• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Detection of early warning signals in paleoclimate data using a genetic time series segmentation algorithm

Thumbnail
View/Open
Nikolaou_Nov2014_final.pdf (2.647Mb)
Author
Nikolaou, Athanasia
Gutiérrez, Pedro A.
Durán, Antonio
Dicaire, Isabelle
Fernández-Navarro, Francisco
Hervás-Martínez, César
Date
2017
Subject
Warning signals
Time series segmentation
Tipping points
Abrupt climate change
Genetic algorithms Clustering
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
This paper proposes a time series segmentation algorithm combining a clustering technique and a genetic algorithm to automatically find segments sharing common statistical characteristics in paleoclimate time series. The segments are transformed into a six-dimensional space composed of six statistical measures, most of which have been previously considered in the detection of warning signals of critical transitions. Experimental results show that the proposed approach applied to paleoclimate data could effectively analyse Dansgaard–Oeschger (DO) events and uncover commonalities and differences in their statistical and possibly their dynamical characterisation. In particular, warning signals were robustly detected in the GISP2 and NGRIP δ18O ice core data for several DO events (e.g. DO 1, 4, 8 and 12) in the form of an order of magnitude increase in variance, autocorrelation and mean square distance from a linear approximation (i.e. the mean square error). The increase in mean square error, suggesting nonlinear behaviour, has been found to correspond with an increase in variance prior to several DO events for ∼90 % of the algorithm runs for the GISP2 δ18O dataset and for ∼100 % of the algorithm runs for the NGRIP δ18O dataset. The proposed approach applied to well-known dynamical systems and paleoclimate datasets provides a novel visualisation tool in the field of climate time series analysis
URI
http://hdl.handle.net/10396/15781
Versión del Editor
https://dx.doi.org/10.1007/s00382-014-2405-0
Collections
  • DIAN-Artículos, capítulos, libros...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital