• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Tesis Doctorales UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Tesis Doctorales UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Minería de datos mediante programación automática con colonias de hormigas

Thumbnail
View/Open
2013000000722.pdf (5.576Mb)
Author
Olmo Ortiz, Juan Luis
Director/es
Ventura Soto, S.
Romero-Salguero, José Raúl
Publisher
Universidad de Córdoba, Servicio de Publicaciones
Date
2013
Subject
Programación automática
Minería de datos
Colonias
Hormigas
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
La presente tesis doctoral supone el primer acercamiento de la metaheur stica de programaci on autom atica mediante colonias de hormigas (Ant Programming) a tareas de miner a de datos. Esta t ecnica de aprendizaje autom atico ha demostrado ser capaz de obtener buenos resultados en problemas de optimizaci on, pero su aplicaci on a la miner a de datos no hab a sido explorada hasta el momento. Espec camente, esta tesis cubre las tareas de clasi caci on y asociaci on. Para la primera se presentan tres modelos que inducen un clasi cador basado en reglas. Dos de ellos abordan el problema de clasi caci on desde el punto de vista de evaluaci on monobjetivo y multiobjetivo, respectivamente, mientras que el tercero afronta el problema espec co de clasi caci on en conjuntos de datos no balanceados desde una perspectiva multiobjetivo. Por su parte, para la tarea de extracci on de reglas de asociaci on se han desarrollado dos algoritmos que llevan a cabo la extracci on de patrones frecuentes. El primero de ellos propone una evaluaci on de los individuos novedosa, mientras que el segundo lo hace desde un punto de vista basado en la dominancia de Pareto. Todos los algoritmos han sido evaluados en un marco experimental adecuado, utilizando numerosos conjuntos de datos y comparando su rendimiento frente a otros m etodos ya publicados de contrastada calidad. Los resultados obtenidos, que han sido veri cados mediante la aplicaci on de test estad sticos no param etricos, demuestran los bene cios de utilizar la metaheur stica de programaci on autom atica con colonias de hormigas para dichas tareas de miner a de datos.
 
This Doctoral Thesis involves the rst approximation of the ant programming metaheuristic to data mining. This automatic programming technique has demonstrated good results in optimization problems, but its application to data mining has not been explored until the present moment. Speci cally, this Thesis deals with the classi cation and association rule mining tasks of data mining. For the former, three models for the induction of rule-based classi ers are presented. Two of them address the classi cation problem from the point of view of single-objective and multi-objective evaluation, respectively, while the third proposal tackles the particular problem of imbalanced classi cation from a multi-objective perspective. On the other hand, for the task of association rule mining two algorithms for extracting frequent patterns have been developed. The rst one evaluates the quality of individuals by using a novel tness function, while the second algorithm performs the evaluation from a Pareto dominance point of view. All the algorithms proposed in this Thesis have been evaluated in a proper experimental framework, using a large number of data sets and comparing their performance against other published methods of proved quality. The results obtained have been veri ed by applying non-parametric statistical tests, demonstrating the bene ts of using the ant programming metaheuristic to address these data mining tasks.
 
URI
http://hdl.handle.net/10396/9498
Collections
  • DIAN-Tesis
  • Tesis Doctorales UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital