• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-Objective Genetic Programming for Feature Extraction and Data Visualization

Thumbnail
View/Open
article.pdf (430.9Kb)
Author
Cano, Alberto
Ventura Soto, S.
Cios, Krzyztof J.
Date
2017-03-31
Subject
Classification
Feature extraction
Visualization
Genetic programming
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
Feature extraction transforms high dimensional data into a new subspace of lower dimensionalitywhile keeping the classification accuracy. Traditional algorithms do not consider the multi-objective nature of this task. Data transformations should improve the classification performance on the new subspace, as well as to facilitate data visualization, which has attracted increasing attention in recent years. Moreover, new challenges arising in data mining, such as the need to deal with imbalanced data sets call for new algorithms capable of handling this type of data. This paper presents a Pareto-basedmulti-objective genetic programming algorithm for feature extraction and data visualization. The algorithm is designed to obtain data transformations that optimize the classification and visualization performance both on balanced and imbalanced data. Six classification and visualization measures are identified as objectives to be optimized by the multi-objective algorithm. The algorithm is evaluated and compared to 11 well-known feature extraction methods, and to the performance on the original high dimensional data. Experimental results on 22 balanced and 20 imbalanced data sets show that it performs very well on both types of data, which is its significant advantage over existing feature extraction algorithms.
URI
http://hdl.handle.net/10396/14660
Collections
  • DIAN-Artículos, capítulos...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital