Show simple item record

dc.contributor.advisorQuesada-Moraga, Enrique
dc.contributor.advisorGarrido-Jurado, Inmaculada
dc.contributor.authorRíos Moreno, Alex Eliesser
dc.date.accessioned2017-07-20T06:21:12Z
dc.date.available2017-07-20T06:21:12Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/10396/14959
dc.description.abstractLa agricultura ha provisto de alimentos al ser humano desde su origen, pero en el último siglo, la producción agraria se ha intensificado gracias, entre otros, al empleo de insecticidas. Sin embargo, esta intensificación no ha estado exenta de problemas de contaminación por residuos en los alimentos o de efectos negativos sobre la biodiversidad y el medioambiente. La legislación agraria actual promueve una agricultura acorde con la creciente preocupación de los consumidores por la salud y por el medioambiente. En este escenario, el desarrollo de estrategias ambientalmente sostenibles y seguras para los consumidores se sitúa en primera línea en los programas de investigación para el control de plagas. Los ascomicetos mitospóricos entomopatógenos (AMEs) y en particular el género Metarhizium, cumplen los requisitos de seguridad para el ser humano y el medio ambiente y además han mostrado un gran éxito en el control de plagas de insectos debido a su modo de acción por contacto, su presencia natural en diversos ecosistemas y su capacidad de secretar compuestos con actividad insecticida. No obstante, la implantación en el mercado de los micoinsecticidas es lenta, y tropieza con una barrera fundamental que es la escasa información sobre el destino de algunos metabolitos secundarios en la cadena alimentaria y su riesgo para la salud humana y animal, información clave para abordar su registro. Por tanto, existe la necesidad de desarrollar y validar métodos analíticos con alta sensibilidad para su determinación a bajas concentraciones en diferentes matrices biológicas. La destruxina A es uno de los principales metabolitos secundarios producidos por el AME Metarhizium spp., pero la falta de estudios sobre su producción por parte del hongo es probablemente el mayor obstáculo para el registro de nuevas cepas de esta especie fúngica. El objetivo principal de esta tesis ha sido desarrollar nuevas herramientas para la detección y cuantificación de destruxinas, así como investigar el destino de la destruxina A en la cadena trófica. En el capítulo II de esta Tesis, se ha determinado la producción de destruxinas por parte de cuatro cepas de Metarhizium (BIPESCO5, EAMa 01/58-Su, ARSEF 23 y ART 2825) con un método mejorado de cromatografía líquida de ultra alto rendimiento en tándem con espectrometría de masas (UHPLC-MS / MS) en cuatro medios de cultivo (CM, MM, CN2, OSM) que representan diferentes condiciones de estrés. Cada 3 días durante 18 días se tomaron muestras para análisis que permitieron detectar 15 destruxinas, siendo las destruxinas A y B las más abundantes. Además, se detectaron diferencias significativas entre las cepas en la producción de destruxinas, que a su vez fue altamente dependiente del medio de cultivo. En el capítulo III la colonización endofítica y la producción de destruxina A en plantas de patata se monitorizaron a las 24, 48, 72, 96 y 120 h después de la inoculación con dos cepas de Metarhizium brunneum Petch. (BIPESCO5 y EAMa 01/58-Su), lo que puso de manifiesto que la concentración de destruxina A en los tejidos vegetales es muy baja en comparación con los niveles de colonización. Aunque se observó una colonización similar para ambas cepas, hubo diferencias a lo largo de la planta, con valores más altos en las hojas a 96 h para EAMa 01/58-Su (83.3 %) y BIPESCO5 (81.6 %), y más bajos en tubérculo y raíz a las 72, 96 y 120 h después de la inoculación para ambas cepas (10.0-13.3 %). Para la cepa EAMa 01/58-Su, la destruxina A se cuantificó a las 24 h en el tubérculo y la raíz (2.0 ± 1.4 y 2.49 ± 1.7 μg / kg, respectivamente) y a las 96 h con igual concentración también en tubérculo y raíz (2.5 ± 1.7 μg /kg); para BIPESCO5, solamente se cuantificó destruxina A en el tubérculo a las 24 h y en la raíz a las 48 h (6.8 ± 4.8 y 2.1 ± 1.4 μg / kg, respectivamente). En el capítulo IV se investiga por primera vez la dinámica de crecimiento de las cepas BIPESCO5 y EAMa 01/58-Su de M. brunneum y la secreción de destruxina A durante el proceso de infección de larvas del insecto modelo Galleria mellonella L. (Lepidoptera; Pyralidae). Se observó que la secreción de destruxina A fue paralela a la evolución de la cantidad de ADN fúngico en el interior del insecto para la cepa EAMa 01/58-Su, no así para BIPESCO5. Las cepas EAMa 01/58-Su y BIPESCO5 secretaron destruxina A desde los días 2 al 6 y desde el día 2 hasta el día 5 después del tratamiento, respectivamente. Para EAMa 01/58-Su y BIPESCO5, la máxima cantidad de destruxina A producida en el insecto hospedante fue de 0.369 y 0.06 μg/larva a los 4 días