• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Validation of multitask artificial neural networks to model desiccant wheels activated at low temperature

Validation de réseaux de neurones artificiels multitâches pour modéliser des roues déshydratantes activées à basse température

Thumbnail
View/Open
7.Accepted Manuscript.pdf (6.584Mb)
Author
Comino Montilla, Francisco
Guijo-Rubio, David
Ruiz de Adana, Manuel
Hervás-Martínez, César
Publisher
Elsevier
Date
2019
Subject
Artificial neural networks
Sigmoid units
Empirical models for desiccant wheels
Réseaux neuronaux artificiels
Unités sigmoïdes
Modèles empiriques de roues déshydratantes
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
Desiccant wheels (DW) could be a serious alternative to conventional dehumidification systems based on direct expansion units, which depend on electrical energy. The main objective of this work was to evaluate the use of multitask artificial neural networks (ANNs) as a modelling technique for DWs activated at low temperature with low computational load and good accuracy. Two different ANN models were developed to predict two output variables: outlet process air temperature and humidity ratio. The results show that a sigmoid unit neural network obtained 0.390 and 2.987 for MSE and SEP, respectively. These results outline the effective transfer mechanism of multitask ANNs to extract common features of multiple tasks, being useful for modelling a DW activated at low temperature. On the other hand, moisture removal capacity of the DW and its performance were analysed under several inlet air conditions, showing an increase under process air conditions close to saturation air.
URI
http://hdl.handle.net/10396/27005
Fuente
International Journal of Refrigeration, Vol 100, pp 434-442 (2019)
Versión del Editor
https://doi.org/10.1016/j.ijrefrig.2019.02.002
Collections
  • DQFTA-Artículos, capítulos, libros...
  • DIAN-Artículos, capítulos, libros...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital