Mostrar el registro sencillo del ítem

dc.contributor.authorEscalante, Cipriano
dc.contributor.authorFernández-Nieto, E.D.
dc.contributor.authorGarres-Díaz, José
dc.contributor.authorMorales de Luna, Tomás
dc.contributor.authorPenel, Yohan
dc.date.accessioned2023-11-27T08:47:14Z
dc.date.available2023-11-27T08:47:14Z
dc.date.issued2023
dc.identifier.urihttp://hdl.handle.net/10396/26253
dc.description.abstractA new family of non-hydrostatic layer-averaged models for the non-stationary Euler equations is presented in this work, with improved dispersion relations. They are a generalisation of the layer-averaged models introduced in Fernández-Nieto et al. (Commun Math Sci 16(05):1169–1202, 2018), named LDNH models, where the vertical profile of the horizontal velocity is layerwise constant. This assumption implies that solutions of LDNH can be seen as a first order Galerkin approximation of Euler system. Nevertheless, it is not a fully (x, z) Galerkin discretisation of Euler system, but just in the vertical direction (z). Thus, the resulting model only depends on the horizontal space variable (x), and therefore specific and efficient numerical methods can be applied (see Escalante-Sanchez et al. in J Sci Comput 89(55):1–35, 2021). This work focuses on particular weak solutions where the horizontal velocity is layerwise linear on z and possibly discontinuous across layer interfaces. This approach allows the system to be a second-order approximation in the vertical direction of Euler system. Several closure relations of the layer-averaged system with non-hydrostatic pressure are presented. The resulting models are named LIN-NHk models, with k = 0, 1, 2. Parameter k indicates the degree of the vertical velocity profile considered in the approximation of the vertical momentum equation. All the introduced models satisfy a dissipative energy balance. Finally, an analysis and a comparison of the dispersive properties of each model are carried out. We show that Models LIN-NH1 and LIN-NH2 provide a better dispersion relation, group velocity and shoaling than LDNH models.es_ES
dc.format.mimetypeapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightshttps://creativecommons.org/licenses/by/4.0/es_ES
dc.sourceEscalante, C., Fernández-Nieto, E. D., Garres-Díaz, J., Morales de Luna, T., & Penel, Y. (2023). Non-hydrostatic layer-averaged approximation of EUler system with enhanced dispersion properties. Computational & Applied Mathematics, 42(4). https://doi.org/10.1007/s40314-023-02309-7es_ES
dc.subjectLayer-averaged systemses_ES
dc.subjectEuler systemes_ES
dc.subjectDispersion propertieses_ES
dc.titleNon-hydrostatic layer-averaged approximation of Euler system with enhanced dispersion propertieses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1007/s40314-023-02309-7es_ES
dc.relation.projectIDGobierno de España. RTI2018-096064-B-C21es_ES
dc.relation.projectIDGobierno de España. RTI2018-096064-B-C22es_ES
dc.relation.projectIDGobierno de España. PID2020-114688RB-I00es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem