Mostrar el registro sencillo del ítem

dc.contributor.authorEscalante, Cipriano
dc.contributor.authorFernández-Nieto, E.D.
dc.contributor.authorGarres-Díaz, José
dc.contributor.authorMangeney, Anne
dc.date.accessioned2023-11-27T09:32:41Z
dc.date.available2023-11-27T09:32:41Z
dc.date.issued2023
dc.identifier.urihttp://hdl.handle.net/10396/26255
dc.descriptionEmbargado hasta 07/08/2024es_ES
dc.description.abstractThe multilayer model proposed in this paper is a generalization of the multilayer non- hydrostatic model for shallow granular flows (Fernández-Nieto et al in Commun Math Sci 16(5):1169–1202, 2018. https://doi.org/10.4310/cms.2018.v16.n5.a1), the multilayer model with μ(I) rheology (Fernández-Nieto et al in J Fluid Mech 798:643–681, 2016. https://doi.org/10.1017/jfm.2016.333), and the monolayer model with weakly non-hydrostatic pressure for dry granular flows (Garres-Díaz et al in J Sci Comput, 2021. https://doi.org/10.1007/s10915-020-01377-9). We show that the proposed model verifies a dissipative energy balance. A well-balanced numerical scheme is proposed to solve the equations based on a projection method and a hydrostatic reconstruction for the Coulomb friction terms. In order to reduce the computational cost associated with solving the linear system of the projection method, a precomputing of the initial guess for an iterative solver is proposed. This strategy allows us to reduce the computational time by around 70% when 20 layers are considered. In the numerical tests, we show that the proposed model can recover the in-depth velocity profiles typically observed in lab experiments and capture the flow/no-flow interface that appears in granular avalanches. During the initial stage of granular collapse simulations, the model is shown to improve the approximation of the mass profiles compared to other models and to predict the parabolic shape of the front velocity evolution with time, as observed in lab experiments. Interestingly, our numerical tests show that the ability of the granular flow to overcome obstacles strongly depends on the model used, which is of strong interest for landslide hazard assessment.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/es_ES
dc.sourceEscalante, C., Fernández-Nieto, E. D., Garres-Díaz, J., & Mangeney, A. (2023). Multilayer shallow model for dry granular flows with a weakly non-hydrostatic pressure. Journal of Scientific Computing, 96(3). https://doi.org/10.1007/s10915-023-02299-yes_ES
dc.subjectMultilayer modelses_ES
dc.subjectNon-hydrostatic pressurees_ES
dc.subjectFinite volumees_ES
dc.subjectGranular flowses_ES
dc.titleMultilayer Shallow Model for Dry Granular Flows with a Weakly Non-hydrostatic Pressurees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1007/s10915-023-02299-yes_ES
dc.relation.projectIDGobierno de España. RTI2018-096064-B-C21es_ES
dc.relation.projectIDGobierno de España. RTI2018-096064-B-C22es_ES
dc.relation.projectIDGobierno de España. PID2020-114688RB-I00es_ES
dc.relation.projectIDGobierno de España. PID2022-137637NB-C21es_ES
dc.relation.projectIDGobierno de España. PID2022-137637NB-C22es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccesses_ES
dc.date.embargoEndDateinfo:eu-repo/date/embargoEnd/2024-08-07


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem