Decision Support System Tool to Reduce the Energy Consumption of Water Abstraction from Aquifers for Irrigation

View/ Open
Author
Córcoles, Juan Ignacio
González Perea, R.
Izquiel, Argenis
Moreno, Miguel Ángel
Publisher
MDPIDate
2019Subject
Irrigation networkEnergy consumption
Variable speed
Well
Water depth
METS:
Mostrar el registro METSPREMIS:
Mostrar el registro PREMISMetadata
Show full item recordAbstract
In pressurized irrigation networks that use underground water resources, submersible pumps are one of the highest energy consumers. The objective of this paper was to develop a decision support system, implemented in MATLAB®, to reduce the energy consumption of the water abstraction process, from an aquifer to a reservoir in existing wells, by installing a frequency speed drive. An economic module with the aim to assess the economic profitability of the investment cost of the variable speed drive was also developed. This tool was used in three wells that were located in the Eastern Mancha Aquifer. Several scenarios and irrigation seasons were analyzed while considering the interannual and annual variation in ground water depth. In the three analyzed irrigation societies (named A, B, and C), energy savings were achieved using a variable speed frequency when compared with fixed speed. Considering the analyzed cases, when the dynamic water table level is higher, energy savings ranged from 4.4% and 24.4%, using a variable speed ratio of 0.9 and 0.82. The energy savings based on the variable speed frequency increased when the dynamic water table level was lower, with the average energy savings close to 23%, 22% and 6.8% for irrigation societies A, B, and C, respectively. The results also show that the investment costs of the variable speed drive in two of the three irrigation societies studied were highly profitable, with a payback that ranged from 4.5 to 10 years.