Influence of microscale in snow distributed modelling in semiarid regions

View/ Open
Author
Pimentel, Rafael
Director/es
Polo, María J.Herrero Lantarón, Javier
Publisher
Universidad de Córdoba, Servicio de PublicacionesDate
2015Subject
MicroscaleSnow distributed modelling
Semiarid regions
Physically-based distributed snowmelt-accumulation modelling
Remote sensing techniques
Terrestrial phtography
Microescala
Modelo distribuido de la nieve
Ambientes semiáridos
Modelado hidrológico, físico y distribuido
Ténicas de teledetección
Fotografía terrestre
Guadalfeo (España, Río)
Sierra Nevada
METS:
Mostrar el registro METSPREMIS:
Mostrar el registro PREMISMetadata
Show full item recordAbstract
This work focuses on the importance of the microscale snow distribution in the modelling of the
snow dynamics in semiarid regions. Snow over these areas has particular features that further
complicate its measuring, monitoring and modelling (e.g. several snowmelt cycles throughout
the year and a very heterogeneous distribution). Most extended GIS-based calculation of
snowmelt/accumulation models must deal with non-negligible scales effects below the cell size,
which may result in unsatisfactory predictions depending on the study scale. This study
proposes the joint use of physically- based distributed snowmelt-accumulation modelling and
remote sensing observation datasets to study the subgrid variability of snow distribution and its
effects on the snow modelling at the watershed scale. The study has been carried out in Sierra
Nevada Mountains, southern Spain, where the highest submit of the Iberian Peninsula can be
found close to the seaside, which results in a sharp gradient of climate conditions associated to
topography. The typical Alpine climate in the mountains is modulated by the subtropical
conditions at the coast, with occurrence of snowfall usually from November to April in altitudes
greater than 2000 m, and successive cycles of accumulation and snowmelt during the season.
Terrestrial photography data, an alternative and economical remote sensing information source
whose scales can be adapted to the studied processes requirements, has been employed to study
the snow dynamics at the subgrid scale (30 x 30 m). Snow cover area and snow depth datasets
were obtained from terrestrial images in a pilot study area during 2009-2013. These dataset was
employed to define the subgrid variability by means of depletion curves with two different
approaches. As a first step, different snow depletion curves proposed by other authors were
tested at the study area. The observations were included in a data assimilation scheme, an
Ensemble Transform Kalman Filter, in the energy and mass balance equations of the snow
model. The results identified the need for selecting a particular depletion curve parameterization
depending on the succession of accumulation-melting cycles. Secondly, based on the former
results, these datasets were directly employed to define parametric depletion curves at the pilot
area. A flexible sigmoid function was found to satisfactorily reproduce the observed trends of
the snowmelt effects on the snow cover area at the cell scale, but different values resulted for
the sigmoid’s parameters depending on the different snow states found: 1) cycles with a high
accumulated snow depth which came from a metamorphosed snow; 2) cycles with great snow
depth preceded by short accumulation phases; 3) cycles with low accumulation that occur in the
cold season; and 4) cycles with low snow depth values which take place during spring.
Moreover, an unique expression for the accumulation curve was also proposed. These results
confirm the need of different parameterization to represent the physical variability in the
accumulation-melting cycles in semiarid regions. Furthermore, this selective curve improves the
model performance when compared to the results previously obtained with the data assimilation
scheme.
Finally, the proposed parameterization was tested at the watershed scale, at the Guadalfeo River
Basin, at the southern face of Sierra Nevada. Snow cover area distributed results from the model
simulations were assessed with Landsat TM and ETM+ observations (30 x 30m spatial
resolution), consisting of snow cover maps at the area from an endmembers spectral mixture
analysis of the Landsat imagery. These maps had previously been validated from snow cover
maps at higher spatial resolution (10m x 10m) obtained from terrestrial photography in a
monitoring hillside in the area. The results showed a significant agreement between observed... Este trabajo pone de manifiesto la importancia de la microescala en el modelado distribuido de
la nieve en ambientes semiáridos. En estas áreas, la nieve posee características muy específicas
que dificultan su medida, monitorización y modelado (p.e. diferentes ciclos de fusión a lo largo
del año y una gran variabilidad espaciotemporal). Desde este último punto de vista, los modelos
distribuidos de acumulación/fusión de nieve poseen limitaciones al representar procesos que
ocurren a una escala inferior a la seleccionada como tamaño de celda en la discretización para la
realización de sus cálculos. Este estudio propone el uso de modelado hidrológico, físico y
distribuido, junto con técnicas de teledetección para el estudio de la variabilidad a escala de
celda de la nieve y sus implicaciones a escala de cuenca. El área de estudio seleccionada ha sido
Sierra Nevada, sur de España, cordillera paralela a la costa del mar Mediterráneo y donde se
localizan las cumbres más altas de la Península Ibérica. Su proximidad al mar hace que el típico
clima alpino de montaña se vea modificado por el clima subtropical de la costa, con nevadas
desde noviembre a abril en cotas superiores a los 2000 m y ciclos sucesivos de acumulación y
fusión de nieve durante este periodo.
La fotografía terrestre, técnica de teledetección novedosa y económica, que permite adaptar las
observaciones a la escala de los procesos estudiados, ha sido empleada para el estudio de la
dinámica de la nieve a escala de celda (30 x 30 m). Valores de superficie cubierta y espesor de
nieve han sido obtenidos en una pequeña área experimental durante el período 2009-2013. Estas
series de datos fueron empleadas para definir la variabilidad espacial dentro de la celda por
medio de curvas de agotamiento utilizando dos enfoques. En primer lugar, diferentes curvas de
agotamiento propuestas por otros autores fueron evaluadas en el área de estudio. Las
observaciones fueron incluidas mediante un algoritmo de asimilación de datos, Ensemble
Transform Kalman Filter, en el balance de masa y energía del modelo de nieve. Los resultados
mostraron la necesidad de seleccionar diferentes curvas de agotamiento dependiendo de la
sucesión de los ciclos de fusión-acumulación. En segundo lugar y en base a los resultados
previos, estas series de datos fueron directamente empleadas para definir curvas de agotamiento
paramétricas en el área experimental. Una curva sigmoide fue la utilizada para reproducir las
tendencias de los diferentes ciclos de fusión, donde diferentes parámetros de ajuste fueron
obtenidos para cada uno de estados encontrados: 1) ciclos con un gran espesor de nieve muy
metamorfoseada; 2) ciclos son gran espesor de nieve precedidas de una fase de acumulación
corta; 3) ciclos con poco espesor durante la estación de nieve; y 4) ciclos con poco espesor de
nieve que tienen lugar en primavera. Una única parametrización fue propuesta para los ciclos de
acumulación. Estos resultados confirmaron la necesidad de diferentes parametrizaciones para la
representación de la variabilidad observada en los ciclos de acumulación-fusión en ambientes
semiáridos. La elección de estas curvas mejora los resultados en el modelado si se comparan
con los obtenidos utilizando el algoritmo de asimilación.
Finalmente, la parametrización propuesta fue evaluada a escala de cuenca, en la cuenca del río
Guadalfeo, cara sur de Sierra Nevada. Los mapas distribuidos de superficie cubierta de nieve
obtenidos en el modelado fueron comparados con mapas de nieve obtenidos mediante la
aplicación de un modelo de mezclas espectrales aplicado sobre imágenes Landsat TM y ETM+
(30 x 30 m). Estos mapas fueron previamente validados con mapas de nieve a mayor resolución
(10 x 10 m) obtenidos gracias a imágenes terrestres in una ladera monitorizada dentro de la
cuenca. Los resultados muestran una gran concordancia entre mapas medidos y simulados, lo...