• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Clasificación orientada a objetos en fotografías aéreas digitales para la discriminación de usos del suelo

Thumbnail
View/Open
scielo53.pdf (333.2Kb)
Author
Perea Moreno, Alberto Jesús
Meroño de Larriva, José Emilio
Aguilera Ureña, M. Jesús
Publisher
Asociación Interciencia (Caracas)
Date
2009
Subject
Clasificación orientada a objetos
Imagen aérea digital
Uso del suelo
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
Las técnicas de clasificación tradicionales, basadas en rasgos de la imagen a nivel de píxel, presentan ciertas limitaciones, como lo son la aparición de un característico efecto “sal y pimienta” o su reducida capacidad para extraer objetos de interés. Éstas resultan especialmente problemáticas al aplicarse en imágenes de moderada o alta resolución. Una alternativa a dichos sistemas de clasificación pasa por un proceso previo de segmentación de la imagen. De esta forma se permite el trabajo con la imagen a nivel de objeto, lo cual amplía notablemente la cantidad de información que se puede extraer de la misma. En el presente estudio, el objetivo principal es obtener una clasificación digital de la interfase urbano forestal que pueda ser usada por los servicios contra incendios forestales. Para ello, se ha segmentado y clasificado una imagen aérea digital del sensor DMC, empleando el software eCognition, donde la formación de objetos tiene lugar de forma que la homogeneidad interna se mantiene constante. Los objetos resultantes sirven de base para la posterior clasificación. Se utilizaron fotografías aéreas digitales y datos de 350 parcelas en la provincia de Granada, España, para validar las clasificaciones, consiguiendo una precisión total del 90% y un excelente estadístico Kappa (85%) para la clasificación orientada a objetos
 
Traditional classification techniques, basically pixel-based approaches, are limited. Typically, they produce a characteristic “salt and pepper” effect, and are unable to extract objects of interest. These techniques have considerable difficulties in dealing with the rich information content of medium and high-resolution images. One alternative to these classification systems can be a previous segmentation of the image to be classified. In this way, object-based classification can be performed so that a significant increase on the information that can be extracted is obtained. In the present work, the aim is to obtain a digital classification of wilderness-urban interface areas that can be used by fire management services. To this end, a digital aerial image provided by the DMC sensor was segmented and classified using eCognition software, which allows homogeneous image object extraction. The meaningful image objects obtained were then used for the classification. Segmentation before classification worked out as an efficient image analysis technique, overcoming traditional approaches limitations. Digital aerial photographs and data of 350 plots in Granada, Spain, were used to validate the classifications obtained; the overall classification accuracy of 90% and an excellent Kappa statistic (85%) for the object-based classification, proved the validity of this method
 
URI
http://hdl.handle.net/10396/8648
Fuente
Interciencia 34 (9), 612-616 (2009)
Collections
  • DFisA-Artículos, capítulos...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital