Mostrar el registro sencillo del ítem

dc.contributor.authorCantero Chinchilla, Francisco Nicolás
dc.contributor.authorBergillos, Rafael J.
dc.contributor.authorGamero, Pedro
dc.contributor.authorCastro Orgaz, O.
dc.contributor.authorCea, Luis
dc.contributor.authorHager, Willi H.
dc.date.accessioned2020-11-19T07:47:46Z
dc.date.available2020-11-19T07:47:46Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/10396/20759
dc.description.abstractThe dam-break wave modeling technology relies upon the so-called shallow water equations (SWE), i.e., mass and momentum vertically averaged equations by implementing the shallow water hypotheses, namely (i) horizontal velocity component independent of the vertical coordinate, (ii) vertical velocity component is null, (iii) pressure distribution is hydrostatic, (iv) turbulence is neglected. While this model often yields a satisfactory answer from an engineering standpoint, flows with vertical length scales not negligible cannot be modeled with accuracy, including the undular surge generated after a dam break for relatively high tailwater levels. These flows are modeled by the Serre–Green–Naghdi equations (SGNE), which fail to mimic wave breaking for low tailwater levels, however. Neither SWE nor SGNE produce a fully satisfactory answer for modeling dam break waves, therefore. A higher-order model using vertically averaged and moment equations (VAM) is used in this work to simulate dam break waves, thereby showing good results for arbitrary values of the tailwater level. The model contains four perturbation parameters implemented to overcome the shallow water hypotheses; two for the velocity components and two for fluid pressure. The role of each parameter in relaxing the limitations of the SWE is systematically investigated, depicting a complex and necessary interplay between the dynamic component of fluid pressure and the modeling of the velocity profile in producing accurate solutions for both non-hydrostatic and broken waves in dam break flows. The results highlight how the shallow water hypotheses can be relaxed in the vertically averaged modeling of dam break waves, producing an outcome of both theoretical and practical interest in the field. The results generated are tested with available experimental data, resulting in acceptable agreement.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightshttps://creativecommons.org/licenses/by/4.0/es_ES
dc.sourceWater 12(11), 3232 (2020)es_ES
dc.subjectDam breakes_ES
dc.subjectNon-hydrostatic flowes_ES
dc.subjectShallow water hypotheseses_ES
dc.subjectVertically averaged modeles_ES
dc.subjectWeighted residual methodes_ES
dc.titleVertically Averaged and Moment Equations for Dam- Break Wave Modeling: Shallow Water Hypotheseses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttp://dx.doi.org/10.3390/w12113232es_ES
dc.relation.projectIDGobierno de España. CTM2017‐85171‐C2‐1‐Res_ES
dc.relation.projectIDGobierno de España. FJCI‐2016‐28009es_ES
dc.relation.projectIDGobierno de España. FJCI‐2017‐31781es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem