• español
    • English
  • English 
    • español
    • English
  • Login
View Item 
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
  •   DSpace Home
  • Producción Científica
  • Artículos, capítulos, libros...UCO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessment of the Potential of UAV Video Image Analysis for Planning Irrigation Needs of Golf Courses

Thumbnail
View/Open
water-08-00584.pdf (8.293Mb)
Author
Perea Moreno, Alberto Jesús
Aguilera Ureña, M. Jesús
Meroño de Larriva, José Emilio
Manzano-Agugliaro, Francisco
Publisher
MDPI
Date
2016
Subject
Water management
Golf course
Memory-prediction theory
Object-based classification
Unmanned aerial vehicle
METS:
Mostrar el registro METS
PREMIS:
Mostrar el registro PREMIS
Metadata
Show full item record
Abstract
Golf courses can be considered as precision agriculture, as being a playing surface, their appearance is of vital importance. Areas with good weather tend to have low rainfall. Therefore, the water management of golf courses in these climates is a crucial issue due to the high water demand of turfgrass. Golf courses are rapidly transitioning to reuse water, e.g., the municipalities in the USA are providing price incentives or mandate the use of reuse water for irrigation purposes; in Europe this is mandatory. So, knowing the turfgrass surfaces of a large area can help plan the treated sewage effluent needs. Recycled water is usually of poor quality, thus it is crucial to check the real turfgrass surface in order to be able to plan the global irrigation needs using this type of water. In this way, the irrigation of golf courses does not detract from the natural water resources of the area. The aim of this paper is to propose a new methodology for analysing geometric patterns of video data acquired from UAVs (Unmanned Aerial Vehicle) using a new Hierarchical Temporal Memory (HTM) algorithm. A case study concerning maintained turfgrass, especially for golf courses, has been developed. It shows very good results, better than 98% in the confusion matrix. The results obtained in this study represent a first step toward video imagery classification. In summary, technical progress in computing power and software has shown that video imagery is one of the most promising environmental data acquisition techniques available today. This rapid classification of turfgrass can play an important role for planning water management.
URI
http://hdl.handle.net/10396/15386
Fuente
Water 8(12), 584 (2016)
Versión del Editor
http://dx.doi.org/10.3390/w8120584
Collections
  • DIGISIC-Artículos, capítulos, libros...
  • DFisA-Artículos, capítulos, libros...
  • Artículos, capítulos, libros...UCO

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

De Interés

Archivo Delegado/AutoarchivoAyudaPolíticas de Helvia

Compartir


DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
© Biblioteca Universidad de Córdoba
Biblioteca  UCODigital