del tratamiento, respectivamente, y a lo largo del proceso patogénico, la producción fue de 0.6 y 0.09 μg / larva, respectivamente. En el capítulo V se realizaron bioensayos presa-depredador para evaluar el comportamiento y la supervivencia de las larvas del depredador generalista Chrysoperla carnea (Stephens) (Neuroptera; Chrysopidae) al alimentarse con larvas insecto polífago Spodoptera littoralis (Boisd.) (Lepidoptera; Noctuidae) inoculadas con las cepas BIPESCO5 y EAMa 01/58-Su. Además, se llevaron a cabo estudios ecotoxicológicos para supervisar el destino de la destruxina A en el sistema presa-depredador. La concentración máxima de destruxina A producida por la cepa BIPESCO5 fue el día 4 con un valor de 0.000054 μg/insecto (aproximadamente 0.014 μg/g) y para la cepa EAMa 01/58-Su el día 5 con 0.00012 μg/insecto (aproximadamente 0.031 μg/g), mientras que el metabolito no se detectó en larvas de C. carnea. El porcentaje de crisopas que se alimentó de larvas de S. littoralis 24 horas después de la infección fue de 96.6, 75.0 y 65.0 % para el control, EAMa 01/58-Su y BIPESCO5, respectivamente, mientras que 5 días después de la infección fue 38.3 % para control y 33.3 % en los tratamientos con las cepas EAMa 01/58-Su y BIPESCO5. La cantidad de larvas de S. littoralis consumidas por C. carnea 24 h después de la infección fue 5.6, 2.2 y 2.3 para las tratadas con el control, EAMa 01/58-Su y BIPESCO5 respectivamente, mientras que 5 días después de la infección consumió una sola larva per cápita. Esto puso de manifiesto que los tratamientos de M. brunneum contra las larvas de S. littoralis fueron seguros para C. carnea debido tanto a la ausencia de mortalidad relacionada con los hongos en el depredador como a la falta de movimiento de la destruxina A de la presa al depredador. Es importante resaltar que en los capítulos IV y V, para ambas cepas, la mortalidad de las larvas debido a otras causas fue mucho mayor que la mortalidad con crecimiento fúngico. Sin embargo, la secreción de destruxina A fue mayor para EAMa 01/58-Su que para BIPESCO5, lo que sugiere que la destruxina A podría ser un factor de virulencia de la primera, mientras que la segunda podría requerir la participación de otros factores además de destruxina A durante el proceso de infección. Los resultados obtenidos proporcionan métodos analíticos valiosos para llevar a cabo evaluaciones de riesgo sobre el empleo de AME, así como resultados que indican que su empleo supone un bajo nivel de riesgo para la salud humana, animal y medio ambiental.es_ES
dc.description.abstractAgriculture produces the vast majority of the world’s food supply, and in last century the global food production has grown at a huge rate mainly from the increased yields resulting from greater inputs of insecticides and other technologies. Meanwhile overuse or improper use of insecticides and other agrochemicals has raised issues about related environment and health costs, with current legislation promoting sustainable agriculture, in which scenario, the development of environmentally sustainable strategies is mandatory for research programs regarding pest control. The entomopathogenic mitosporic ascomycetes (EMAs) and in particular the genus Metarhizium have shown great success in the control of insect pests due to their contact mode of action, natural presence in the ecosystems and their ability to secrete compounds with insecticidal activity, and even, they comply with the security requirements for human health and environment, whereas information about the fate of their secondary metabolites in the food chain and their risk to human and animal health is still scarce. There is a need to develop and validate analytical methods with high sensitivity for metabolite determination at low concentrations in different biological matrices. Destruxin A is one of the major secondary metabolite produced by the genus Metarhizium spp., but the lack of studies concerning destruxin A production is most likely the biggest obstacle for registration of new fungal strains. The main goal of this research has been to develop new tools for destruxin detection and quantification and to investigate the fate of destruxin A in the trophic chain. In chapter II, destruxin production for Metarhizium strains BIPESCO5, EAMa 01/58- Su, ARSEF 23 and ART 2825 was determined with an improved method of ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), which has shown high precision in the detection and quantification of destruxins in four culture media (CM, MM, CN2, OSM) representing different stress conditions. Every 3 days samples were taken for analysis over 18 days that allowed detecting 15 destruxins, with destruxin A and B as the most abundant. However, significant differences among strains in destruxin production were detected, and for each strain, destruxin production was highly dependent on culture medium. In chapter