• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cellulose Nanofiber-Based Aerogels from Wheat Straw: Influence of Surface Load and Lignin Content on Their Properties and Dye Removal Capacity

Thumbnail
View/Open
biomolecules-12-00232.pdf (1.094Mb)
Author
Morcillo-Martín, Ramón
Espinosa, E.
Rabasco-Vílchez, Laura
Sánchez, Laura M.
Haro, Jorge de
Rodríguez, Alejandro
Publisher
MDPI
Date
2022
Subject
Aerogels
Dye removal
Lignocellulosic biomass
Circular economy
Biorefinery
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
Water pollution is one of the most serious problems worldwide. Nanocellulose-based aerogels usually show excellent adsorption capacities due to their high aspect ratio, specific surface area and surface charge, making them ideal for water purification. In this work, (ligno)cellulose nanofibers (LCNFs/CNFs) from wheat straw residues were obtained using two types of pre-treatments: mechanical (Mec) and TEMPO-mediated oxidization (TO), to obtain different consistency (0.2, 0.4, 0.6 and 0.8) bioaerogels, and their adsorption capacities as dye removers were further studied. The materials were characterized in terms of density, porosity and mechanical properties. An inversely proportional relationship was observed between the consistencies of the aerogels and their achieved densities. Despite the increase in density, all samples showed porosities above 99%. In terms of mechanical properties, the best results were obtained for the 0.8% consistency LCNF and CNF-Mec aerogels, reaching 67.87 kPa and 64.6 kPa for tensile strength and Young’s modulus, respectively. In contrast, the adsorption capacity of the aerogels was better for TEMPO-oxidized aerogels, reaching removal rates of almost 100% for the CNF-TO5 samples. Furthermore, the residual lignin content in LCNF-Mec aerogels showed a great improvement in the removal capacity, reaching rates higher than 80%, further improving the cost efficiency of the samples due to the reduction in chemical treatments.
URI
http://hdl.handle.net/10396/22396
Fuente
Biomolecules 12(2), 232 (2022)
Versión del Editor
https://doi.org/10.3390/biom12020232
Collections
  • DBTA-Artículos, capítulos...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital