Mostrar el registro sencillo del ítem

dc.contributor.authorNavarro-Ruiz, Carmen
dc.contributor.authorSoler-Vázquez, M. Carmen
dc.contributor.authorDíaz-Ruiz, Alberto
dc.contributor.authorPeinado, Juan R.
dc.contributor.authorNieto Calonge, Andrea
dc.contributor.authorSánchez Ceinos, Julia
dc.contributor.authorTercero-Alcázar, C.
dc.contributor.authorLópez-Alcalá, J.
dc.contributor.authorRangel Zúñiga, Oriol Alberto
dc.contributor.authorMembrives, Antonio
dc.contributor.authorLópez-Miranda, José
dc.contributor.authorMalagón, María M.
dc.contributor.authorGúzman-Ruiz, Rocío
dc.date.accessioned2022-11-30T11:28:59Z
dc.date.available2022-11-30T11:28:59Z
dc.date.issued2022
dc.identifier.urihttp://hdl.handle.net/10396/24375
dc.description.abstractBackground: Obesity is characterized by adipose tissue dysregulation and predisposes individuals to insulin resistance and type 2 diabetes. At the molecular level, adipocyte dysfunction has been linked to obesity-triggered oxidative stress and protein carbonylation, considering protein carbonylation as a link between oxidative stress and metabolic dysfunction. The identification of specific carbonylated proteins in adipose tissue could provide novel biomarkers of oxidative damage related to metabolic status (i.e prediabetes). Thus, we aimed at characterizing the subcutaneous and omental human adipose tissue carbonylome in obesity-associated insulin resistance. Methods: 2D-PAGE was used to identify carbonylated proteins, and clinical correlations studies and molecular biology approaches including intracellular trafficking, reactive oxygen species assay, and iron content were performed using in vitro models of insulin resistance. Results: The carbonylome of human adipose tissue included common (serotransferrin, vimentin, actin, and annexin A2) and depot-specific (carbonic anhydrase and α-crystallin B in the subcutaneous depot; and α-1-antitrypsin and tubulin in the omental depot) differences that point out the complexity of oxidative stress at the metabolic level, highlighting changes in carbonylated transferrin expression. Posterior studies using in vitro prediabetic model evidence alteration in transferrin receptor translocation, linked to the prediabetic environment. Finally, ligand-receptor molecular docking studies showed a reduced affinity for carbonylated transferrin binding to its receptor compared to wild-type transferrin, emphasizing the role of transferrin carbonylation in the link between oxidative stress and metabolic dysfunction. Conclusions: The adipose tissue carbonylome contributes to understanding the molecular mechanism driving adipocyte dysfunction and identifies possible adipose tissue carbonylated targets in obesity-associated insulin resistance.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightshttps://creativecommons.org/licenses/by/4.0/es_ES
dc.sourceBiomedicines, 10(12), 3032 (2022)es_ES
dc.subjectObesityes_ES
dc.subjectAdipose tissuees_ES
dc.subjectInsulin resistancees_ES
dc.subjectCarbonylated proteines_ES
dc.subjectRedoxes_ES
dc.titleInfluence of Protein Carbonylation on Human Adipose Tissue Dysfunction in Obesity and Insulin Resistancees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.3390/biomedicines10123032es_ES
dc.relation.projectIDGobierno de España. FPU14/04994es_ES
dc.relation.projectIDGobierno de España. FU2013-44229-Res_ES
dc.relation.projectIDGobierno de España. BFU2016-76711-Res_ES
dc.relation.projectIDGobierno de España. BFU2017-90578-REDTes_ES
dc.relation.projectIDGobierno de España. PID2019-108403RB-I00es_ES
dc.relation.projectIDJunta de Andalucía. PI-0200/2013 (FEDER)es_ES
dc.relation.projectIDJunta de Andalucía. I-0159-2016es_ES
dc.relation.projectIDGobierno de España. ID2019-106893RA-100es_ES
dc.relation.projectIDJunta de Andalucía. P18-RT-176 (FEDER)es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem