• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On Asymptotic Stability of the Sine-Gordon Kink in the Energy Space

Thumbnail
View/Open
s00220-023-04736-3.pdf (1.045Mb)
Author
Alejo, Miguel
Muñoz, Claudio
Palacios, José M.
Publisher
Springer
Date
2023
Subject
Solitons
Bäcklund transformation
Stability
Breather
Sine-Gordon equation
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
We consider the sine-Gordon (SG) equation in 1+1 dimensions. The kink is a static, non symmetric exact solution to SG, stable in the energy space H1×L2. It is wellknown that the linearized operator around the kink has a simple kernel and no internal modes.However, it possesses an odd resonance at the bottom of the continuum spectrum, deeply related to the existence of the (in)famous wobbling kink, an explicit periodic-intime solution of SG around the kink that contradicts the asymptotic stability of the kink in the energy space. In this paper we further investigate the influence of resonances in the asymptotic stability question. We also discuss the relationship between breathers, wobbling kinks and resonances in the SGsetting. By gatheringBäcklund transformations (BT) as in Hoffman and Wayne (Differ Int Equ 26(3–4):303–320, 2013), Muñoz and Palacios (Ann. IHP C Analyse Nonlinéaire 36(4):977–1034, 2019) and Virial estimates around odd perturbations of the vacuum solution, in the spirit of Kowalczyk et al. (Lett Math Phys 107(5):921–931, 2017), we first identify the manifold of initial data around zero under which BTs are related to the wobbling kink solution. It turns out that (even) small breathers are deeply related to odd perturbations around the kink, including the wobbling kink itself. As a consequence of this result andKowalczyk et al. (Lett Math Phys 107(5):921–931, 2017), using BTs we can construct a smooth manifold of initial data close to the kink, for which there is asymptotic stability in the energy space. The initial data has spatial symmetry of the form (kink + odd, even), non resonant in principle, and not preserved by the flow. This asymptotic stability property holds despite the existence of wobbling kinks in SG. We also show that wobbling kinks are orbitally stable under odd data, and clarify some interesting connections between SG and φ4 at the level of linear Bäcklund transformations.
URI
http://hdl.handle.net/10396/28633
Fuente
Alejo, M.A., Muñoz, C. & Palacios, J.M. On Asymptotic Stability of the Sine-Gordon Kink in the Energy Space. Commun. Math. Phys. 402, 581–636 (2023).
Versión del Editor
https://doi.org/10.1007/s00220-023-04736-3
Collections
  • DMat-Artículos, capítulos, libros...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital