• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Neuro-fuzzy techniques to optimize an FPGA embedded controller for robot navigation

Thumbnail
View/Open
05. Neuro-fuzzy techniques to optimize an FPGA embedded controller for robot navigation (2014).pdf (2.349Mb)
Author
Batunore, Iluminada
Gersnoviez, Andrés
Barriga, Ángel
Publisher
Elsevier
Date
2014
Subject
Neuro-fuzzy techniques
Embedded systems
FPGA implementation
Intelligent control
Robot navigation
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
This paper describes how low-cost embedded controllers for robot navigation can be obtained by using a small number of if-then rules (exploiting the connection in cascade of rule bases) that apply Takagi–Sugeno fuzzy inference method and employ fuzzy sets represented by normalized triangular functions. The rules comprise heuristic and fuzzy knowledge together with numerical data obtained from a geometric analysis of the control problem that considers the kinematic and dynamic constraints of the robot. Numerical data allow tuning the fuzzy symbols used in the rules to optimize the controller performance. From the implementation point of view, very few computational and memory resources are required: standard logical, addition, and multiplication operations and a few data that can be represented by integer values. This is illustrated with the design of a controller for the safe navigation of an autonomous car-like robot among possible obstacles toward a goal configuration. Implementation results of an FPGA embedded system based on a general-purpose soft processor confirm that percentage reduction in clock cycles is drastic thanks to applying the proposed neuro-fuzzy techniques. Simulation and experimental results obtained with the robot confirm the efficiency of the controller designed. Design methodology has been supported by the CAD tools of the environment Xfuzzy 3 and by the Embedded System Tools from Xilinx.
URI
http://hdl.handle.net/10396/27273
Fuente
Applied Soft Computing, Vol 21, pp 95-106 (2014)
Versión del Editor
https://doi.org/10.1016/j.asoc.2014.03.001
Collections
  • DACETE-Artículos, capítulos, libros...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital