid indicates that no 734 
significant differences were found (P > 0.05) between those values. a LV: Number of latent variables; b R2

cv: coefficient 735 
of determination of cross validation; c SECV: standard error of cross validation; d RPDcv: residual predictive deviation 736 
for cross validation. 737 
  738 
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Table 5 739 

Calibration statistics for the best equations obtained for the prediction of 740 

monounsaturated and polyunsaturated fatty acids in in-shell and shelled almonds. 741 

Acid (%) Instrument Almond 

presentation  

Analysis 

mode 

Mean a LV b R2
cv c SECV* d RPDcv 

Oleic Diode-array In-shell Static 70.11 7 0.68 2.40a 1.77 

Dynamic 70.11 6 0.75 2.14a 2.02 

Shelled  Static 69.92 8 0.75 2.19a 1.99 

Dynamic 69.81 13 0.94 1.11c 3.98 

Linear variable 

filter 

In-shell Static 69.98 8 0.68 2.51a 1.78 

Dynamic 69.90 7 0.73 2.32a 1.91 

Shelled  Static 70.02 8 0.73 2.20a 1.92 

Dynamic 69.86 9 0.87 1.59b 2.78 

Linoleic  Diode-array In-shell Static 20.33 8 0.65 2.09a 1.70 

Dynamic 20.35 6 0.76 1.79ab 2.03 

Shelled  Static 20.66 16 0.76 1.86ab 2.02 

Dynamic 20.63 11 0.93 1.00d 3.77 

Linear variable 

filter 

In-shell Static 20.44 9 0.72 1.97ab 1.88 

Dynamic 20.53 9 0.78 1.75b 2.11 

Shelled  Static 20.42 8 0.68 1.99ab 1.77 

Dynamic 20.58 9 0.86 1.41c 2.65 

* The coincidence of any of the superscript letters in the different SECV values of the same fatty acid indicates that no 742 
significant differences were found (P > 0.05) between those values. a LV: Number of latent variables; b R2

cv: coefficient 743 
of determination of cross validation; c SECV: standard error of cross validation; d RPDcv: residual predictive deviation 744 
for cross validation. 745 
 746 
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Fig. 1. Log (1/R) spectra for in-shell and shelled almonds analysed in dynamic mode using the 747 

diode-array (A) and the linear variable filter (B) spectrophotometers and D2 Log(1/R) mean 748 

spectra for in-shell and shelled almonds analysed in dynamic mode using the diode-array (C) and 749 

the linear variable filter (D) spectrophotometers. 750 

 751 

  

  

 752 
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Fig. 2. Regression coefficients for the best calibration models for the prediction of palmitic (A), stearic (B), oleic (C) and linoleic (D) acids in shelled almonds 753 

analysed with the diode-array instrument in dynamic mode. 754 

  

  

 755 
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Fig. 3. Actual versus predicted data for the validation of the best models for the prediction of 756 

palmitic, stearic, oleic and linoleic acids in in-shell almonds analysed with the diode-array 757 

instrument in dynamic mode.  758 

  

  

ª R2
p, coefficient of determination for prediction. 759 

b SEP, standard error of prediction. 760 

c SEP(c), standard error of prediction corrected for bias. 761 

d RPDp, residual predictive deviation for prediction. 762 

* Do not meet the validation requirements (Windham et al., 1989). 763 
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Fig. 4. Actual versus predicted data for the validation of the best models for the prediction of 765 

palmitic, stearic, oleic and linoleic acids in in-shell almonds analysed with the LVF instrument in 766 

dynamic mode. 767 

  

  

ª R2
p, coefficient of determination for prediction. 768 

b SEP, standard error of prediction. 769 

c SEP(c), standard error of prediction corrected for bias. 770 

d RPDp, residual predictive deviation for prediction. 771 

* Do not meet the validation requirements (Windham et al., 1989). 772 

 773 

  774 
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Fig. 5. Actual versus predicted data for the validation of the best models for the prediction of 775 

palmitic, stearic, oleic and linoleic acids in shelled almonds analysed with the diode-array 776 

instrument in dynamic mode.  777 

  

  

ª R2
p, coefficient of determination for prediction. 778 

b SEP, standard error of prediction. 779 

c SEP(c), standard error of prediction corrected for bias. 780 

d RPDp, residual predictive deviation for prediction. 781 

* Do not meet the validation requirements (Windham et al., 1989). 782 
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Fig. 6. Actual versus predicted data for the validation of the best models for the prediction of 784 

palmitic, stearic, oleic and linoleic acids in shelled almonds analysed with the LVF instrument in 785 

dynamic mode. 786 

 787 

  

  

ª R2
p, coefficient of determination for prediction. 788 

b SEP, standard error of prediction. 789 

c SEP(c), standard error of prediction corrected for bias. 790 

d RPDp, residual predictive deviation for prediction. 791 

* Do not meet the validation requirements (Windham et al., 1989). 792 

 793 


