• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Neuro-fuzzy systems for daily solar irradiance classification and PV efficiency forecasting

Thumbnail
View/Open
10. Neuro-fuzzy sytems for daily solar irradiance classification and PV efficiency forecasting (2023).pdf (3.811Mb)
Author
Gersnoviez, Andrés
Gámez Granados, Juan Carlos
Cabrera-Fernández, Marta
Santiago, Isabel
Cañete-Carmona, Eduardo
Brox-Jiménez, María
Publisher
Elsevier
Date
2023
Subject
Irradiance daily profiles
Neuro-fuzzy system
Fuzzy classifier
Forecasting system
Photovoltaic installation efficiency
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
Considering the impact of photovoltaic installations and the fact that their performance depends on the type of day, this paper presents a classifier that makes use of fuzzy logic to classify daily irradiance profiles as a human would do. To do this, the system must be linguistically interpretable, so the classifier must be simple enough, but without losing accuracy. This is why the article combines the use of data mining and supervised learning algorithms to obtain an initial system and then exploits simplification techniques such as the concept of fuzzy classifiers with incomplete rule bases, as well as fuzzy tabular simplification of rules to obtain a compact and simple final system. The classifier obtained handles the ambiguity presented by the daily irradiance profiles with precision. Once the system has been obtained, a large number of days in southern Spain are classified, analysing the performances of a photovoltaic plant obtained in each of the classes. Then, a neuro-fuzzy system is designed to predict the performance of the photovoltaic installation, considering the type of day, the maximum ambient temperature reached during the day, and the degradation of the installation over time, proving its usefulness in alerting about anomalous behaviour of the system.
URI
http://hdl.handle.net/10396/27280
Fuente
Alexandria Engineering Journal, Vol 79, pp 21-33 (2023)
Versión del Editor
https://doi.org/10.1016/j.aej.2023.07.072
Collections
  • DACETE-Artículos, capítulos, libros...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital