Mostrar el registro sencillo del ítem

dc.contributor.authorMarangon, Vittorio
dc.contributor.authorHernández-Rentero, C.
dc.contributor.authorOlivares-Marín, Mara
dc.contributor.authorGómez-Serrano, Vicente
dc.contributor.authorCaballero, Álvaro
dc.contributor.authorMorales, Julián
dc.contributor.authorHassoun, Jusef
dc.date.accessioned2022-03-11T11:28:17Z
dc.date.available2022-03-11T11:28:17Z
dc.date.issued2021
dc.identifier.urihttp://hdl.handle.net/10396/22682
dc.description.abstractA full lithium-ion-sulfur cell with a remarkable cycle life was achieved by combining an environmentally sustainable biomass-derived sulfur-carbon cathode and a pre-lithiated silicon oxide anode. X-ray diffraction, Raman spectroscopy, energy dispersive spectroscopy, and thermogravimetry of the cathode evidenced the disordered nature of the carbon matrix in which sulfur was uniformly distributed with a weight content as high as 75 %, while scanning and transmission electron microscopy revealed the micrometric morphology of the composite. The sulfur-carbon electrode in the lithium half-cell exhibited a maximum capacity higher than 1200 mAh gS−1, reversible electrochemical process, limited electrode/electrolyte interphase resistance, and a rate capability up to C/2. The material showed a capacity decay of about 40 % with respect to the steady-state value over 100 cycles, likely due to the reaction with the lithium metal of dissolved polysulfides or impurities including P detected in the carbon precursor. Therefore, the replacement of the lithium metal with a less challenging anode was suggested, and the sulfur-carbon composite was subsequently investigated in the full lithium-ion-sulfur battery employing a Li-alloying silicon oxide anode. The full-cell revealed an initial capacity as high as 1200 mAh gS−1, a retention increased to more than 79 % for 100 galvanostatic cycles, and 56 % over 500 cycles. The data reported herein well indicated the reliability of energy storage devices with extended cycle life employing high-energy, green, and safe electrode materials.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/es_ES
dc.sourceChemSusChem14, 3333-3343 (2021)es_ES
dc.subjectBiomasses_ES
dc.subjectElectrode materialses_ES
dc.subjectEnergy storagees_ES
dc.subjectLi-ion batterieses_ES
dc.subjectSulfures_ES
dc.titleA Stable High-Capacity Lithium-Ion Battery Using a Biomass-Derived Sulfur-Carbon Cathode and Lithiated Silicon Anodees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversiondoi.org/10.1002/cssc.202101069es_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/881603 (Graphene Flagship)es_ES
dc.relation.projectIDGobierno de España. MAT2017-87541-Res_ES
dc.relation.projectIDGobierno de España. PID2020-113931RB-I00es_ES
dc.relation.projectIDJunta de Andalucía. FQM-175es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem