Nonlinear Boosting Projections for Ensemble Construction

View/ Open
Author
García-Pedrajas, Nicolás
García-Osorio, César
Fyfe, Colin
Publisher
Dale SchuurmansDate
2007Subject
Classifier ensemblesBoosting
Neural networks
Nonlinear projections
METS:
Mostrar el registro METSPREMIS:
Mostrar el registro PREMISMetadata
Show full item recordAbstract
In this paper we propose a novel approach for ensemble construction based on the use of nonlinear
projections to achieve both accuracy and diversity of individual classifiers. The proposed approach
combines the philosophy of boosting, putting more effort on difficult instances, with the basis of
the random subspace method. Our main contribution is that instead of using a random subspace,
we construct a projection taking into account the instances which have posed most difficulties to
previous classifiers. In this way, consecutive nonlinear projections are created by a neural network
trained using only incorrectly classified instances. The feature subspace induced by the hidden layer
of this network is used as the input space to a new classifier. The method is compared with bagging
and boosting techniques, showing an improved performance on a large set of 44 problems from the
UCI Machine Learning Repository. An additional study showed that the proposed approach is less
sensitive to noise in the data than boosting methods