III, endophytic colonisation and destruxin A production on potato plants were monitored at 24, 48, 72, 96 and 120 h after inoculation with Metarhizium brunneum strains (BIPESCO5 and EAMa 01/58-Su), which showed that the concentration of destruxin A in plant tissues was very low compared to the colonisation levels. Although a similar colonisation was observed for both strains, there were differences in percentages in different parts of the plants, with the higher values occurring in the leaves at 96 h for EAMa 01/58-Su (83.3 %) and BIPESCO5 (81.6 %), and the lower ones, 10.0-13.3 %, observed in tuber and root at 72, 96 and 120 h post-inoculation for both strains. For strain EAMa 01/58- Su, destruxin A was quantified at 24 h (2.49 ± 1.7 and 2.0 ± 1.4 μg/kg, respectively), and the same concentration was found in both tuber and root at 96 h (2.5 ± 1.7 μg/kg); for BIPESCO5, the concentrations differed in tuber at 24 h and in root at 48 h (6.8 ± 4.8 and 2.1 ± 1.4 μg/kg, respectively). In chapter IV, the dynamic of fungal growth and secretion of destruxin A by strains BIPESCO5 and EAMa 01/58-Su of Metarhizium brunneum Petch. during the infection process of larvae of the model insect Galleria mellonella L. (Lepidoptera; Pyralidae) was monitored for the first time. Data showed that destruxin A secretion was parallel to the fungal growth of EAMa 01/58-Su but not coupled with that for BIPESCO5. EAMa 01/58-Su and BIPESCO5 strains secreted destruxin A from days 2 to 6 and from day 2 to day 5 post treatment, respectively. For EAMa 01/58-Su and BIPESCO5, the maximum titer in the host on day 4 after treatment was 0.369 and 0.06 μg/larva, respectively, and throughout the pathogenic process, the production was 0.6 and 0.09 μg/larva, respectively. In chapter V, predator-prey bioassays were performed to evaluate the behavior and survival of larvae of the generalist predator Chrysoperla carnea (Stephens) (Neuroptera; Chrysopidae) when feeding on larvae of the polyphagous pest Spodoptera littoralis (Boisd.) (Lepidoptera; Noctuidae) challenged by M. brunneum BIPESCO5 and EAMa 01/58-Su strains. In addition, ecotoxicological studies based on HPLC-MS were performed to monitor the fate of destruxin A in the prey-predator system. The maximum concentration of destruxin A produced by the BIPESCO5 strain was on day 4 after treatment with a value of 0.000054 μg/insect (approx 0.014 μg/g), and for EAMa 01/58-Su was on day 5 with a value of 0.00012 μg/insect (approx 0.031 μg/g), whereas the metabolite was no detected in C. carnea larvae. The percentage of lacewings feeding on S. littoralis larvae 24 hour-post infection was 96.6, 75.0, and 65.0 % for the control, EAMa 01/58-Su, and BIPESCO5 treatments, respectively, whereas 5 days-post infection armyworm larvae were consumed by only 38.3 % of the control lacewings and 33.3 % of the EAMa 01/58-Su and BIPESCO5 treatment groups. C. carnea larvae feeding on 24 h-post infection armyworm larvae preyed 5.6, 2.2 and 2.3 larvae for the control, EAMa 01/58-Su and BIPESCO5 treatments, respectively, whereas those predator larvae feeding on 5 days-post infection armyworm larvae preyed on only one per capita larva. It showed that the M. brunneum treatments against S. littoralis larvae were safe for C. carnea due to both the lack of fungus-related mortality in the predator and the lack of movement of destruxin A from the prey to the predator. Notably in chapters IV and V, in both M. brunneum strains, mortality from other causes was higher than mortality with fungal outgrowth. However, destruxin A secretion was higher for EAMa 01/58-Su than for BIPESCO5. These results suggested that destruxin A could be a virulence factor for EAMa 01/58-Su strain, whereas for BIPESCO5, the virulence could require the involvement of other factors as well as destruxin A during the infection process. The results obtained provide valuable analytical methods for carrying out risk assessments on the use of EMAs. In addition, results indicate that their use poses a little potential hazard to human and animal health and the environment.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isospaes_ES
dc.publisherUniversidad de Córdoba, UCOPresses_ES
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/es_ES
dc.subjectAscomicetos mistospóricos entomopatógenoses_ES
dc.subjectMetarhizium brunneumes_ES
dc.subjectMetarhizium robertsiies_ES
dc.subjectMetabolitoses_ES
dc.subjectDestruxinases_ES
dc.subjectEndofitismoes_ES
dc.subjectSpodoptera littoralises_ES
dc.subjectGalleria mellonellaes_ES
dc.subjectChrysoperla carneaes_ES
dc.subjectEntomopathogenic mitosporic ascomyceteses_ES
dc.subjectMetaboliteses_ES
dc.subjectDestruxinses_ES
dc.subjectEndophytismes_ES
dc.titleEvaluación de riesgos ecotoxicológicos derivados del empleo del hongo entomopatógeno Metarhizium spp. para el control de plagases_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record