• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluating models to assess the distribution of Buxus balearica in southern Spain

Thumbnail
View/Open
Preprint_2011_Evaluating models to assess the distribution of Buxus_AVS.pdf (2.059Mb)
Author
Navarro Cerrillo, Rafael M.
Hernández Bermejo, Esteban
Hernández Clemente, Rocío
Publisher
Wiley
Date
2010
Subject
Environmental gradient
Habitat distribution model
Mediterranean shrubs
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
uestion: Which is the best model to predict the habitat distribution of Buxus balearica Lam. in southern Spain? Location: Málaga and Granada, Spain, across an area of 38 180 km2. Methods: Prediction models based on 17 environmental variables were tested. Six methods were compared: multivariate adaptive regression spline (MARS), maximum entropy approach to modelling species' distributions (Maxent), two generic algorithms based on environmental metrics dissimilarity (BIOCLIM and DOMAIN), Genetic Algorithm for Rule-set Prediction (GARP), and supervised learning methods based on generalized linear classifiers (support vector machines, SVMs). To test the predictive power of the models we used the Kappa index. Results: Maxent most accurately predicted the habitat distribution of B. balearica, followed by MARS models. The other models tested yielded lower accuracy values. A comparison of the predictive power of the models revealed that climate variables made the highest contributions among the environmental variables studied. The variables that made the lowest contributions were the insolation models. To examine the sensitivity of the models to a reduction in the number of variables, a test showed that accuracy of over 0.90 was maintained by applying just three climatic variables (spring rainfall, mean temperature of the warmest month, and mean temperature of the coldest month). Maps derived from the algorithms of all models tested coincided well with the known distribution of the species. Conclusions: Model habitat prediction is a preliminary step towards highlighting areas of high habitat suitability of B. balearica. These data support the results of previous research, which show that MaxEnt is the best technique for modelling species distributions with small sample sizes.
URI
http://hdl.handle.net/10396/26887
Fuente
Applied Vegetation Science, Vol 14, Issue 2 p. 256-267 (2010)
Versión del Editor
https://doi.org/10.1111/j.1654-109X.2010.01112.x
Collections
  • DIF-Artículos, capítulos, libros...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital