Mostrar el registro sencillo del ítem

dc.contributor.advisorGonzález Dugo, María P.
dc.contributor.advisorPolo Gómez, María José
dc.contributor.authorAndreu, Ana
dc.date.accessioned2014-12-17T12:55:06Z
dc.date.available2014-12-17T12:55:06Z
dc.date.issued2014
dc.identifier.urihttp://hdl.handle.net/10396/12478
dc.description.abstractThis work has addressed the modelling of the energy balance, integrating thermal infrared data into the Two Source Energy Balance model (TSEB, Norman et al., 1995; Kustas and Norman, 1999), over two extended and valuable Mediterranean ecosystems, as the dehesa and the vineyard. Throughout the Mediterranean region, particularly in Southern Spain, the main river basins suffer an imbalance between the supply and demand for water, largely due to the variable climatic conditions and human activities. Dealing with the water scarcity situation must rely on the ability to improve management with timely and accurate information about the water status of the ecosystems, that would improved predictions of resource availability and reduced the uncertainty in decision-making processes. The integration of remote sensing data in energy balance modelling can provide this information at different spatio-temporal scales. In water-controlled ecosystems there are many interrelationships between climate, soil and vegetation, with evapotranspiration (ET) as a key variable connecting energy and water budgets. ET has been exhaustively studied in cropped systems and different models for estimating ET at medium-large spatial scales have been developed, based on both soil water balance and surface energy balance. Energy balance (EB) models based on thermal remote sensing data enable updated diagnoses of the actual surface water condition. In general, these models do not require precipitation or soil properties inputs and are mostly conditioned by surface radiometric temperature (TRAD) observations. The methodology that best accounts for the effects of a non-homogeneous partial canopy cover is the twosource approach (Shuttelworth and Wallace, 1985; Norman et al., 1995; Kustas and Norman, 1999), in particular the TSEB, in which surface fluxes are divided into soil and canopy components. Previous studies (Timmermans et al., 2007; González-Dugo et al., 2009) demonstrated the advantages of such...es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherUniversidad de Córdoba, Servicio de Publicacioneses_ES
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/es_ES
dc.subjectPlant physiologyes_ES
dc.subjectEarth Observation (EO)es_ES
dc.subjectMediterranean ecosystemses_ES
dc.subjectTwo source energy balance model (TSEB)es_ES
dc.subjectWater-controlled ecosystemses_ES
dc.titleWater monitoring in vegetation covers through multi-scale energy balance moddelling using time series of remotely sensed dataes_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem