Heterogeneous parallel computing for image registration and linear algebra applications
Computación paralela heterogénea en registro de imágenes y aplicaciones de álgebra lineal
View/ Open
Author
Zachariadis, Orestis
Director/es
Olivares Bueno, JoaquínGómez Luna, Juan
Publisher
Universidad de Córdoba, UCOPressDate
2020Subject
GPUMedical image registration
Sparse general matrix-matrix multiplication
Image Guided Surgery
B-spline interpolation
Optimization
Tensor Core Units
Linear algebra
METS:
Mostrar el registro METSPREMIS:
Mostrar el registro PREMISMetadata
Show full item recordAbstract
This doctoral thesis focuses on GPU acceleration of medical image registration and sparse general matrix-matrix multiplication (SpGEMM). The comprehensive work presented here aims to enable new possibilities in Image Guided Surgery (IGS). IGS provides the surgeon with advanced navigation tools during surgery. Image registration, which is a part of IGS, is computationally demanding, therefore GPU acceleration is greatly desirable. spGEMM, which is an essential part in many scientific and data analytics applications, e.g., graph applications, is also a useful tool in biomechanical modeling and sparse vessel network registration. We present this work in two parts. The first part of this thesis describes the optimization of the most demanding part of non-rigid Free Form Deformation registration, i.e., B-spline interpolation. Our novel optimization technique minimizes the data movement between processing cores and memory and maximizes the utilization of the very fast register file. In addition, our approach re-formulates B-spline interpolation to fully utilize Fused Multiply Accumulation instructions for additional benefits in performance and accuracy. Our optimized B-spline interpolation provides significant speedup to image registration. The second part describes the optimization of spGEMM. Hardware manufacturers, with the aim of increasing the performance of deep-learning, created specialized dense matrix multiplication units, called Tensor Core Units (TCUs). However, until now, no work takes advantage of TCUs for sparse matrix multiplication. With this work we provide the first TCU implementation of spGEMM and prove its benefits over conventional GPU spGEMM. Esta tesis doctoral se centra en la aceleración por GPU del registro de imágenes médicas y la multiplicación de matrices dispersas (SpGEMM). El exhaustivo trabajo presentado aquí tiene como objetivo permitir nuevas posibilidades en la cirugía guiada por imagen (IGS). IGS proporciona al cirujano herramientas de navegación avanzadas durante la cirugía. El registro de imágenes, parte de IGS computacionalmente exigente, por lo tanto, la aceleración en GPU es muy deseable. spGEMM, la cual es una parte esencial en muchas aplicaciones científicas y de análisis de datos, por ejemplo, aplicaciones de gráficos, también es una herramienta útil en el modelado biomecánico y el registro de redes de vasos dispersos. Presentamos este trabajo en dos partes. La primera parte de esta tesis describe la optimización de la parte más exigente del registro de deformación de forma libre no rígida, es decir, la interpolación B-spline. Nuestra novedosa técnica de optimización minimiza el movimiento de datos entre los núcleos de procesamiento y la memoria y maximiza la utilización del archivo de registro rápido. Además, nuestro enfoque reformula la interpolación B-spline para utilizar completamente las instrucciones de multiplicación-acumulación fusionada (FMAC) para obtener beneficios adicionales en rendimiento y precisión. Nuestra interpolación B-spline optimizada proporciona una aceleración significativa en el registro de imágenes. La segunda parte describe la optimización de spGEMM. Los fabricantes de hardware, con el objetivo de aumentar el rendimiento del aprendizaje profundo, crearon unidades especializadas de multiplicación de matrices densas, llamadas Tensor Core Units (TCU). Sin embargo, hasta ahora, no se ha encontrado ningún trabajo aprovecha las TCU para la multiplicación de matrices dispersas. Con este trabajo, proporcionamos la primera implementación TCU de spGEMM y demostramos sus beneficios sobre la spGEMM convencional operada sobre dispositivos GPU.