• español
    • English
  • español 
    • español
    • English
  • Acceder
Ver ítem 
  •   Helvia Principal
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • Ver ítem
  •   Helvia Principal
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

COVNET : A cooperative coevolutionary model for evolving artificial neural networks

Thumbnail
Ver/
13930321.pdf (783.9Kb)
Autor
Muñoz-Pérez, José
Hervás-Martínez, César
García-Pedrajas, Nicolás
Editor
IEEE
Fecha
2003
Materia
Neural-Networks Automatic Design
Learning Algorithms
Genetic Algorithms
Evolutionary Programming
Evolutionary Computation
Cooperative Coevolution
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadatos
Mostrar el registro completo del ítem
Resumen
This paper presents COVNET, a new cooperative coevolutionary model for evolving artificial neural networks. This model is based on the idea of coevolving subnetworks. that must cooperate to form a solution for a specific problem, instead of evolving complete networks. The combination of this subnetwork is part of a coevolutionary process. The best combinations of subnetworks must be evolved together with the coevolution of the subnetworks. Several subpopulations of subnetworks coevolve cooperatively and genetically isolated. The individual of every subpopulation are combined to form whole networks. This is a different approach from most current models of evolutionary neural networks which try to develop whole networks. COVNET places as few restrictions as possible over the network structure, allowing the model to reach a wide variety of architectures during the evolution and to be easily extensible to other kind of neural networks. The performance of the model in solving three real problems of classification is compared with a modular network, the adaptive mixture of experts and with the results presented in the bibliography. COVNET has shown better generalization and produced smaller networks than the adaptive mixture of experts and has also achieved results, at least, comparable with the results in the bibliography.
URI
http://hdl.handle.net/10396/3950
Fuente
Ieee Transactions on Neural Networks 14 (3), 575-596 (2003)
Colecciones
  • DIAN-Artículos, capítulos...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contacto | Sugerencias
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Listar

Todo HelviaComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasEsta colecciónPor fecha de publicaciónAutoresTítulosMaterias

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contacto | Sugerencias
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital